page-flags: define PG_locked behavior on compound pages
[linux-drm-fsl-dcu.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
105         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
106         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128         struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                         mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370                                                 pgoff_t start, pgoff_t end)
371 {
372         struct radix_tree_iter iter;
373         void **slot;
374         struct page *page;
375         unsigned long swapped = 0;
376
377         rcu_read_lock();
378
379 restart:
380         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381                 if (iter.index >= end)
382                         break;
383
384                 page = radix_tree_deref_slot(slot);
385
386                 /*
387                  * This should only be possible to happen at index 0, so we
388                  * don't need to reset the counter, nor do we risk infinite
389                  * restarts.
390                  */
391                 if (radix_tree_deref_retry(page))
392                         goto restart;
393
394                 if (radix_tree_exceptional_entry(page))
395                         swapped++;
396
397                 if (need_resched()) {
398                         cond_resched_rcu();
399                         start = iter.index + 1;
400                         goto restart;
401                 }
402         }
403
404         rcu_read_unlock();
405
406         return swapped << PAGE_SHIFT;
407 }
408
409 /*
410  * Determine (in bytes) how many of the shmem object's pages mapped by the
411  * given vma is swapped out.
412  *
413  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414  * as long as the inode doesn't go away and racy results are not a problem.
415  */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418         struct inode *inode = file_inode(vma->vm_file);
419         struct shmem_inode_info *info = SHMEM_I(inode);
420         struct address_space *mapping = inode->i_mapping;
421         unsigned long swapped;
422
423         /* Be careful as we don't hold info->lock */
424         swapped = READ_ONCE(info->swapped);
425
426         /*
427          * The easier cases are when the shmem object has nothing in swap, or
428          * the vma maps it whole. Then we can simply use the stats that we
429          * already track.
430          */
431         if (!swapped)
432                 return 0;
433
434         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435                 return swapped << PAGE_SHIFT;
436
437         /* Here comes the more involved part */
438         return shmem_partial_swap_usage(mapping,
439                         linear_page_index(vma, vma->vm_start),
440                         linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445  */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448         struct pagevec pvec;
449         pgoff_t indices[PAGEVEC_SIZE];
450         pgoff_t index = 0;
451
452         pagevec_init(&pvec, 0);
453         /*
454          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455          */
456         while (!mapping_unevictable(mapping)) {
457                 /*
458                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460                  */
461                 pvec.nr = find_get_entries(mapping, index,
462                                            PAGEVEC_SIZE, pvec.pages, indices);
463                 if (!pvec.nr)
464                         break;
465                 index = indices[pvec.nr - 1] + 1;
466                 pagevec_remove_exceptionals(&pvec);
467                 check_move_unevictable_pages(pvec.pages, pvec.nr);
468                 pagevec_release(&pvec);
469                 cond_resched();
470         }
471 }
472
473 /*
474  * Remove range of pages and swap entries from radix tree, and free them.
475  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476  */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478                                                                  bool unfalloc)
479 {
480         struct address_space *mapping = inode->i_mapping;
481         struct shmem_inode_info *info = SHMEM_I(inode);
482         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486         struct pagevec pvec;
487         pgoff_t indices[PAGEVEC_SIZE];
488         long nr_swaps_freed = 0;
489         pgoff_t index;
490         int i;
491
492         if (lend == -1)
493                 end = -1;       /* unsigned, so actually very big */
494
495         pagevec_init(&pvec, 0);
496         index = start;
497         while (index < end) {
498                 pvec.nr = find_get_entries(mapping, index,
499                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
500                         pvec.pages, indices);
501                 if (!pvec.nr)
502                         break;
503                 for (i = 0; i < pagevec_count(&pvec); i++) {
504                         struct page *page = pvec.pages[i];
505
506                         index = indices[i];
507                         if (index >= end)
508                                 break;
509
510                         if (radix_tree_exceptional_entry(page)) {
511                                 if (unfalloc)
512                                         continue;
513                                 nr_swaps_freed += !shmem_free_swap(mapping,
514                                                                 index, page);
515                                 continue;
516                         }
517
518                         if (!trylock_page(page))
519                                 continue;
520                         if (!unfalloc || !PageUptodate(page)) {
521                                 if (page->mapping == mapping) {
522                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
523                                         truncate_inode_page(mapping, page);
524                                 }
525                         }
526                         unlock_page(page);
527                 }
528                 pagevec_remove_exceptionals(&pvec);
529                 pagevec_release(&pvec);
530                 cond_resched();
531                 index++;
532         }
533
534         if (partial_start) {
535                 struct page *page = NULL;
536                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537                 if (page) {
538                         unsigned int top = PAGE_CACHE_SIZE;
539                         if (start > end) {
540                                 top = partial_end;
541                                 partial_end = 0;
542                         }
543                         zero_user_segment(page, partial_start, top);
544                         set_page_dirty(page);
545                         unlock_page(page);
546                         page_cache_release(page);
547                 }
548         }
549         if (partial_end) {
550                 struct page *page = NULL;
551                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552                 if (page) {
553                         zero_user_segment(page, 0, partial_end);
554                         set_page_dirty(page);
555                         unlock_page(page);
556                         page_cache_release(page);
557                 }
558         }
559         if (start >= end)
560                 return;
561
562         index = start;
563         while (index < end) {
564                 cond_resched();
565
566                 pvec.nr = find_get_entries(mapping, index,
567                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568                                 pvec.pages, indices);
569                 if (!pvec.nr) {
570                         /* If all gone or hole-punch or unfalloc, we're done */
571                         if (index == start || end != -1)
572                                 break;
573                         /* But if truncating, restart to make sure all gone */
574                         index = start;
575                         continue;
576                 }
577                 for (i = 0; i < pagevec_count(&pvec); i++) {
578                         struct page *page = pvec.pages[i];
579
580                         index = indices[i];
581                         if (index >= end)
582                                 break;
583
584                         if (radix_tree_exceptional_entry(page)) {
585                                 if (unfalloc)
586                                         continue;
587                                 if (shmem_free_swap(mapping, index, page)) {
588                                         /* Swap was replaced by page: retry */
589                                         index--;
590                                         break;
591                                 }
592                                 nr_swaps_freed++;
593                                 continue;
594                         }
595
596                         lock_page(page);
597                         if (!unfalloc || !PageUptodate(page)) {
598                                 if (page->mapping == mapping) {
599                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
600                                         truncate_inode_page(mapping, page);
601                                 } else {
602                                         /* Page was replaced by swap: retry */
603                                         unlock_page(page);
604                                         index--;
605                                         break;
606                                 }
607                         }
608                         unlock_page(page);
609                 }
610                 pagevec_remove_exceptionals(&pvec);
611                 pagevec_release(&pvec);
612                 index++;
613         }
614
615         spin_lock(&info->lock);
616         info->swapped -= nr_swaps_freed;
617         shmem_recalc_inode(inode);
618         spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623         shmem_undo_range(inode, lstart, lend, false);
624         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629                          struct kstat *stat)
630 {
631         struct inode *inode = dentry->d_inode;
632         struct shmem_inode_info *info = SHMEM_I(inode);
633
634         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635                 spin_lock(&info->lock);
636                 shmem_recalc_inode(inode);
637                 spin_unlock(&info->lock);
638         }
639         generic_fillattr(inode, stat);
640         return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645         struct inode *inode = d_inode(dentry);
646         struct shmem_inode_info *info = SHMEM_I(inode);
647         int error;
648
649         error = inode_change_ok(inode, attr);
650         if (error)
651                 return error;
652
653         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654                 loff_t oldsize = inode->i_size;
655                 loff_t newsize = attr->ia_size;
656
657                 /* protected by i_mutex */
658                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660                         return -EPERM;
661
662                 if (newsize != oldsize) {
663                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
664                                         oldsize, newsize);
665                         if (error)
666                                 return error;
667                         i_size_write(inode, newsize);
668                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669                 }
670                 if (newsize <= oldsize) {
671                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
672                         if (oldsize > holebegin)
673                                 unmap_mapping_range(inode->i_mapping,
674                                                         holebegin, 0, 1);
675                         if (info->alloced)
676                                 shmem_truncate_range(inode,
677                                                         newsize, (loff_t)-1);
678                         /* unmap again to remove racily COWed private pages */
679                         if (oldsize > holebegin)
680                                 unmap_mapping_range(inode->i_mapping,
681                                                         holebegin, 0, 1);
682                 }
683         }
684
685         setattr_copy(inode, attr);
686         if (attr->ia_valid & ATTR_MODE)
687                 error = posix_acl_chmod(inode, inode->i_mode);
688         return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693         struct shmem_inode_info *info = SHMEM_I(inode);
694
695         if (inode->i_mapping->a_ops == &shmem_aops) {
696                 shmem_unacct_size(info->flags, inode->i_size);
697                 inode->i_size = 0;
698                 shmem_truncate_range(inode, 0, (loff_t)-1);
699                 if (!list_empty(&info->swaplist)) {
700                         mutex_lock(&shmem_swaplist_mutex);
701                         list_del_init(&info->swaplist);
702                         mutex_unlock(&shmem_swaplist_mutex);
703                 }
704         } else
705                 kfree(info->symlink);
706
707         simple_xattrs_free(&info->xattrs);
708         WARN_ON(inode->i_blocks);
709         shmem_free_inode(inode->i_sb);
710         clear_inode(inode);
711 }
712
713 /*
714  * If swap found in inode, free it and move page from swapcache to filecache.
715  */
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717                              swp_entry_t swap, struct page **pagep)
718 {
719         struct address_space *mapping = info->vfs_inode.i_mapping;
720         void *radswap;
721         pgoff_t index;
722         gfp_t gfp;
723         int error = 0;
724
725         radswap = swp_to_radix_entry(swap);
726         index = radix_tree_locate_item(&mapping->page_tree, radswap);
727         if (index == -1)
728                 return -EAGAIN; /* tell shmem_unuse we found nothing */
729
730         /*
731          * Move _head_ to start search for next from here.
732          * But be careful: shmem_evict_inode checks list_empty without taking
733          * mutex, and there's an instant in list_move_tail when info->swaplist
734          * would appear empty, if it were the only one on shmem_swaplist.
735          */
736         if (shmem_swaplist.next != &info->swaplist)
737                 list_move_tail(&shmem_swaplist, &info->swaplist);
738
739         gfp = mapping_gfp_mask(mapping);
740         if (shmem_should_replace_page(*pagep, gfp)) {
741                 mutex_unlock(&shmem_swaplist_mutex);
742                 error = shmem_replace_page(pagep, gfp, info, index);
743                 mutex_lock(&shmem_swaplist_mutex);
744                 /*
745                  * We needed to drop mutex to make that restrictive page
746                  * allocation, but the inode might have been freed while we
747                  * dropped it: although a racing shmem_evict_inode() cannot
748                  * complete without emptying the radix_tree, our page lock
749                  * on this swapcache page is not enough to prevent that -
750                  * free_swap_and_cache() of our swap entry will only
751                  * trylock_page(), removing swap from radix_tree whatever.
752                  *
753                  * We must not proceed to shmem_add_to_page_cache() if the
754                  * inode has been freed, but of course we cannot rely on
755                  * inode or mapping or info to check that.  However, we can
756                  * safely check if our swap entry is still in use (and here
757                  * it can't have got reused for another page): if it's still
758                  * in use, then the inode cannot have been freed yet, and we
759                  * can safely proceed (if it's no longer in use, that tells
760                  * nothing about the inode, but we don't need to unuse swap).
761                  */
762                 if (!page_swapcount(*pagep))
763                         error = -ENOENT;
764         }
765
766         /*
767          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768          * but also to hold up shmem_evict_inode(): so inode cannot be freed
769          * beneath us (pagelock doesn't help until the page is in pagecache).
770          */
771         if (!error)
772                 error = shmem_add_to_page_cache(*pagep, mapping, index,
773                                                 radswap);
774         if (error != -ENOMEM) {
775                 /*
776                  * Truncation and eviction use free_swap_and_cache(), which
777                  * only does trylock page: if we raced, best clean up here.
778                  */
779                 delete_from_swap_cache(*pagep);
780                 set_page_dirty(*pagep);
781                 if (!error) {
782                         spin_lock(&info->lock);
783                         info->swapped--;
784                         spin_unlock(&info->lock);
785                         swap_free(swap);
786                 }
787         }
788         return error;
789 }
790
791 /*
792  * Search through swapped inodes to find and replace swap by page.
