mm/hugetlb.c: correct missing private flag clearing
[linux-drm-fsl-dcu.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481         int i;
482         struct hstate *h = page_hstate(src);
483         struct page *dst_base = dst;
484         struct page *src_base = src;
485
486         for (i = 0; i < pages_per_huge_page(h); ) {
487                 cond_resched();
488                 copy_highpage(dst, src);
489
490                 i++;
491                 dst = mem_map_next(dst, dst_base, i);
492                 src = mem_map_next(src, src_base, i);
493         }
494 }
495
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498         int i;
499         struct hstate *h = page_hstate(src);
500
501         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502                 copy_gigantic_page(dst, src);
503                 return;
504         }
505
506         might_sleep();
507         for (i = 0; i < pages_per_huge_page(h); i++) {
508                 cond_resched();
509                 copy_highpage(dst + i, src + i);
510         }
511 }
512
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515         int nid = page_to_nid(page);
516         list_move(&page->lru, &h->hugepage_freelists[nid]);
517         h->free_huge_pages++;
518         h->free_huge_pages_node[nid]++;
519 }
520
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523         struct page *page;
524
525         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526                 if (!is_migrate_isolate_page(page))
527                         break;
528         /*
529          * if 'non-isolated free hugepage' not found on the list,
530          * the allocation fails.
531          */
532         if (&h->hugepage_freelists[nid] == &page->lru)
533                 return NULL;
534         list_move(&page->lru, &h->hugepage_activelist);
535         set_page_refcounted(page);
536         h->free_huge_pages--;
537         h->free_huge_pages_node[nid]--;
538         return page;
539 }
540
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
543 {
544         if (hugepages_treat_as_movable || hugepage_migration_support(h))
545                 return GFP_HIGHUSER_MOVABLE;
546         else
547                 return GFP_HIGHUSER;
548 }
549
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551                                 struct vm_area_struct *vma,
552                                 unsigned long address, int avoid_reserve,
553                                 long chg)
554 {
555         struct page *page = NULL;
556         struct mempolicy *mpol;
557         nodemask_t *nodemask;
558         struct zonelist *zonelist;
559         struct zone *zone;
560         struct zoneref *z;
561         unsigned int cpuset_mems_cookie;
562
563         /*
564          * A child process with MAP_PRIVATE mappings created by their parent
565          * have no page reserves. This check ensures that reservations are
566          * not "stolen". The child may still get SIGKILLed
567          */
568         if (!vma_has_reserves(vma, chg) &&
569                         h->free_huge_pages - h->resv_huge_pages == 0)
570                 goto err;
571
572         /* If reserves cannot be used, ensure enough pages are in the pool */
573         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574                 goto err;
575
576 retry_cpuset:
577         cpuset_mems_cookie = get_mems_allowed();
578         zonelist = huge_zonelist(vma, address,
579                                         htlb_alloc_mask(h), &mpol, &nodemask);
580
581         for_each_zone_zonelist_nodemask(zone, z, zonelist,
582                                                 MAX_NR_ZONES - 1, nodemask) {
583                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
585                         if (page) {
586                                 if (avoid_reserve)
587                                         break;
588                                 if (!vma_has_reserves(vma, chg))
589                                         break;
590
591                                 SetPagePrivate(page);
592                                 h->resv_huge_pages--;
593                                 break;
594                         }
595                 }
596         }
597
598         mpol_cond_put(mpol);
599         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600                 goto retry_cpuset;
601         return page;
602
603 err:
604         return NULL;
605 }
606
607 static void update_and_free_page(struct hstate *h, struct page *page)
608 {
609         int i;
610
611         VM_BUG_ON(h->order >= MAX_ORDER);
612
613         h->nr_huge_pages--;
614         h->nr_huge_pages_node[page_to_nid(page)]--;
615         for (i = 0; i < pages_per_huge_page(h); i++) {
616                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617                                 1 << PG_referenced | 1 << PG_dirty |
618                                 1 << PG_active | 1 << PG_reserved |
619                                 1 << PG_private | 1 << PG_writeback);
620         }
621         VM_BUG_ON(hugetlb_cgroup_from_page(page));
622         set_compound_page_dtor(page, NULL);
623         set_page_refcounted(page);
624         arch_release_hugepage(page);
625         __free_pages(page, huge_page_order(h));
626 }
627
628 struct hstate *size_to_hstate(unsigned long size)
629 {
630         struct hstate *h;
631
632         for_each_hstate(h) {
633                 if (huge_page_size(h) == size)
634                         return h;
635         }
636         return NULL;
637 }
638
639 static void free_huge_page(struct page *page)
640 {
641         /*
642          * Can't pass hstate in here because it is called from the
643          * compound page destructor.
644          */
645         struct hstate *h = page_hstate(page);
646         int nid = page_to_nid(page);
647         struct hugepage_subpool *spool =
648                 (struct hugepage_subpool *)page_private(page);
649         bool restore_reserve;
650
651         set_page_private(page, 0);
652         page->mapping = NULL;
653         BUG_ON(page_count(page));
654         BUG_ON(page_mapcount(page));
655         restore_reserve = PagePrivate(page);
656         ClearPagePrivate(page);
657
658         spin_lock(&hugetlb_lock);
659         hugetlb_cgroup_uncharge_page(hstate_index(h),
660                                      pages_per_huge_page(h), page);
661         if (restore_reserve)
662                 h->resv_huge_pages++;
663
664         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665                 /* remove the page from active list */
666                 list_del(&page->lru);
667                 update_and_free_page(h, page);
668                 h->surplus_huge_pages--;
669                 h->surplus_huge_pages_node[nid]--;
670         } else {
671                 arch_clear_hugepage_flags(page);
672                 enqueue_huge_page(h, page);
673         }
674         spin_unlock(&hugetlb_lock);
675         hugepage_subpool_put_pages(spool, 1);
676 }
677
678 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679 {
680         INIT_LIST_HEAD(&page->lru);
681         set_compound_page_dtor(page, free_huge_page);
682         spin_lock(&hugetlb_lock);
683         set_hugetlb_cgroup(page, NULL);
684         h->nr_huge_pages++;
685         h->nr_huge_pages_node[nid]++;
686         spin_unlock(&hugetlb_lock);
687         put_page(page); /* free it into the hugepage allocator */
688 }
689
690 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
691 {
692         int i;
693         int nr_pages = 1 << order;
694         struct page *p = page + 1;
695
696         /* we rely on prep_new_huge_page to set the destructor */
697         set_compound_order(page, order);
698         __SetPageHead(page);
699         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
700                 __SetPageTail(p);
701                 set_page_count(p, 0);
702                 p->first_page = page;
703         }
704 }
705
706 /*
707  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
708  * transparent huge pages.  See the PageTransHuge() documentation for more
709  * details.
710  */
711 int PageHuge(struct page *page)
712 {
713         compound_page_dtor *dtor;
714
715         if (!PageCompound(page))
716                 return 0;
717
718         page = compound_head(page);
719         dtor = get_compound_page_dtor(page);
720
721         return dtor == free_huge_page;
722 }
723 EXPORT_SYMBOL_GPL(PageHuge);
724
725 pgoff_t __basepage_index(struct page *page)
726 {
727         struct page *page_head = compound_head(page);
728         pgoff_t index = page_index(page_head);
729         unsigned long compound_idx;
730
731         if (!PageHuge(page_head))
732                 return page_index(page);
733
734         if (compound_order(page_head) >= MAX_ORDER)
735                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
736         else
737                 compound_idx = page - page_head;
738
739         return (index << compound_order(page_head)) + compound_idx;
740 }
741
742 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
743 {
744         struct page *page;
745
746         if (h->order >= MAX_ORDER)
747                 return NULL;
748
749         page = alloc_pages_exact_node(nid,
750                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
751                                                 __GFP_REPEAT|__GFP_NOWARN,
752                 huge_page_order(h));
753         if (page) {
754                 if (arch_prepare_hugepage(page)) {
755                         __free_pages(page, huge_page_order(h));
756                         return NULL;
757                 }
758                 prep_new_huge_page(h, page, nid);
759         }
760
761         return page;
762 }
763
764 /*
765  * common helper functions for hstate_next_node_to_{alloc|free}.
766  * We may have allocated or freed a huge page based on a different
767  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
768  * be outside of *nodes_allowed.  Ensure that we use an allowed
769  * node for alloc or free.
770  */
771 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
772 {
773         nid = next_node(nid, *nodes_allowed);
774         if (nid == MAX_NUMNODES)
775                 nid = first_node(*nodes_allowed);
776         VM_BUG_ON(nid >= MAX_NUMNODES);
777
778         return nid;
779 }
780
781 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
782 {
783         if (!node_isset(nid, *nodes_allowed))
784                 nid = next_node_allowed(nid, nodes_allowed);
785         return nid;
786 }
787
788 /*
789  * returns the previously saved node ["this node"] from which to
790  * allocate a persistent huge page for the pool and advance the
791  * next node from which to allocate, handling wrap at end of node
792  * mask.
793  */
794 static int hstate_next_node_to_alloc(struct hstate *h,
795                                         nodemask_t *nodes_allowed)
796 {
797         int nid;
798
799         VM_BUG_ON(!nodes_allowed);
800
801         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
802         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
803
804         return nid;
805 }
806
807 /*
808  * helper for free_pool_huge_page() - return the previously saved
809  * node ["this node"] from which to free a huge page.  Advance the
810  * next node id whether or not we find a free huge page to free so
811  * that the next attempt to free addresses the next node.
812  */
813 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
814 {
815         int nid;
816
817         VM_BUG_ON(!nodes_allowed);
818
819         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
820         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
821
822         return nid;
823 }
824
825 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
826         for (nr_nodes = nodes_weight(*mask);                            \
827                 nr_nodes > 0 &&                                         \
828                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
829                 nr_nodes--)
830
831 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
832         for (nr_nodes = nodes_weight(*mask);                            \
833                 nr_nodes > 0 &&                                         \
834                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
835                 nr_nodes--)
836
837 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
838 {
839         struct page *page;
840         int nr_nodes, node;
841         int ret = 0;
842
843         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
844                 page = alloc_fresh_huge_page_node(h, node);
845                 if (page) {
846                         ret = 1;
847                         break;
848                 }
849         }
850
851         if (ret)
852                 count_vm_event(HTLB_BUDDY_PGALLOC);
853         else
854                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
855
856         return ret;
857 }
858
859 /*
860  * Free huge page from pool from next node to free.
861  * Attempt to keep persistent huge pages more or less
862  * balanced over allowed nodes.
863  * Called with hugetlb_lock locked.
864  */
865 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
866                                                          bool acct_surplus)
867 {
868         int nr_nodes, node;
869         int ret = 0;
870
871         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
872                 /*
873                  * If we're returning unused surplus pages, only examine
874                  * nodes with surplus pages.
875                  */
876                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
877                     !list_empty(&h->hugepage_freelists[node])) {
878                         struct page *page =
879                                 list_entry(h->hugepage_freelists[node].next,
880                                           struct page, lru);
881                         list_del(&page->lru);
882                         h->free_huge_pages--;
883                         h->free_huge_pages_node[node]--;
884                         if (acct_surplus) {
885                                 h->surplus_huge_pages--;
886                                 h->surplus_huge_pages_node[node]--;
887                         }
888                         update_and_free_page(h, page);
889                         ret = 1;
890                         break;
891                 }
892         }
893
894         return ret;
895 }
896
897 /*
898  * Dissolve a given free hugepage into free buddy pages. This function does
899  * nothing for in-use (including surplus) hugepages.
