header cleaning: don't include smp_lock.h when not used
[linux-drm-fsl-dcu.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/page.h>
41
42 EXPORT_SYMBOL(jbd2_journal_start);
43 EXPORT_SYMBOL(jbd2_journal_restart);
44 EXPORT_SYMBOL(jbd2_journal_extend);
45 EXPORT_SYMBOL(jbd2_journal_stop);
46 EXPORT_SYMBOL(jbd2_journal_lock_updates);
47 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
48 EXPORT_SYMBOL(jbd2_journal_get_write_access);
49 EXPORT_SYMBOL(jbd2_journal_get_create_access);
50 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
51 EXPORT_SYMBOL(jbd2_journal_dirty_data);
52 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
53 EXPORT_SYMBOL(jbd2_journal_release_buffer);
54 EXPORT_SYMBOL(jbd2_journal_forget);
55 #if 0
56 EXPORT_SYMBOL(journal_sync_buffer);
57 #endif
58 EXPORT_SYMBOL(jbd2_journal_flush);
59 EXPORT_SYMBOL(jbd2_journal_revoke);
60
61 EXPORT_SYMBOL(jbd2_journal_init_dev);
62 EXPORT_SYMBOL(jbd2_journal_init_inode);
63 EXPORT_SYMBOL(jbd2_journal_update_format);
64 EXPORT_SYMBOL(jbd2_journal_check_used_features);
65 EXPORT_SYMBOL(jbd2_journal_check_available_features);
66 EXPORT_SYMBOL(jbd2_journal_set_features);
67 EXPORT_SYMBOL(jbd2_journal_create);
68 EXPORT_SYMBOL(jbd2_journal_load);
69 EXPORT_SYMBOL(jbd2_journal_destroy);
70 EXPORT_SYMBOL(jbd2_journal_update_superblock);
71 EXPORT_SYMBOL(jbd2_journal_abort);
72 EXPORT_SYMBOL(jbd2_journal_errno);
73 EXPORT_SYMBOL(jbd2_journal_ack_err);
74 EXPORT_SYMBOL(jbd2_journal_clear_err);
75 EXPORT_SYMBOL(jbd2_log_wait_commit);
76 EXPORT_SYMBOL(jbd2_journal_start_commit);
77 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
78 EXPORT_SYMBOL(jbd2_journal_wipe);
79 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
80 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
81 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
82 EXPORT_SYMBOL(jbd2_journal_force_commit);
83
84 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
85 static void __journal_abort_soft (journal_t *journal, int errno);
86 static int jbd2_journal_create_jbd_slab(size_t slab_size);
87
88 /*
89  * Helper function used to manage commit timeouts
90  */
91
92 static void commit_timeout(unsigned long __data)
93 {
94         struct task_struct * p = (struct task_struct *) __data;
95
96         wake_up_process(p);
97 }
98
99 /*
100  * kjournald2: The main thread function used to manage a logging device
101  * journal.
102  *
103  * This kernel thread is responsible for two things:
104  *
105  * 1) COMMIT:  Every so often we need to commit the current state of the
106  *    filesystem to disk.  The journal thread is responsible for writing
107  *    all of the metadata buffers to disk.
108  *
109  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110  *    of the data in that part of the log has been rewritten elsewhere on
111  *    the disk.  Flushing these old buffers to reclaim space in the log is
112  *    known as checkpointing, and this thread is responsible for that job.
113  */
114
115 static int kjournald2(void *arg)
116 {
117         journal_t *journal = arg;
118         transaction_t *transaction;
119
120         /*
121          * Set up an interval timer which can be used to trigger a commit wakeup
122          * after the commit interval expires
123          */
124         setup_timer(&journal->j_commit_timer, commit_timeout,
125                         (unsigned long)current);
126
127         /* Record that the journal thread is running */
128         journal->j_task = current;
129         wake_up(&journal->j_wait_done_commit);
130
131         printk(KERN_INFO "kjournald2 starting.  Commit interval %ld seconds\n",
132                         journal->j_commit_interval / HZ);
133
134         /*
135          * And now, wait forever for commit wakeup events.
