mm: use macros from compiler.h instead of __attribute__((...))
[linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/compiler.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/audit.h>
34 #include <linux/sched/sysctl.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/tlb.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mmu_context.h>
40 #include "internal.h"
41
42 #if 0
43 #define kenter(FMT, ...) \
44         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
45 #define kleave(FMT, ...) \
46         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
47 #define kdebug(FMT, ...) \
48         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49 #else
50 #define kenter(FMT, ...) \
51         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
52 #define kleave(FMT, ...) \
53         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
54 #define kdebug(FMT, ...) \
55         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
56 #endif
57
58 void *high_memory;
59 struct page *mem_map;
60 unsigned long max_mapnr;
61 unsigned long highest_memmap_pfn;
62 struct percpu_counter vm_committed_as;
63 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64 int sysctl_overcommit_ratio = 50; /* default is 50% */
65 unsigned long sysctl_overcommit_kbytes __read_mostly;
66 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
69 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 /*
75  * The global memory commitment made in the system can be a metric
76  * that can be used to drive ballooning decisions when Linux is hosted
77  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
78  * balancing memory across competing virtual machines that are hosted.
79  * Several metrics drive this policy engine including the guest reported
80  * memory commitment.
81  */
82 unsigned long vm_memory_committed(void)
83 {
84         return percpu_counter_read_positive(&vm_committed_as);
85 }
86
87 EXPORT_SYMBOL_GPL(vm_memory_committed);
88
89 EXPORT_SYMBOL(mem_map);
90
91 /* list of mapped, potentially shareable regions */
92 static struct kmem_cache *vm_region_jar;
93 struct rb_root nommu_region_tree = RB_ROOT;
94 DECLARE_RWSEM(nommu_region_sem);
95
96 const struct vm_operations_struct generic_file_vm_ops = {
97 };
98
99 /*
100  * Return the total memory allocated for this pointer, not
101  * just what the caller asked for.
102  *
103  * Doesn't have to be accurate, i.e. may have races.
104  */
105 unsigned int kobjsize(const void *objp)
106 {
107         struct page *page;
108
109         /*
110          * If the object we have should not have ksize performed on it,
111          * return size of 0
112          */
113         if (!objp || !virt_addr_valid(objp))
114                 return 0;
115
116         page = virt_to_head_page(objp);
117
118         /*
119          * If the allocator sets PageSlab, we know the pointer came from
120          * kmalloc().
121          */
122         if (PageSlab(page))
123                 return ksize(objp);
124
125         /*
126          * If it's not a compound page, see if we have a matching VMA
127          * region. This test is intentionally done in reverse order,
128          * so if there's no VMA, we still fall through and hand back
129          * PAGE_SIZE for 0-order pages.
130          */
131         if (!PageCompound(page)) {
132                 struct vm_area_struct *vma;
133
134                 vma = find_vma(current->mm, (unsigned long)objp);
135                 if (vma)
136                         return vma->vm_end - vma->vm_start;
137         }
138
139         /*
140          * The ksize() function is only guaranteed to work for pointers
141          * returned by kmalloc(). So handle arbitrary pointers here.
142          */
143         return PAGE_SIZE << compound_order(page);
144 }
145
146 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147                       unsigned long start, unsigned long nr_pages,
148                       unsigned int foll_flags, struct page **pages,
149                       struct vm_area_struct **vmas, int *nonblocking)
150 {
151         struct vm_area_struct *vma;
152         unsigned long vm_flags;
153         int i;
154
155         /* calculate required read or write permissions.
156          * If FOLL_FORCE is set, we only require the "MAY" flags.
157          */
158         vm_flags  = (foll_flags & FOLL_WRITE) ?
159                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160         vm_flags &= (foll_flags & FOLL_FORCE) ?
161                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162
163         for (i = 0; i < nr_pages; i++) {
164                 vma = find_vma(mm, start);
165                 if (!vma)
166                         goto finish_or_fault;
167
168                 /* protect what we can, including chardevs */
169                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170                     !(vm_flags & vma->vm_flags))
171                         goto finish_or_fault;
172
173                 if (pages) {
174                         pages[i] = virt_to_page(start);
175                         if (pages[i])
176                                 page_cache_get(pages[i]);
177                 }
178                 if (vmas)
179                         vmas[i] = vma;
180                 start = (start + PAGE_SIZE) & PAGE_MASK;
181         }
182
183         return i;
184
185 finish_or_fault:
186         return i ? : -EFAULT;
187 }
188
189 /*
190  * get a list of pages in an address range belonging to the specified process
191  * and indicate the VMA that covers each page
192  * - this is potentially dodgy as we may end incrementing the page count of a
193  *   slab page or a secondary page from a compound page
194  * - don't permit access to VMAs that don't support it, such as I/O mappings
195  */
196 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197                     unsigned long start, unsigned long nr_pages,
198                     int write, int force, struct page **pages,
199                     struct vm_area_struct **vmas)
200 {
201         int flags = 0;
202
203         if (write)
204                 flags |= FOLL_WRITE;
205         if (force)
206                 flags |= FOLL_FORCE;
207
208         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209                                 NULL);
210 }
211 EXPORT_SYMBOL(get_user_pages);
212
213 /**
214  * follow_pfn - look up PFN at a user virtual address
215  * @vma: memory mapping
216  * @address: user virtual address
217  * @pfn: location to store found PFN
218  *
219  * Only IO mappings and raw PFN mappings are allowed.
220  *
221  * Returns zero and the pfn at @pfn on success, -ve otherwise.
222  */
223 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224         unsigned long *pfn)
225 {
226         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227                 return -EINVAL;
228
229         *pfn = address >> PAGE_SHIFT;
230         return 0;
231 }
232 EXPORT_SYMBOL(follow_pfn);
233
234 LIST_HEAD(vmap_area_list);
235
236 void vfree(const void *addr)
237 {
238         kfree(addr);
239 }
240 EXPORT_SYMBOL(vfree);
241
242 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243 {
244         /*
245          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246          * returns only a logical address.
247          */
248         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 }
250 EXPORT_SYMBOL(__vmalloc);
251
252 void *vmalloc_user(unsigned long size)
253 {
254         void *ret;
255
256         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257                         PAGE_KERNEL);
258         if (ret) {
259                 struct vm_area_struct *vma;
260
261                 down_write(&current->mm->mmap_sem);
262                 vma = find_vma(current->mm, (unsigned long)ret);
263                 if (vma)
264                         vma->vm_flags |= VM_USERMAP;
265                 up_write(&current->mm->mmap_sem);
266         }
267
268         return ret;
269 }
270 EXPORT_SYMBOL(vmalloc_user);
271
272 struct page *vmalloc_to_page(const void *addr)
273 {
274         return virt_to_page(addr);
275 }
276 EXPORT_SYMBOL(vmalloc_to_page);
277
278 unsigned long vmalloc_to_pfn(const void *addr)
279 {
280         return page_to_pfn(virt_to_page(addr));
281 }
282 EXPORT_SYMBOL(vmalloc_to_pfn);
283
284 long vread(char *buf, char *addr, unsigned long count)
285 {
286         /* Don't allow overflow */
287         if ((unsigned long) buf + count < count)
288                 count = -(unsigned long) buf;
289
290         memcpy(buf, addr, count);
291         return count;
292 }
293
294 long vwrite(char *buf, char *addr, unsigned long count)
295 {
296         /* Don't allow overflow */
297         if ((unsigned long) addr + count < count)
298                 count = -(unsigned long) addr;
299
300         memcpy(addr, buf, count);
301         return(count);
302 }
303
304 /*
305  *      vmalloc  -  allocate virtually continguos memory
306  *
307  *      @size:          allocation size
308  *
309  *      Allocate enough pages to cover @size from the page level
310  *      allocator and map them into continguos kernel virtual space.
311  *
312  *      For tight control over page level allocator and protection flags
313  *      use __vmalloc() instead.