900  */
901 static void dissolve_free_huge_page(struct page *page)
902 {
903         spin_lock(&hugetlb_lock);
904         if (PageHuge(page) && !page_count(page)) {
905                 struct hstate *h = page_hstate(page);
906                 int nid = page_to_nid(page);
907                 list_del(&page->lru);
908                 h->free_huge_pages--;
909                 h->free_huge_pages_node[nid]--;
910                 update_and_free_page(h, page);
911         }
912         spin_unlock(&hugetlb_lock);
913 }
914
915 /*
916  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
917  * make specified memory blocks removable from the system.
918  * Note that start_pfn should aligned with (minimum) hugepage size.
919  */
920 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
921 {
922         unsigned int order = 8 * sizeof(void *);
923         unsigned long pfn;
924         struct hstate *h;
925
926         /* Set scan step to minimum hugepage size */
927         for_each_hstate(h)
928                 if (order > huge_page_order(h))
929                         order = huge_page_order(h);
930         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
931         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
932                 dissolve_free_huge_page(pfn_to_page(pfn));
933 }
934
935 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
936 {
937         struct page *page;
938         unsigned int r_nid;
939
940         if (h->order >= MAX_ORDER)
941                 return NULL;
942
943         /*
944          * Assume we will successfully allocate the surplus page to
945          * prevent racing processes from causing the surplus to exceed
946          * overcommit
947          *
948          * This however introduces a different race, where a process B
949          * tries to grow the static hugepage pool while alloc_pages() is
950          * called by process A. B will only examine the per-node
951          * counters in determining if surplus huge pages can be
952          * converted to normal huge pages in adjust_pool_surplus(). A
953          * won't be able to increment the per-node counter, until the
954          * lock is dropped by B, but B doesn't drop hugetlb_lock until
955          * no more huge pages can be converted from surplus to normal
956          * state (and doesn't try to convert again). Thus, we have a
957          * case where a surplus huge page exists, the pool is grown, and
958          * the surplus huge page still exists after, even though it
959          * should just have been converted to a normal huge page. This
960          * does not leak memory, though, as the hugepage will be freed
961          * once it is out of use. It also does not allow the counters to
962          * go out of whack in adjust_pool_surplus() as we don't modify
963          * the node values until we've gotten the hugepage and only the
964          * per-node value is checked there.
965          */
966         spin_lock(&hugetlb_lock);
967         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
968                 spin_unlock(&hugetlb_lock);
969                 return NULL;
970         } else {
971                 h->nr_huge_pages++;
972                 h->surplus_huge_pages++;
973         }
974         spin_unlock(&hugetlb_lock);
975
976         if (nid == NUMA_NO_NODE)
977                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
978                                    __GFP_REPEAT|__GFP_NOWARN,
979                                    huge_page_order(h));
980         else
981                 page = alloc_pages_exact_node(nid,
982                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
983                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
984
985         if (page && arch_prepare_hugepage(page)) {
986                 __free_pages(page, huge_page_order(h));
987                 page = NULL;
988         }
989
990         spin_lock(&hugetlb_lock);
991         if (page) {
992                 INIT_LIST_HEAD(&page->lru);
993                 r_nid = page_to_nid(page);
994                 set_compound_page_dtor(page, free_huge_page);
995                 set_hugetlb_cgroup(page, NULL);
996                 /*
997                  * We incremented the global counters already
998                  */
999                 h->nr_huge_pages_node[r_nid]++;
1000                 h->surplus_huge_pages_node[r_nid]++;
1001                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1002         } else {
1003                 h->nr_huge_pages--;
1004                 h->surplus_huge_pages--;
1005                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1006         }
1007         spin_unlock(&hugetlb_lock);
1008
1009         return page;
1010 }
1011
1012 /*
1013  * This allocation function is useful in the context where vma is irrelevant.
1014  * E.g. soft-offlining uses this function because it only cares physical
1015  * address of error page.
1016  */
1017 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1018 {
1019         struct page *page = NULL;
1020
1021         spin_lock(&hugetlb_lock);
1022         if (h->free_huge_pages - h->resv_huge_pages > 0)
1023                 page = dequeue_huge_page_node(h, nid);
1024         spin_unlock(&hugetlb_lock);
1025
1026         if (!page)
1027                 page = alloc_buddy_huge_page(h, nid);
1028
1029         return page;
1030 }
1031
1032 /*
1033  * Increase the hugetlb pool such that it can accommodate a reservation
1034  * of size 'delta'.
1035  */
1036 static int gather_surplus_pages(struct hstate *h, int delta)
1037 {
1038         struct list_head surplus_list;
1039         struct page *page, *tmp;
1040         int ret, i;
1041         int needed, allocated;
1042         bool alloc_ok = true;
1043
1044         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1045         if (needed <= 0) {
1046                 h->resv_huge_pages += delta;
1047                 return 0;
1048         }
1049
1050         allocated = 0;
1051         INIT_LIST_HEAD(&surplus_list);
1052
1053         ret = -ENOMEM;
1054 retry:
1055         spin_unlock(&hugetlb_lock);
1056         for (i = 0; i < needed; i++) {
1057                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1058                 if (!page) {
1059                         alloc_ok = false;
1060                         break;
1061                 }
1062                 list_add(&page->lru, &surplus_list);
1063         }
1064         allocated += i;
1065
1066         /*
1067          * After retaking hugetlb_lock, we need to recalculate 'needed'
1068          * because either resv_huge_pages or free_huge_pages may have changed.
1069          */
1070         spin_lock(&hugetlb_lock);
1071         needed = (h->resv_huge_pages + delta) -
1072                         (h->free_huge_pages + allocated);
1073         if (needed > 0) {
1074                 if (alloc_ok)
1075                         goto retry;
1076                 /*
1077                  * We were not able to allocate enough pages to
1078                  * satisfy the entire reservation so we free what
1079                  * we've allocated so far.
1080                  */
1081                 goto free;
1082         }
1083         /*
1084          * The surplus_list now contains _at_least_ the number of extra pages
1085          * needed to accommodate the reservation.  Add the appropriate number
1086          * of pages to the hugetlb pool and free the extras back to the buddy
1087          * allocator.  Commit the entire reservation here to prevent another
1088          * process from stealing the pages as they are added to the pool but
1089          * before they are reserved.
1090          */
1091         needed += allocated;
1092         h->resv_huge_pages += delta;
1093         ret = 0;
1094
1095         /* Free the needed pages to the hugetlb pool */
1096         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1097                 if ((--needed) < 0)
1098                         break;
1099                 /*
1100                  * This page is now managed by the hugetlb allocator and has
1101                  * no users -- drop the buddy allocator's reference.
1102                  */
1103                 put_page_testzero(page);
1104                 VM_BUG_ON(page_count(page));
1105                 enqueue_huge_page(h, page);
1106         }
1107 free:
1108         spin_unlock(&hugetlb_lock);
1109
1110         /* Free unnecessary surplus pages to the buddy allocator */
1111         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1112                 put_page(page);
1113         spin_lock(&hugetlb_lock);
1114
1115         return ret;
1116 }
1117
1118 /*
1119  * When releasing a hugetlb pool reservation, any surplus pages that were
1120  * allocated to satisfy the reservation must be explicitly freed if they were
1121  * never used.
1122  * Called with hugetlb_lock held.
1123  */
1124 static void return_unused_surplus_pages(struct hstate *h,
1125                                         unsigned long unused_resv_pages)
1126 {
1127         unsigned long nr_pages;
1128
1129         /* Uncommit the reservation */
1130         h->resv_huge_pages -= unused_resv_pages;
1131
1132         /* Cannot return gigantic pages currently */
1133         if (h->order >= MAX_ORDER)
1134                 return;
1135
1136         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1137
1138         /*
1139          * We want to release as many surplus pages as possible, spread
1140          * evenly across all nodes with memory. Iterate across these nodes
1141          * until we can no longer free unreserved surplus pages. This occurs
1142          * when the nodes with surplus pages have no free pages.
1143          * free_pool_huge_page() will balance the the freed pages across the
1144          * on-line nodes with memory and will handle the hstate accounting.
1145          */
1146         while (nr_pages--) {
1147                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1148                         break;
1149         }
1150 }
1151
1152 /*
1153  * Determine if the huge page at addr within the vma has an associated
1154  * reservation.  Where it does not we will need to logically increase
1155  * reservation and actually increase subpool usage before an allocation
1156  * can occur.  Where any new reservation would be required the
1157  * reservation change is prepared, but not committed.  Once the page
1158  * has been allocated from the subpool and instantiated the change should
1159  * be committed via vma_commit_reservation.  No action is required on
1160  * failure.
1161  */
1162 static long vma_needs_reservation(struct hstate *h,
1163                         struct vm_area_struct *vma, unsigned long addr)
1164 {
1165         struct address_space *mapping = vma->vm_file->f_mapping;
1166         struct inode *inode = mapping->host;
1167
1168         if (vma->vm_flags & VM_MAYSHARE) {
1169                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1170                 return region_chg(&inode->i_mapping->private_list,
1171                                                         idx, idx + 1);
1172
1173         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1174                 return 1;
1175
1176         } else  {
1177                 long err;
1178                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179                 struct resv_map *resv = vma_resv_map(vma);
1180
1181                 err = region_chg(&resv->regions, idx, idx + 1);
1182                 if (err < 0)
1183                         return err;
1184                 return 0;
1185         }
1186 }
1187 static void vma_commit_reservation(struct hstate *h,
1188                         struct vm_area_struct *vma, unsigned long addr)
1189 {
1190         struct address_space *mapping = vma->vm_file->f_mapping;
1191         struct inode *inode = mapping->host;
1192
1193         if (vma->vm_flags & VM_MAYSHARE) {
1194                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1195                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1196
1197         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1198                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1199                 struct resv_map *resv = vma_resv_map(vma);
1200
1201                 /* Mark this page used in the map. */
1202                 region_add(&resv->regions, idx, idx + 1);
1203         }
1204 }
1205
1206 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1207                                     unsigned long addr, int avoid_reserve)
1208 {
1209         struct hugepage_subpool *spool = subpool_vma(vma);
1210         struct hstate *h = hstate_vma(vma);
1211         struct page *page;
1212         long chg;
1213         int ret, idx;
1214         struct hugetlb_cgroup *h_cg;
1215
1216         idx = hstate_index(h);
1217         /*
1218          * Processes that did not create the mapping will have no
1219          * reserves and will not have accounted against subpool
1220          * limit. Check that the subpool limit can be made before
1221          * satisfying the allocation MAP_NORESERVE mappings may also
1222          * need pages and subpool limit allocated allocated if no reserve
1223          * mapping overlaps.
1224          */
1225         chg = vma_needs_reservation(h, vma, addr);
1226         if (chg < 0)
1227                 return ERR_PTR(-ENOMEM);
1228         if (chg || avoid_reserve)
1229                 if (hugepage_subpool_get_pages(spool, 1))
1230                         return ERR_PTR(-ENOSPC);
1231
1232         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1233         if (ret) {
1234                 if (chg || avoid_reserve)
1235                         hugepage_subpool_put_pages(spool, 1);
1236                 return ERR_PTR(-ENOSPC);
1237         }
1238         spin_lock(&hugetlb_lock);
1239         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1240         if (!page) {
1241                 spin_unlock(&hugetlb_lock);
1242                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1243                 if (!page) {
1244                         hugetlb_cgroup_uncharge_cgroup(idx,
1245                                                        pages_per_huge_page(h),
1246                                                        h_cg);
1247                         if (chg || avoid_reserve)
1248                                 hugepage_subpool_put_pages(spool, 1);
1249                         return ERR_PTR(-ENOSPC);
1250                 }
1251                 spin_lock(&hugetlb_lock);
1252                 list_move(&page->lru, &h->hugepage_activelist);
1253                 /* Fall through */
1254         }
1255         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1256         spin_unlock(&hugetlb_lock);
1257
1258         set_page_private(page, (unsigned long)spool);
1259
1260         vma_commit_reservation(h, vma, addr);
1261         return page;
1262 }
1263
1264 /*
1265  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1266  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1267  * where no ERR_VALUE is expected to be returned.