136          */
137         spin_lock(&journal->j_state_lock);
138
139 loop:
140         if (journal->j_flags & JBD2_UNMOUNT)
141                 goto end_loop;
142
143         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144                 journal->j_commit_sequence, journal->j_commit_request);
145
146         if (journal->j_commit_sequence != journal->j_commit_request) {
147                 jbd_debug(1, "OK, requests differ\n");
148                 spin_unlock(&journal->j_state_lock);
149                 del_timer_sync(&journal->j_commit_timer);
150                 jbd2_journal_commit_transaction(journal);
151                 spin_lock(&journal->j_state_lock);
152                 goto loop;
153         }
154
155         wake_up(&journal->j_wait_done_commit);
156         if (freezing(current)) {
157                 /*
158                  * The simpler the better. Flushing journal isn't a
159                  * good idea, because that depends on threads that may
160                  * be already stopped.
161                  */
162                 jbd_debug(1, "Now suspending kjournald2\n");
163                 spin_unlock(&journal->j_state_lock);
164                 refrigerator();
165                 spin_lock(&journal->j_state_lock);
166         } else {
167                 /*
168                  * We assume on resume that commits are already there,
169                  * so we don't sleep
170                  */
171                 DEFINE_WAIT(wait);
172                 int should_sleep = 1;
173
174                 prepare_to_wait(&journal->j_wait_commit, &wait,
175                                 TASK_INTERRUPTIBLE);
176                 if (journal->j_commit_sequence != journal->j_commit_request)
177                         should_sleep = 0;
178                 transaction = journal->j_running_transaction;
179                 if (transaction && time_after_eq(jiffies,
180                                                 transaction->t_expires))
181                         should_sleep = 0;
182                 if (journal->j_flags & JBD2_UNMOUNT)
183                         should_sleep = 0;
184                 if (should_sleep) {
185                         spin_unlock(&journal->j_state_lock);
186                         schedule();
187                         spin_lock(&journal->j_state_lock);
188                 }
189                 finish_wait(&journal->j_wait_commit, &wait);
190         }
191
192         jbd_debug(1, "kjournald2 wakes\n");
193
194         /*
195          * Were we woken up by a commit wakeup event?
196          */
197         transaction = journal->j_running_transaction;
198         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
199                 journal->j_commit_request = transaction->t_tid;
200                 jbd_debug(1, "woke because of timeout\n");
201         }
202         goto loop;
203
204 end_loop:
205         spin_unlock(&journal->j_state_lock);
206         del_timer_sync(&journal->j_commit_timer);
207         journal->j_task = NULL;
208         wake_up(&journal->j_wait_done_commit);
209         jbd_debug(1, "Journal thread exiting.\n");
210         return 0;
211 }
212
213 static void jbd2_journal_start_thread(journal_t *journal)
214 {
215         kthread_run(kjournald2, journal, "kjournald2");
216         wait_event(journal->j_wait_done_commit, journal->j_task != 0);
217 }
218
219 static void journal_kill_thread(journal_t *journal)
220 {
221         spin_lock(&journal->j_state_lock);
222         journal->j_flags |= JBD2_UNMOUNT;
223
224         while (journal->j_task) {
225                 wake_up(&journal->j_wait_commit);
226                 spin_unlock(&journal->j_state_lock);
227                 wait_event(journal->j_wait_done_commit, journal->j_task == 0);
228                 spin_lock(&journal->j_state_lock);
229         }
230         spin_unlock(&journal->j_state_lock);
231 }
232
233 /*
234  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
235  *
236  * Writes a metadata buffer to a given disk block.  The actual IO is not
237  * performed but a new buffer_head is constructed which labels the data
238  * to be written with the correct destination disk block.
239  *
240  * Any magic-number escaping which needs to be done will cause a
241  * copy-out here.  If the buffer happens to start with the
242  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
243  * magic number is only written to the log for descripter blocks.  In
244  * this case, we copy the data and replace the first word with 0, and we
245  * return a result code which indicates that this buffer needs to be
246  * marked as an escaped buffer in the corresponding log descriptor
247  * block.  The missing word can then be restored when the block is read
248  * during recovery.
249  *
250  * If the source buffer has already been modified by a new transaction
251  * since we took the last commit snapshot, we use the frozen copy of
252  * that data for IO.  If we end up using the existing buffer_head's data
253  * for the write, then we *have* to lock the buffer to prevent anyone
254  * else from using and possibly modifying it while the IO is in
255  * progress.
256  *
257  * The function returns a pointer to the buffer_heads to be used for IO.
258  *
259  * We assume that the journal has already been locked in this function.