793  */
794 int shmem_unuse(swp_entry_t swap, struct page *page)
795 {
796         struct list_head *this, *next;
797         struct shmem_inode_info *info;
798         struct mem_cgroup *memcg;
799         int error = 0;
800
801         /*
802          * There's a faint possibility that swap page was replaced before
803          * caller locked it: caller will come back later with the right page.
804          */
805         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
806                 goto out;
807
808         /*
809          * Charge page using GFP_KERNEL while we can wait, before taking
810          * the shmem_swaplist_mutex which might hold up shmem_writepage().
811          * Charged back to the user (not to caller) when swap account is used.
812          */
813         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
814         if (error)
815                 goto out;
816         /* No radix_tree_preload: swap entry keeps a place for page in tree */
817         error = -EAGAIN;
818
819         mutex_lock(&shmem_swaplist_mutex);
820         list_for_each_safe(this, next, &shmem_swaplist) {
821                 info = list_entry(this, struct shmem_inode_info, swaplist);
822                 if (info->swapped)
823                         error = shmem_unuse_inode(info, swap, &page);
824                 else
825                         list_del_init(&info->swaplist);
826                 cond_resched();
827                 if (error != -EAGAIN)
828                         break;
829                 /* found nothing in this: move on to search the next */
830         }
831         mutex_unlock(&shmem_swaplist_mutex);
832
833         if (error) {
834                 if (error != -ENOMEM)
835                         error = 0;
836                 mem_cgroup_cancel_charge(page, memcg);
837         } else
838                 mem_cgroup_commit_charge(page, memcg, true);
839 out:
840         unlock_page(page);
841         page_cache_release(page);
842         return error;
843 }
844
845 /*
846  * Move the page from the page cache to the swap cache.
847  */
848 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
849 {
850         struct shmem_inode_info *info;
851         struct address_space *mapping;
852         struct inode *inode;
853         swp_entry_t swap;
854         pgoff_t index;
855
856         BUG_ON(!PageLocked(page));
857         mapping = page->mapping;
858         index = page->index;
859         inode = mapping->host;
860         info = SHMEM_I(inode);
861         if (info->flags & VM_LOCKED)
862                 goto redirty;
863         if (!total_swap_pages)
864                 goto redirty;
865
866         /*
867          * Our capabilities prevent regular writeback or sync from ever calling
868          * shmem_writepage; but a stacking filesystem might use ->writepage of
869          * its underlying filesystem, in which case tmpfs should write out to
870          * swap only in response to memory pressure, and not for the writeback
871          * threads or sync.
872          */
873         if (!wbc->for_reclaim) {
874                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
875                 goto redirty;
876         }
877
878         /*
879          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880          * value into swapfile.c, the only way we can correctly account for a
881          * fallocated page arriving here is now to initialize it and write it.
882          *
883          * That's okay for a page already fallocated earlier, but if we have
884          * not yet completed the fallocation, then (a) we want to keep track
885          * of this page in case we have to undo it, and (b) it may not be a
886          * good idea to continue anyway, once we're pushing into swap.  So
887          * reactivate the page, and let shmem_fallocate() quit when too many.
888          */
889         if (!PageUptodate(page)) {
890                 if (inode->i_private) {
891                         struct shmem_falloc *shmem_falloc;
892                         spin_lock(&inode->i_lock);
893                         shmem_falloc = inode->i_private;
894                         if (shmem_falloc &&
895                             !shmem_falloc->waitq &&
896                             index >= shmem_falloc->start &&
897                             index < shmem_falloc->next)
898                                 shmem_falloc->nr_unswapped++;
899                         else
900                                 shmem_falloc = NULL;
901                         spin_unlock(&inode->i_lock);
902                         if (shmem_falloc)
903                                 goto redirty;
904                 }
905                 clear_highpage(page);
906                 flush_dcache_page(page);
907                 SetPageUptodate(page);
908         }
909
910         swap = get_swap_page();
911         if (!swap.val)
912                 goto redirty;
913
914         /*
915          * Add inode to shmem_unuse()'s list of swapped-out inodes,
916          * if it's not already there.  Do it now before the page is
917          * moved to swap cache, when its pagelock no longer protects
918          * the inode from eviction.  But don't unlock the mutex until
919          * we've incremented swapped, because shmem_unuse_inode() will
920          * prune a !swapped inode from the swaplist under this mutex.
921          */
922         mutex_lock(&shmem_swaplist_mutex);
923         if (list_empty(&info->swaplist))
924                 list_add_tail(&info->swaplist, &shmem_swaplist);
925
926         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
927                 spin_lock(&info->lock);
928                 shmem_recalc_inode(inode);
929                 info->swapped++;
930                 spin_unlock(&info->lock);
931
932                 swap_shmem_alloc(swap);
933                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
934
935                 mutex_unlock(&shmem_swaplist_mutex);
936                 BUG_ON(page_mapped(page));
937                 swap_writepage(page, wbc);
938                 return 0;
939         }
940
941         mutex_unlock(&shmem_swaplist_mutex);
942         swapcache_free(swap);
943 redirty:
944         set_page_dirty(page);
945         if (wbc->for_reclaim)
946                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
947         unlock_page(page);
948         return 0;
949 }
950
951 #ifdef CONFIG_NUMA
952 #ifdef CONFIG_TMPFS
953 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 {
955         char buffer[64];
956
957         if (!mpol || mpol->mode == MPOL_DEFAULT)
958                 return;         /* show nothing */
959
960         mpol_to_str(buffer, sizeof(buffer), mpol);
961
962         seq_printf(seq, ",mpol=%s", buffer);
963 }
964
965 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
966 {
967         struct mempolicy *mpol = NULL;
968         if (sbinfo->mpol) {
969                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
970                 mpol = sbinfo->mpol;
971                 mpol_get(mpol);
972                 spin_unlock(&sbinfo->stat_lock);
973         }
974         return mpol;
975 }
976 #endif /* CONFIG_TMPFS */
977
978 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
979                         struct shmem_inode_info *info, pgoff_t index)
980 {
981         struct vm_area_struct pvma;
982         struct page *page;
983
984         /* Create a pseudo vma that just contains the policy */
985         pvma.vm_start = 0;
986         /* Bias interleave by inode number to distribute better across nodes */
987         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
988         pvma.vm_ops = NULL;
989         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
990
991         page = swapin_readahead(swap, gfp, &pvma, 0);
992
993         /* Drop reference taken by mpol_shared_policy_lookup() */
994         mpol_cond_put(pvma.vm_policy);
995
996         return page;
997 }
998
999 static struct page *shmem_alloc_page(gfp_t gfp,
1000                         struct shmem_inode_info *info, pgoff_t index)
1001 {
1002         struct vm_area_struct pvma;
1003         struct page *page;
1004
1005         /* Create a pseudo vma that just contains the policy */
1006         pvma.vm_start = 0;
1007         /* Bias interleave by inode number to distribute better across nodes */
1008         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1009         pvma.vm_ops = NULL;
1010         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1011
1012         page = alloc_page_vma(gfp, &pvma, 0);
1013
1014         /* Drop reference taken by mpol_shared_policy_lookup() */
1015         mpol_cond_put(pvma.vm_policy);
1016
1017         return page;
1018 }
1019 #else /* !CONFIG_NUMA */
1020 #ifdef CONFIG_TMPFS
1021 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1022 {
1023 }
1024 #endif /* CONFIG_TMPFS */
1025
1026 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1027                         struct shmem_inode_info *info, pgoff_t index)
1028 {
1029         return swapin_readahead(swap, gfp, NULL, 0);
1030 }
1031
1032 static inline struct page *shmem_alloc_page(gfp_t gfp,
1033                         struct shmem_inode_info *info, pgoff_t index)
1034 {
1035         return alloc_page(gfp);
1036 }
1037 #endif /* CONFIG_NUMA */
1038
1039 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1040 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1041 {
1042         return NULL;
1043 }
1044 #endif
1045
1046 /*
1047  * When a page is moved from swapcache to shmem filecache (either by the
1048  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1049  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1050  * ignorance of the mapping it belongs to.  If that mapping has special
1051  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1052  * we may need to copy to a suitable page before moving to filecache.
1053  *
1054  * In a future release, this may well be extended to respect cpuset and
1055  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1056  * but for now it is a simple matter of zone.
1057  */
1058 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1059 {
1060         return page_zonenum(page) > gfp_zone(gfp);
1061 }
1062
1063 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1064                                 struct shmem_inode_info *info, pgoff_t index)
1065 {
1066         struct page *oldpage, *newpage;
1067         struct address_space *swap_mapping;
1068         pgoff_t swap_index;
1069         int error;
1070
1071         oldpage = *pagep;
1072         swap_index = page_private(oldpage);
1073         swap_mapping = page_mapping(oldpage);
1074
1075         /*
1076          * We have arrived here because our zones are constrained, so don't
1077          * limit chance of success by further cpuset and node constraints.
1078          */
1079         gfp &= ~GFP_CONSTRAINT_MASK;
1080         newpage = shmem_alloc_page(gfp, info, index);
1081         if (!newpage)
1082                 return -ENOMEM;
1083
1084         page_cache_get(newpage);
1085         copy_highpage(newpage, oldpage);
1086         flush_dcache_page(newpage);
1087
1088         __SetPageLocked(newpage);
1089         SetPageUptodate(newpage);
1090         SetPageSwapBacked(newpage);
1091         set_page_private(newpage, swap_index);
1092         SetPageSwapCache(newpage);
1093
1094         /*
1095          * Our caller will very soon move newpage out of swapcache, but it's
1096          * a nice clean interface for us to replace oldpage by newpage there.
1097          */
1098         spin_lock_irq(&swap_mapping->tree_lock);
1099         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1100                                                                    newpage);
1101         if (!error) {
1102                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1103                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1104         }
1105         spin_unlock_irq(&swap_mapping->tree_lock);
1106
1107         if (unlikely(error)) {
1108                 /*
1109                  * Is this possible?  I think not, now that our callers check
1110                  * both PageSwapCache and page_private after getting page lock;
1111                  * but be defensive.  Reverse old to newpage for clear and free.
1112                  */
1113                 oldpage = newpage;
1114         } else {
1115                 mem_cgroup_replace_page(oldpage, newpage);
1116                 lru_cache_add_anon(newpage);
1117                 *pagep = newpage;
1118         }
1119
1120         ClearPageSwapCache(oldpage);
1121         set_page_private(oldpage, 0);
1122
1123         unlock_page(oldpage);
1124         page_cache_release(oldpage);
1125         page_cache_release(oldpage);
1126         return error;
1127 }
1128
1129 /*
1130  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1131  *
1132  * If we allocate a new one we do not mark it dirty. That's up to the
1133  * vm. If we swap it in we mark it dirty since we also free the swap
1134  * entry since a page cannot live in both the swap and page cache
1135  */
1136 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1137         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1138 {
1139         struct address_space *mapping = inode->i_mapping;
1140         struct shmem_inode_info *info;
1141         struct shmem_sb_info *sbinfo;
1142         struct mem_cgroup *memcg;
1143         struct page *page;
1144         swp_entry_t swap;
1145         int error;
1146         int once = 0;
1147         int alloced = 0;
1148
1149         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1150                 return -EFBIG;
1151 repeat:
1152         swap.val = 0;
1153         page = find_lock_entry(mapping, index);
1154         if (radix_tree_exceptional_entry(page)) {
1155                 swap = radix_to_swp_entry(page);
1156                 page = NULL;
1157         }
1158
1159         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1160             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1161                 error = -EINVAL;
1162                 goto unlock;
1163         }
1164
1165         if (page && sgp == SGP_WRITE)
1166                 mark_page_accessed(page);
1167
1168         /* fallocated page? */
1169         if (page && !PageUptodate(page)) {
1170                 if (sgp != SGP_READ)
1171                         goto clear;
1172                 unlock_page(page);
1173                 page_cache_release(page);
1174                 page = NULL;
1175         }
1176         if (page || (sgp == SGP_READ && !swap.val)) {
1177                 *pagep = page;
1178                 return 0;
1179         }
1180
1181         /*
1182          * Fast cache lookup did not find it:
1183          * bring it back from swap or allocate.