314  */
315 void *vmalloc(unsigned long size)
316 {
317        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc);
320
321 /*
322  *      vzalloc - allocate virtually continguos memory with zero fill
323  *
324  *      @size:          allocation size
325  *
326  *      Allocate enough pages to cover @size from the page level
327  *      allocator and map them into continguos kernel virtual space.
328  *      The memory allocated is set to zero.
329  *
330  *      For tight control over page level allocator and protection flags
331  *      use __vmalloc() instead.
332  */
333 void *vzalloc(unsigned long size)
334 {
335         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
336                         PAGE_KERNEL);
337 }
338 EXPORT_SYMBOL(vzalloc);
339
340 /**
341  * vmalloc_node - allocate memory on a specific node
342  * @size:       allocation size
343  * @node:       numa node
344  *
345  * Allocate enough pages to cover @size from the page level
346  * allocator and map them into contiguous kernel virtual space.
347  *
348  * For tight control over page level allocator and protection flags
349  * use __vmalloc() instead.
350  */
351 void *vmalloc_node(unsigned long size, int node)
352 {
353         return vmalloc(size);
354 }
355 EXPORT_SYMBOL(vmalloc_node);
356
357 /**
358  * vzalloc_node - allocate memory on a specific node with zero fill
359  * @size:       allocation size
360  * @node:       numa node
361  *
362  * Allocate enough pages to cover @size from the page level
363  * allocator and map them into contiguous kernel virtual space.
364  * The memory allocated is set to zero.
365  *
366  * For tight control over page level allocator and protection flags
367  * use __vmalloc() instead.
368  */
369 void *vzalloc_node(unsigned long size, int node)
370 {
371         return vzalloc(size);
372 }
373 EXPORT_SYMBOL(vzalloc_node);
374
375 #ifndef PAGE_KERNEL_EXEC
376 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 #endif
378
379 /**
380  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
381  *      @size:          allocation size
382  *
383  *      Kernel-internal function to allocate enough pages to cover @size
384  *      the page level allocator and map them into contiguous and
385  *      executable kernel virtual space.
386  *
387  *      For tight control over page level allocator and protection flags
388  *      use __vmalloc() instead.
389  */
390
391 void *vmalloc_exec(unsigned long size)
392 {
393         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
394 }
395
396 /**
397  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
398  *      @size:          allocation size
399  *
400  *      Allocate enough 32bit PA addressable pages to cover @size from the
401  *      page level allocator and map them into continguos kernel virtual space.
402  */
403 void *vmalloc_32(unsigned long size)
404 {
405         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406 }
407 EXPORT_SYMBOL(vmalloc_32);
408
409 /**
410  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
411  *      @size:          allocation size
412  *
413  * The resulting memory area is 32bit addressable and zeroed so it can be
414  * mapped to userspace without leaking data.
415  *
416  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
417  * remap_vmalloc_range() are permissible.
418  */
419 void *vmalloc_32_user(unsigned long size)
420 {
421         /*
422          * We'll have to sort out the ZONE_DMA bits for 64-bit,
423          * but for now this can simply use vmalloc_user() directly.
424          */
425         return vmalloc_user(size);
426 }
427 EXPORT_SYMBOL(vmalloc_32_user);
428
429 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430 {
431         BUG();
432         return NULL;
433 }
434 EXPORT_SYMBOL(vmap);
435
436 void vunmap(const void *addr)
437 {
438         BUG();
439 }
440 EXPORT_SYMBOL(vunmap);
441
442 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443 {
444         BUG();
445         return NULL;
446 }
447 EXPORT_SYMBOL(vm_map_ram);
448
449 void vm_unmap_ram(const void *mem, unsigned int count)
450 {
451         BUG();
452 }
453 EXPORT_SYMBOL(vm_unmap_ram);
454
455 void vm_unmap_aliases(void)
456 {
457 }
458 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459
460 /*
461  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462  * have one.
463  */
464 void __weak vmalloc_sync_all(void)
465 {
466 }
467
468 /**
469  *      alloc_vm_area - allocate a range of kernel address space
470  *      @size:          size of the area
471  *
472  *      Returns:        NULL on failure, vm_struct on success
473  *
474  *      This function reserves a range of kernel address space, and
475  *      allocates pagetables to map that range.  No actual mappings
476  *      are created.  If the kernel address space is not shared
477  *      between processes, it syncs the pagetable across all
478  *      processes.
479  */
480 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
481 {
482         BUG();
483         return NULL;
484 }
485 EXPORT_SYMBOL_GPL(alloc_vm_area);
486
487 void free_vm_area(struct vm_struct *area)
488 {
489         BUG();
490 }
491 EXPORT_SYMBOL_GPL(free_vm_area);
492
493 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
494                    struct page *page)
495 {
496         return -EINVAL;
497 }
498 EXPORT_SYMBOL(vm_insert_page);
499
500 /*
501  *  sys_brk() for the most part doesn't need the global kernel
502  *  lock, except when an application is doing something nasty
503  *  like trying to un-brk an area that has already been mapped
504  *  to a regular file.  in this case, the unmapping will need
505  *  to invoke file system routines that need the global lock.
506  */
507 SYSCALL_DEFINE1(brk, unsigned long, brk)
508 {
509         struct mm_struct *mm = current->mm;
510
511         if (brk < mm->start_brk || brk > mm->context.end_brk)
512                 return mm->brk;
513
514         if (mm->brk == brk)
515                 return mm->brk;
516
517         /*
518          * Always allow shrinking brk
519          */
520         if (brk <= mm->brk) {
521                 mm->brk = brk;
522                 return brk;
523         }
524
525         /*
526          * Ok, looks good - let it rip.