1268  */
1269 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1270                                 unsigned long addr, int avoid_reserve)
1271 {
1272         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1273         if (IS_ERR(page))
1274                 page = NULL;
1275         return page;
1276 }
1277
1278 int __weak alloc_bootmem_huge_page(struct hstate *h)
1279 {
1280         struct huge_bootmem_page *m;
1281         int nr_nodes, node;
1282
1283         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1284                 void *addr;
1285
1286                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1287                                 huge_page_size(h), huge_page_size(h), 0);
1288
1289                 if (addr) {
1290                         /*
1291                          * Use the beginning of the huge page to store the
1292                          * huge_bootmem_page struct (until gather_bootmem
1293                          * puts them into the mem_map).
1294                          */
1295                         m = addr;
1296                         goto found;
1297                 }
1298         }
1299         return 0;
1300
1301 found:
1302         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1303         /* Put them into a private list first because mem_map is not up yet */
1304         list_add(&m->list, &huge_boot_pages);
1305         m->hstate = h;
1306         return 1;
1307 }
1308
1309 static void prep_compound_huge_page(struct page *page, int order)
1310 {
1311         if (unlikely(order > (MAX_ORDER - 1)))
1312                 prep_compound_gigantic_page(page, order);
1313         else
1314                 prep_compound_page(page, order);
1315 }
1316
1317 /* Put bootmem huge pages into the standard lists after mem_map is up */
1318 static void __init gather_bootmem_prealloc(void)
1319 {
1320         struct huge_bootmem_page *m;
1321
1322         list_for_each_entry(m, &huge_boot_pages, list) {
1323                 struct hstate *h = m->hstate;
1324                 struct page *page;
1325
1326 #ifdef CONFIG_HIGHMEM
1327                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1328                 free_bootmem_late((unsigned long)m,
1329                                   sizeof(struct huge_bootmem_page));
1330 #else
1331                 page = virt_to_page(m);
1332 #endif
1333                 __ClearPageReserved(page);
1334                 WARN_ON(page_count(page) != 1);
1335                 prep_compound_huge_page(page, h->order);
1336                 prep_new_huge_page(h, page, page_to_nid(page));
1337                 /*
1338                  * If we had gigantic hugepages allocated at boot time, we need
1339                  * to restore the 'stolen' pages to totalram_pages in order to
1340                  * fix confusing memory reports from free(1) and another
1341                  * side-effects, like CommitLimit going negative.
1342                  */
1343                 if (h->order > (MAX_ORDER - 1))
1344                         adjust_managed_page_count(page, 1 << h->order);
1345         }
1346 }
1347
1348 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1349 {
1350         unsigned long i;
1351
1352         for (i = 0; i < h->max_huge_pages; ++i) {
1353                 if (h->order >= MAX_ORDER) {
1354                         if (!alloc_bootmem_huge_page(h))
1355                                 break;
1356                 } else if (!alloc_fresh_huge_page(h,
1357                                          &node_states[N_MEMORY]))
1358                         break;
1359         }
1360         h->max_huge_pages = i;
1361 }
1362
1363 static void __init hugetlb_init_hstates(void)
1364 {
1365         struct hstate *h;
1366
1367         for_each_hstate(h) {
1368                 /* oversize hugepages were init'ed in early boot */
1369                 if (h->order < MAX_ORDER)
1370                         hugetlb_hstate_alloc_pages(h);
1371         }
1372 }
1373
1374 static char * __init memfmt(char *buf, unsigned long n)
1375 {
1376         if (n >= (1UL << 30))
1377                 sprintf(buf, "%lu GB", n >> 30);
1378         else if (n >= (1UL << 20))
1379                 sprintf(buf, "%lu MB", n >> 20);
1380         else
1381                 sprintf(buf, "%lu KB", n >> 10);
1382         return buf;
1383 }
1384
1385 static void __init report_hugepages(void)
1386 {
1387         struct hstate *h;
1388
1389         for_each_hstate(h) {
1390                 char buf[32];
1391                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1392                         memfmt(buf, huge_page_size(h)),
1393                         h->free_huge_pages);
1394         }
1395 }
1396
1397 #ifdef CONFIG_HIGHMEM
1398 static void try_to_free_low(struct hstate *h, unsigned long count,
1399                                                 nodemask_t *nodes_allowed)
1400 {
1401         int i;
1402
1403         if (h->order >= MAX_ORDER)
1404                 return;
1405
1406         for_each_node_mask(i, *nodes_allowed) {
1407                 struct page *page, *next;
1408                 struct list_head *freel = &h->hugepage_freelists[i];
1409                 list_for_each_entry_safe(page, next, freel, lru) {
1410                         if (count >= h->nr_huge_pages)
1411                                 return;
1412                         if (PageHighMem(page))
1413                                 continue;
1414                         list_del(&page->lru);
1415                         update_and_free_page(h, page);
1416                         h->free_huge_pages--;
1417                         h->free_huge_pages_node[page_to_nid(page)]--;
1418                 }
1419         }
1420 }
1421 #else
1422 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1423                                                 nodemask_t *nodes_allowed)
1424 {
1425 }
1426 #endif
1427
1428 /*
1429  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1430  * balanced by operating on them in a round-robin fashion.
1431  * Returns 1 if an adjustment was made.
1432  */
1433 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1434                                 int delta)
1435 {
1436         int nr_nodes, node;
1437
1438         VM_BUG_ON(delta != -1 && delta != 1);
1439
1440         if (delta < 0) {
1441                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1442                         if (h->surplus_huge_pages_node[node])
1443                                 goto found;
1444                 }
1445         } else {
1446                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1447                         if (h->surplus_huge_pages_node[node] <
1448                                         h->nr_huge_pages_node[node])
1449                                 goto found;
1450                 }
1451         }
1452         return 0;
1453
1454 found:
1455         h->surplus_huge_pages += delta;
1456         h->surplus_huge_pages_node[node] += delta;
1457         return 1;
1458 }
1459
1460 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1461 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1462                                                 nodemask_t *nodes_allowed)
1463 {
1464         unsigned long min_count, ret;
1465
1466         if (h->order >= MAX_ORDER)
1467                 return h->max_huge_pages;
1468
1469         /*
1470          * Increase the pool size
1471          * First take pages out of surplus state.  Then make up the
1472          * remaining difference by allocating fresh huge pages.
1473          *
1474          * We might race with alloc_buddy_huge_page() here and be unable
1475          * to convert a surplus huge page to a normal huge page. That is
1476          * not critical, though, it just means the overall size of the
1477          * pool might be one hugepage larger than it needs to be, but
1478          * within all the constraints specified by the sysctls.
1479          */
1480         spin_lock(&hugetlb_lock);
1481         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1482                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1483                         break;
1484         }
1485
1486         while (count > persistent_huge_pages(h)) {
1487                 /*
1488                  * If this allocation races such that we no longer need the
1489                  * page, free_huge_page will handle it by freeing the page
1490                  * and reducing the surplus.
1491                  */
1492                 spin_unlock(&hugetlb_lock);
1493                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1494                 spin_lock(&hugetlb_lock);
1495                 if (!ret)
1496                         goto out;
1497
1498                 /* Bail for signals. Probably ctrl-c from user */
1499                 if (signal_pending(current))
1500                         goto out;
1501         }
1502
1503         /*
1504          * Decrease the pool size
1505          * First return free pages to the buddy allocator (being careful
1506          * to keep enough around to satisfy reservations).  Then place
1507          * pages into surplus state as needed so the pool will shrink
1508          * to the desired size as pages become free.
1509          *
1510          * By placing pages into the surplus state independent of the
1511          * overcommit value, we are allowing the surplus pool size to
1512          * exceed overcommit. There are few sane options here. Since
1513          * alloc_buddy_huge_page() is checking the global counter,
1514          * though, we'll note that we're not allowed to exceed surplus
1515          * and won't grow the pool anywhere else. Not until one of the
1516          * sysctls are changed, or the surplus pages go out of use.
1517          */
1518         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1519         min_count = max(count, min_count);
1520         try_to_free_low(h, min_count, nodes_allowed);
1521         while (min_count < persistent_huge_pages(h)) {
1522                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1523                         break;
1524         }
1525         while (count < persistent_huge_pages(h)) {
1526                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1527                         break;
1528         }
1529 out:
1530         ret = persistent_huge_pages(h);
1531         spin_unlock(&hugetlb_lock);
1532         return ret;
1533 }
1534
1535 #define HSTATE_ATTR_RO(_name) \
1536         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1537
1538 #define HSTATE_ATTR(_name) \
1539         static struct kobj_attribute _name##_attr = \
1540                 __ATTR(_name, 0644, _name##_show, _name##_store)
1541
1542 static struct kobject *hugepages_kobj;
1543 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1544
1545 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1546
1547 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1548 {
1549         int i;
1550
1551         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1552                 if (hstate_kobjs[i] == kobj) {
1553                         if (nidp)
1554                                 *nidp = NUMA_NO_NODE;
1555                         return &hstates[i];
1556                 }
1557
1558         return kobj_to_node_hstate(kobj, nidp);
1559 }
1560
1561 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1562                                         struct kobj_attribute *attr, char *buf)
1563 {
1564         struct hstate *h;
1565         unsigned long nr_huge_pages;
1566         int nid;
1567
1568         h = kobj_to_hstate(kobj, &nid);
1569         if (nid == NUMA_NO_NODE)
1570                 nr_huge_pages = h->nr_huge_pages;
1571         else
1572                 nr_huge_pages = h->nr_huge_pages_node[nid];
1573
1574         return sprintf(buf, "%lu\n", nr_huge_pages);
1575 }
1576
1577 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1578                         struct kobject *kobj, struct kobj_attribute *attr,
1579                         const char *buf, size_t len)
1580 {
1581         int err;
1582         int nid;
1583         unsigned long count;
1584         struct hstate *h;
1585         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1586
1587         err = kstrtoul(buf, 10, &count);
1588         if (err)
1589                 goto out;
1590
1591         h = kobj_to_hstate(kobj, &nid);
1592         if (h->order >= MAX_ORDER) {
1593                 err = -EINVAL;
1594                 goto out;
1595         }
1596
1597         if (nid == NUMA_NO_NODE) {
1598                 /*
1599                  * global hstate attribute
1600                  */
1601                 if (!(obey_mempolicy &&
1602                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1603                         NODEMASK_FREE(nodes_allowed);
1604                         nodes_allowed = &node_states[N_MEMORY];
1605                 }
1606         } else if (nodes_allowed) {
1607                 /*
1608                  * per node hstate attribute: adjust count to global,
1609                  * but restrict alloc/free to the specified node.
1610                  */
1611                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1612                 init_nodemask_of_node(nodes_allowed, nid);
1613         } else
1614                 nodes_allowed = &node_states[N_MEMORY];
1615
1616         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1617
1618         if (nodes_allowed != &node_states[N_MEMORY])
1619                 NODEMASK_FREE(nodes_allowed);
1620
1621         return len;
1622 out:
1623         NODEMASK_FREE(nodes_allowed);
1624         return err;
1625 }
1626
1627 static ssize_t nr_hugepages_show(struct kobject *kobj,
1628                                        struct kobj_attribute *attr, char *buf)
1629 {
1630         return nr_hugepages_show_common(kobj, attr, buf);
1631 }
1632
1633 static ssize_t nr_hugepages_store(struct kobject *kobj,
1634                struct kobj_attribute *attr, const char *buf, size_t len)
1635 {
1636         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1637 }
1638 HSTATE_ATTR(nr_hugepages);
1639
1640 #ifdef CONFIG_NUMA
1641
1642 /*
1643  * hstate attribute for optionally mempolicy-based constraint on persistent
1644  * huge page alloc/free.