1184          */
1185         info = SHMEM_I(inode);
1186         sbinfo = SHMEM_SB(inode->i_sb);
1187
1188         if (swap.val) {
1189                 /* Look it up and read it in.. */
1190                 page = lookup_swap_cache(swap);
1191                 if (!page) {
1192                         /* here we actually do the io */
1193                         if (fault_type)
1194                                 *fault_type |= VM_FAULT_MAJOR;
1195                         page = shmem_swapin(swap, gfp, info, index);
1196                         if (!page) {
1197                                 error = -ENOMEM;
1198                                 goto failed;
1199                         }
1200                 }
1201
1202                 /* We have to do this with page locked to prevent races */
1203                 lock_page(page);
1204                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1205                     !shmem_confirm_swap(mapping, index, swap)) {
1206                         error = -EEXIST;        /* try again */
1207                         goto unlock;
1208                 }
1209                 if (!PageUptodate(page)) {
1210                         error = -EIO;
1211                         goto failed;
1212                 }
1213                 wait_on_page_writeback(page);
1214
1215                 if (shmem_should_replace_page(page, gfp)) {
1216                         error = shmem_replace_page(&page, gfp, info, index);
1217                         if (error)
1218                                 goto failed;
1219                 }
1220
1221                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1222                 if (!error) {
1223                         error = shmem_add_to_page_cache(page, mapping, index,
1224                                                 swp_to_radix_entry(swap));
1225                         /*
1226                          * We already confirmed swap under page lock, and make
1227                          * no memory allocation here, so usually no possibility
1228                          * of error; but free_swap_and_cache() only trylocks a
1229                          * page, so it is just possible that the entry has been
1230                          * truncated or holepunched since swap was confirmed.
1231                          * shmem_undo_range() will have done some of the
1232                          * unaccounting, now delete_from_swap_cache() will do
1233                          * the rest.
1234                          * Reset swap.val? No, leave it so "failed" goes back to
1235                          * "repeat": reading a hole and writing should succeed.
1236                          */
1237                         if (error) {
1238                                 mem_cgroup_cancel_charge(page, memcg);
1239                                 delete_from_swap_cache(page);
1240                         }
1241                 }
1242                 if (error)
1243                         goto failed;
1244
1245                 mem_cgroup_commit_charge(page, memcg, true);
1246
1247                 spin_lock(&info->lock);
1248                 info->swapped--;
1249                 shmem_recalc_inode(inode);
1250                 spin_unlock(&info->lock);
1251
1252                 if (sgp == SGP_WRITE)
1253                         mark_page_accessed(page);
1254
1255                 delete_from_swap_cache(page);
1256                 set_page_dirty(page);
1257                 swap_free(swap);
1258
1259         } else {
1260                 if (shmem_acct_block(info->flags)) {
1261                         error = -ENOSPC;
1262                         goto failed;
1263                 }
1264                 if (sbinfo->max_blocks) {
1265                         if (percpu_counter_compare(&sbinfo->used_blocks,
1266                                                 sbinfo->max_blocks) >= 0) {
1267                                 error = -ENOSPC;
1268                                 goto unacct;
1269                         }
1270                         percpu_counter_inc(&sbinfo->used_blocks);
1271                 }
1272
1273                 page = shmem_alloc_page(gfp, info, index);
1274                 if (!page) {
1275                         error = -ENOMEM;
1276                         goto decused;
1277                 }
1278
1279                 __SetPageSwapBacked(page);
1280                 __SetPageLocked(page);
1281                 if (sgp == SGP_WRITE)
1282                         __SetPageReferenced(page);
1283
1284                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1285                 if (error)
1286                         goto decused;
1287                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1288                 if (!error) {
1289                         error = shmem_add_to_page_cache(page, mapping, index,
1290                                                         NULL);
1291                         radix_tree_preload_end();
1292                 }
1293                 if (error) {
1294                         mem_cgroup_cancel_charge(page, memcg);
1295                         goto decused;
1296                 }
1297                 mem_cgroup_commit_charge(page, memcg, false);
1298                 lru_cache_add_anon(page);
1299
1300                 spin_lock(&info->lock);
1301                 info->alloced++;
1302                 inode->i_blocks += BLOCKS_PER_PAGE;
1303                 shmem_recalc_inode(inode);
1304                 spin_unlock(&info->lock);
1305                 alloced = true;
1306
1307                 /*
1308                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1309                  */
1310                 if (sgp == SGP_FALLOC)
1311                         sgp = SGP_WRITE;
1312 clear:
1313                 /*
1314                  * Let SGP_WRITE caller clear ends if write does not fill page;
1315                  * but SGP_FALLOC on a page fallocated earlier must initialize
1316                  * it now, lest undo on failure cancel our earlier guarantee.
1317                  */
1318                 if (sgp != SGP_WRITE) {
1319                         clear_highpage(page);
1320                         flush_dcache_page(page);
1321                         SetPageUptodate(page);
1322                 }
1323                 if (sgp == SGP_DIRTY)
1324                         set_page_dirty(page);
1325         }
1326
1327         /* Perhaps the file has been truncated since we checked */
1328         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1329             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1330                 if (alloced) {
1331                         ClearPageDirty(page);
1332                         delete_from_page_cache(page);
1333                         spin_lock(&info->lock);
1334                         shmem_recalc_inode(inode);
1335                         spin_unlock(&info->lock);
1336                 }
1337                 error = -EINVAL;
1338                 goto unlock;
1339         }
1340         *pagep = page;
1341         return 0;
1342
1343         /*
1344          * Error recovery.
1345          */
1346 decused:
1347         if (sbinfo->max_blocks)
1348                 percpu_counter_add(&sbinfo->used_blocks, -1);
1349 unacct:
1350         shmem_unacct_blocks(info->flags, 1);
1351 failed:
1352         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1353                 error = -EEXIST;
1354 unlock:
1355         if (page) {
1356                 unlock_page(page);
1357                 page_cache_release(page);
1358         }
1359         if (error == -ENOSPC && !once++) {
1360                 info = SHMEM_I(inode);
1361                 spin_lock(&info->lock);
1362                 shmem_recalc_inode(inode);
1363                 spin_unlock(&info->lock);
1364                 goto repeat;
1365         }
1366         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1367                 goto repeat;
1368         return error;
1369 }
1370
1371 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1372 {
1373         struct inode *inode = file_inode(vma->vm_file);
1374         int error;
1375         int ret = VM_FAULT_LOCKED;
1376
1377         /*
1378          * Trinity finds that probing a hole which tmpfs is punching can
1379          * prevent the hole-punch from ever completing: which in turn
1380          * locks writers out with its hold on i_mutex.  So refrain from
1381          * faulting pages into the hole while it's being punched.  Although
1382          * shmem_undo_range() does remove the additions, it may be unable to
1383          * keep up, as each new page needs its own unmap_mapping_range() call,
1384          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1385          *
1386          * It does not matter if we sometimes reach this check just before the
1387          * hole-punch begins, so that one fault then races with the punch:
1388          * we just need to make racing faults a rare case.
1389          *
1390          * The implementation below would be much simpler if we just used a
1391          * standard mutex or completion: but we cannot take i_mutex in fault,
1392          * and bloating every shmem inode for this unlikely case would be sad.
1393          */
1394         if (unlikely(inode->i_private)) {
1395                 struct shmem_falloc *shmem_falloc;
1396
1397                 spin_lock(&inode->i_lock);
1398                 shmem_falloc = inode->i_private;
1399                 if (shmem_falloc &&
1400                     shmem_falloc->waitq &&
1401                     vmf->pgoff >= shmem_falloc->start &&
1402                     vmf->pgoff < shmem_falloc->next) {
1403                         wait_queue_head_t *shmem_falloc_waitq;
1404                         DEFINE_WAIT(shmem_fault_wait);
1405
1406                         ret = VM_FAULT_NOPAGE;
1407                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1408                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1409                                 /* It's polite to up mmap_sem if we can */
1410                                 up_read(&vma->vm_mm->mmap_sem);
1411                                 ret = VM_FAULT_RETRY;
1412                         }
1413
1414                         shmem_falloc_waitq = shmem_falloc->waitq;
1415                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1416                                         TASK_UNINTERRUPTIBLE);
1417                         spin_unlock(&inode->i_lock);
1418                         schedule();
1419
1420                         /*
1421                          * shmem_falloc_waitq points into the shmem_fallocate()
1422                          * stack of the hole-punching task: shmem_falloc_waitq
1423                          * is usually invalid by the time we reach here, but
1424                          * finish_wait() does not dereference it in that case;
1425                          * though i_lock needed lest racing with wake_up_all().
1426                          */
1427                         spin_lock(&inode->i_lock);
1428                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1429                         spin_unlock(&inode->i_lock);
1430                         return ret;
1431                 }
1432                 spin_unlock(&inode->i_lock);
1433         }
1434
1435         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1436         if (error)
1437                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1438
1439         if (ret & VM_FAULT_MAJOR) {
1440                 count_vm_event(PGMAJFAULT);
1441                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1442         }
1443         return ret;
1444 }
1445
1446 #ifdef CONFIG_NUMA
1447 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1448 {
1449         struct inode *inode = file_inode(vma->vm_file);
1450         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1451 }
1452
1453 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1454                                           unsigned long addr)
1455 {
1456         struct inode *inode = file_inode(vma->vm_file);
1457         pgoff_t index;
1458
1459         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1460         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1461 }
1462 #endif
1463
1464 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1465 {
1466         struct inode *inode = file_inode(file);
1467         struct shmem_inode_info *info = SHMEM_I(inode);
1468         int retval = -ENOMEM;
1469
1470         spin_lock(&info->lock);
1471         if (lock && !(info->flags & VM_LOCKED)) {
1472                 if (!user_shm_lock(inode->i_size, user))
1473                         goto out_nomem;
1474                 info->flags |= VM_LOCKED;
1475                 mapping_set_unevictable(file->f_mapping);
1476         }
1477         if (!lock && (info->flags & VM_LOCKED) && user) {
1478                 user_shm_unlock(inode->i_size, user);
1479                 info->flags &= ~VM_LOCKED;
1480                 mapping_clear_unevictable(file->f_mapping);
1481         }
1482         retval = 0;
1483
1484 out_nomem:
1485         spin_unlock(&info->lock);
1486         return retval;
1487 }
1488
1489 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1490 {
1491         file_accessed(file);
1492         vma->vm_ops = &shmem_vm_ops;
1493         return 0;
1494 }
1495
1496 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1497                                      umode_t mode, dev_t dev, unsigned long flags)
1498 {
1499         struct inode *inode;
1500         struct shmem_inode_info *info;
1501         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1502
1503         if (shmem_reserve_inode(sb))
1504                 return NULL;
1505
1506         inode = new_inode(sb);
1507         if (inode) {
1508                 inode->i_ino = get_next_ino();
1509                 inode_init_owner(inode, dir, mode);
1510                 inode->i_blocks = 0;
1511                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1512                 inode->i_generation = get_seconds();
1513                 info = SHMEM_I(inode);
1514                 memset(info, 0, (char *)inode - (char *)info);
1515                 spin_lock_init(&info->lock);
1516                 info->seals = F_SEAL_SEAL;
1517                 info->flags = flags & VM_NORESERVE;
1518                 INIT_LIST_HEAD(&info->swaplist);
1519                 simple_xattrs_init(&info->xattrs);
1520                 cache_no_acl(inode);
1521
1522                 switch (mode & S_IFMT) {
1523                 default:
1524                         inode->i_op = &shmem_special_inode_operations;
1525                         init_special_inode(inode, mode, dev);
1526                         break;
1527                 case S_IFREG:
1528                         inode->i_mapping->a_ops = &shmem_aops;
1529                         inode->i_op = &shmem_inode_operations;
1530                         inode->i_fop = &shmem_file_operations;
1531                         mpol_shared_policy_init(&info->policy,
1532                                                  shmem_get_sbmpol(sbinfo));
1533                         break;
1534                 case S_IFDIR:
1535                         inc_nlink(inode);
1536                         /* Some things misbehave if size == 0 on a directory */
1537                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1538                         inode->i_op = &shmem_dir_inode_operations;
1539                         inode->i_fop = &simple_dir_operations;
1540                         break;
1541                 case S_IFLNK:
1542                         /*
1543                          * Must not load anything in the rbtree,
1544                          * mpol_free_shared_policy will not be called.