527          */
528         flush_icache_range(mm->brk, brk);
529         return mm->brk = brk;
530 }
531
532 /*
533  * initialise the VMA and region record slabs
534  */
535 void __init mmap_init(void)
536 {
537         int ret;
538
539         ret = percpu_counter_init(&vm_committed_as, 0);
540         VM_BUG_ON(ret);
541         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
542 }
543
544 /*
545  * validate the region tree
546  * - the caller must hold the region lock
547  */
548 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
549 static noinline void validate_nommu_regions(void)
550 {
551         struct vm_region *region, *last;
552         struct rb_node *p, *lastp;
553
554         lastp = rb_first(&nommu_region_tree);
555         if (!lastp)
556                 return;
557
558         last = rb_entry(lastp, struct vm_region, vm_rb);
559         BUG_ON(unlikely(last->vm_end <= last->vm_start));
560         BUG_ON(unlikely(last->vm_top < last->vm_end));
561
562         while ((p = rb_next(lastp))) {
563                 region = rb_entry(p, struct vm_region, vm_rb);
564                 last = rb_entry(lastp, struct vm_region, vm_rb);
565
566                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
567                 BUG_ON(unlikely(region->vm_top < region->vm_end));
568                 BUG_ON(unlikely(region->vm_start < last->vm_top));
569
570                 lastp = p;
571         }
572 }
573 #else
574 static void validate_nommu_regions(void)
575 {
576 }
577 #endif
578
579 /*
580  * add a region into the global tree
581  */
582 static void add_nommu_region(struct vm_region *region)
583 {
584         struct vm_region *pregion;
585         struct rb_node **p, *parent;
586
587         validate_nommu_regions();
588
589         parent = NULL;
590         p = &nommu_region_tree.rb_node;
591         while (*p) {
592                 parent = *p;
593                 pregion = rb_entry(parent, struct vm_region, vm_rb);
594                 if (region->vm_start < pregion->vm_start)
595                         p = &(*p)->rb_left;
596                 else if (region->vm_start > pregion->vm_start)
597                         p = &(*p)->rb_right;
598                 else if (pregion == region)
599                         return;
600                 else
601                         BUG();
602         }
603
604         rb_link_node(&region->vm_rb, parent, p);
605         rb_insert_color(&region->vm_rb, &nommu_region_tree);
606
607         validate_nommu_regions();
608 }
609
610 /*
611  * delete a region from the global tree
612  */
613 static void delete_nommu_region(struct vm_region *region)
614 {
615         BUG_ON(!nommu_region_tree.rb_node);
616
617         validate_nommu_regions();
618         rb_erase(&region->vm_rb, &nommu_region_tree);
619         validate_nommu_regions();
620 }
621
622 /*
623  * free a contiguous series of pages
624  */
625 static void free_page_series(unsigned long from, unsigned long to)
626 {
627         for (; from < to; from += PAGE_SIZE) {
628                 struct page *page = virt_to_page(from);
629
630                 kdebug("- free %lx", from);
631                 atomic_long_dec(&mmap_pages_allocated);
632                 if (page_count(page) != 1)
633                         kdebug("free page %p: refcount not one: %d",
634                                page, page_count(page));
635                 put_page(page);
636         }
637 }
638
639 /*
640  * release a reference to a region
641  * - the caller must hold the region semaphore for writing, which this releases
642  * - the region may not have been added to the tree yet, in which case vm_top
643  *   will equal vm_start
644  */
645 static void __put_nommu_region(struct vm_region *region)
646         __releases(nommu_region_sem)
647 {
648         kenter("%p{%d}", region, region->vm_usage);
649
650         BUG_ON(!nommu_region_tree.rb_node);
651
652         if (--region->vm_usage == 0) {
653                 if (region->vm_top > region->vm_start)
654                         delete_nommu_region(region);
655                 up_write(&nommu_region_sem);
656
657                 if (region->vm_file)
658                         fput(region->vm_file);
659
660                 /* IO memory and memory shared directly out of the pagecache
661                  * from ramfs/tmpfs mustn't be released here */
662                 if (region->vm_flags & VM_MAPPED_COPY) {
663                         kdebug("free series");
664                         free_page_series(region->vm_start, region->vm_top);
665                 }
666                 kmem_cache_free(vm_region_jar, region);
667         } else {
668                 up_write(&nommu_region_sem);
669         }
670 }
671
672 /*
673  * release a reference to a region
674  */
675 static void put_nommu_region(struct vm_region *region)
676 {
677         down_write(&nommu_region_sem);
678         __put_nommu_region(region);
679 }
680
681 /*
682  * update protection on a vma
683  */
684 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685 {
686 #ifdef CONFIG_MPU
687         struct mm_struct *mm = vma->vm_mm;
688         long start = vma->vm_start & PAGE_MASK;
689         while (start < vma->vm_end) {
690                 protect_page(mm, start, flags);
691                 start += PAGE_SIZE;
692         }
693         update_protections(mm);
694 #endif
695 }
696
697 /*
698  * add a VMA into a process's mm_struct in the appropriate place in the list
699  * and tree and add to the address space's page tree also if not an anonymous
700  * page
701  * - should be called with mm->mmap_sem held writelocked
702  */
703 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
704 {
705         struct vm_area_struct *pvma, *prev;
706         struct address_space *mapping;
707         struct rb_node **p, *parent, *rb_prev;
708
709         kenter(",%p", vma);
710
711         BUG_ON(!vma->vm_region);
712
713         mm->map_count++;
714         vma->vm_mm = mm;
715
716         protect_vma(vma, vma->vm_flags);
717
718         /* add the VMA to the mapping */
719         if (vma->vm_file) {
720                 mapping = vma->vm_file->f_mapping;
721
722                 mutex_lock(&mapping->i_mmap_mutex);
723                 flush_dcache_mmap_lock(mapping);
724                 vma_interval_tree_insert(vma, &mapping->i_mmap);
725                 flush_dcache_mmap_unlock(mapping);
726                 mutex_unlock(&mapping->i_mmap_mutex);
727         }
728
729         /* add the VMA to the tree */
730         parent = rb_prev = NULL;
731         p = &mm->mm_rb.rb_node;
732         while (*p) {
733                 parent = *p;
734                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735
736                 /* sort by: start addr, end addr, VMA struct addr in that order
737                  * (the latter is necessary as we may get identical VMAs) */
738                 if (vma->vm_start < pvma->vm_start)
739                         p = &(*p)->rb_left;
740                 else if (vma->vm_start > pvma->vm_start) {
741                         rb_prev = parent;
742                         p = &(*p)->rb_right;
743                 } else if (vma->vm_end < pvma->vm_end)
744                         p = &(*p)->rb_left;
745                 else if (vma->vm_end > pvma->vm_end) {
746                         rb_prev = parent;
747                         p = &(*p)->rb_right;
748                 } else if (vma < pvma)
749                         p = &(*p)->rb_left;
750                 else if (vma > pvma) {
751                         rb_prev = parent;
752                         p = &(*p)->rb_right;
753                 } else
754                         BUG();
755         }
756
757         rb_link_node(&vma->vm_rb, parent, p);
758         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759
760         /* add VMA to the VMA list also */
761         prev = NULL;
762         if (rb_prev)
763                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
764
765         __vma_link_list(mm, vma, prev, parent);
766 }
767
768 /*
769  * delete a VMA from its owning mm_struct and address space
770  */
771 static void delete_vma_from_mm(struct vm_area_struct *vma)
772 {
773         int i;
774         struct address_space *mapping;
775         struct mm_struct *mm = vma->vm_mm;
776         struct task_struct *curr = current;
777
778         kenter("%p", vma);
779
780         protect_vma(vma, 0);
781
782         mm->map_count--;
783         for (i = 0; i < VMACACHE_SIZE; i++) {
784                 /* if the vma is cached, invalidate the entire cache */
785                 if (curr->vmacache[i] == vma) {
786                         vmacache_invalidate(curr->mm);
787                         break;
788                 }
789         }
790
791         /* remove the VMA from the mapping */
792         if (vma->vm_file) {
793                 mapping = vma->vm_file->f_mapping;
794
795                 mutex_lock(&mapping->i_mmap_mutex);
796                 flush_dcache_mmap_lock(mapping);
797                 vma_interval_tree_remove(vma, &mapping->i_mmap);
798                 flush_dcache_mmap_unlock(mapping);
799                 mutex_unlock(&mapping->i_mmap_mutex);
800         }
801
802         /* remove from the MM's tree and list */
803         rb_erase(&vma->vm_rb, &mm->mm_rb);
804
805         if (vma->vm_prev)
806                 vma->vm_prev->vm_next = vma->vm_next;
807         else
808                 mm->mmap = vma->vm_next;
809
810         if (vma->vm_next)
811                 vma->vm_next->vm_prev = vma->vm_prev;
812 }
813
814 /*
815  * destroy a VMA record
816  */
817 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818 {
819         kenter("%p", vma);
820         if (vma->vm_ops && vma->vm_ops->close)
821                 vma->vm_ops->close(vma);
822         if (vma->vm_file)
823                 fput(vma->vm_file);
824         put_nommu_region(vma->vm_region);
825         kmem_cache_free(vm_area_cachep, vma);
826 }
827
828 /*
829  * look up the first VMA in which addr resides, NULL if none
830  * - should be called with mm->mmap_sem at least held readlocked
831  */
832 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833 {
834         struct vm_area_struct *vma;