1645  */
1646 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1647                                        struct kobj_attribute *attr, char *buf)
1648 {
1649         return nr_hugepages_show_common(kobj, attr, buf);
1650 }
1651
1652 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1653                struct kobj_attribute *attr, const char *buf, size_t len)
1654 {
1655         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1656 }
1657 HSTATE_ATTR(nr_hugepages_mempolicy);
1658 #endif
1659
1660
1661 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1662                                         struct kobj_attribute *attr, char *buf)
1663 {
1664         struct hstate *h = kobj_to_hstate(kobj, NULL);
1665         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1666 }
1667
1668 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1669                 struct kobj_attribute *attr, const char *buf, size_t count)
1670 {
1671         int err;
1672         unsigned long input;
1673         struct hstate *h = kobj_to_hstate(kobj, NULL);
1674
1675         if (h->order >= MAX_ORDER)
1676                 return -EINVAL;
1677
1678         err = kstrtoul(buf, 10, &input);
1679         if (err)
1680                 return err;
1681
1682         spin_lock(&hugetlb_lock);
1683         h->nr_overcommit_huge_pages = input;
1684         spin_unlock(&hugetlb_lock);
1685
1686         return count;
1687 }
1688 HSTATE_ATTR(nr_overcommit_hugepages);
1689
1690 static ssize_t free_hugepages_show(struct kobject *kobj,
1691                                         struct kobj_attribute *attr, char *buf)
1692 {
1693         struct hstate *h;
1694         unsigned long free_huge_pages;
1695         int nid;
1696
1697         h = kobj_to_hstate(kobj, &nid);
1698         if (nid == NUMA_NO_NODE)
1699                 free_huge_pages = h->free_huge_pages;
1700         else
1701                 free_huge_pages = h->free_huge_pages_node[nid];
1702
1703         return sprintf(buf, "%lu\n", free_huge_pages);
1704 }
1705 HSTATE_ATTR_RO(free_hugepages);
1706
1707 static ssize_t resv_hugepages_show(struct kobject *kobj,
1708                                         struct kobj_attribute *attr, char *buf)
1709 {
1710         struct hstate *h = kobj_to_hstate(kobj, NULL);
1711         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1712 }
1713 HSTATE_ATTR_RO(resv_hugepages);
1714
1715 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1716                                         struct kobj_attribute *attr, char *buf)
1717 {
1718         struct hstate *h;
1719         unsigned long surplus_huge_pages;
1720         int nid;
1721
1722         h = kobj_to_hstate(kobj, &nid);
1723         if (nid == NUMA_NO_NODE)
1724                 surplus_huge_pages = h->surplus_huge_pages;
1725         else
1726                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1727
1728         return sprintf(buf, "%lu\n", surplus_huge_pages);
1729 }
1730 HSTATE_ATTR_RO(surplus_hugepages);
1731
1732 static struct attribute *hstate_attrs[] = {
1733         &nr_hugepages_attr.attr,
1734         &nr_overcommit_hugepages_attr.attr,
1735         &free_hugepages_attr.attr,
1736         &resv_hugepages_attr.attr,
1737         &surplus_hugepages_attr.attr,
1738 #ifdef CONFIG_NUMA
1739         &nr_hugepages_mempolicy_attr.attr,
1740 #endif
1741         NULL,
1742 };
1743
1744 static struct attribute_group hstate_attr_group = {
1745         .attrs = hstate_attrs,
1746 };
1747
1748 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1749                                     struct kobject **hstate_kobjs,
1750                                     struct attribute_group *hstate_attr_group)
1751 {
1752         int retval;
1753         int hi = hstate_index(h);
1754
1755         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1756         if (!hstate_kobjs[hi])
1757                 return -ENOMEM;
1758
1759         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1760         if (retval)
1761                 kobject_put(hstate_kobjs[hi]);
1762
1763         return retval;
1764 }
1765
1766 static void __init hugetlb_sysfs_init(void)
1767 {
1768         struct hstate *h;
1769         int err;
1770
1771         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1772         if (!hugepages_kobj)
1773                 return;
1774
1775         for_each_hstate(h) {
1776                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1777                                          hstate_kobjs, &hstate_attr_group);
1778                 if (err)
1779                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1780         }
1781 }
1782
1783 #ifdef CONFIG_NUMA
1784
1785 /*
1786  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1787  * with node devices in node_devices[] using a parallel array.  The array
1788  * index of a node device or _hstate == node id.
1789  * This is here to avoid any static dependency of the node device driver, in
1790  * the base kernel, on the hugetlb module.
1791  */
1792 struct node_hstate {
1793         struct kobject          *hugepages_kobj;
1794         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1795 };
1796 struct node_hstate node_hstates[MAX_NUMNODES];
1797
1798 /*
1799  * A subset of global hstate attributes for node devices
1800  */
1801 static struct attribute *per_node_hstate_attrs[] = {
1802         &nr_hugepages_attr.attr,
1803         &free_hugepages_attr.attr,
1804         &surplus_hugepages_attr.attr,
1805         NULL,
1806 };
1807
1808 static struct attribute_group per_node_hstate_attr_group = {
1809         .attrs = per_node_hstate_attrs,
1810 };
1811
1812 /*
1813  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1814  * Returns node id via non-NULL nidp.
1815  */
1816 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1817 {
1818         int nid;
1819
1820         for (nid = 0; nid < nr_node_ids; nid++) {
1821                 struct node_hstate *nhs = &node_hstates[nid];
1822                 int i;
1823                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1824                         if (nhs->hstate_kobjs[i] == kobj) {
1825                                 if (nidp)
1826                                         *nidp = nid;
1827                                 return &hstates[i];
1828                         }
1829         }
1830
1831         BUG();
1832         return NULL;
1833 }
1834
1835 /*
1836  * Unregister hstate attributes from a single node device.
1837  * No-op if no hstate attributes attached.
1838  */
1839 static void hugetlb_unregister_node(struct node *node)
1840 {
1841         struct hstate *h;
1842         struct node_hstate *nhs = &node_hstates[node->dev.id];
1843
1844         if (!nhs->hugepages_kobj)
1845                 return;         /* no hstate attributes */
1846
1847         for_each_hstate(h) {
1848                 int idx = hstate_index(h);
1849                 if (nhs->hstate_kobjs[idx]) {
1850                         kobject_put(nhs->hstate_kobjs[idx]);
1851                         nhs->hstate_kobjs[idx] = NULL;
1852                 }
1853         }
1854
1855         kobject_put(nhs->hugepages_kobj);
1856         nhs->hugepages_kobj = NULL;
1857 }
1858
1859 /*
1860  * hugetlb module exit:  unregister hstate attributes from node devices
1861  * that have them.
1862  */
1863 static void hugetlb_unregister_all_nodes(void)
1864 {
1865         int nid;
1866
1867         /*
1868          * disable node device registrations.
1869          */
1870         register_hugetlbfs_with_node(NULL, NULL);
1871
1872         /*
1873          * remove hstate attributes from any nodes that have them.
1874          */
1875         for (nid = 0; nid < nr_node_ids; nid++)
1876                 hugetlb_unregister_node(node_devices[nid]);
1877 }
1878
1879 /*
1880  * Register hstate attributes for a single node device.
1881  * No-op if attributes already registered.
1882  */
1883 static void hugetlb_register_node(struct node *node)
1884 {
1885         struct hstate *h;
1886         struct node_hstate *nhs = &node_hstates[node->dev.id];
1887         int err;
1888
1889         if (nhs->hugepages_kobj)
1890                 return;         /* already allocated */
1891
1892         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1893                                                         &node->dev.kobj);
1894         if (!nhs->hugepages_kobj)
1895                 return;
1896
1897         for_each_hstate(h) {
1898                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1899                                                 nhs->hstate_kobjs,
1900                                                 &per_node_hstate_attr_group);
1901                 if (err) {
1902                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1903                                 h->name, node->dev.id);
1904                         hugetlb_unregister_node(node);
1905                         break;
1906                 }
1907         }
1908 }
1909
1910 /*
1911  * hugetlb init time:  register hstate attributes for all registered node
1912  * devices of nodes that have memory.  All on-line nodes should have
1913  * registered their associated device by this time.
1914  */
1915 static void hugetlb_register_all_nodes(void)
1916 {
1917         int nid;
1918
1919         for_each_node_state(nid, N_MEMORY) {
1920                 struct node *node = node_devices[nid];
1921                 if (node->dev.id == nid)
1922                         hugetlb_register_node(node);
1923         }
1924
1925         /*
1926          * Let the node device driver know we're here so it can
1927          * [un]register hstate attributes on node hotplug.
1928          */
1929         register_hugetlbfs_with_node(hugetlb_register_node,
1930                                      hugetlb_unregister_node);
1931 }
1932 #else   /* !CONFIG_NUMA */
1933
1934 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1935 {
1936         BUG();
1937         if (nidp)
1938                 *nidp = -1;
1939         return NULL;
1940 }
1941
1942 static void hugetlb_unregister_all_nodes(void) { }
1943
1944 static void hugetlb_register_all_nodes(void) { }
1945
1946 #endif
1947
1948 static void __exit hugetlb_exit(void)
1949 {
1950         struct hstate *h;
1951
1952         hugetlb_unregister_all_nodes();
1953
1954         for_each_hstate(h) {
1955                 kobject_put(hstate_kobjs[hstate_index(h)]);
1956         }
1957
1958         kobject_put(hugepages_kobj);
1959 }
1960 module_exit(hugetlb_exit);
1961
1962 static int __init hugetlb_init(void)
1963 {
1964         /* Some platform decide whether they support huge pages at boot
1965          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1966          * there is no such support
1967          */
1968         if (HPAGE_SHIFT == 0)
1969                 return 0;
1970
1971         if (!size_to_hstate(default_hstate_size)) {
1972                 default_hstate_size = HPAGE_SIZE;
1973                 if (!size_to_hstate(default_hstate_size))
1974                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1975         }
1976         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1977         if (default_hstate_max_huge_pages)
1978                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1979
1980         hugetlb_init_hstates();
1981         gather_bootmem_prealloc();
1982         report_hugepages();
1983
1984         hugetlb_sysfs_init();
1985         hugetlb_register_all_nodes();
1986         hugetlb_cgroup_file_init();
1987
1988         return 0;
1989 }
1990 module_init(hugetlb_init);
1991
1992 /* Should be called on processing a hugepagesz=... option */
1993 void __init hugetlb_add_hstate(unsigned order)
1994 {
1995         struct hstate *h;
1996         unsigned long i;
1997
1998         if (size_to_hstate(PAGE_SIZE << order)) {
1999                 pr_warning("hugepagesz= specified twice, ignoring\n");
2000                 return;
2001         }
2002         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2003         BUG_ON(order == 0);
2004         h = &hstates[hugetlb_max_hstate++];
2005         h->order = order;
2006         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2007         h->nr_huge_pages = 0;
2008         h->free_huge_pages = 0;
2009         for (i = 0; i < MAX_NUMNODES; ++i)
2010                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2011         INIT_LIST_HEAD(&h->hugepage_activelist);
2012         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2013         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2014         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2015                                         huge_page_size(h)/1024);
2016
2017         parsed_hstate = h;
2018 }
2019
2020 static int __init hugetlb_nrpages_setup(char *s)
2021 {
2022         unsigned long *mhp;
2023         static unsigned long *last_mhp;
2024
2025         /*
2026          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2027          * so this hugepages= parameter goes to the "default hstate".
2028          */
2029         if (!hugetlb_max_hstate)
2030                 mhp = &default_hstate_max_huge_pages;
2031         else
2032                 mhp = &parsed_hstate->max_huge_pages;
2033
2034         if (mhp == last_mhp) {
2035                 pr_warning("hugepages= specified twice without "
2036                            "interleaving hugepagesz=, ignoring\n");
2037                 return 1;
2038         }
2039
2040         if (sscanf(s, "%lu", mhp) <= 0)
2041                 *mhp = 0;
2042
2043         /*
2044          * Global state is always initialized later in hugetlb_init.