1545                          */
1546                         mpol_shared_policy_init(&info->policy, NULL);
1547                         break;
1548                 }
1549         } else
1550                 shmem_free_inode(sb);
1551         return inode;
1552 }
1553
1554 bool shmem_mapping(struct address_space *mapping)
1555 {
1556         if (!mapping->host)
1557                 return false;
1558
1559         return mapping->host->i_sb->s_op == &shmem_ops;
1560 }
1561
1562 #ifdef CONFIG_TMPFS
1563 static const struct inode_operations shmem_symlink_inode_operations;
1564 static const struct inode_operations shmem_short_symlink_operations;
1565
1566 #ifdef CONFIG_TMPFS_XATTR
1567 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1568 #else
1569 #define shmem_initxattrs NULL
1570 #endif
1571
1572 static int
1573 shmem_write_begin(struct file *file, struct address_space *mapping,
1574                         loff_t pos, unsigned len, unsigned flags,
1575                         struct page **pagep, void **fsdata)
1576 {
1577         struct inode *inode = mapping->host;
1578         struct shmem_inode_info *info = SHMEM_I(inode);
1579         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1580
1581         /* i_mutex is held by caller */
1582         if (unlikely(info->seals)) {
1583                 if (info->seals & F_SEAL_WRITE)
1584                         return -EPERM;
1585                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1586                         return -EPERM;
1587         }
1588
1589         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1590 }
1591
1592 static int
1593 shmem_write_end(struct file *file, struct address_space *mapping,
1594                         loff_t pos, unsigned len, unsigned copied,
1595                         struct page *page, void *fsdata)
1596 {
1597         struct inode *inode = mapping->host;
1598
1599         if (pos + copied > inode->i_size)
1600                 i_size_write(inode, pos + copied);
1601
1602         if (!PageUptodate(page)) {
1603                 if (copied < PAGE_CACHE_SIZE) {
1604                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1605                         zero_user_segments(page, 0, from,
1606                                         from + copied, PAGE_CACHE_SIZE);
1607                 }
1608                 SetPageUptodate(page);
1609         }
1610         set_page_dirty(page);
1611         unlock_page(page);
1612         page_cache_release(page);
1613
1614         return copied;
1615 }
1616
1617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1618 {
1619         struct file *file = iocb->ki_filp;
1620         struct inode *inode = file_inode(file);
1621         struct address_space *mapping = inode->i_mapping;
1622         pgoff_t index;
1623         unsigned long offset;
1624         enum sgp_type sgp = SGP_READ;
1625         int error = 0;
1626         ssize_t retval = 0;
1627         loff_t *ppos = &iocb->ki_pos;
1628
1629         /*
1630          * Might this read be for a stacking filesystem?  Then when reading
1631          * holes of a sparse file, we actually need to allocate those pages,
1632          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1633          */
1634         if (!iter_is_iovec(to))
1635                 sgp = SGP_DIRTY;
1636
1637         index = *ppos >> PAGE_CACHE_SHIFT;
1638         offset = *ppos & ~PAGE_CACHE_MASK;
1639
1640         for (;;) {
1641                 struct page *page = NULL;
1642                 pgoff_t end_index;
1643                 unsigned long nr, ret;
1644                 loff_t i_size = i_size_read(inode);
1645
1646                 end_index = i_size >> PAGE_CACHE_SHIFT;
1647                 if (index > end_index)
1648                         break;
1649                 if (index == end_index) {
1650                         nr = i_size & ~PAGE_CACHE_MASK;
1651                         if (nr <= offset)
1652                                 break;
1653                 }
1654
1655                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1656                 if (error) {
1657                         if (error == -EINVAL)
1658                                 error = 0;
1659                         break;
1660                 }
1661                 if (page)
1662                         unlock_page(page);
1663
1664                 /*
1665                  * We must evaluate after, since reads (unlike writes)
1666                  * are called without i_mutex protection against truncate
1667                  */
1668                 nr = PAGE_CACHE_SIZE;
1669                 i_size = i_size_read(inode);
1670                 end_index = i_size >> PAGE_CACHE_SHIFT;
1671                 if (index == end_index) {
1672                         nr = i_size & ~PAGE_CACHE_MASK;
1673                         if (nr <= offset) {
1674                                 if (page)
1675                                         page_cache_release(page);
1676                                 break;
1677                         }
1678                 }
1679                 nr -= offset;
1680
1681                 if (page) {
1682                         /*
1683                          * If users can be writing to this page using arbitrary
1684                          * virtual addresses, take care about potential aliasing
1685                          * before reading the page on the kernel side.
1686                          */
1687                         if (mapping_writably_mapped(mapping))
1688                                 flush_dcache_page(page);
1689                         /*
1690                          * Mark the page accessed if we read the beginning.
1691                          */
1692                         if (!offset)
1693                                 mark_page_accessed(page);
1694                 } else {
1695                         page = ZERO_PAGE(0);
1696                         page_cache_get(page);
1697                 }
1698
1699                 /*
1700                  * Ok, we have the page, and it's up-to-date, so
1701                  * now we can copy it to user space...
1702                  */
1703                 ret = copy_page_to_iter(page, offset, nr, to);
1704                 retval += ret;
1705                 offset += ret;
1706                 index += offset >> PAGE_CACHE_SHIFT;
1707                 offset &= ~PAGE_CACHE_MASK;
1708
1709                 page_cache_release(page);
1710                 if (!iov_iter_count(to))
1711                         break;
1712                 if (ret < nr) {
1713                         error = -EFAULT;
1714                         break;
1715                 }
1716                 cond_resched();
1717         }
1718
1719         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1720         file_accessed(file);
1721         return retval ? retval : error;
1722 }
1723
1724 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1725                                 struct pipe_inode_info *pipe, size_t len,
1726                                 unsigned int flags)
1727 {
1728         struct address_space *mapping = in->f_mapping;
1729         struct inode *inode = mapping->host;
1730         unsigned int loff, nr_pages, req_pages;
1731         struct page *pages[PIPE_DEF_BUFFERS];
1732         struct partial_page partial[PIPE_DEF_BUFFERS];
1733         struct page *page;
1734         pgoff_t index, end_index;
1735         loff_t isize, left;
1736         int error, page_nr;
1737         struct splice_pipe_desc spd = {
1738                 .pages = pages,
1739                 .partial = partial,
1740                 .nr_pages_max = PIPE_DEF_BUFFERS,
1741                 .flags = flags,
1742                 .ops = &page_cache_pipe_buf_ops,
1743                 .spd_release = spd_release_page,
1744         };
1745
1746         isize = i_size_read(inode);
1747         if (unlikely(*ppos >= isize))
1748                 return 0;
1749
1750         left = isize - *ppos;
1751         if (unlikely(left < len))
1752                 len = left;
1753
1754         if (splice_grow_spd(pipe, &spd))
1755                 return -ENOMEM;
1756
1757         index = *ppos >> PAGE_CACHE_SHIFT;
1758         loff = *ppos & ~PAGE_CACHE_MASK;
1759         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1760         nr_pages = min(req_pages, spd.nr_pages_max);
1761
1762         spd.nr_pages = find_get_pages_contig(mapping, index,
1763                                                 nr_pages, spd.pages);
1764         index += spd.nr_pages;
1765         error = 0;
1766
1767         while (spd.nr_pages < nr_pages) {
1768                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1769                 if (error)
1770                         break;
1771                 unlock_page(page);
1772                 spd.pages[spd.nr_pages++] = page;
1773                 index++;
1774         }
1775
1776         index = *ppos >> PAGE_CACHE_SHIFT;
1777         nr_pages = spd.nr_pages;
1778         spd.nr_pages = 0;
1779
1780         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1781                 unsigned int this_len;
1782
1783                 if (!len)
1784                         break;
1785
1786                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1787                 page = spd.pages[page_nr];
1788
1789                 if (!PageUptodate(page) || page->mapping != mapping) {
1790                         error = shmem_getpage(inode, index, &page,
1791                                                         SGP_CACHE, NULL);
1792                         if (error)
1793                                 break;
1794                         unlock_page(page);
1795                         page_cache_release(spd.pages[page_nr]);
1796                         spd.pages[page_nr] = page;
1797                 }
1798
1799                 isize = i_size_read(inode);
1800                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1801                 if (unlikely(!isize || index > end_index))
1802                         break;
1803
1804                 if (end_index == index) {
1805                         unsigned int plen;
1806
1807                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1808                         if (plen <= loff)
1809                                 break;
1810
1811                         this_len = min(this_len, plen - loff);
1812                         len = this_len;
1813                 }
1814
1815                 spd.partial[page_nr].offset = loff;
1816                 spd.partial[page_nr].len = this_len;
1817                 len -= this_len;
1818                 loff = 0;
1819                 spd.nr_pages++;
1820                 index++;
1821         }
1822
1823         while (page_nr < nr_pages)
1824                 page_cache_release(spd.pages[page_nr++]);
1825
1826         if (spd.nr_pages)
1827                 error = splice_to_pipe(pipe, &spd);
1828
1829         splice_shrink_spd(&spd);
1830
1831         if (error > 0) {
1832                 *ppos += error;
1833                 file_accessed(in);
1834         }
1835         return error;
1836 }
1837
1838 /*
1839  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1840  */
1841 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1842                                     pgoff_t index, pgoff_t end, int whence)
1843 {
1844         struct page *page;
1845         struct pagevec pvec;
1846         pgoff_t indices[PAGEVEC_SIZE];
1847         bool done = false;
1848         int i;
1849
1850         pagevec_init(&pvec, 0);
1851         pvec.nr = 1;            /* start small: we may be there already */
1852         while (!done) {
1853                 pvec.nr = find_get_entries(mapping, index,
1854                                         pvec.nr, pvec.pages, indices);
1855                 if (!pvec.nr) {
1856                         if (whence == SEEK_DATA)
1857                                 index = end;
1858                         break;
1859                 }
1860                 for (i = 0; i < pvec.nr; i++, index++) {
1861                         if (index < indices[i]) {
1862                                 if (whence == SEEK_HOLE) {
1863                                         done = true;
1864                                         break;
1865                                 }
1866                                 index = indices[i];
1867                         }
1868                         page = pvec.pages[i];
1869                         if (page && !radix_tree_exceptional_entry(page)) {
1870                                 if (!PageUptodate(page))
1871                                         page = NULL;
1872                         }
1873                         if (index >= end ||
1874                             (page && whence == SEEK_DATA) ||
1875                             (!page && whence == SEEK_HOLE)) {
1876                                 done = true;
1877                                 break;
1878                         }
1879                 }
1880                 pagevec_remove_exceptionals(&pvec);
1881                 pagevec_release(&pvec);
1882                 pvec.nr = PAGEVEC_SIZE;
1883                 cond_resched();
1884         }
1885         return index;
1886 }
1887
1888 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1889 {
1890         struct address_space *mapping = file->f_mapping;
1891         struct inode *inode = mapping->host;
1892         pgoff_t start, end;
1893         loff_t new_offset;
1894
1895         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1896                 return generic_file_llseek_size(file, offset, whence,
1897                                         MAX_LFS_FILESIZE, i_size_read(inode));
1898         mutex_lock(&inode->i_mutex);
1899         /* We're holding i_mutex so we can access i_size directly */
1900
1901         if (offset < 0)
1902                 offset = -EINVAL;
1903         else if (offset >= inode->i_size)
1904                 offset = -ENXIO;
1905         else {
1906                 start = offset >> PAGE_CACHE_SHIFT;
1907                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1908                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1909                 new_offset <<= PAGE_CACHE_SHIFT;
1910                 if (new_offset > offset) {
1911                         if (new_offset < inode->i_size)
1912                                 offset = new_offset;
1913                         else if (whence == SEEK_DATA)
1914                                 offset = -ENXIO;
1915                         else
1916                                 offset = inode->i_size;
1917                 }
1918         }
1919
1920         if (offset >= 0)
1921                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1922         mutex_unlock(&inode->i_mutex);
1923         return offset;
1924 }
1925
1926 /*
1927  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1928  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1929  */
1930 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1931 #define LAST_SCAN               4       /* about 150ms max */
1932
1933 static void shmem_tag_pins(struct address_space *mapping)
1934 {
1935         struct radix_tree_iter iter;
1936         void **slot;
1937         pgoff_t start;
1938         struct page *page;
1939
1940         lru_add_drain();
1941         start = 0;
1942         rcu_read_lock();
1943
1944 restart:
1945         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946                 page = radix_tree_deref_slot(slot);
1947                 if (!page || radix_tree_exception(page)) {
1948                         if (radix_tree_deref_retry(page))
1949                                 goto restart;
1950                 } else if (page_count(page) - page_mapcount(page) > 1) {
1951                         spin_lock_irq(&mapping->tree_lock);
1952                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1953                                            SHMEM_TAG_PINNED);
1954                         spin_unlock_irq(&mapping->tree_lock);
1955                 }
1956
1957                 if (need_resched()) {
1958                         cond_resched_rcu();
1959                         start = iter.index + 1;
1960                         goto restart;
1961                 }
1962         }
1963         rcu_read_unlock();
1964 }
1965
1966 /*
1967  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1968  * via get_user_pages(), drivers might have some pending I/O without any active
1969  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1970  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1971  * them to be dropped.