835
836         /* check the cache first */
837         vma = vmacache_find(mm, addr);
838         if (likely(vma))
839                 return vma;
840
841         /* trawl the list (there may be multiple mappings in which addr
842          * resides) */
843         for (vma = mm->mmap; vma; vma = vma->vm_next) {
844                 if (vma->vm_start > addr)
845                         return NULL;
846                 if (vma->vm_end > addr) {
847                         vmacache_update(addr, vma);
848                         return vma;
849                 }
850         }
851
852         return NULL;
853 }
854 EXPORT_SYMBOL(find_vma);
855
856 /*
857  * find a VMA
858  * - we don't extend stack VMAs under NOMMU conditions
859  */
860 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861 {
862         return find_vma(mm, addr);
863 }
864
865 /*
866  * expand a stack to a given address
867  * - not supported under NOMMU conditions
868  */
869 int expand_stack(struct vm_area_struct *vma, unsigned long address)
870 {
871         return -ENOMEM;
872 }
873
874 /*
875  * look up the first VMA exactly that exactly matches addr
876  * - should be called with mm->mmap_sem at least held readlocked
877  */
878 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
879                                              unsigned long addr,
880                                              unsigned long len)
881 {
882         struct vm_area_struct *vma;
883         unsigned long end = addr + len;
884
885         /* check the cache first */
886         vma = vmacache_find_exact(mm, addr, end);
887         if (vma)
888                 return vma;
889
890         /* trawl the list (there may be multiple mappings in which addr
891          * resides) */
892         for (vma = mm->mmap; vma; vma = vma->vm_next) {
893                 if (vma->vm_start < addr)
894                         continue;
895                 if (vma->vm_start > addr)
896                         return NULL;
897                 if (vma->vm_end == end) {
898                         vmacache_update(addr, vma);
899                         return vma;
900                 }
901         }
902
903         return NULL;
904 }
905
906 /*
907  * determine whether a mapping should be permitted and, if so, what sort of
908  * mapping we're capable of supporting
909  */
910 static int validate_mmap_request(struct file *file,
911                                  unsigned long addr,
912                                  unsigned long len,
913                                  unsigned long prot,
914                                  unsigned long flags,
915                                  unsigned long pgoff,
916                                  unsigned long *_capabilities)
917 {
918         unsigned long capabilities, rlen;
919         int ret;
920
921         /* do the simple checks first */
922         if (flags & MAP_FIXED) {
923                 printk(KERN_DEBUG
924                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
925                        current->pid);
926                 return -EINVAL;
927         }
928
929         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
930             (flags & MAP_TYPE) != MAP_SHARED)
931                 return -EINVAL;
932
933         if (!len)
934                 return -EINVAL;
935
936         /* Careful about overflows.. */
937         rlen = PAGE_ALIGN(len);
938         if (!rlen || rlen > TASK_SIZE)
939                 return -ENOMEM;
940
941         /* offset overflow? */
942         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
943                 return -EOVERFLOW;
944
945         if (file) {
946                 /* validate file mapping requests */
947                 struct address_space *mapping;
948
949                 /* files must support mmap */
950                 if (!file->f_op->mmap)
951                         return -ENODEV;
952
953                 /* work out if what we've got could possibly be shared
954                  * - we support chardevs that provide their own "memory"
955                  * - we support files/blockdevs that are memory backed
956                  */
957                 mapping = file->f_mapping;
958                 if (!mapping)
959                         mapping = file_inode(file)->i_mapping;
960
961                 capabilities = 0;
962                 if (mapping && mapping->backing_dev_info)
963                         capabilities = mapping->backing_dev_info->capabilities;
964
965                 if (!capabilities) {
966                         /* no explicit capabilities set, so assume some
967                          * defaults */
968                         switch (file_inode(file)->i_mode & S_IFMT) {
969                         case S_IFREG:
970                         case S_IFBLK:
971                                 capabilities = BDI_CAP_MAP_COPY;
972                                 break;
973
974                         case S_IFCHR:
975                                 capabilities =
976                                         BDI_CAP_MAP_DIRECT |
977                                         BDI_CAP_READ_MAP |
978                                         BDI_CAP_WRITE_MAP;
979                                 break;
980
981                         default:
982                                 return -EINVAL;
983                         }
984                 }
985
986                 /* eliminate any capabilities that we can't support on this
987                  * device */
988                 if (!file->f_op->get_unmapped_area)
989                         capabilities &= ~BDI_CAP_MAP_DIRECT;
990                 if (!file->f_op->read)
991                         capabilities &= ~BDI_CAP_MAP_COPY;
992
993                 /* The file shall have been opened with read permission. */
994                 if (!(file->f_mode & FMODE_READ))
995                         return -EACCES;
996
997                 if (flags & MAP_SHARED) {
998                         /* do checks for writing, appending and locking */
999                         if ((prot & PROT_WRITE) &&
1000                             !(file->f_mode & FMODE_WRITE))
1001                                 return -EACCES;
1002
1003                         if (IS_APPEND(file_inode(file)) &&
1004                             (file->f_mode & FMODE_WRITE))
1005                                 return -EACCES;
1006
1007                         if (locks_verify_locked(file))
1008                                 return -EAGAIN;
1009
1010                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011                                 return -ENODEV;
1012
1013                         /* we mustn't privatise shared mappings */
1014                         capabilities &= ~BDI_CAP_MAP_COPY;
1015                 }
1016                 else {
1017                         /* we're going to read the file into private memory we
1018                          * allocate */
1019                         if (!(capabilities & BDI_CAP_MAP_COPY))
1020                                 return -ENODEV;
1021
1022                         /* we don't permit a private writable mapping to be
1023                          * shared with the backing device */
1024                         if (prot & PROT_WRITE)
1025                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1026                 }
1027
1028                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1029                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1030                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1031                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1032                             ) {
1033                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1034                                 if (flags & MAP_SHARED) {
1035                                         printk(KERN_WARNING
1036                                                "MAP_SHARED not completely supported on !MMU\n");
1037                                         return -EINVAL;
1038                                 }
1039                         }
1040                 }
1041
1042                 /* handle executable mappings and implied executable
1043                  * mappings */
1044                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1045                         if (prot & PROT_EXEC)
1046                                 return -EPERM;
1047                 }
1048                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1049                         /* handle implication of PROT_EXEC by PROT_READ */
1050                         if (current->personality & READ_IMPLIES_EXEC) {
1051                                 if (capabilities & BDI_CAP_EXEC_MAP)
1052                                         prot |= PROT_EXEC;
1053                         }
1054                 }
1055                 else if ((prot & PROT_READ) &&
1056                          (prot & PROT_EXEC) &&
1057                          !(capabilities & BDI_CAP_EXEC_MAP)
1058                          ) {
1059                         /* backing file is not executable, try to copy */
1060                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1061                 }
1062         }
1063         else {
1064                 /* anonymous mappings are always memory backed and can be
1065                  * privately mapped
1066                  */
1067                 capabilities = BDI_CAP_MAP_COPY;
1068
1069                 /* handle PROT_EXEC implication by PROT_READ */
1070                 if ((prot & PROT_READ) &&
1071                     (current->personality & READ_IMPLIES_EXEC))
1072                         prot |= PROT_EXEC;
1073         }
1074
1075         /* allow the security API to have its say */
1076         ret = security_mmap_addr(addr);
1077         if (ret < 0)
1078                 return ret;
1079
1080         /* looks okay */
1081         *_capabilities = capabilities;
1082         return 0;
1083 }
1084
1085 /*
1086  * we've determined that we can make the mapping, now translate what we
1087  * now know into VMA flags
1088  */