2045          * But we need to allocate >= MAX_ORDER hstates here early to still
2046          * use the bootmem allocator.
2047          */
2048         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2049                 hugetlb_hstate_alloc_pages(parsed_hstate);
2050
2051         last_mhp = mhp;
2052
2053         return 1;
2054 }
2055 __setup("hugepages=", hugetlb_nrpages_setup);
2056
2057 static int __init hugetlb_default_setup(char *s)
2058 {
2059         default_hstate_size = memparse(s, &s);
2060         return 1;
2061 }
2062 __setup("default_hugepagesz=", hugetlb_default_setup);
2063
2064 static unsigned int cpuset_mems_nr(unsigned int *array)
2065 {
2066         int node;
2067         unsigned int nr = 0;
2068
2069         for_each_node_mask(node, cpuset_current_mems_allowed)
2070                 nr += array[node];
2071
2072         return nr;
2073 }
2074
2075 #ifdef CONFIG_SYSCTL
2076 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2077                          struct ctl_table *table, int write,
2078                          void __user *buffer, size_t *length, loff_t *ppos)
2079 {
2080         struct hstate *h = &default_hstate;
2081         unsigned long tmp;
2082         int ret;
2083
2084         tmp = h->max_huge_pages;
2085
2086         if (write && h->order >= MAX_ORDER)
2087                 return -EINVAL;
2088
2089         table->data = &tmp;
2090         table->maxlen = sizeof(unsigned long);
2091         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2092         if (ret)
2093                 goto out;
2094
2095         if (write) {
2096                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2097                                                 GFP_KERNEL | __GFP_NORETRY);
2098                 if (!(obey_mempolicy &&
2099                                init_nodemask_of_mempolicy(nodes_allowed))) {
2100                         NODEMASK_FREE(nodes_allowed);
2101                         nodes_allowed = &node_states[N_MEMORY];
2102                 }
2103                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2104
2105                 if (nodes_allowed != &node_states[N_MEMORY])
2106                         NODEMASK_FREE(nodes_allowed);
2107         }
2108 out:
2109         return ret;
2110 }
2111
2112 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2113                           void __user *buffer, size_t *length, loff_t *ppos)
2114 {
2115
2116         return hugetlb_sysctl_handler_common(false, table, write,
2117                                                         buffer, length, ppos);
2118 }
2119
2120 #ifdef CONFIG_NUMA
2121 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2122                           void __user *buffer, size_t *length, loff_t *ppos)
2123 {
2124         return hugetlb_sysctl_handler_common(true, table, write,
2125                                                         buffer, length, ppos);
2126 }
2127 #endif /* CONFIG_NUMA */
2128
2129 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2130                         void __user *buffer,
2131                         size_t *length, loff_t *ppos)
2132 {
2133         struct hstate *h = &default_hstate;
2134         unsigned long tmp;
2135         int ret;
2136
2137         tmp = h->nr_overcommit_huge_pages;
2138
2139         if (write && h->order >= MAX_ORDER)
2140                 return -EINVAL;
2141
2142         table->data = &tmp;
2143         table->maxlen = sizeof(unsigned long);
2144         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2145         if (ret)
2146                 goto out;
2147
2148         if (write) {
2149                 spin_lock(&hugetlb_lock);
2150                 h->nr_overcommit_huge_pages = tmp;
2151                 spin_unlock(&hugetlb_lock);
2152         }
2153 out:
2154         return ret;
2155 }
2156
2157 #endif /* CONFIG_SYSCTL */
2158
2159 void hugetlb_report_meminfo(struct seq_file *m)
2160 {
2161         struct hstate *h = &default_hstate;
2162         seq_printf(m,
2163                         "HugePages_Total:   %5lu\n"
2164                         "HugePages_Free:    %5lu\n"
2165                         "HugePages_Rsvd:    %5lu\n"
2166                         "HugePages_Surp:    %5lu\n"
2167                         "Hugepagesize:   %8lu kB\n",
2168                         h->nr_huge_pages,
2169                         h->free_huge_pages,
2170                         h->resv_huge_pages,
2171                         h->surplus_huge_pages,
2172                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2173 }
2174
2175 int hugetlb_report_node_meminfo(int nid, char *buf)
2176 {
2177         struct hstate *h = &default_hstate;
2178         return sprintf(buf,
2179                 "Node %d HugePages_Total: %5u\n"
2180                 "Node %d HugePages_Free:  %5u\n"
2181                 "Node %d HugePages_Surp:  %5u\n",
2182                 nid, h->nr_huge_pages_node[nid],
2183                 nid, h->free_huge_pages_node[nid],
2184                 nid, h->surplus_huge_pages_node[nid]);
2185 }
2186
2187 void hugetlb_show_meminfo(void)
2188 {
2189         struct hstate *h;
2190         int nid;
2191
2192         for_each_node_state(nid, N_MEMORY)
2193                 for_each_hstate(h)
2194                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2195                                 nid,
2196                                 h->nr_huge_pages_node[nid],
2197                                 h->free_huge_pages_node[nid],
2198                                 h->surplus_huge_pages_node[nid],
2199                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2200 }
2201
2202 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2203 unsigned long hugetlb_total_pages(void)
2204 {
2205         struct hstate *h;
2206         unsigned long nr_total_pages = 0;
2207
2208         for_each_hstate(h)
2209                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2210         return nr_total_pages;
2211 }
2212
2213 static int hugetlb_acct_memory(struct hstate *h, long delta)
2214 {
2215         int ret = -ENOMEM;
2216
2217         spin_lock(&hugetlb_lock);
2218         /*
2219          * When cpuset is configured, it breaks the strict hugetlb page
2220          * reservation as the accounting is done on a global variable. Such
2221          * reservation is completely rubbish in the presence of cpuset because
2222          * the reservation is not checked against page availability for the
2223          * current cpuset. Application can still potentially OOM'ed by kernel
2224          * with lack of free htlb page in cpuset that the task is in.
2225          * Attempt to enforce strict accounting with cpuset is almost
2226          * impossible (or too ugly) because cpuset is too fluid that
2227          * task or memory node can be dynamically moved between cpusets.
2228          *
2229          * The change of semantics for shared hugetlb mapping with cpuset is
2230          * undesirable. However, in order to preserve some of the semantics,
2231          * we fall back to check against current free page availability as
2232          * a best attempt and hopefully to minimize the impact of changing
2233          * semantics that cpuset has.
2234          */
2235         if (delta > 0) {
2236                 if (gather_surplus_pages(h, delta) < 0)
2237                         goto out;
2238
2239                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2240                         return_unused_surplus_pages(h, delta);
2241                         goto out;
2242                 }
2243         }
2244
2245         ret = 0;
2246         if (delta < 0)
2247                 return_unused_surplus_pages(h, (unsigned long) -delta);
2248
2249 out:
2250         spin_unlock(&hugetlb_lock);
2251         return ret;
2252 }
2253
2254 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2255 {
2256         struct resv_map *resv = vma_resv_map(vma);
2257
2258         /*
2259          * This new VMA should share its siblings reservation map if present.
2260          * The VMA will only ever have a valid reservation map pointer where
2261          * it is being copied for another still existing VMA.  As that VMA
2262          * has a reference to the reservation map it cannot disappear until
2263          * after this open call completes.  It is therefore safe to take a
2264          * new reference here without additional locking.
2265          */
2266         if (resv)
2267                 kref_get(&resv->refs);
2268 }
2269
2270 static void resv_map_put(struct vm_area_struct *vma)
2271 {
2272         struct resv_map *resv = vma_resv_map(vma);
2273
2274         if (!resv)
2275                 return;
2276         kref_put(&resv->refs, resv_map_release);
2277 }
2278
2279 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2280 {
2281         struct hstate *h = hstate_vma(vma);
2282         struct resv_map *resv = vma_resv_map(vma);
2283         struct hugepage_subpool *spool = subpool_vma(vma);
2284         unsigned long reserve;
2285         unsigned long start;
2286         unsigned long end;
2287
2288         if (resv) {
2289                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2290                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2291
2292                 reserve = (end - start) -
2293                         region_count(&resv->regions, start, end);
2294
2295                 resv_map_put(vma);
2296
2297                 if (reserve) {
2298                         hugetlb_acct_memory(h, -reserve);
2299                         hugepage_subpool_put_pages(spool, reserve);
2300                 }
2301         }
2302 }
2303
2304 /*
2305  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2306  * handle_mm_fault() to try to instantiate regular-sized pages in the
2307  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2308  * this far.
2309  */
2310 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2311 {
2312         BUG();
2313         return 0;
2314 }
2315
2316 const struct vm_operations_struct hugetlb_vm_ops = {
2317         .fault = hugetlb_vm_op_fault,
2318         .open = hugetlb_vm_op_open,
2319         .close = hugetlb_vm_op_close,
2320 };
2321
2322 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2323                                 int writable)
2324 {
2325         pte_t entry;
2326
2327         if (writable) {
2328                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2329                                          vma->vm_page_prot)));
2330         } else {
2331                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2332                                            vma->vm_page_prot));
2333         }
2334         entry = pte_mkyoung(entry);
2335         entry = pte_mkhuge(entry);
2336         entry = arch_make_huge_pte(entry, vma, page, writable);
2337
2338         return entry;
2339 }
2340
2341 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2342                                    unsigned long address, pte_t *ptep)
2343 {
2344         pte_t entry;
2345
2346         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2347         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2348                 update_mmu_cache(vma, address, ptep);
2349 }
2350
2351
2352 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2353                             struct vm_area_struct *vma)
2354 {
2355         pte_t *src_pte, *dst_pte, entry;
2356         struct page *ptepage;
2357         unsigned long addr;
2358         int cow;
2359         struct hstate *h = hstate_vma(vma);
2360         unsigned long sz = huge_page_size(h);
2361
2362         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2363
2364         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2365                 src_pte = huge_pte_offset(src, addr);
2366                 if (!src_pte)
2367                         continue;
2368                 dst_pte = huge_pte_alloc(dst, addr, sz);
2369                 if (!dst_pte)
2370                         goto nomem;
2371
2372                 /* If the pagetables are shared don't copy or take references */
2373                 if (dst_pte == src_pte)
2374                         continue;
2375
2376                 spin_lock(&dst->page_table_lock);
2377                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2378                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379                         if (cow)
2380                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2381                         entry = huge_ptep_get(src_pte);
2382                         ptepage = pte_page(entry);
2383                         get_page(ptepage);
2384                         page_dup_rmap(ptepage);
2385                         set_huge_pte_at(dst, addr, dst_pte, entry);
2386                 }
2387                 spin_unlock(&src->page_table_lock);
2388                 spin_unlock(&dst->page_table_lock);
2389         }
2390         return 0;
2391
2392 nomem:
2393         return -ENOMEM;
2394 }
2395
2396 static int is_hugetlb_entry_migration(pte_t pte)
2397 {
2398         swp_entry_t swp;
2399
2400         if (huge_pte_none(pte) || pte_present(pte))
2401                 return 0;
2402         swp = pte_to_swp_entry(pte);
2403         if (non_swap_entry(swp) && is_migration_entry(swp))
2404                 return 1;
2405         else
2406                 return 0;
2407 }
2408
2409 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2410 {
2411         swp_entry_t swp;
2412
2413         if (huge_pte_none(pte) || pte_present(pte))
2414                 return 0;
2415         swp = pte_to_swp_entry(pte);
2416         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2417                 return 1;
2418         else
2419                 return 0;
2420 }
2421
2422 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2423                             unsigned long start, unsigned long end,
2424                             struct page *ref_page)
2425 {
2426         int force_flush = 0;
2427         struct mm_struct *mm = vma->vm_mm;
2428         unsigned long address;
2429         pte_t *ptep;
2430         pte_t pte;
2431         struct page *page;
2432         struct hstate *h = hstate_vma(vma);
2433         unsigned long sz = huge_page_size(h);
2434         const unsigned long mmun_start = start; /* For mmu_notifiers */
2435         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2436
2437         WARN_ON(!is_vm_hugetlb_page(vma));
2438         BUG_ON(start & ~huge_page_mask(h));
2439         BUG_ON(end & ~huge_page_mask(h));
2440
2441         tlb_start_vma(tlb, vma);
2442         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443 again:
2444         spin_lock(&mm->page_table_lock);
2445         for (address = start; address < end; address += sz) {
2446                 ptep = huge_pte_offset(mm, address);
2447                 if (!ptep)
2448                         continue;
2449
2450                 if (huge_pmd_unshare(mm, &address, ptep))
2451                         continue;
2452
2453                 pte = huge_ptep_get(ptep);
2454                 if (huge_pte_none(pte))
2455                         continue;
2456
2457                 /*
2458                  * HWPoisoned hugepage is already unmapped and dropped reference
2459                  */
2460                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461                         huge_pte_clear(mm, address, ptep);
2462                         continue;
2463                 }
2464
2465                 page = pte_page(pte);
2466                 /*
2467                  * If a reference page is supplied, it is because a specific
2468                  * page is being unmapped, not a range. Ensure the page we
2469                  * are about to unmap is the actual page of interest.