1972  * The caller must guarantee that no new user will acquire writable references
1973  * to those pages to avoid races.
1974  */
1975 static int shmem_wait_for_pins(struct address_space *mapping)
1976 {
1977         struct radix_tree_iter iter;
1978         void **slot;
1979         pgoff_t start;
1980         struct page *page;
1981         int error, scan;
1982
1983         shmem_tag_pins(mapping);
1984
1985         error = 0;
1986         for (scan = 0; scan <= LAST_SCAN; scan++) {
1987                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1988                         break;
1989
1990                 if (!scan)
1991                         lru_add_drain_all();
1992                 else if (schedule_timeout_killable((HZ << scan) / 200))
1993                         scan = LAST_SCAN;
1994
1995                 start = 0;
1996                 rcu_read_lock();
1997 restart:
1998                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999                                            start, SHMEM_TAG_PINNED) {
2000
2001                         page = radix_tree_deref_slot(slot);
2002                         if (radix_tree_exception(page)) {
2003                                 if (radix_tree_deref_retry(page))
2004                                         goto restart;
2005
2006                                 page = NULL;
2007                         }
2008
2009                         if (page &&
2010                             page_count(page) - page_mapcount(page) != 1) {
2011                                 if (scan < LAST_SCAN)
2012                                         goto continue_resched;
2013
2014                                 /*
2015                                  * On the last scan, we clean up all those tags
2016                                  * we inserted; but make a note that we still
2017                                  * found pages pinned.
2018                                  */
2019                                 error = -EBUSY;
2020                         }
2021
2022                         spin_lock_irq(&mapping->tree_lock);
2023                         radix_tree_tag_clear(&mapping->page_tree,
2024                                              iter.index, SHMEM_TAG_PINNED);
2025                         spin_unlock_irq(&mapping->tree_lock);
2026 continue_resched:
2027                         if (need_resched()) {
2028                                 cond_resched_rcu();
2029                                 start = iter.index + 1;
2030                                 goto restart;
2031                         }
2032                 }
2033                 rcu_read_unlock();
2034         }
2035
2036         return error;
2037 }
2038
2039 #define F_ALL_SEALS (F_SEAL_SEAL | \
2040                      F_SEAL_SHRINK | \
2041                      F_SEAL_GROW | \
2042                      F_SEAL_WRITE)
2043
2044 int shmem_add_seals(struct file *file, unsigned int seals)
2045 {
2046         struct inode *inode = file_inode(file);
2047         struct shmem_inode_info *info = SHMEM_I(inode);
2048         int error;
2049
2050         /*
2051          * SEALING
2052          * Sealing allows multiple parties to share a shmem-file but restrict
2053          * access to a specific subset of file operations. Seals can only be
2054          * added, but never removed. This way, mutually untrusted parties can
2055          * share common memory regions with a well-defined policy. A malicious
2056          * peer can thus never perform unwanted operations on a shared object.
2057          *
2058          * Seals are only supported on special shmem-files and always affect
2059          * the whole underlying inode. Once a seal is set, it may prevent some
2060          * kinds of access to the file. Currently, the following seals are
2061          * defined:
2062          *   SEAL_SEAL: Prevent further seals from being set on this file
2063          *   SEAL_SHRINK: Prevent the file from shrinking
2064          *   SEAL_GROW: Prevent the file from growing
2065          *   SEAL_WRITE: Prevent write access to the file
2066          *
2067          * As we don't require any trust relationship between two parties, we
2068          * must prevent seals from being removed. Therefore, sealing a file
2069          * only adds a given set of seals to the file, it never touches
2070          * existing seals. Furthermore, the "setting seals"-operation can be
2071          * sealed itself, which basically prevents any further seal from being
2072          * added.
2073          *
2074          * Semantics of sealing are only defined on volatile files. Only
2075          * anonymous shmem files support sealing. More importantly, seals are
2076          * never written to disk. Therefore, there's no plan to support it on
2077          * other file types.
2078          */
2079
2080         if (file->f_op != &shmem_file_operations)
2081                 return -EINVAL;
2082         if (!(file->f_mode & FMODE_WRITE))
2083                 return -EPERM;
2084         if (seals & ~(unsigned int)F_ALL_SEALS)
2085                 return -EINVAL;
2086
2087         mutex_lock(&inode->i_mutex);
2088
2089         if (info->seals & F_SEAL_SEAL) {
2090                 error = -EPERM;
2091                 goto unlock;
2092         }
2093
2094         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2095                 error = mapping_deny_writable(file->f_mapping);
2096                 if (error)
2097                         goto unlock;
2098
2099                 error = shmem_wait_for_pins(file->f_mapping);
2100                 if (error) {
2101                         mapping_allow_writable(file->f_mapping);
2102                         goto unlock;
2103                 }
2104         }
2105
2106         info->seals |= seals;
2107         error = 0;
2108
2109 unlock:
2110         mutex_unlock(&inode->i_mutex);
2111         return error;
2112 }
2113 EXPORT_SYMBOL_GPL(shmem_add_seals);
2114
2115 int shmem_get_seals(struct file *file)
2116 {
2117         if (file->f_op != &shmem_file_operations)
2118                 return -EINVAL;
2119
2120         return SHMEM_I(file_inode(file))->seals;
2121 }
2122 EXPORT_SYMBOL_GPL(shmem_get_seals);
2123
2124 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2125 {
2126         long error;
2127
2128         switch (cmd) {
2129         case F_ADD_SEALS:
2130                 /* disallow upper 32bit */
2131                 if (arg > UINT_MAX)
2132                         return -EINVAL;
2133
2134                 error = shmem_add_seals(file, arg);
2135                 break;
2136         case F_GET_SEALS:
2137                 error = shmem_get_seals(file);
2138                 break;
2139         default:
2140                 error = -EINVAL;
2141                 break;
2142         }
2143
2144         return error;
2145 }
2146
2147 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2148                                                          loff_t len)
2149 {
2150         struct inode *inode = file_inode(file);
2151         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2152         struct shmem_inode_info *info = SHMEM_I(inode);
2153         struct shmem_falloc shmem_falloc;
2154         pgoff_t start, index, end;
2155         int error;
2156
2157         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2158                 return -EOPNOTSUPP;
2159
2160         mutex_lock(&inode->i_mutex);
2161
2162         if (mode & FALLOC_FL_PUNCH_HOLE) {
2163                 struct address_space *mapping = file->f_mapping;
2164                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2165                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2166                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2167
2168                 /* protected by i_mutex */
2169                 if (info->seals & F_SEAL_WRITE) {
2170                         error = -EPERM;
2171                         goto out;
2172                 }
2173
2174                 shmem_falloc.waitq = &shmem_falloc_waitq;
2175                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2176                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2177                 spin_lock(&inode->i_lock);
2178                 inode->i_private = &shmem_falloc;
2179                 spin_unlock(&inode->i_lock);
2180
2181                 if ((u64)unmap_end > (u64)unmap_start)
2182                         unmap_mapping_range(mapping, unmap_start,
2183                                             1 + unmap_end - unmap_start, 0);
2184                 shmem_truncate_range(inode, offset, offset + len - 1);
2185                 /* No need to unmap again: hole-punching leaves COWed pages */
2186
2187                 spin_lock(&inode->i_lock);
2188                 inode->i_private = NULL;
2189                 wake_up_all(&shmem_falloc_waitq);
2190                 spin_unlock(&inode->i_lock);
2191                 error = 0;
2192                 goto out;
2193         }
2194
2195         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2196         error = inode_newsize_ok(inode, offset + len);
2197         if (error)
2198                 goto out;
2199
2200         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2201                 error = -EPERM;
2202                 goto out;
2203         }
2204
2205         start = offset >> PAGE_CACHE_SHIFT;
2206         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2207         /* Try to avoid a swapstorm if len is impossible to satisfy */
2208         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2209                 error = -ENOSPC;
2210                 goto out;
2211         }
2212
2213         shmem_falloc.waitq = NULL;
2214         shmem_falloc.start = start;
2215         shmem_falloc.next  = start;
2216         shmem_falloc.nr_falloced = 0;
2217         shmem_falloc.nr_unswapped = 0;
2218         spin_lock(&inode->i_lock);
2219         inode->i_private = &shmem_falloc;
2220         spin_unlock(&inode->i_lock);
2221
2222         for (index = start; index < end; index++) {
2223                 struct page *page;
2224
2225                 /*
2226                  * Good, the fallocate(2) manpage permits EINTR: we may have
2227                  * been interrupted because we are using up too much memory.
2228                  */
2229                 if (signal_pending(current))
2230                         error = -EINTR;
2231                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2232                         error = -ENOMEM;
2233                 else
2234                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2235                                                                         NULL);
2236                 if (error) {
2237                         /* Remove the !PageUptodate pages we added */
2238                         shmem_undo_range(inode,
2239                                 (loff_t)start << PAGE_CACHE_SHIFT,
2240                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2241                         goto undone;
2242                 }
2243
2244                 /*
2245                  * Inform shmem_writepage() how far we have reached.
2246                  * No need for lock or barrier: we have the page lock.
2247                  */
2248                 shmem_falloc.next++;
2249                 if (!PageUptodate(page))
2250                         shmem_falloc.nr_falloced++;
2251
2252                 /*
2253                  * If !PageUptodate, leave it that way so that freeable pages
2254                  * can be recognized if we need to rollback on error later.
2255                  * But set_page_dirty so that memory pressure will swap rather
2256                  * than free the pages we are allocating (and SGP_CACHE pages
2257                  * might still be clean: we now need to mark those dirty too).
2258                  */
2259                 set_page_dirty(page);
2260                 unlock_page(page);
2261                 page_cache_release(page);
2262                 cond_resched();
2263         }
2264
2265         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2266                 i_size_write(inode, offset + len);
2267         inode->i_ctime = CURRENT_TIME;
2268 undone:
2269         spin_lock(&inode->i_lock);
2270         inode->i_private = NULL;
2271         spin_unlock(&inode->i_lock);
2272 out:
2273         mutex_unlock(&inode->i_mutex);
2274         return error;
2275 }
2276
2277 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2278 {
2279         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2280
2281         buf->f_type = TMPFS_MAGIC;
2282         buf->f_bsize = PAGE_CACHE_SIZE;
2283         buf->f_namelen = NAME_MAX;
2284         if (sbinfo->max_blocks) {
2285                 buf->f_blocks = sbinfo->max_blocks;
2286                 buf->f_bavail =
2287                 buf->f_bfree  = sbinfo->max_blocks -
2288                                 percpu_counter_sum(&sbinfo->used_blocks);
2289         }
2290         if (sbinfo->max_inodes) {
2291                 buf->f_files = sbinfo->max_inodes;
2292                 buf->f_ffree = sbinfo->free_inodes;
2293         }
2294         /* else leave those fields 0 like simple_statfs */
2295         return 0;
2296 }
2297
2298 /*
2299  * File creation. Allocate an inode, and we're done..