1089 static unsigned long determine_vm_flags(struct file *file,
1090                                         unsigned long prot,
1091                                         unsigned long flags,
1092                                         unsigned long capabilities)
1093 {
1094         unsigned long vm_flags;
1095
1096         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1097         /* vm_flags |= mm->def_flags; */
1098
1099         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1100                 /* attempt to share read-only copies of mapped file chunks */
1101                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1102                 if (file && !(prot & PROT_WRITE))
1103                         vm_flags |= VM_MAYSHARE;
1104         } else {
1105                 /* overlay a shareable mapping on the backing device or inode
1106                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1107                  * romfs/cramfs */
1108                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1109                 if (flags & MAP_SHARED)
1110                         vm_flags |= VM_SHARED;
1111         }
1112
1113         /* refuse to let anyone share private mappings with this process if
1114          * it's being traced - otherwise breakpoints set in it may interfere
1115          * with another untraced process
1116          */
1117         if ((flags & MAP_PRIVATE) && current->ptrace)
1118                 vm_flags &= ~VM_MAYSHARE;
1119
1120         return vm_flags;
1121 }
1122
1123 /*
1124  * set up a shared mapping on a file (the driver or filesystem provides and
1125  * pins the storage)
1126  */
1127 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128 {
1129         int ret;
1130
1131         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1132         if (ret == 0) {
1133                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1134                 return 0;
1135         }
1136         if (ret != -ENOSYS)
1137                 return ret;
1138
1139         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1140          * opposed to tried but failed) so we can only give a suitable error as
1141          * it's not possible to make a private copy if MAP_SHARED was given */
1142         return -ENODEV;
1143 }
1144
1145 /*
1146  * set up a private mapping or an anonymous shared mapping
1147  */
1148 static int do_mmap_private(struct vm_area_struct *vma,
1149                            struct vm_region *region,
1150                            unsigned long len,
1151                            unsigned long capabilities)
1152 {
1153         struct page *pages;
1154         unsigned long total, point, n;
1155         void *base;
1156         int ret, order;
1157
1158         /* invoke the file's mapping function so that it can keep track of
1159          * shared mappings on devices or memory
1160          * - VM_MAYSHARE will be set if it may attempt to share
1161          */
1162         if (capabilities & BDI_CAP_MAP_DIRECT) {
1163                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1164                 if (ret == 0) {
1165                         /* shouldn't return success if we're not sharing */
1166                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1167                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1168                         return 0;
1169                 }
1170                 if (ret != -ENOSYS)
1171                         return ret;
1172
1173                 /* getting an ENOSYS error indicates that direct mmap isn't
1174                  * possible (as opposed to tried but failed) so we'll try to
1175                  * make a private copy of the data and map that instead */
1176         }
1177
1178
1179         /* allocate some memory to hold the mapping
1180          * - note that this may not return a page-aligned address if the object
1181          *   we're allocating is smaller than a page
1182          */
1183         order = get_order(len);
1184         kdebug("alloc order %d for %lx", order, len);
1185
1186         pages = alloc_pages(GFP_KERNEL, order);
1187         if (!pages)
1188                 goto enomem;
1189
1190         total = 1 << order;
1191         atomic_long_add(total, &mmap_pages_allocated);
1192
1193         point = len >> PAGE_SHIFT;
1194
1195         /* we allocated a power-of-2 sized page set, so we may want to trim off
1196          * the excess */
1197         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1198                 while (total > point) {
1199                         order = ilog2(total - point);
1200                         n = 1 << order;
1201                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1202                         atomic_long_sub(n, &mmap_pages_allocated);
1203                         total -= n;
1204                         set_page_refcounted(pages + total);
1205                         __free_pages(pages + total, order);
1206                 }
1207         }
1208
1209         for (point = 1; point < total; point++)
1210                 set_page_refcounted(&pages[point]);
1211
1212         base = page_address(pages);
1213         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1214         region->vm_start = (unsigned long) base;
1215         region->vm_end   = region->vm_start + len;
1216         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1217
1218         vma->vm_start = region->vm_start;
1219         vma->vm_end   = region->vm_start + len;
1220
1221         if (vma->vm_file) {
1222                 /* read the contents of a file into the copy */
1223                 mm_segment_t old_fs;
1224                 loff_t fpos;
1225
1226                 fpos = vma->vm_pgoff;
1227                 fpos <<= PAGE_SHIFT;
1228
1229                 old_fs = get_fs();
1230                 set_fs(KERNEL_DS);
1231                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1232                 set_fs(old_fs);
1233
1234                 if (ret < 0)
1235                         goto error_free;
1236
1237                 /* clear the last little bit */
1238                 if (ret < len)
1239                         memset(base + ret, 0, len - ret);
1240
1241         }
1242
1243         return 0;
1244
1245 error_free:
1246         free_page_series(region->vm_start, region->vm_top);
1247         region->vm_start = vma->vm_start = 0;
1248         region->vm_end   = vma->vm_end = 0;
1249         region->vm_top   = 0;
1250         return ret;
1251
1252 enomem:
1253         printk("Allocation of length %lu from process %d (%s) failed\n",
1254                len, current->pid, current->comm);
1255         show_free_areas(0);
1256         return -ENOMEM;
1257 }
1258
1259 /*
1260  * handle mapping creation for uClinux
1261  */
1262 unsigned long do_mmap_pgoff(struct file *file,
1263                             unsigned long addr,
1264                             unsigned long len,
1265                             unsigned long prot,
1266                             unsigned long flags,
1267                             unsigned long pgoff,
1268                             unsigned long *populate)
1269 {
1270         struct vm_area_struct *vma;
1271         struct vm_region *region;
1272         struct rb_node *rb;
1273         unsigned long capabilities, vm_flags, result;
1274         int ret;
1275
1276         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1277
1278         *populate = 0;
1279
1280         /* decide whether we should attempt the mapping, and if so what sort of
1281          * mapping */
1282         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1283                                     &capabilities);
1284         if (ret < 0) {
1285                 kleave(" = %d [val]", ret);
1286                 return ret;
1287         }
1288
1289         /* we ignore the address hint */
1290         addr = 0;
1291         len = PAGE_ALIGN(len);
1292
1293         /* we've determined that we can make the mapping, now translate what we
1294          * now know into VMA flags */
1295         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1296
1297         /* we're going to need to record the mapping */
1298         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1299         if (!region)
1300                 goto error_getting_region;
1301
1302         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1303         if (!vma)
1304                 goto error_getting_vma;
1305
1306         region->vm_usage = 1;
1307         region->vm_flags = vm_flags;
1308         region->vm_pgoff = pgoff;
1309
1310         INIT_LIST_HEAD(&vma->anon_vma_chain);
1311         vma->vm_flags = vm_flags;
1312         vma->vm_pgoff = pgoff;
1313
1314         if (file) {
1315                 region->vm_file = get_file(file);
1316                 vma->vm_file = get_file(file);
1317         }
1318
1319         down_write(&nommu_region_sem);
1320
1321         /* if we want to share, we need to check for regions created by other
1322          * mmap() calls that overlap with our proposed mapping
1323          * - we can only share with a superset match on most regular files
1324          * - shared mappings on character devices and memory backed files are
1325          *   permitted to overlap inexactly as far as we are concerned for in
1326          *   these cases, sharing is handled in the driver or filesystem rather
1327          *   than here
1328          */
1329         if (vm_flags & VM_MAYSHARE) {
1330                 struct vm_region *pregion;
1331                 unsigned long pglen, rpglen, pgend, rpgend, start;
1332
1333                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1334                 pgend = pgoff + pglen;
1335
1336                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1337                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1338
1339                         if (!(pregion->vm_flags & VM_MAYSHARE))
1340                                 continue;
1341
1342                         /* search for overlapping mappings on the same file */
1343                         if (file_inode(pregion->vm_file) !=