2470                  */
2471                 if (ref_page) {
2472                         if (page != ref_page)
2473                                 continue;
2474
2475                         /*
2476                          * Mark the VMA as having unmapped its page so that
2477                          * future faults in this VMA will fail rather than
2478                          * looking like data was lost
2479                          */
2480                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2481                 }
2482
2483                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2484                 tlb_remove_tlb_entry(tlb, ptep, address);
2485                 if (huge_pte_dirty(pte))
2486                         set_page_dirty(page);
2487
2488                 page_remove_rmap(page);
2489                 force_flush = !__tlb_remove_page(tlb, page);
2490                 if (force_flush)
2491                         break;
2492                 /* Bail out after unmapping reference page if supplied */
2493                 if (ref_page)
2494                         break;
2495         }
2496         spin_unlock(&mm->page_table_lock);
2497         /*
2498          * mmu_gather ran out of room to batch pages, we break out of
2499          * the PTE lock to avoid doing the potential expensive TLB invalidate
2500          * and page-free while holding it.
2501          */
2502         if (force_flush) {
2503                 force_flush = 0;
2504                 tlb_flush_mmu(tlb);
2505                 if (address < end && !ref_page)
2506                         goto again;
2507         }
2508         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2509         tlb_end_vma(tlb, vma);
2510 }
2511
2512 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2513                           struct vm_area_struct *vma, unsigned long start,
2514                           unsigned long end, struct page *ref_page)
2515 {
2516         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2517
2518         /*
2519          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2520          * test will fail on a vma being torn down, and not grab a page table
2521          * on its way out.  We're lucky that the flag has such an appropriate
2522          * name, and can in fact be safely cleared here. We could clear it
2523          * before the __unmap_hugepage_range above, but all that's necessary
2524          * is to clear it before releasing the i_mmap_mutex. This works
2525          * because in the context this is called, the VMA is about to be
2526          * destroyed and the i_mmap_mutex is held.
2527          */
2528         vma->vm_flags &= ~VM_MAYSHARE;
2529 }
2530
2531 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2532                           unsigned long end, struct page *ref_page)
2533 {
2534         struct mm_struct *mm;
2535         struct mmu_gather tlb;
2536
2537         mm = vma->vm_mm;
2538
2539         tlb_gather_mmu(&tlb, mm, start, end);
2540         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2541         tlb_finish_mmu(&tlb, start, end);
2542 }
2543
2544 /*
2545  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2546  * mappping it owns the reserve page for. The intention is to unmap the page
2547  * from other VMAs and let the children be SIGKILLed if they are faulting the
2548  * same region.
2549  */
2550 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2551                                 struct page *page, unsigned long address)
2552 {
2553         struct hstate *h = hstate_vma(vma);
2554         struct vm_area_struct *iter_vma;
2555         struct address_space *mapping;
2556         pgoff_t pgoff;
2557
2558         /*
2559          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2560          * from page cache lookup which is in HPAGE_SIZE units.
2561          */
2562         address = address & huge_page_mask(h);
2563         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2564                         vma->vm_pgoff;
2565         mapping = file_inode(vma->vm_file)->i_mapping;
2566
2567         /*
2568          * Take the mapping lock for the duration of the table walk. As
2569          * this mapping should be shared between all the VMAs,
2570          * __unmap_hugepage_range() is called as the lock is already held
2571          */
2572         mutex_lock(&mapping->i_mmap_mutex);
2573         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2574                 /* Do not unmap the current VMA */
2575                 if (iter_vma == vma)
2576                         continue;
2577
2578                 /*
2579                  * Unmap the page from other VMAs without their own reserves.
2580                  * They get marked to be SIGKILLed if they fault in these
2581                  * areas. This is because a future no-page fault on this VMA
2582                  * could insert a zeroed page instead of the data existing
2583                  * from the time of fork. This would look like data corruption
2584                  */
2585                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2586                         unmap_hugepage_range(iter_vma, address,
2587                                              address + huge_page_size(h), page);
2588         }
2589         mutex_unlock(&mapping->i_mmap_mutex);
2590
2591         return 1;
2592 }
2593
2594 /*
2595  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2596  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2597  * cannot race with other handlers or page migration.
2598  * Keep the pte_same checks anyway to make transition from the mutex easier.
2599  */
2600 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2601                         unsigned long address, pte_t *ptep, pte_t pte,
2602                         struct page *pagecache_page)
2603 {
2604         struct hstate *h = hstate_vma(vma);
2605         struct page *old_page, *new_page;
2606         int outside_reserve = 0;
2607         unsigned long mmun_start;       /* For mmu_notifiers */
2608         unsigned long mmun_end;         /* For mmu_notifiers */
2609
2610         old_page = pte_page(pte);
2611
2612 retry_avoidcopy:
2613         /* If no-one else is actually using this page, avoid the copy
2614          * and just make the page writable */
2615         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2616                 page_move_anon_rmap(old_page, vma, address);
2617                 set_huge_ptep_writable(vma, address, ptep);
2618                 return 0;
2619         }
2620
2621         /*
2622          * If the process that created a MAP_PRIVATE mapping is about to
2623          * perform a COW due to a shared page count, attempt to satisfy
2624          * the allocation without using the existing reserves. The pagecache
2625          * page is used to determine if the reserve at this address was
2626          * consumed or not. If reserves were used, a partial faulted mapping
2627          * at the time of fork() could consume its reserves on COW instead
2628          * of the full address range.
2629          */
2630         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2631                         old_page != pagecache_page)
2632                 outside_reserve = 1;
2633
2634         page_cache_get(old_page);
2635
2636         /* Drop page_table_lock as buddy allocator may be called */
2637         spin_unlock(&mm->page_table_lock);
2638         new_page = alloc_huge_page(vma, address, outside_reserve);
2639
2640         if (IS_ERR(new_page)) {
2641                 long err = PTR_ERR(new_page);
2642                 page_cache_release(old_page);
2643
2644                 /*
2645                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2646                  * it is due to references held by a child and an insufficient
2647                  * huge page pool. To guarantee the original mappers
2648                  * reliability, unmap the page from child processes. The child
2649                  * may get SIGKILLed if it later faults.
2650                  */
2651                 if (outside_reserve) {
2652                         BUG_ON(huge_pte_none(pte));
2653                         if (unmap_ref_private(mm, vma, old_page, address)) {
2654                                 BUG_ON(huge_pte_none(pte));
2655                                 spin_lock(&mm->page_table_lock);
2656                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2657                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2658                                         goto retry_avoidcopy;
2659                                 /*
2660                                  * race occurs while re-acquiring page_table_lock, and
2661                                  * our job is done.
2662                                  */
2663                                 return 0;
2664                         }
2665                         WARN_ON_ONCE(1);
2666                 }
2667
2668                 /* Caller expects lock to be held */
2669                 spin_lock(&mm->page_table_lock);
2670                 if (err == -ENOMEM)
2671                         return VM_FAULT_OOM;
2672                 else
2673                         return VM_FAULT_SIGBUS;
2674         }
2675
2676         /*
2677          * When the original hugepage is shared one, it does not have
2678          * anon_vma prepared.
2679          */
2680         if (unlikely(anon_vma_prepare(vma))) {
2681                 page_cache_release(new_page);
2682                 page_cache_release(old_page);
2683                 /* Caller expects lock to be held */
2684                 spin_lock(&mm->page_table_lock);
2685                 return VM_FAULT_OOM;
2686         }
2687
2688         copy_user_huge_page(new_page, old_page, address, vma,
2689                             pages_per_huge_page(h));
2690         __SetPageUptodate(new_page);
2691
2692         mmun_start = address & huge_page_mask(h);
2693         mmun_end = mmun_start + huge_page_size(h);
2694         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2695         /*
2696          * Retake the page_table_lock to check for racing updates
2697          * before the page tables are altered
2698          */
2699         spin_lock(&mm->page_table_lock);
2700         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2701         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2702                 ClearPagePrivate(new_page);
2703
2704                 /* Break COW */
2705                 huge_ptep_clear_flush(vma, address, ptep);
2706                 set_huge_pte_at(mm, address, ptep,
2707                                 make_huge_pte(vma, new_page, 1));
2708                 page_remove_rmap(old_page);
2709                 hugepage_add_new_anon_rmap(new_page, vma, address);
2710                 /* Make the old page be freed below */
2711                 new_page = old_page;
2712         }
2713         spin_unlock(&mm->page_table_lock);
2714         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2715         page_cache_release(new_page);
2716         page_cache_release(old_page);
2717
2718         /* Caller expects lock to be held */
2719         spin_lock(&mm->page_table_lock);
2720         return 0;
2721 }
2722
2723 /* Return the pagecache page at a given address within a VMA */
2724 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2725                         struct vm_area_struct *vma, unsigned long address)
2726 {
2727         struct address_space *mapping;
2728         pgoff_t idx;
2729
2730         mapping = vma->vm_file->f_mapping;
2731         idx = vma_hugecache_offset(h, vma, address);
2732
2733         return find_lock_page(mapping, idx);
2734 }
2735
2736 /*
2737  * Return whether there is a pagecache page to back given address within VMA.
2738  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2739  */
2740 static bool hugetlbfs_pagecache_present(struct hstate *h,
2741                         struct vm_area_struct *vma, unsigned long address)
2742 {
2743         struct address_space *mapping;
2744         pgoff_t idx;
2745         struct page *page;
2746
2747         mapping = vma->vm_file->f_mapping;
2748         idx = vma_hugecache_offset(h, vma, address);
2749
2750         page = find_get_page(mapping, idx);
2751         if (page)
2752                 put_page(page);
2753         return page != NULL;
2754 }
2755
2756 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2757                         unsigned long address, pte_t *ptep, unsigned int flags)
2758 {
2759         struct hstate *h = hstate_vma(vma);
2760         int ret = VM_FAULT_SIGBUS;
2761         int anon_rmap = 0;
2762         pgoff_t idx;
2763         unsigned long size;
2764         struct page *page;
2765         struct address_space *mapping;
2766         pte_t new_pte;
2767
2768         /*
2769          * Currently, we are forced to kill the process in the event the
2770          * original mapper has unmapped pages from the child due to a failed
2771          * COW. Warn that such a situation has occurred as it may not be obvious
2772          */
2773         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2774                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2775                            current->pid);
2776                 return ret;
2777         }
2778
2779         mapping = vma->vm_file->f_mapping;
2780         idx = vma_hugecache_offset(h, vma, address);
2781
2782         /*
2783          * Use page lock to guard against racing truncation
2784          * before we get page_table_lock.