260  *
261  * Return value:
262  *  <0: Error
263  * >=0: Finished OK
264  *
265  * On success:
266  * Bit 0 set == escape performed on the data
267  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
268  */
269
270 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
271                                   struct journal_head  *jh_in,
272                                   struct journal_head **jh_out,
273                                   unsigned long long blocknr)
274 {
275         int need_copy_out = 0;
276         int done_copy_out = 0;
277         int do_escape = 0;
278         char *mapped_data;
279         struct buffer_head *new_bh;
280         struct journal_head *new_jh;
281         struct page *new_page;
282         unsigned int new_offset;
283         struct buffer_head *bh_in = jh2bh(jh_in);
284
285         /*
286          * The buffer really shouldn't be locked: only the current committing
287          * transaction is allowed to write it, so nobody else is allowed
288          * to do any IO.
289          *
290          * akpm: except if we're journalling data, and write() output is
291          * also part of a shared mapping, and another thread has
292          * decided to launch a writepage() against this buffer.
293          */
294         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
295
296         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
297
298         /*
299          * If a new transaction has already done a buffer copy-out, then
300          * we use that version of the data for the commit.
301          */
302         jbd_lock_bh_state(bh_in);
303 repeat:
304         if (jh_in->b_frozen_data) {
305                 done_copy_out = 1;
306                 new_page = virt_to_page(jh_in->b_frozen_data);
307                 new_offset = offset_in_page(jh_in->b_frozen_data);
308         } else {
309                 new_page = jh2bh(jh_in)->b_page;
310                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
311         }
312
313         mapped_data = kmap_atomic(new_page, KM_USER0);
314         /*
315          * Check for escaping
316          */
317         if (*((__be32 *)(mapped_data + new_offset)) ==
318                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
319                 need_copy_out = 1;
320                 do_escape = 1;
321         }
322         kunmap_atomic(mapped_data, KM_USER0);
323
324         /*
325          * Do we need to do a data copy?
326          */
327         if (need_copy_out && !done_copy_out) {
328                 char *tmp;
329
330                 jbd_unlock_bh_state(bh_in);
331                 tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS);
332                 jbd_lock_bh_state(bh_in);
333                 if (jh_in->b_frozen_data) {
334                         jbd2_slab_free(tmp, bh_in->b_size);
335                         goto repeat;
336                 }
337
338                 jh_in->b_frozen_data = tmp;
339                 mapped_data = kmap_atomic(new_page, KM_USER0);
340                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
341                 kunmap_atomic(mapped_data, KM_USER0);
342
343                 new_page = virt_to_page(tmp);
344                 new_offset = offset_in_page(tmp);
345                 done_copy_out = 1;
346         }
347
348         /*
349          * Did we need to do an escaping?  Now we've done all the
350          * copying, we can finally do so.
351          */
352         if (do_escape) {
353                 mapped_data = kmap_atomic(new_page, KM_USER0);
354                 *((unsigned int *)(mapped_data + new_offset)) = 0;
355                 kunmap_atomic(mapped_data, KM_USER0);
356         }
357
358         /* keep subsequent assertions sane */
359         new_bh->b_state = 0;
360         init_buffer(new_bh, NULL, NULL);
361         atomic_set(&new_bh->b_count, 1);
362         jbd_unlock_bh_state(bh_in);
363
364         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
365
366         set_bh_page(new_bh, new_page, new_offset);
367         new_jh->b_transaction = NULL;
368         new_bh->b_size = jh2bh(jh_in)->b_size;
369         new_bh->b_bdev = transaction->t_journal->j_dev;
370         new_bh->b_blocknr = blocknr;
371         set_buffer_mapped(new_bh);
372         set_buffer_dirty(new_bh);
373
374         *jh_out = new_jh;
375
376         /*
377          * The to-be-written buffer needs to get moved to the io queue,
378          * and the original buffer whose contents we are shadowing or
379          * copying is moved to the transaction's shadow queue.
380          */
381         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
382         jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
383         JBUFFER_TRACE(new_jh, "file as BJ_IO");
384         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
385
386         return do_escape | (done_copy_out << 1);
387 }
388
389 /*
390  * Allocation code for the journal file.  Manage the space left in the
391  * journal, so that we can begin checkpointing when appropriate.
392  */
393
394 /*
395  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
396  *
397  * Called with the journal already locked.
398  *
399  * Called under j_state_lock
400  */
401
402 int __jbd2_log_space_left(journal_t *journal)
403 {
404         int left = journal->j_free;
405
406         assert_spin_locked(&journal->j_state_lock);
407
408         /*
409          * Be pessimistic here about the number of those free blocks which
410          * might be required for log descriptor control blocks.