1344                             file_inode(file))
1345                                 continue;
1346
1347                         if (pregion->vm_pgoff >= pgend)
1348                                 continue;
1349
1350                         rpglen = pregion->vm_end - pregion->vm_start;
1351                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1352                         rpgend = pregion->vm_pgoff + rpglen;
1353                         if (pgoff >= rpgend)
1354                                 continue;
1355
1356                         /* handle inexactly overlapping matches between
1357                          * mappings */
1358                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1359                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1360                                 /* new mapping is not a subset of the region */
1361                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1362                                         goto sharing_violation;
1363                                 continue;
1364                         }
1365
1366                         /* we've found a region we can share */
1367                         pregion->vm_usage++;
1368                         vma->vm_region = pregion;
1369                         start = pregion->vm_start;
1370                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1371                         vma->vm_start = start;
1372                         vma->vm_end = start + len;
1373
1374                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1375                                 kdebug("share copy");
1376                                 vma->vm_flags |= VM_MAPPED_COPY;
1377                         } else {
1378                                 kdebug("share mmap");
1379                                 ret = do_mmap_shared_file(vma);
1380                                 if (ret < 0) {
1381                                         vma->vm_region = NULL;
1382                                         vma->vm_start = 0;
1383                                         vma->vm_end = 0;
1384                                         pregion->vm_usage--;
1385                                         pregion = NULL;
1386                                         goto error_just_free;
1387                                 }
1388                         }
1389                         fput(region->vm_file);
1390                         kmem_cache_free(vm_region_jar, region);
1391                         region = pregion;
1392                         result = start;
1393                         goto share;
1394                 }
1395
1396                 /* obtain the address at which to make a shared mapping
1397                  * - this is the hook for quasi-memory character devices to
1398                  *   tell us the location of a shared mapping
1399                  */
1400                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1401                         addr = file->f_op->get_unmapped_area(file, addr, len,
1402                                                              pgoff, flags);
1403                         if (IS_ERR_VALUE(addr)) {
1404                                 ret = addr;
1405                                 if (ret != -ENOSYS)
1406                                         goto error_just_free;
1407
1408                                 /* the driver refused to tell us where to site
1409                                  * the mapping so we'll have to attempt to copy
1410                                  * it */
1411                                 ret = -ENODEV;
1412                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1413                                         goto error_just_free;
1414
1415                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1416                         } else {
1417                                 vma->vm_start = region->vm_start = addr;
1418                                 vma->vm_end = region->vm_end = addr + len;
1419                         }
1420                 }
1421         }
1422
1423         vma->vm_region = region;
1424
1425         /* set up the mapping
1426          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1427          */
1428         if (file && vma->vm_flags & VM_SHARED)
1429                 ret = do_mmap_shared_file(vma);
1430         else
1431                 ret = do_mmap_private(vma, region, len, capabilities);
1432         if (ret < 0)
1433                 goto error_just_free;
1434         add_nommu_region(region);
1435
1436         /* clear anonymous mappings that don't ask for uninitialized data */
1437         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1438                 memset((void *)region->vm_start, 0,
1439                        region->vm_end - region->vm_start);
1440
1441         /* okay... we have a mapping; now we have to register it */
1442         result = vma->vm_start;
1443
1444         current->mm->total_vm += len >> PAGE_SHIFT;
1445
1446 share:
1447         add_vma_to_mm(current->mm, vma);
1448
1449         /* we flush the region from the icache only when the first executable
1450          * mapping of it is made  */
1451         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1452                 flush_icache_range(region->vm_start, region->vm_end);
1453                 region->vm_icache_flushed = true;
1454         }
1455
1456         up_write(&nommu_region_sem);
1457
1458         kleave(" = %lx", result);
1459         return result;
1460
1461 error_just_free:
1462         up_write(&nommu_region_sem);
1463 error:
1464         if (region->vm_file)
1465                 fput(region->vm_file);
1466         kmem_cache_free(vm_region_jar, region);
1467         if (vma->vm_file)
1468                 fput(vma->vm_file);
1469         kmem_cache_free(vm_area_cachep, vma);
1470         kleave(" = %d", ret);
1471         return ret;
1472
1473 sharing_violation:
1474         up_write(&nommu_region_sem);
1475         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1476         ret = -EINVAL;
1477         goto error;
1478
1479 error_getting_vma:
1480         kmem_cache_free(vm_region_jar, region);
1481         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1482                " from process %d failed\n",
1483                len, current->pid);
1484         show_free_areas(0);
1485         return -ENOMEM;
1486
1487 error_getting_region:
1488         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1489                " from process %d failed\n",
1490                len, current->pid);
1491         show_free_areas(0);
1492         return -ENOMEM;
1493 }
1494
1495 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1496                 unsigned long, prot, unsigned long, flags,
1497                 unsigned long, fd, unsigned long, pgoff)
1498 {
1499         struct file *file = NULL;
1500         unsigned long retval = -EBADF;
1501
1502         audit_mmap_fd(fd, flags);
1503         if (!(flags & MAP_ANONYMOUS)) {
1504                 file = fget(fd);
1505                 if (!file)
1506                         goto out;
1507         }
1508
1509         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1510
1511         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1512
1513         if (file)
1514                 fput(file);
1515 out:
1516         return retval;
1517 }
1518
1519 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1520 struct mmap_arg_struct {
1521         unsigned long addr;
1522         unsigned long len;
1523         unsigned long prot;
1524         unsigned long flags;
1525         unsigned long fd;
1526         unsigned long offset;
1527 };
1528
1529 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1530 {
1531         struct mmap_arg_struct a;
1532
1533         if (copy_from_user(&a, arg, sizeof(a)))
1534                 return -EFAULT;
1535         if (a.offset & ~PAGE_MASK)
1536                 return -EINVAL;
1537
1538         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1539                               a.offset >> PAGE_SHIFT);
1540 }
1541 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1542
1543 /*
1544  * split a vma into two pieces at address 'addr', a new vma is allocated either
1545  * for the first part or the tail.
1546  */
1547 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1548               unsigned long addr, int new_below)
1549 {
1550         struct vm_area_struct *new;
1551         struct vm_region *region;
1552         unsigned long npages;
1553
1554         kenter("");
1555
1556         /* we're only permitted to split anonymous regions (these should have
1557          * only a single usage on the region) */
1558         if (vma->vm_file)
1559                 return -ENOMEM;
1560
1561         if (mm->map_count >= sysctl_max_map_count)
1562                 return -ENOMEM;
1563
1564         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1565         if (!region)
1566                 return -ENOMEM;
1567
1568         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1569         if (!new) {
1570                 kmem_cache_free(vm_region_jar, region);
1571                 return -ENOMEM;
1572         }
1573
1574         /* most fields are the same, copy all, and then fixup */
1575         *new = *vma;
1576         *region = *vma->vm_region;
1577         new->vm_region = region;
1578
1579         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1580
1581         if (new_below) {
1582                 region->vm_top = region->vm_end = new->vm_end = addr;
1583         } else {
1584                 region->vm_start = new->vm_start = addr;
1585                 region->vm_pgoff = new->vm_pgoff += npages;
1586         }
1587
1588         if (new->vm_ops && new->vm_ops->open)
1589                 new->vm_ops->open(new);
1590
1591         delete_vma_from_mm(vma);
1592         down_write(&nommu_region_sem);
1593         delete_nommu_region(vma->vm_region);
1594         if (new_below) {
1595                 vma->vm_region->vm_start = vma->vm_start = addr;
1596                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1597         } else {