2300  */
2301 static int
2302 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2303 {
2304         struct inode *inode;
2305         int error = -ENOSPC;
2306
2307         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2308         if (inode) {
2309                 error = simple_acl_create(dir, inode);
2310                 if (error)
2311                         goto out_iput;
2312                 error = security_inode_init_security(inode, dir,
2313                                                      &dentry->d_name,
2314                                                      shmem_initxattrs, NULL);
2315                 if (error && error != -EOPNOTSUPP)
2316                         goto out_iput;
2317
2318                 error = 0;
2319                 dir->i_size += BOGO_DIRENT_SIZE;
2320                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2321                 d_instantiate(dentry, inode);
2322                 dget(dentry); /* Extra count - pin the dentry in core */
2323         }
2324         return error;
2325 out_iput:
2326         iput(inode);
2327         return error;
2328 }
2329
2330 static int
2331 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2332 {
2333         struct inode *inode;
2334         int error = -ENOSPC;
2335
2336         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2337         if (inode) {
2338                 error = security_inode_init_security(inode, dir,
2339                                                      NULL,
2340                                                      shmem_initxattrs, NULL);
2341                 if (error && error != -EOPNOTSUPP)
2342                         goto out_iput;
2343                 error = simple_acl_create(dir, inode);
2344                 if (error)
2345                         goto out_iput;
2346                 d_tmpfile(dentry, inode);
2347         }
2348         return error;
2349 out_iput:
2350         iput(inode);
2351         return error;
2352 }
2353
2354 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2355 {
2356         int error;
2357
2358         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2359                 return error;
2360         inc_nlink(dir);
2361         return 0;
2362 }
2363
2364 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2365                 bool excl)
2366 {
2367         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2368 }
2369
2370 /*
2371  * Link a file..
2372  */
2373 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2374 {
2375         struct inode *inode = d_inode(old_dentry);
2376         int ret;
2377
2378         /*
2379          * No ordinary (disk based) filesystem counts links as inodes;
2380          * but each new link needs a new dentry, pinning lowmem, and
2381          * tmpfs dentries cannot be pruned until they are unlinked.
2382          */
2383         ret = shmem_reserve_inode(inode->i_sb);
2384         if (ret)
2385                 goto out;
2386
2387         dir->i_size += BOGO_DIRENT_SIZE;
2388         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2389         inc_nlink(inode);
2390         ihold(inode);   /* New dentry reference */
2391         dget(dentry);           /* Extra pinning count for the created dentry */
2392         d_instantiate(dentry, inode);
2393 out:
2394         return ret;
2395 }
2396
2397 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2398 {
2399         struct inode *inode = d_inode(dentry);
2400
2401         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2402                 shmem_free_inode(inode->i_sb);
2403
2404         dir->i_size -= BOGO_DIRENT_SIZE;
2405         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2406         drop_nlink(inode);
2407         dput(dentry);   /* Undo the count from "create" - this does all the work */
2408         return 0;
2409 }
2410
2411 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2412 {
2413         if (!simple_empty(dentry))
2414                 return -ENOTEMPTY;
2415
2416         drop_nlink(d_inode(dentry));
2417         drop_nlink(dir);
2418         return shmem_unlink(dir, dentry);
2419 }
2420
2421 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2422 {
2423         bool old_is_dir = d_is_dir(old_dentry);
2424         bool new_is_dir = d_is_dir(new_dentry);
2425
2426         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2427                 if (old_is_dir) {
2428                         drop_nlink(old_dir);
2429                         inc_nlink(new_dir);
2430                 } else {
2431                         drop_nlink(new_dir);
2432                         inc_nlink(old_dir);
2433                 }
2434         }
2435         old_dir->i_ctime = old_dir->i_mtime =
2436         new_dir->i_ctime = new_dir->i_mtime =
2437         d_inode(old_dentry)->i_ctime =
2438         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2439
2440         return 0;
2441 }
2442
2443 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2444 {
2445         struct dentry *whiteout;
2446         int error;
2447
2448         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2449         if (!whiteout)
2450                 return -ENOMEM;
2451
2452         error = shmem_mknod(old_dir, whiteout,
2453                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2454         dput(whiteout);
2455         if (error)
2456                 return error;
2457
2458         /*
2459          * Cheat and hash the whiteout while the old dentry is still in
2460          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2461          *
2462          * d_lookup() will consistently find one of them at this point,
2463          * not sure which one, but that isn't even important.
2464          */
2465         d_rehash(whiteout);
2466         return 0;
2467 }
2468
2469 /*
2470  * The VFS layer already does all the dentry stuff for rename,
2471  * we just have to decrement the usage count for the target if
2472  * it exists so that the VFS layer correctly free's it when it
2473  * gets overwritten.
2474  */
2475 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2476 {
2477         struct inode *inode = d_inode(old_dentry);
2478         int they_are_dirs = S_ISDIR(inode->i_mode);
2479
2480         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2481                 return -EINVAL;
2482
2483         if (flags & RENAME_EXCHANGE)
2484                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2485
2486         if (!simple_empty(new_dentry))
2487                 return -ENOTEMPTY;
2488
2489         if (flags & RENAME_WHITEOUT) {
2490                 int error;
2491
2492                 error = shmem_whiteout(old_dir, old_dentry);
2493                 if (error)
2494                         return error;
2495         }
2496
2497         if (d_really_is_positive(new_dentry)) {
2498                 (void) shmem_unlink(new_dir, new_dentry);
2499                 if (they_are_dirs) {
2500                         drop_nlink(d_inode(new_dentry));
2501                         drop_nlink(old_dir);
2502                 }
2503         } else if (they_are_dirs) {
2504                 drop_nlink(old_dir);
2505                 inc_nlink(new_dir);
2506         }
2507
2508         old_dir->i_size -= BOGO_DIRENT_SIZE;
2509         new_dir->i_size += BOGO_DIRENT_SIZE;
2510         old_dir->i_ctime = old_dir->i_mtime =
2511         new_dir->i_ctime = new_dir->i_mtime =
2512         inode->i_ctime = CURRENT_TIME;
2513         return 0;
2514 }
2515
2516 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2517 {
2518         int error;
2519         int len;
2520         struct inode *inode;
2521         struct page *page;
2522         struct shmem_inode_info *info;
2523
2524         len = strlen(symname) + 1;
2525         if (len > PAGE_CACHE_SIZE)
2526                 return -ENAMETOOLONG;
2527
2528         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2529         if (!inode)
2530                 return -ENOSPC;
2531
2532         error = security_inode_init_security(inode, dir, &dentry->d_name,
2533                                              shmem_initxattrs, NULL);
2534         if (error) {
2535                 if (error != -EOPNOTSUPP) {
2536                         iput(inode);
2537                         return error;
2538                 }
2539                 error = 0;
2540         }
2541
2542         info = SHMEM_I(inode);
2543         inode->i_size = len-1;
2544         if (len <= SHORT_SYMLINK_LEN) {
2545                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2546                 if (!info->symlink) {
2547                         iput(inode);
2548                         return -ENOMEM;
2549                 }
2550                 inode->i_op = &shmem_short_symlink_operations;
2551                 inode->i_link = info->symlink;
2552         } else {
2553                 inode_nohighmem(inode);
2554                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555                 if (error) {
2556                         iput(inode);
2557                         return error;
2558                 }
2559                 inode->i_mapping->a_ops = &shmem_aops;
2560                 inode->i_op = &shmem_symlink_inode_operations;
2561                 memcpy(page_address(page), symname, len);
2562                 SetPageUptodate(page);
2563                 set_page_dirty(page);
2564                 unlock_page(page);
2565                 page_cache_release(page);
2566         }
2567         dir->i_size += BOGO_DIRENT_SIZE;
2568         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569         d_instantiate(dentry, inode);
2570         dget(dentry);
2571         return 0;
2572 }
2573
2574 static void shmem_put_link(void *arg)
2575 {
2576         mark_page_accessed(arg);
2577         put_page(arg);
2578 }
2579
2580 static const char *shmem_get_link(struct dentry *dentry,
2581                                   struct inode *inode,
2582                                   struct delayed_call *done)
2583 {
2584         struct page *page = NULL;
2585         int error;
2586         if (!dentry) {
2587                 page = find_get_page(inode->i_mapping, 0);
2588                 if (!page)
2589                         return ERR_PTR(-ECHILD);
2590                 if (!PageUptodate(page)) {
2591                         put_page(page);
2592                         return ERR_PTR(-ECHILD);
2593                 }
2594         } else {
2595                 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596                 if (error)
2597                         return ERR_PTR(error);
2598                 unlock_page(page);
2599         }
2600         set_delayed_call(done, shmem_put_link, page);
2601         return page_address(page);
2602 }
2603
2604 #ifdef CONFIG_TMPFS_XATTR
2605 /*
2606  * Superblocks without xattr inode operations may get some security.* xattr
2607  * support from the LSM "for free". As soon as we have any other xattrs
2608  * like ACLs, we also need to implement the security.* handlers at
2609  * filesystem level, though.
2610  */
2611
2612 /*
2613  * Callback for security_inode_init_security() for acquiring xattrs.
2614  */
2615 static int shmem_initxattrs(struct inode *inode,
2616                             const struct xattr *xattr_array,
2617                             void *fs_info)
2618 {
2619         struct shmem_inode_info *info = SHMEM_I(inode);
2620         const struct xattr *xattr;
2621         struct simple_xattr *new_xattr;
2622         size_t len;
2623
2624         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626                 if (!new_xattr)
2627                         return -ENOMEM;
2628
2629                 len = strlen(xattr->name) + 1;
2630                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631                                           GFP_KERNEL);
2632                 if (!new_xattr->name) {
2633                         kfree(new_xattr);
2634                         return -ENOMEM;
2635                 }
2636
2637                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638                        XATTR_SECURITY_PREFIX_LEN);
2639                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640                        xattr->name, len);
2641
2642                 simple_xattr_list_add(&info->xattrs, new_xattr);
2643         }
2644
2645         return 0;
2646 }
2647
2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649                                    struct dentry *dentry, const char *name,
2650                                    void *buffer, size_t size)
2651 {
2652         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653
2654         name = xattr_full_name(handler, name);
2655         return simple_xattr_get(&info->xattrs, name, buffer, size);
2656 }
2657
2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659                                    struct dentry *dentry, const char *name,
2660                                    const void *value, size_t size, int flags)
2661 {
2662         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2663
2664         name = xattr_full_name(handler, name);
2665         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666 }
2667
2668 static const struct xattr_handler shmem_security_xattr_handler = {
2669         .prefix = XATTR_SECURITY_PREFIX,
2670         .get = shmem_xattr_handler_get,
2671         .set = shmem_xattr_handler_set,
2672 };
2673
2674 static const struct xattr_handler shmem_trusted_xattr_handler = {
2675         .prefix = XATTR_TRUSTED_PREFIX,
2676         .get = shmem_xattr_handler_get,
2677         .set = shmem_xattr_handler_set,
2678 };
2679
2680 static const struct xattr_handler *shmem_xattr_handlers[] = {
2681 #ifdef CONFIG_TMPFS_POSIX_ACL
2682         &posix_acl_access_xattr_handler,
2683         &posix_acl_default_xattr_handler,
2684 #endif
2685         &shmem_security_xattr_handler,
2686         &shmem_trusted_xattr_handler,
2687         NULL
2688 };
2689
2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691 {
2692         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694 }
2695 #endif /* CONFIG_TMPFS_XATTR */
2696
2697 static const struct inode_operations shmem_short_symlink_operations = {
2698         .readlink       = generic_readlink,
2699         .get_link       = simple_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701         .setxattr       = generic_setxattr,
2702         .getxattr       = generic_getxattr,
2703         .listxattr      = shmem_listxattr,
2704         .removexattr    = generic_removexattr,
2705 #endif
2706 };
2707
2708 static const struct inode_operations shmem_symlink_inode_operations = {
2709         .readlink       = generic_readlink,
2710         .get_link       = shmem_get_link,
2711 #ifdef CONFIG_TMPFS_XATTR
2712         .setxattr       = generic_setxattr,
2713         .getxattr       = generic_getxattr,
2714         .listxattr      = shmem_listxattr,
2715         .removexattr    = generic_removexattr,
2716 #endif
2717 };
2718
2719 static struct dentry *shmem_get_parent(struct dentry *child)
2720 {
2721         return ERR_PTR(-ESTALE);
2722 }
2723
2724 static int shmem_match(struct inode *ino, void *vfh)
2725 {
2726         __u32 *fh = vfh;
2727         __u64 inum = fh[2];
2728         inum = (inum << 32) | fh[1];
2729         return ino->i_ino == inum && fh[0] == ino->i_generation;
2730 }
2731
2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733                 struct fid *fid, int fh_len, int fh_type)
2734 {
2735         struct inode *inode;
2736         struct dentry *dentry = NULL;
2737         u64 inum;
2738
2739         if (fh_len < 3)
2740                 return NULL;
2741
2742         inum = fid->raw[2];
2743         inum = (inum << 32) | fid->raw[1];
2744
2745         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746                         shmem_match, fid->raw);
2747         if (inode) {
2748                 dentry = d_find_alias(inode);
2749                 iput(inode);
2750         }
2751
2752         return dentry;
2753 }
2754
2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756                                 struct inode *parent)
2757 {
2758         if (*len < 3) {
2759                 *len = 3;
2760                 return FILEID_INVALID;
2761         }
2762
2763         if (inode_unhashed(inode)) {
2764                 /* Unfortunately insert_inode_hash is not idempotent,
2765                  * so as we hash inodes here rather than at creation
2766                  * time, we need a lock to ensure we only try
2767                  * to do it once
2768                  */
2769                 static DEFINE_SPINLOCK(lock);
2770                 spin_lock(&lock);
2771                 if (inode_unhashed(inode))
2772                         __insert_inode_hash(inode,
2773                                             inode->i_ino + inode->i_generation);
2774                 spin_unlock(&lock);
2775         }
2776
2777         fh[0] = inode->i_generation;
2778         fh[1] = inode->i_ino;
2779         fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781         *len = 3;
2782         return 1;
2783 }
2784
2785 static const struct export_operations shmem_export_ops = {
2786         .get_parent     = shmem_get_parent,
2787         .encode_fh      = shmem_encode_fh,
2788         .fh_to_dentry   = shmem_fh_to_dentry,
2789 };
2790
2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792                                bool remount)
2793 {
2794         char *this_char, *value, *rest;
2795         struct mempolicy *mpol = NULL;
2796         uid_t uid;
2797         gid_t gid;
2798
2799         while (options != NULL) {
2800                 this_char = options;
2801                 for (;;) {
2802                         /*
2803                          * NUL-terminate this option: unfortunately,
2804                          * mount options form a comma-separated list,
2805                          * but mpol's nodelist may also contain commas.