2785          */
2786 retry:
2787         page = find_lock_page(mapping, idx);
2788         if (!page) {
2789                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2790                 if (idx >= size)
2791                         goto out;
2792                 page = alloc_huge_page(vma, address, 0);
2793                 if (IS_ERR(page)) {
2794                         ret = PTR_ERR(page);
2795                         if (ret == -ENOMEM)
2796                                 ret = VM_FAULT_OOM;
2797                         else
2798                                 ret = VM_FAULT_SIGBUS;
2799                         goto out;
2800                 }
2801                 clear_huge_page(page, address, pages_per_huge_page(h));
2802                 __SetPageUptodate(page);
2803
2804                 if (vma->vm_flags & VM_MAYSHARE) {
2805                         int err;
2806                         struct inode *inode = mapping->host;
2807
2808                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2809                         if (err) {
2810                                 put_page(page);
2811                                 if (err == -EEXIST)
2812                                         goto retry;
2813                                 goto out;
2814                         }
2815                         ClearPagePrivate(page);
2816
2817                         spin_lock(&inode->i_lock);
2818                         inode->i_blocks += blocks_per_huge_page(h);
2819                         spin_unlock(&inode->i_lock);
2820                 } else {
2821                         lock_page(page);
2822                         if (unlikely(anon_vma_prepare(vma))) {
2823                                 ret = VM_FAULT_OOM;
2824                                 goto backout_unlocked;
2825                         }
2826                         anon_rmap = 1;
2827                 }
2828         } else {
2829                 /*
2830                  * If memory error occurs between mmap() and fault, some process
2831                  * don't have hwpoisoned swap entry for errored virtual address.
2832                  * So we need to block hugepage fault by PG_hwpoison bit check.
2833                  */
2834                 if (unlikely(PageHWPoison(page))) {
2835                         ret = VM_FAULT_HWPOISON |
2836                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2837                         goto backout_unlocked;
2838                 }
2839         }
2840
2841         /*
2842          * If we are going to COW a private mapping later, we examine the
2843          * pending reservations for this page now. This will ensure that
2844          * any allocations necessary to record that reservation occur outside
2845          * the spinlock.
2846          */
2847         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2848                 if (vma_needs_reservation(h, vma, address) < 0) {
2849                         ret = VM_FAULT_OOM;
2850                         goto backout_unlocked;
2851                 }
2852
2853         spin_lock(&mm->page_table_lock);
2854         size = i_size_read(mapping->host) >> huge_page_shift(h);
2855         if (idx >= size)
2856                 goto backout;
2857
2858         ret = 0;
2859         if (!huge_pte_none(huge_ptep_get(ptep)))
2860                 goto backout;
2861
2862         if (anon_rmap) {
2863                 ClearPagePrivate(page);
2864                 hugepage_add_new_anon_rmap(page, vma, address);
2865         }
2866         else
2867                 page_dup_rmap(page);
2868         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2869                                 && (vma->vm_flags & VM_SHARED)));
2870         set_huge_pte_at(mm, address, ptep, new_pte);
2871
2872         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2873                 /* Optimization, do the COW without a second fault */
2874                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2875         }
2876
2877         spin_unlock(&mm->page_table_lock);
2878         unlock_page(page);
2879 out:
2880         return ret;
2881
2882 backout:
2883         spin_unlock(&mm->page_table_lock);
2884 backout_unlocked:
2885         unlock_page(page);
2886         put_page(page);
2887         goto out;
2888 }
2889
2890 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2891                         unsigned long address, unsigned int flags)
2892 {
2893         pte_t *ptep;
2894         pte_t entry;
2895         int ret;
2896         struct page *page = NULL;
2897         struct page *pagecache_page = NULL;
2898         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2899         struct hstate *h = hstate_vma(vma);
2900
2901         address &= huge_page_mask(h);
2902
2903         ptep = huge_pte_offset(mm, address);
2904         if (ptep) {
2905                 entry = huge_ptep_get(ptep);
2906                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2907                         migration_entry_wait_huge(mm, ptep);
2908                         return 0;
2909                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2910                         return VM_FAULT_HWPOISON_LARGE |
2911                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2912         }
2913
2914         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2915         if (!ptep)
2916                 return VM_FAULT_OOM;
2917
2918         /*
2919          * Serialize hugepage allocation and instantiation, so that we don't
2920          * get spurious allocation failures if two CPUs race to instantiate
2921          * the same page in the page cache.
2922          */
2923         mutex_lock(&hugetlb_instantiation_mutex);
2924         entry = huge_ptep_get(ptep);
2925         if (huge_pte_none(entry)) {
2926                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2927                 goto out_mutex;
2928         }
2929
2930         ret = 0;
2931
2932         /*
2933          * If we are going to COW the mapping later, we examine the pending
2934          * reservations for this page now. This will ensure that any
2935          * allocations necessary to record that reservation occur outside the
2936          * spinlock. For private mappings, we also lookup the pagecache
2937          * page now as it is used to determine if a reservation has been
2938          * consumed.
2939          */
2940         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2941                 if (vma_needs_reservation(h, vma, address) < 0) {
2942                         ret = VM_FAULT_OOM;
2943                         goto out_mutex;
2944                 }
2945
2946                 if (!(vma->vm_flags & VM_MAYSHARE))
2947                         pagecache_page = hugetlbfs_pagecache_page(h,
2948                                                                 vma, address);
2949         }
2950
2951         /*
2952          * hugetlb_cow() requires page locks of pte_page(entry) and
2953          * pagecache_page, so here we need take the former one
2954          * when page != pagecache_page or !pagecache_page.
2955          * Note that locking order is always pagecache_page -> page,
2956          * so no worry about deadlock.
2957          */
2958         page = pte_page(entry);
2959         get_page(page);
2960         if (page != pagecache_page)
2961                 lock_page(page);
2962
2963         spin_lock(&mm->page_table_lock);
2964         /* Check for a racing update before calling hugetlb_cow */
2965         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2966                 goto out_page_table_lock;
2967
2968
2969         if (flags & FAULT_FLAG_WRITE) {
2970                 if (!huge_pte_write(entry)) {
2971                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2972                                                         pagecache_page);
2973                         goto out_page_table_lock;
2974                 }
2975                 entry = huge_pte_mkdirty(entry);
2976         }
2977         entry = pte_mkyoung(entry);
2978         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2979                                                 flags & FAULT_FLAG_WRITE))
2980                 update_mmu_cache(vma, address, ptep);
2981
2982 out_page_table_lock:
2983         spin_unlock(&mm->page_table_lock);
2984
2985         if (pagecache_page) {
2986                 unlock_page(pagecache_page);
2987                 put_page(pagecache_page);
2988         }
2989         if (page != pagecache_page)
2990                 unlock_page(page);
2991         put_page(page);
2992
2993 out_mutex:
2994         mutex_unlock(&hugetlb_instantiation_mutex);
2995
2996         return ret;
2997 }
2998
2999 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3000                          struct page **pages, struct vm_area_struct **vmas,
3001                          unsigned long *position, unsigned long *nr_pages,
3002                          long i, unsigned int flags)
3003 {
3004         unsigned long pfn_offset;
3005         unsigned long vaddr = *position;
3006         unsigned long remainder = *nr_pages;
3007         struct hstate *h = hstate_vma(vma);
3008
3009         spin_lock(&mm->page_table_lock);
3010         while (vaddr < vma->vm_end && remainder) {
3011                 pte_t *pte;
3012                 int absent;
3013                 struct page *page;
3014
3015                 /*
3016                  * Some archs (sparc64, sh*) have multiple pte_ts to
3017                  * each hugepage.  We have to make sure we get the
3018                  * first, for the page indexing below to work.
3019                  */
3020                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3021                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3022
3023                 /*
3024                  * When coredumping, it suits get_dump_page if we just return
3025                  * an error where there's an empty slot with no huge pagecache
3026                  * to back it.  This way, we avoid allocating a hugepage, and
3027                  * the sparse dumpfile avoids allocating disk blocks, but its
3028                  * huge holes still show up with zeroes where they need to be.
3029                  */
3030                 if (absent && (flags & FOLL_DUMP) &&
3031                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3032                         remainder = 0;
3033                         break;
3034                 }
3035
3036                 /*
3037                  * We need call hugetlb_fault for both hugepages under migration
3038                  * (in which case hugetlb_fault waits for the migration,) and
3039                  * hwpoisoned hugepages (in which case we need to prevent the
3040                  * caller from accessing to them.) In order to do this, we use
3041                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3042                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3043                  * both cases, and because we can't follow correct pages
3044                  * directly from any kind of swap entries.
3045                  */
3046                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3047                     ((flags & FOLL_WRITE) &&
3048                       !huge_pte_write(huge_ptep_get(pte)))) {
3049                         int ret;
3050
3051                         spin_unlock(&mm->page_table_lock);
3052                         ret = hugetlb_fault(mm, vma, vaddr,
3053                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3054                         spin_lock(&mm->page_table_lock);
3055                         if (!(ret & VM_FAULT_ERROR))
3056                                 continue;
3057
3058                         remainder = 0;
3059                         break;
3060                 }
3061
3062                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3063                 page = pte_page(huge_ptep_get(pte));
3064 same_page:
3065                 if (pages) {
3066                         pages[i] = mem_map_offset(page, pfn_offset);
3067                         get_page(pages[i]);
3068                 }
3069
3070                 if (vmas)
3071                         vmas[i] = vma;
3072
3073                 vaddr += PAGE_SIZE;
3074                 ++pfn_offset;
3075                 --remainder;
3076                 ++i;
3077                 if (vaddr < vma->vm_end && remainder &&
3078                                 pfn_offset < pages_per_huge_page(h)) {
3079                         /*
3080                          * We use pfn_offset to avoid touching the pageframes
3081                          * of this compound page.
3082                          */
3083                         goto same_page;
3084                 }
3085         }
3086         spin_unlock(&mm->page_table_lock);
3087         *nr_pages = remainder;
3088         *position = vaddr;
3089
3090         return i ? i : -EFAULT;
3091 }
3092
3093 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3094                 unsigned long address, unsigned long end, pgprot_t newprot)
3095 {
3096         struct mm_struct *mm = vma->vm_mm;
3097         unsigned long start = address;
3098         pte_t *ptep;
3099         pte_t pte;
3100         struct hstate *h = hstate_vma(vma);
3101         unsigned long pages = 0;
3102
3103         BUG_ON(address >= end);
3104         flush_cache_range(vma, address, end);
3105
3106         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3107         spin_lock(&mm->page_table_lock);
3108         for (; address < end; address += huge_page_size(h)) {
3109                 ptep = huge_pte_offset(mm, address);
3110                 if (!ptep)
3111                         continue;
3112                 if (huge_pmd_unshare(mm, &address, ptep)) {
3113                         pages++;
3114                         continue;
3115                 }
3116                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3117                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3118                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3119                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3120                         set_huge_pte_at(mm, address, ptep, pte);
3121                         pages++;
3122                 }
3123         }
3124         spin_unlock(&mm->page_table_lock);
3125         /*
3126          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3127          * may have cleared our pud entry and done put_page on the page table:
3128          * once we release i_mmap_mutex, another task can do the final put_page
3129          * and that page table be reused and filled with junk.