1598                 vma->vm_region->vm_end = vma->vm_end = addr;
1599                 vma->vm_region->vm_top = addr;
1600         }
1601         add_nommu_region(vma->vm_region);
1602         add_nommu_region(new->vm_region);
1603         up_write(&nommu_region_sem);
1604         add_vma_to_mm(mm, vma);
1605         add_vma_to_mm(mm, new);
1606         return 0;
1607 }
1608
1609 /*
1610  * shrink a VMA by removing the specified chunk from either the beginning or
1611  * the end
1612  */
1613 static int shrink_vma(struct mm_struct *mm,
1614                       struct vm_area_struct *vma,
1615                       unsigned long from, unsigned long to)
1616 {
1617         struct vm_region *region;
1618
1619         kenter("");
1620
1621         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1622          * and list */
1623         delete_vma_from_mm(vma);
1624         if (from > vma->vm_start)
1625                 vma->vm_end = from;
1626         else
1627                 vma->vm_start = to;
1628         add_vma_to_mm(mm, vma);
1629
1630         /* cut the backing region down to size */
1631         region = vma->vm_region;
1632         BUG_ON(region->vm_usage != 1);
1633
1634         down_write(&nommu_region_sem);
1635         delete_nommu_region(region);
1636         if (from > region->vm_start) {
1637                 to = region->vm_top;
1638                 region->vm_top = region->vm_end = from;
1639         } else {
1640                 region->vm_start = to;
1641         }
1642         add_nommu_region(region);
1643         up_write(&nommu_region_sem);
1644
1645         free_page_series(from, to);
1646         return 0;
1647 }
1648
1649 /*
1650  * release a mapping
1651  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1652  *   VMA, though it need not cover the whole VMA
1653  */
1654 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1655 {
1656         struct vm_area_struct *vma;
1657         unsigned long end;
1658         int ret;
1659
1660         kenter(",%lx,%zx", start, len);
1661
1662         len = PAGE_ALIGN(len);
1663         if (len == 0)
1664                 return -EINVAL;
1665
1666         end = start + len;
1667
1668         /* find the first potentially overlapping VMA */
1669         vma = find_vma(mm, start);
1670         if (!vma) {
1671                 static int limit = 0;
1672                 if (limit < 5) {
1673                         printk(KERN_WARNING
1674                                "munmap of memory not mmapped by process %d"
1675                                " (%s): 0x%lx-0x%lx\n",
1676                                current->pid, current->comm,
1677                                start, start + len - 1);
1678                         limit++;
1679                 }
1680                 return -EINVAL;
1681         }
1682
1683         /* we're allowed to split an anonymous VMA but not a file-backed one */
1684         if (vma->vm_file) {
1685                 do {
1686                         if (start > vma->vm_start) {
1687                                 kleave(" = -EINVAL [miss]");
1688                                 return -EINVAL;
1689                         }
1690                         if (end == vma->vm_end)
1691                                 goto erase_whole_vma;
1692                         vma = vma->vm_next;
1693                 } while (vma);
1694                 kleave(" = -EINVAL [split file]");
1695                 return -EINVAL;
1696         } else {
1697                 /* the chunk must be a subset of the VMA found */
1698                 if (start == vma->vm_start && end == vma->vm_end)
1699                         goto erase_whole_vma;
1700                 if (start < vma->vm_start || end > vma->vm_end) {
1701                         kleave(" = -EINVAL [superset]");
1702                         return -EINVAL;
1703                 }
1704                 if (start & ~PAGE_MASK) {
1705                         kleave(" = -EINVAL [unaligned start]");
1706                         return -EINVAL;
1707                 }
1708                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1709                         kleave(" = -EINVAL [unaligned split]");
1710                         return -EINVAL;
1711                 }
1712                 if (start != vma->vm_start && end != vma->vm_end) {
1713                         ret = split_vma(mm, vma, start, 1);
1714                         if (ret < 0) {
1715                                 kleave(" = %d [split]", ret);
1716                                 return ret;
1717                         }
1718                 }
1719                 return shrink_vma(mm, vma, start, end);
1720         }
1721
1722 erase_whole_vma:
1723         delete_vma_from_mm(vma);
1724         delete_vma(mm, vma);
1725         kleave(" = 0");
1726         return 0;
1727 }
1728 EXPORT_SYMBOL(do_munmap);
1729
1730 int vm_munmap(unsigned long addr, size_t len)
1731 {
1732         struct mm_struct *mm = current->mm;
1733         int ret;
1734
1735         down_write(&mm->mmap_sem);
1736         ret = do_munmap(mm, addr, len);
1737         up_write(&mm->mmap_sem);
1738         return ret;
1739 }
1740 EXPORT_SYMBOL(vm_munmap);
1741
1742 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1743 {
1744         return vm_munmap(addr, len);
1745 }
1746
1747 /*
1748  * release all the mappings made in a process's VM space
1749  */
1750 void exit_mmap(struct mm_struct *mm)
1751 {
1752         struct vm_area_struct *vma;
1753
1754         if (!mm)
1755                 return;
1756
1757         kenter("");
1758
1759         mm->total_vm = 0;
1760
1761         while ((vma = mm->mmap)) {
1762                 mm->mmap = vma->vm_next;
1763                 delete_vma_from_mm(vma);
1764                 delete_vma(mm, vma);
1765                 cond_resched();
1766         }
1767
1768         kleave("");
1769 }
1770
1771 unsigned long vm_brk(unsigned long addr, unsigned long len)
1772 {
1773         return -ENOMEM;
1774 }
1775
1776 /*
1777  * expand (or shrink) an existing mapping, potentially moving it at the same
1778  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1779  *
1780  * under NOMMU conditions, we only permit changing a mapping's size, and only
1781  * as long as it stays within the region allocated by do_mmap_private() and the
1782  * block is not shareable
1783  *
1784  * MREMAP_FIXED is not supported under NOMMU conditions
1785  */
1786 static unsigned long do_mremap(unsigned long addr,
1787                         unsigned long old_len, unsigned long new_len,
1788                         unsigned long flags, unsigned long new_addr)
1789 {
1790         struct vm_area_struct *vma;
1791
1792         /* insanity checks first */
1793         old_len = PAGE_ALIGN(old_len);
1794         new_len = PAGE_ALIGN(new_len);
1795         if (old_len == 0 || new_len == 0)
1796                 return (unsigned long) -EINVAL;
1797
1798         if (addr & ~PAGE_MASK)
1799                 return -EINVAL;
1800
1801         if (flags & MREMAP_FIXED && new_addr != addr)
1802                 return (unsigned long) -EINVAL;
1803
1804         vma = find_vma_exact(current->mm, addr, old_len);
1805         if (!vma)
1806                 return (unsigned long) -EINVAL;
1807
1808         if (vma->vm_end != vma->vm_start + old_len)
1809                 return (unsigned long) -EFAULT;
1810
1811         if (vma->vm_flags & VM_MAYSHARE)
1812                 return (unsigned long) -EPERM;
1813
1814         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1815                 return (unsigned long) -ENOMEM;
1816
1817         /* all checks complete - do it */
1818         vma->vm_end = vma->vm_start + new_len;
1819         return vma->vm_start;
1820 }
1821
1822 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1823                 unsigned long, new_len, unsigned long, flags,
1824                 unsigned long, new_addr)
1825 {
1826         unsigned long ret;
1827
1828         down_write(&current->mm->mmap_sem);
1829         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1830         up_write(&current->mm->mmap_sem);
1831         return ret;
1832 }
1833
1834 struct page *follow_page_mask(struct vm_area_struct *vma,
1835                               unsigned long address, unsigned int flags,
1836                               unsigned int *page_mask)
1837 {
1838         *page_mask = 0;
1839         return NULL;
1840 }
1841
1842 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1843                 unsigned long pfn, unsigned long size, pgprot_t prot)
1844 {
1845         if (addr != (pfn << PAGE_SHIFT))
1846                 return -EINVAL;
1847
1848         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1849         return 0;
1850 }
1851 EXPORT_SYMBOL(remap_pfn_range);
1852
1853 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1854 {
1855         unsigned long pfn = start >> PAGE_SHIFT;
1856         unsigned long vm_len = vma->vm_end - vma->vm_start;
1857
1858         pfn += vma->vm_pgoff;
1859         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1860 }
1861 EXPORT_SYMBOL(vm_iomap_memory);
1862
1863 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1864                         unsigned long pgoff)
1865 {
1866         unsigned int size = vma->vm_end - vma->vm_start;
1867
1868         if (!(vma->vm_flags & VM_USERMAP))
1869                 return -EINVAL;
1870
1871         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1872         vma->vm_end = vma->vm_start + size;
1873
1874         return 0;
1875 }
1876 EXPORT_SYMBOL(remap_vmalloc_range);
1877
1878 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1879         unsigned long len, unsigned long pgoff, unsigned long flags)
1880 {
1881         return -ENOMEM;
1882 }
1883
1884 void unmap_mapping_range(struct address_space *mapping,
1885                          loff_t const holebegin, loff_t const holelen,
1886                          int even_cows)
1887 {
1888 }
1889 EXPORT_SYMBOL(unmap_mapping_range);
1890
1891 /*
1892  * Check that a process has enough memory to allocate a new virtual
1893  * mapping. 0 means there is enough memory for the allocation to
1894  * succeed and -ENOMEM implies there is not.