2806                          */
2807                         options = strchr(options, ',');
2808                         if (options == NULL)
2809                                 break;
2810                         options++;
2811                         if (!isdigit(*options)) {
2812                                 options[-1] = '\0';
2813                                 break;
2814                         }
2815                 }
2816                 if (!*this_char)
2817                         continue;
2818                 if ((value = strchr(this_char,'=')) != NULL) {
2819                         *value++ = 0;
2820                 } else {
2821                         printk(KERN_ERR
2822                             "tmpfs: No value for mount option '%s'\n",
2823                             this_char);
2824                         goto error;
2825                 }
2826
2827                 if (!strcmp(this_char,"size")) {
2828                         unsigned long long size;
2829                         size = memparse(value,&rest);
2830                         if (*rest == '%') {
2831                                 size <<= PAGE_SHIFT;
2832                                 size *= totalram_pages;
2833                                 do_div(size, 100);
2834                                 rest++;
2835                         }
2836                         if (*rest)
2837                                 goto bad_val;
2838                         sbinfo->max_blocks =
2839                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2840                 } else if (!strcmp(this_char,"nr_blocks")) {
2841                         sbinfo->max_blocks = memparse(value, &rest);
2842                         if (*rest)
2843                                 goto bad_val;
2844                 } else if (!strcmp(this_char,"nr_inodes")) {
2845                         sbinfo->max_inodes = memparse(value, &rest);
2846                         if (*rest)
2847                                 goto bad_val;
2848                 } else if (!strcmp(this_char,"mode")) {
2849                         if (remount)
2850                                 continue;
2851                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2852                         if (*rest)
2853                                 goto bad_val;
2854                 } else if (!strcmp(this_char,"uid")) {
2855                         if (remount)
2856                                 continue;
2857                         uid = simple_strtoul(value, &rest, 0);
2858                         if (*rest)
2859                                 goto bad_val;
2860                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2861                         if (!uid_valid(sbinfo->uid))
2862                                 goto bad_val;
2863                 } else if (!strcmp(this_char,"gid")) {
2864                         if (remount)
2865                                 continue;
2866                         gid = simple_strtoul(value, &rest, 0);
2867                         if (*rest)
2868                                 goto bad_val;
2869                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2870                         if (!gid_valid(sbinfo->gid))
2871                                 goto bad_val;
2872                 } else if (!strcmp(this_char,"mpol")) {
2873                         mpol_put(mpol);
2874                         mpol = NULL;
2875                         if (mpol_parse_str(value, &mpol))
2876                                 goto bad_val;
2877                 } else {
2878                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2879                                this_char);
2880                         goto error;
2881                 }
2882         }
2883         sbinfo->mpol = mpol;
2884         return 0;
2885
2886 bad_val:
2887         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2888                value, this_char);
2889 error:
2890         mpol_put(mpol);
2891         return 1;
2892
2893 }
2894
2895 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2896 {
2897         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2898         struct shmem_sb_info config = *sbinfo;
2899         unsigned long inodes;
2900         int error = -EINVAL;
2901
2902         config.mpol = NULL;
2903         if (shmem_parse_options(data, &config, true))
2904                 return error;
2905
2906         spin_lock(&sbinfo->stat_lock);
2907         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2908         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2909                 goto out;
2910         if (config.max_inodes < inodes)
2911                 goto out;
2912         /*
2913          * Those tests disallow limited->unlimited while any are in use;
2914          * but we must separately disallow unlimited->limited, because
2915          * in that case we have no record of how much is already in use.
2916          */
2917         if (config.max_blocks && !sbinfo->max_blocks)
2918                 goto out;
2919         if (config.max_inodes && !sbinfo->max_inodes)
2920                 goto out;
2921
2922         error = 0;
2923         sbinfo->max_blocks  = config.max_blocks;
2924         sbinfo->max_inodes  = config.max_inodes;
2925         sbinfo->free_inodes = config.max_inodes - inodes;
2926
2927         /*
2928          * Preserve previous mempolicy unless mpol remount option was specified.
2929          */
2930         if (config.mpol) {
2931                 mpol_put(sbinfo->mpol);
2932                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2933         }
2934 out:
2935         spin_unlock(&sbinfo->stat_lock);
2936         return error;
2937 }
2938
2939 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2940 {
2941         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2942
2943         if (sbinfo->max_blocks != shmem_default_max_blocks())
2944                 seq_printf(seq, ",size=%luk",
2945                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2946         if (sbinfo->max_inodes != shmem_default_max_inodes())
2947                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2948         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2949                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2950         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2951                 seq_printf(seq, ",uid=%u",
2952                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2953         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2954                 seq_printf(seq, ",gid=%u",
2955                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2956         shmem_show_mpol(seq, sbinfo->mpol);
2957         return 0;
2958 }
2959
2960 #define MFD_NAME_PREFIX "memfd:"
2961 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2962 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2963
2964 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2965
2966 SYSCALL_DEFINE2(memfd_create,
2967                 const char __user *, uname,
2968                 unsigned int, flags)
2969 {
2970         struct shmem_inode_info *info;
2971         struct file *file;
2972         int fd, error;
2973         char *name;
2974         long len;
2975
2976         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2977                 return -EINVAL;
2978
2979         /* length includes terminating zero */
2980         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2981         if (len <= 0)
2982                 return -EFAULT;
2983         if (len > MFD_NAME_MAX_LEN + 1)
2984                 return -EINVAL;
2985
2986         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2987         if (!name)
2988                 return -ENOMEM;
2989
2990         strcpy(name, MFD_NAME_PREFIX);
2991         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2992                 error = -EFAULT;
2993                 goto err_name;
2994         }
2995
2996         /* terminating-zero may have changed after strnlen_user() returned */
2997         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2998                 error = -EFAULT;
2999                 goto err_name;
3000         }
3001
3002         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3003         if (fd < 0) {
3004                 error = fd;
3005                 goto err_name;
3006         }
3007
3008         file = shmem_file_setup(name, 0, VM_NORESERVE);
3009         if (IS_ERR(file)) {
3010                 error = PTR_ERR(file);
3011                 goto err_fd;
3012         }
3013         info = SHMEM_I(file_inode(file));
3014         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3015         file->f_flags |= O_RDWR | O_LARGEFILE;
3016         if (flags & MFD_ALLOW_SEALING)
3017                 info->seals &= ~F_SEAL_SEAL;
3018
3019         fd_install(fd, file);
3020         kfree(name);
3021         return fd;
3022
3023 err_fd:
3024         put_unused_fd(fd);
3025 err_name:
3026         kfree(name);
3027         return error;
3028 }
3029
3030 #endif /* CONFIG_TMPFS */
3031
3032 static void shmem_put_super(struct super_block *sb)
3033 {
3034         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3035
3036         percpu_counter_destroy(&sbinfo->used_blocks);
3037         mpol_put(sbinfo->mpol);
3038         kfree(sbinfo);
3039         sb->s_fs_info = NULL;
3040 }
3041
3042 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3043 {
3044         struct inode *inode;
3045         struct shmem_sb_info *sbinfo;
3046         int err = -ENOMEM;
3047
3048         /* Round up to L1_CACHE_BYTES to resist false sharing */
3049         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3050                                 L1_CACHE_BYTES), GFP_KERNEL);
3051         if (!sbinfo)
3052                 return -ENOMEM;
3053
3054         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3055         sbinfo->uid = current_fsuid();
3056         sbinfo->gid = current_fsgid();
3057         sb->s_fs_info = sbinfo;
3058
3059 #ifdef CONFIG_TMPFS
3060         /*
3061          * Per default we only allow half of the physical ram per
3062          * tmpfs instance, limiting inodes to one per page of lowmem;
3063          * but the internal instance is left unlimited.