3130          */
3131         flush_tlb_range(vma, start, end);
3132         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3133
3134         return pages << h->order;
3135 }
3136
3137 int hugetlb_reserve_pages(struct inode *inode,
3138                                         long from, long to,
3139                                         struct vm_area_struct *vma,
3140                                         vm_flags_t vm_flags)
3141 {
3142         long ret, chg;
3143         struct hstate *h = hstate_inode(inode);
3144         struct hugepage_subpool *spool = subpool_inode(inode);
3145
3146         /*
3147          * Only apply hugepage reservation if asked. At fault time, an
3148          * attempt will be made for VM_NORESERVE to allocate a page
3149          * without using reserves
3150          */
3151         if (vm_flags & VM_NORESERVE)
3152                 return 0;
3153
3154         /*
3155          * Shared mappings base their reservation on the number of pages that
3156          * are already allocated on behalf of the file. Private mappings need
3157          * to reserve the full area even if read-only as mprotect() may be
3158          * called to make the mapping read-write. Assume !vma is a shm mapping
3159          */
3160         if (!vma || vma->vm_flags & VM_MAYSHARE)
3161                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3162         else {
3163                 struct resv_map *resv_map = resv_map_alloc();
3164                 if (!resv_map)
3165                         return -ENOMEM;
3166
3167                 chg = to - from;
3168
3169                 set_vma_resv_map(vma, resv_map);
3170                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3171         }
3172
3173         if (chg < 0) {
3174                 ret = chg;
3175                 goto out_err;
3176         }
3177
3178         /* There must be enough pages in the subpool for the mapping */
3179         if (hugepage_subpool_get_pages(spool, chg)) {
3180                 ret = -ENOSPC;
3181                 goto out_err;
3182         }
3183
3184         /*
3185          * Check enough hugepages are available for the reservation.
3186          * Hand the pages back to the subpool if there are not
3187          */
3188         ret = hugetlb_acct_memory(h, chg);
3189         if (ret < 0) {
3190                 hugepage_subpool_put_pages(spool, chg);
3191                 goto out_err;
3192         }
3193
3194         /*
3195          * Account for the reservations made. Shared mappings record regions
3196          * that have reservations as they are shared by multiple VMAs.
3197          * When the last VMA disappears, the region map says how much
3198          * the reservation was and the page cache tells how much of
3199          * the reservation was consumed. Private mappings are per-VMA and
3200          * only the consumed reservations are tracked. When the VMA
3201          * disappears, the original reservation is the VMA size and the
3202          * consumed reservations are stored in the map. Hence, nothing
3203          * else has to be done for private mappings here
3204          */
3205         if (!vma || vma->vm_flags & VM_MAYSHARE)
3206                 region_add(&inode->i_mapping->private_list, from, to);
3207         return 0;
3208 out_err:
3209         if (vma)
3210                 resv_map_put(vma);
3211         return ret;
3212 }
3213
3214 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3215 {
3216         struct hstate *h = hstate_inode(inode);
3217         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3218         struct hugepage_subpool *spool = subpool_inode(inode);
3219
3220         spin_lock(&inode->i_lock);
3221         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3222         spin_unlock(&inode->i_lock);
3223
3224         hugepage_subpool_put_pages(spool, (chg - freed));
3225         hugetlb_acct_memory(h, -(chg - freed));
3226 }
3227
3228 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3229 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3230                                 struct vm_area_struct *vma,
3231                                 unsigned long addr, pgoff_t idx)
3232 {
3233         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3234                                 svma->vm_start;
3235         unsigned long sbase = saddr & PUD_MASK;
3236         unsigned long s_end = sbase + PUD_SIZE;
3237
3238         /* Allow segments to share if only one is marked locked */
3239         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3240         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3241
3242         /*
3243          * match the virtual addresses, permission and the alignment of the
3244          * page table page.
3245          */
3246         if (pmd_index(addr) != pmd_index(saddr) ||
3247             vm_flags != svm_flags ||
3248             sbase < svma->vm_start || svma->vm_end < s_end)
3249                 return 0;
3250
3251         return saddr;
3252 }
3253
3254 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3255 {
3256         unsigned long base = addr & PUD_MASK;
3257         unsigned long end = base + PUD_SIZE;
3258
3259         /*
3260          * check on proper vm_flags and page table alignment
3261          */
3262         if (vma->vm_flags & VM_MAYSHARE &&
3263             vma->vm_start <= base && end <= vma->vm_end)
3264                 return 1;
3265         return 0;
3266 }
3267
3268 /*
3269  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3270  * and returns the corresponding pte. While this is not necessary for the
3271  * !shared pmd case because we can allocate the pmd later as well, it makes the
3272  * code much cleaner. pmd allocation is essential for the shared case because
3273  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3274  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3275  * bad pmd for sharing.
3276  */
3277 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3278 {
3279         struct vm_area_struct *vma = find_vma(mm, addr);
3280         struct address_space *mapping = vma->vm_file->f_mapping;
3281         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3282                         vma->vm_pgoff;
3283         struct vm_area_struct *svma;
3284         unsigned long saddr;
3285         pte_t *spte = NULL;
3286         pte_t *pte;
3287
3288         if (!vma_shareable(vma, addr))
3289                 return (pte_t *)pmd_alloc(mm, pud, addr);
3290
3291         mutex_lock(&mapping->i_mmap_mutex);
3292         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3293                 if (svma == vma)
3294                         continue;
3295
3296                 saddr = page_table_shareable(svma, vma, addr, idx);
3297                 if (saddr) {
3298                         spte = huge_pte_offset(svma->vm_mm, saddr);
3299                         if (spte) {
3300                                 get_page(virt_to_page(spte));
3301                                 break;
3302                         }
3303                 }
3304         }
3305
3306         if (!spte)
3307                 goto out;
3308
3309         spin_lock(&mm->page_table_lock);
3310         if (pud_none(*pud))
3311                 pud_populate(mm, pud,
3312                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3313         else
3314                 put_page(virt_to_page(spte));
3315         spin_unlock(&mm->page_table_lock);
3316 out:
3317         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3318         mutex_unlock(&mapping->i_mmap_mutex);
3319         return pte;
3320 }
3321
3322 /*
3323  * unmap huge page backed by shared pte.
3324  *
3325  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3326  * indicated by page_count > 1, unmap is achieved by clearing pud and
3327  * decrementing the ref count. If count == 1, the pte page is not shared.
3328  *
3329  * called with vma->vm_mm->page_table_lock held.
3330  *
3331  * returns: 1 successfully unmapped a shared pte page
3332  *          0 the underlying pte page is not shared, or it is the last user
3333  */
3334 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3335 {
3336         pgd_t *pgd = pgd_offset(mm, *addr);
3337         pud_t *pud = pud_offset(pgd, *addr);
3338
3339         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3340         if (page_count(virt_to_page(ptep)) == 1)
3341                 return 0;
3342
3343         pud_clear(pud);
3344         put_page(virt_to_page(ptep));
3345         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3346         return 1;
3347 }
3348 #define want_pmd_share()        (1)
3349 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3350 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3351 {
3352         return NULL;
3353 }
3354 #define want_pmd_share()        (0)
3355 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3356
3357 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3358 pte_t *huge_pte_alloc(struct mm_struct *mm,
3359                         unsigned long addr, unsigned long sz)
3360 {
3361         pgd_t *pgd;
3362         pud_t *pud;
3363         pte_t *pte = NULL;
3364
3365         pgd = pgd_offset(mm, addr);
3366         pud = pud_alloc(mm, pgd, addr);
3367         if (pud) {
3368                 if (sz == PUD_SIZE) {
3369                         pte = (pte_t *)pud;
3370                 } else {
3371                         BUG_ON(sz != PMD_SIZE);
3372                         if (want_pmd_share() && pud_none(*pud))
3373                                 pte = huge_pmd_share(mm, addr, pud);
3374                         else
3375                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3376                 }
3377         }
3378         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3379
3380         return pte;
3381 }
3382
3383 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3384 {
3385         pgd_t *pgd;
3386         pud_t *pud;
3387         pmd_t *pmd = NULL;
3388
3389         pgd = pgd_offset(mm, addr);
3390         if (pgd_present(*pgd)) {
3391                 pud = pud_offset(pgd, addr);
3392                 if (pud_present(*pud)) {
3393                         if (pud_huge(*pud))
3394                                 return (pte_t *)pud;
3395                         pmd = pmd_offset(pud, addr);
3396                 }
3397         }
3398         return (pte_t *) pmd;
3399 }
3400
3401 struct page *
3402 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3403                 pmd_t *pmd, int write)
3404 {
3405         struct page *page;
3406
3407         page = pte_page(*(pte_t *)pmd);
3408         if (page)
3409                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3410         return page;
3411 }
3412
3413 struct page *
3414 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3415                 pud_t *pud, int write)
3416 {
3417         struct page *page;
3418
3419         page = pte_page(*(pte_t *)pud);
3420         if (page)
3421                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3422         return page;
3423 }
3424
3425 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3426
3427 /* Can be overriden by architectures */
3428 __attribute__((weak)) struct page *
3429 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3430                pud_t *pud, int write)
3431 {
3432         BUG();
3433         return NULL;
3434 }
3435
3436 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3437
3438 #ifdef CONFIG_MEMORY_FAILURE
3439
3440 /* Should be called in hugetlb_lock */
3441 static int is_hugepage_on_freelist(struct page *hpage)
3442 {
3443         struct page *page;
3444         struct page *tmp;
3445         struct hstate *h = page_hstate(hpage);
3446         int nid = page_to_nid(hpage);
3447
3448         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3449                 if (page == hpage)
3450                         return 1;
3451         return 0;
3452 }
3453
3454 /*
3455  * This function is called from memory failure code.
3456  * Assume the caller holds page lock of the head page.
3457  */
3458 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3459 {
3460         struct hstate *h = page_hstate(hpage);
3461         int nid = page_to_nid(hpage);
3462         int ret = -EBUSY;
3463
3464         spin_lock(&hugetlb_lock);
3465         if (is_hugepage_on_freelist(hpage)) {
3466                 /*
3467                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3468                  * but dangling hpage->lru can trigger list-debug warnings
3469                  * (this happens when we call unpoison_memory() on it),
3470                  * so let it point to itself with list_del_init().
3471                  */
3472                 list_del_init(&hpage->lru);
3473                 set_page_refcounted(hpage);
3474                 h->free_huge_pages--;
3475                 h->free_huge_pages_node[nid]--;
3476                 ret = 0;
3477         }
3478         spin_unlock(&hugetlb_lock);
3479         return ret;
3480 }
3481 #endif
3482
3483 bool isolate_huge_page(struct page *page, struct list_head *list)
3484 {
3485         VM_BUG_ON(!PageHead(page));
3486         if (!get_page_unless_zero(page))
3487                 return false;
3488         spin_lock(&hugetlb_lock);
3489         list_move_tail(&page->lru, list);
3490         spin_unlock(&hugetlb_lock);
3491         return true;
3492 }
3493
3494 void putback_active_hugepage(struct page *page)
3495 {
3496         VM_BUG_ON(!PageHead(page));
3497         spin_lock(&hugetlb_lock);
3498         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3499         spin_unlock(&hugetlb_lock);
3500         put_page(page);
3501 }
3502
3503 bool is_hugepage_active(struct page *page)
3504 {
3505         VM_BUG_ON(!PageHuge(page));
3506         /*
3507          * This function can be called for a tail page because the caller,
3508          * scan_movable_pages, scans through a given pfn-range which typically
3509          * covers one memory block. In systems using gigantic hugepage (1GB
3510          * for x86_64,) a hugepage is larger than a memory block, and we don't
3511          * support migrating such large hugepages for now, so return false
3512          * when called for tail pages.
3513          */
3514         if (PageTail(page))
3515                 return false;
3516         /*
3517          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3518          * so we should return false for them.
3519          */
3520         if (unlikely(PageHWPoison(page)))
3521                 return false;
3522         return page_count(page) > 0;
3523 }