1895  *
1896  * We currently support three overcommit policies, which are set via the
1897  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1898  *
1899  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1900  * Additional code 2002 Jul 20 by Robert Love.
1901  *
1902  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1903  *
1904  * Note this is a helper function intended to be used by LSMs which
1905  * wish to use this logic.
1906  */
1907 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1908 {
1909         unsigned long free, allowed, reserve;
1910
1911         vm_acct_memory(pages);
1912
1913         /*
1914          * Sometimes we want to use more memory than we have
1915          */
1916         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1917                 return 0;
1918
1919         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1920                 free = global_page_state(NR_FREE_PAGES);
1921                 free += global_page_state(NR_FILE_PAGES);
1922
1923                 /*
1924                  * shmem pages shouldn't be counted as free in this
1925                  * case, they can't be purged, only swapped out, and
1926                  * that won't affect the overall amount of available
1927                  * memory in the system.
1928                  */
1929                 free -= global_page_state(NR_SHMEM);
1930
1931                 free += get_nr_swap_pages();
1932
1933                 /*
1934                  * Any slabs which are created with the
1935                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1936                  * which are reclaimable, under pressure.  The dentry
1937                  * cache and most inode caches should fall into this
1938                  */
1939                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1940
1941                 /*
1942                  * Leave reserved pages. The pages are not for anonymous pages.
1943                  */
1944                 if (free <= totalreserve_pages)
1945                         goto error;
1946                 else
1947                         free -= totalreserve_pages;
1948
1949                 /*
1950                  * Reserve some for root
1951                  */
1952                 if (!cap_sys_admin)
1953                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1954
1955                 if (free > pages)
1956                         return 0;
1957
1958                 goto error;
1959         }
1960
1961         allowed = vm_commit_limit();
1962         /*
1963          * Reserve some 3% for root
1964          */
1965         if (!cap_sys_admin)
1966                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1967
1968         /*
1969          * Don't let a single process grow so big a user can't recover
1970          */
1971         if (mm) {
1972                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1973                 allowed -= min(mm->total_vm / 32, reserve);
1974         }
1975
1976         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1977                 return 0;
1978
1979 error:
1980         vm_unacct_memory(pages);
1981
1982         return -ENOMEM;
1983 }
1984
1985 int in_gate_area_no_mm(unsigned long addr)
1986 {
1987         return 0;
1988 }
1989
1990 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1991 {
1992         BUG();
1993         return 0;
1994 }
1995 EXPORT_SYMBOL(filemap_fault);
1996
1997 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1998 {
1999         BUG();
2000 }
2001 EXPORT_SYMBOL(filemap_map_pages);
2002
2003 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2004                              unsigned long size, pgoff_t pgoff)
2005 {
2006         BUG();
2007         return 0;
2008 }
2009 EXPORT_SYMBOL(generic_file_remap_pages);
2010
2011 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2012                 unsigned long addr, void *buf, int len, int write)
2013 {
2014         struct vm_area_struct *vma;
2015
2016         down_read(&mm->mmap_sem);
2017
2018         /* the access must start within one of the target process's mappings */
2019         vma = find_vma(mm, addr);
2020         if (vma) {
2021                 /* don't overrun this mapping */
2022                 if (addr + len >= vma->vm_end)
2023                         len = vma->vm_end - addr;
2024
2025                 /* only read or write mappings where it is permitted */
2026                 if (write && vma->vm_flags & VM_MAYWRITE)
2027                         copy_to_user_page(vma, NULL, addr,
2028                                          (void *) addr, buf, len);
2029                 else if (!write && vma->vm_flags & VM_MAYREAD)
2030                         copy_from_user_page(vma, NULL, addr,
2031                                             buf, (void *) addr, len);
2032                 else
2033                         len = 0;
2034         } else {
2035                 len = 0;
2036         }
2037
2038         up_read(&mm->mmap_sem);
2039
2040         return len;
2041 }
2042
2043 /**
2044  * @access_remote_vm - access another process' address space
2045  * @mm:         the mm_struct of the target address space
2046  * @addr:       start address to access
2047  * @buf:        source or destination buffer
2048  * @len:        number of bytes to transfer
2049  * @write:      whether the access is a write
2050  *
2051  * The caller must hold a reference on @mm.
2052  */
2053 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2054                 void *buf, int len, int write)
2055 {
2056         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2057 }
2058
2059 /*
2060  * Access another process' address space.
2061  * - source/target buffer must be kernel space
2062  */
2063 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2064 {
2065         struct mm_struct *mm;
2066
2067         if (addr + len < addr)
2068                 return 0;
2069
2070         mm = get_task_mm(tsk);
2071         if (!mm)
2072                 return 0;
2073
2074         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2075
2076         mmput(mm);
2077         return len;
2078 }
2079
2080 /**
2081  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2082  * @inode: The inode to check
2083  * @size: The current filesize of the inode
2084  * @newsize: The proposed filesize of the inode
2085  *
2086  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2087  * make sure that that any outstanding VMAs aren't broken and then shrink the
2088  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2089  * automatically grant mappings that are too large.
2090  */
2091 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2092                                 size_t newsize)
2093 {
2094         struct vm_area_struct *vma;
2095         struct vm_region *region;
2096         pgoff_t low, high;
2097         size_t r_size, r_top;
2098
2099         low = newsize >> PAGE_SHIFT;
2100         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2101
2102         down_write(&nommu_region_sem);
2103         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2104
2105         /* search for VMAs that fall within the dead zone */
2106         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2107                 /* found one - only interested if it's shared out of the page
2108                  * cache */
2109                 if (vma->vm_flags & VM_SHARED) {
2110                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2111                         up_write(&nommu_region_sem);
2112                         return -ETXTBSY; /* not quite true, but near enough */
2113                 }
2114         }
2115
2116         /* reduce any regions that overlap the dead zone - if in existence,
2117          * these will be pointed to by VMAs that don't overlap the dead zone
2118          *
2119          * we don't check for any regions that start beyond the EOF as there
2120          * shouldn't be any
2121          */
2122         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2123                                   0, ULONG_MAX) {
2124                 if (!(vma->vm_flags & VM_SHARED))
2125                         continue;
2126
2127                 region = vma->vm_region;
2128                 r_size = region->vm_top - region->vm_start;
2129                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2130
2131                 if (r_top > newsize) {
2132                         region->vm_top -= r_top - newsize;
2133                         if (region->vm_end > region->vm_top)
2134                                 region->vm_end = region->vm_top;
2135                 }
2136         }
2137
2138         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2139         up_write(&nommu_region_sem);
2140         return 0;
2141 }
2142
2143 /*
2144  * Initialise sysctl_user_reserve_kbytes.
2145  *
2146  * This is intended to prevent a user from starting a single memory hogging
2147  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2148  * mode.
2149  *
2150  * The default value is min(3% of free memory, 128MB)
2151  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2152  */
2153 static int __meminit init_user_reserve(void)
2154 {
2155         unsigned long free_kbytes;
2156
2157         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2158
2159         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2160         return 0;
2161 }
2162 module_init(init_user_reserve)
2163
2164 /*
2165  * Initialise sysctl_admin_reserve_kbytes.
2166  *
2167  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2168  * to log in and kill a memory hogging process.
2169  *
2170  * Systems with more than 256MB will reserve 8MB, enough to recover
2171  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2172  * only reserve 3% of free pages by default.
2173  */
2174 static int __meminit init_admin_reserve(void)
2175 {
2176         unsigned long free_kbytes;
2177
2178         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2179
2180         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2181         return 0;
2182 }
2183 module_init(init_admin_reserve)