3064          */
3065         if (!(sb->s_flags & MS_KERNMOUNT)) {
3066                 sbinfo->max_blocks = shmem_default_max_blocks();
3067                 sbinfo->max_inodes = shmem_default_max_inodes();
3068                 if (shmem_parse_options(data, sbinfo, false)) {
3069                         err = -EINVAL;
3070                         goto failed;
3071                 }
3072         } else {
3073                 sb->s_flags |= MS_NOUSER;
3074         }
3075         sb->s_export_op = &shmem_export_ops;
3076         sb->s_flags |= MS_NOSEC;
3077 #else
3078         sb->s_flags |= MS_NOUSER;
3079 #endif
3080
3081         spin_lock_init(&sbinfo->stat_lock);
3082         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3083                 goto failed;
3084         sbinfo->free_inodes = sbinfo->max_inodes;
3085
3086         sb->s_maxbytes = MAX_LFS_FILESIZE;
3087         sb->s_blocksize = PAGE_CACHE_SIZE;
3088         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3089         sb->s_magic = TMPFS_MAGIC;
3090         sb->s_op = &shmem_ops;
3091         sb->s_time_gran = 1;
3092 #ifdef CONFIG_TMPFS_XATTR
3093         sb->s_xattr = shmem_xattr_handlers;
3094 #endif
3095 #ifdef CONFIG_TMPFS_POSIX_ACL
3096         sb->s_flags |= MS_POSIXACL;
3097 #endif
3098
3099         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3100         if (!inode)
3101                 goto failed;
3102         inode->i_uid = sbinfo->uid;
3103         inode->i_gid = sbinfo->gid;
3104         sb->s_root = d_make_root(inode);
3105         if (!sb->s_root)
3106                 goto failed;
3107         return 0;
3108
3109 failed:
3110         shmem_put_super(sb);
3111         return err;
3112 }
3113
3114 static struct kmem_cache *shmem_inode_cachep;
3115
3116 static struct inode *shmem_alloc_inode(struct super_block *sb)
3117 {
3118         struct shmem_inode_info *info;
3119         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3120         if (!info)
3121                 return NULL;
3122         return &info->vfs_inode;
3123 }
3124
3125 static void shmem_destroy_callback(struct rcu_head *head)
3126 {
3127         struct inode *inode = container_of(head, struct inode, i_rcu);
3128         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3129 }
3130
3131 static void shmem_destroy_inode(struct inode *inode)
3132 {
3133         if (S_ISREG(inode->i_mode))
3134                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3135         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3136 }
3137
3138 static void shmem_init_inode(void *foo)
3139 {
3140         struct shmem_inode_info *info = foo;
3141         inode_init_once(&info->vfs_inode);
3142 }
3143
3144 static int shmem_init_inodecache(void)
3145 {
3146         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3147                                 sizeof(struct shmem_inode_info),
3148                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3149         return 0;
3150 }
3151
3152 static void shmem_destroy_inodecache(void)
3153 {
3154         kmem_cache_destroy(shmem_inode_cachep);
3155 }
3156
3157 static const struct address_space_operations shmem_aops = {
3158         .writepage      = shmem_writepage,
3159         .set_page_dirty = __set_page_dirty_no_writeback,
3160 #ifdef CONFIG_TMPFS
3161         .write_begin    = shmem_write_begin,
3162         .write_end      = shmem_write_end,
3163 #endif
3164 #ifdef CONFIG_MIGRATION
3165         .migratepage    = migrate_page,
3166 #endif
3167         .error_remove_page = generic_error_remove_page,
3168 };
3169
3170 static const struct file_operations shmem_file_operations = {
3171         .mmap           = shmem_mmap,
3172 #ifdef CONFIG_TMPFS
3173         .llseek         = shmem_file_llseek,
3174         .read_iter      = shmem_file_read_iter,
3175         .write_iter     = generic_file_write_iter,
3176         .fsync          = noop_fsync,
3177         .splice_read    = shmem_file_splice_read,
3178         .splice_write   = iter_file_splice_write,
3179         .fallocate      = shmem_fallocate,
3180 #endif
3181 };
3182
3183 static const struct inode_operations shmem_inode_operations = {
3184         .getattr        = shmem_getattr,
3185         .setattr        = shmem_setattr,
3186 #ifdef CONFIG_TMPFS_XATTR
3187         .setxattr       = generic_setxattr,
3188         .getxattr       = generic_getxattr,
3189         .listxattr      = shmem_listxattr,
3190         .removexattr    = generic_removexattr,
3191         .set_acl        = simple_set_acl,
3192 #endif
3193 };
3194
3195 static const struct inode_operations shmem_dir_inode_operations = {
3196 #ifdef CONFIG_TMPFS
3197         .create         = shmem_create,
3198         .lookup         = simple_lookup,
3199         .link           = shmem_link,
3200         .unlink         = shmem_unlink,
3201         .symlink        = shmem_symlink,
3202         .mkdir          = shmem_mkdir,
3203         .rmdir          = shmem_rmdir,
3204         .mknod          = shmem_mknod,
3205         .rename2        = shmem_rename2,
3206         .tmpfile        = shmem_tmpfile,
3207 #endif
3208 #ifdef CONFIG_TMPFS_XATTR
3209         .setxattr       = generic_setxattr,
3210         .getxattr       = generic_getxattr,
3211         .listxattr      = shmem_listxattr,
3212         .removexattr    = generic_removexattr,
3213 #endif
3214 #ifdef CONFIG_TMPFS_POSIX_ACL
3215         .setattr        = shmem_setattr,
3216         .set_acl        = simple_set_acl,
3217 #endif
3218 };
3219
3220 static const struct inode_operations shmem_special_inode_operations = {
3221 #ifdef CONFIG_TMPFS_XATTR
3222         .setxattr       = generic_setxattr,
3223         .getxattr       = generic_getxattr,
3224         .listxattr      = shmem_listxattr,
3225         .removexattr    = generic_removexattr,
3226 #endif
3227 #ifdef CONFIG_TMPFS_POSIX_ACL
3228         .setattr        = shmem_setattr,
3229         .set_acl        = simple_set_acl,
3230 #endif
3231 };
3232
3233 static const struct super_operations shmem_ops = {
3234         .alloc_inode    = shmem_alloc_inode,
3235         .destroy_inode  = shmem_destroy_inode,
3236 #ifdef CONFIG_TMPFS
3237         .statfs         = shmem_statfs,
3238         .remount_fs     = shmem_remount_fs,
3239         .show_options   = shmem_show_options,
3240 #endif
3241         .evict_inode    = shmem_evict_inode,
3242         .drop_inode     = generic_delete_inode,
3243         .put_super      = shmem_put_super,
3244 };
3245
3246 static const struct vm_operations_struct shmem_vm_ops = {
3247         .fault          = shmem_fault,
3248         .map_pages      = filemap_map_pages,
3249 #ifdef CONFIG_NUMA
3250         .set_policy     = shmem_set_policy,
3251         .get_policy     = shmem_get_policy,
3252 #endif
3253 };
3254
3255 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3256         int flags, const char *dev_name, void *data)
3257 {
3258         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3259 }
3260
3261 static struct file_system_type shmem_fs_type = {
3262         .owner          = THIS_MODULE,
3263         .name           = "tmpfs",
3264         .mount          = shmem_mount,
3265         .kill_sb        = kill_litter_super,
3266         .fs_flags       = FS_USERNS_MOUNT,
3267 };
3268
3269 int __init shmem_init(void)
3270 {
3271         int error;
3272
3273         /* If rootfs called this, don't re-init */
3274         if (shmem_inode_cachep)
3275                 return 0;
3276
3277         error = shmem_init_inodecache();
3278         if (error)
3279                 goto out3;
3280
3281         error = register_filesystem(&shmem_fs_type);
3282         if (error) {
3283                 printk(KERN_ERR "Could not register tmpfs\n");
3284                 goto out2;
3285         }
3286
3287         shm_mnt = kern_mount(&shmem_fs_type);
3288         if (IS_ERR(shm_mnt)) {
3289                 error = PTR_ERR(shm_mnt);
3290                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3291                 goto out1;
3292         }
3293         return 0;
3294
3295 out1:
3296         unregister_filesystem(&shmem_fs_type);
3297 out2:
3298         shmem_destroy_inodecache();
3299 out3:
3300         shm_mnt = ERR_PTR(error);
3301         return error;
3302 }
3303
3304 #else /* !CONFIG_SHMEM */
3305
3306 /*
3307  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3308  *
3309  * This is intended for small system where the benefits of the full
3310  * shmem code (swap-backed and resource-limited) are outweighed by
3311  * their complexity. On systems without swap this code should be
3312  * effectively equivalent, but much lighter weight.
3313  */
3314
3315 static struct file_system_type shmem_fs_type = {
3316         .name           = "tmpfs",
3317         .mount          = ramfs_mount,
3318         .kill_sb        = kill_litter_super,
3319         .fs_flags       = FS_USERNS_MOUNT,
3320 };
3321
3322 int __init shmem_init(void)
3323 {
3324         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3325
3326         shm_mnt = kern_mount(&shmem_fs_type);
3327         BUG_ON(IS_ERR(shm_mnt));
3328
3329         return 0;
3330 }
3331
3332 int shmem_unuse(swp_entry_t swap, struct page *page)
3333 {
3334         return 0;
3335 }
3336
3337 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3338 {
3339         return 0;
3340 }
3341
3342 void shmem_unlock_mapping(struct address_space *mapping)
3343 {
3344 }
3345
3346 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3347 {
3348         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3349 }
3350 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3351
3352 #define shmem_vm_ops                            generic_file_vm_ops
3353 #define shmem_file_operations                   ramfs_file_operations
3354 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3355 #define shmem_acct_size(flags, size)            0
3356 #define shmem_unacct_size(flags, size)          do {} while (0)
3357
3358 #endif /* CONFIG_SHMEM */
3359
3360 /* common code */
3361
3362 static struct dentry_operations anon_ops = {
3363         .d_dname = simple_dname
3364 };
3365
3366 static struct file *__shmem_file_setup(const char *name, loff_t size,
3367                                        unsigned long flags, unsigned int i_flags)
3368 {
3369         struct file *res;
3370         struct inode *inode;
3371         struct path path;
3372         struct super_block *sb;
3373         struct qstr this;
3374
3375         if (IS_ERR(shm_mnt))
3376                 return ERR_CAST(shm_mnt);
3377
3378         if (size < 0 || size > MAX_LFS_FILESIZE)
3379                 return ERR_PTR(-EINVAL);
3380
3381         if (shmem_acct_size(flags, size))
3382                 return ERR_PTR(-ENOMEM);
3383
3384         res = ERR_PTR(-ENOMEM);
3385         this.name = name;
3386         this.len = strlen(name);
3387         this.hash = 0; /* will go */
3388         sb = shm_mnt->mnt_sb;
3389         path.mnt = mntget(shm_mnt);
3390         path.dentry = d_alloc_pseudo(sb, &this);
3391         if (!path.dentry)
3392                 goto put_memory;
3393         d_set_d_op(path.dentry, &anon_ops);
3394
3395         res = ERR_PTR(-ENOSPC);
3396         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3397         if (!inode)
3398                 goto put_memory;
3399
3400         inode->i_flags |= i_flags;
3401         d_instantiate(path.dentry, inode);
3402         inode->i_size = size;
3403         clear_nlink(inode);     /* It is unlinked */
3404         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3405         if (IS_ERR(res))
3406                 goto put_path;
3407
3408         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3409                   &shmem_file_operations);
3410         if (IS_ERR(res))
3411                 goto put_path;
3412
3413         return res;
3414
3415 put_memory:
3416         shmem_unacct_size(flags, size);
3417 put_path:
3418         path_put(&path);
3419         return res;
3420 }
3421
3422 /**
3423  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3424  *      kernel internal.  There will be NO LSM permission checks against the
3425  *      underlying inode.  So users of this interface must do LSM checks at a
3426  *      higher layer.  The users are the big_key and shm implementations.  LSM
3427  *      checks are provided at the key or shm level rather than the inode.
3428  * @name: name for dentry (to be seen in /proc/<pid>/maps
3429  * @size: size to be set for the file
3430  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431  */
3432 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3433 {
3434         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3435 }
3436
3437 /**
3438  * shmem_file_setup - get an unlinked file living in tmpfs
3439  * @name: name for dentry (to be seen in /proc/<pid>/maps
3440  * @size: size to be set for the file
3441  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3442  */
3443 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3444 {
3445         return __shmem_file_setup(name, size, flags, 0);
3446 }
3447 EXPORT_SYMBOL_GPL(shmem_file_setup);
3448
3449 /**
3450  * shmem_zero_setup - setup a shared anonymous mapping
3451  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3452  */
3453 int shmem_zero_setup(struct vm_area_struct *vma)
3454 {
3455         struct file *file;
3456         loff_t size = vma->vm_end - vma->vm_start;
3457
3458         /*
3459          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3460          * between XFS directory reading and selinux: since this file is only
3461          * accessible to the user through its mapping, use S_PRIVATE flag to
3462          * bypass file security, in the same way as shmem_kernel_file_setup().
3463          */
3464         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3465         if (IS_ERR(file))
3466                 return PTR_ERR(file);
3467
3468         if (vma->vm_file)
3469                 fput(vma->vm_file);
3470         vma->vm_file = file;
3471         vma->vm_ops = &shmem_vm_ops;
3472         return 0;
3473 }
3474
3475 /**
3476  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3477  * @mapping:    the page's address_space
3478  * @index:      the page index
3479  * @gfp:        the page allocator flags to use if allocating
3480  *
3481  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3482  * with any new page allocations done using the specified allocation flags.
3483  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3484  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3485  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3486  *
3487  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3488  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3489  */
3490 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3491                                          pgoff_t index, gfp_t gfp)
3492 {
3493 #ifdef CONFIG_SHMEM
3494         struct inode *inode = mapping->host;
3495         struct page *page;
3496         int error;
3497
3498         BUG_ON(mapping->a_ops != &shmem_aops);
3499         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3500         if (error)
3501                 page = ERR_PTR(error);
3502         else
3503                 unlock_page(page);
3504         return page;
3505 #else
3506         /*
3507          * The tiny !SHMEM case uses ramfs without swap
3508          */
3509         return read_cache_page_gfp(mapping, index, gfp);
3510 #endif
3511 }
3512 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);