411          */
412
413 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
414
415         left -= MIN_LOG_RESERVED_BLOCKS;
416
417         if (left <= 0)
418                 return 0;
419         left -= (left >> 3);
420         return left;
421 }
422
423 /*
424  * Called under j_state_lock.  Returns true if a transaction was started.
425  */
426 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
427 {
428         /*
429          * Are we already doing a recent enough commit?
430          */
431         if (!tid_geq(journal->j_commit_request, target)) {
432                 /*
433                  * We want a new commit: OK, mark the request and wakup the
434                  * commit thread.  We do _not_ do the commit ourselves.
435                  */
436
437                 journal->j_commit_request = target;
438                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
439                           journal->j_commit_request,
440                           journal->j_commit_sequence);
441                 wake_up(&journal->j_wait_commit);
442                 return 1;
443         }
444         return 0;
445 }
446
447 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
448 {
449         int ret;
450
451         spin_lock(&journal->j_state_lock);
452         ret = __jbd2_log_start_commit(journal, tid);
453         spin_unlock(&journal->j_state_lock);
454         return ret;
455 }
456
457 /*
458  * Force and wait upon a commit if the calling process is not within
459  * transaction.  This is used for forcing out undo-protected data which contains
460  * bitmaps, when the fs is running out of space.
461  *
462  * We can only force the running transaction if we don't have an active handle;
463  * otherwise, we will deadlock.
464  *
465  * Returns true if a transaction was started.
466  */
467 int jbd2_journal_force_commit_nested(journal_t *journal)
468 {
469         transaction_t *transaction = NULL;
470         tid_t tid;
471
472         spin_lock(&journal->j_state_lock);
473         if (journal->j_running_transaction && !current->journal_info) {
474                 transaction = journal->j_running_transaction;
475                 __jbd2_log_start_commit(journal, transaction->t_tid);
476         } else if (journal->j_committing_transaction)
477                 transaction = journal->j_committing_transaction;
478
479         if (!transaction) {
480                 spin_unlock(&journal->j_state_lock);
481                 return 0;       /* Nothing to retry */
482         }
483
484         tid = transaction->t_tid;
485         spin_unlock(&journal->j_state_lock);
486         jbd2_log_wait_commit(journal, tid);
487         return 1;
488 }
489
490 /*
491  * Start a commit of the current running transaction (if any).  Returns true
492  * if a transaction was started, and fills its tid in at *ptid
493  */
494 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
495 {
496         int ret = 0;
497
498         spin_lock(&journal->j_state_lock);
499         if (journal->j_running_transaction) {
500                 tid_t tid = journal->j_running_transaction->t_tid;
501
502                 ret = __jbd2_log_start_commit(journal, tid);
503                 if (ret && ptid)
504                         *ptid = tid;
505         } else if (journal->j_committing_transaction && ptid) {
506                 /*
507                  * If ext3_write_super() recently started a commit, then we
508                  * have to wait for completion of that transaction
509                  */
510                 *ptid = journal->j_committing_transaction->t_tid;
511                 ret = 1;
512         }
513         spin_unlock(&journal->j_state_lock);
514         return ret;
515 }
516
517 /*
518  * Wait for a specified commit to complete.
519  * The caller may not hold the journal lock.
520  */
521 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
522 {
523         int err = 0;
524
525 #ifdef CONFIG_JBD_DEBUG
526         spin_lock(&journal->j_state_lock);
527         if (!tid_geq(journal->j_commit_request, tid)) {
528                 printk(KERN_EMERG
529                        "%s: error: j_commit_request=%d, tid=%d\n",
530                        __FUNCTION__, journal->j_commit_request, tid);
531         }
532         spin_unlock(&journal->j_state_lock);
533 #endif
534         spin_lock(&journal->j_state_lock);
535         while (tid_gt(tid, journal->j_commit_sequence)) {
536                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
537                                   tid, journal->j_commit_sequence);
538                 wake_up(&journal->j_wait_commit);
539                 spin_unlock(&journal->j_state_lock);
540                 wait_event(journal->j_wait_done_commit,
541                                 !tid_gt(tid, journal->j_commit_sequence));
542                 spin_lock(&journal->j_state_lock);
543         }
544         spin_unlock(&journal->j_state_lock);
545
546         if (unlikely(is_journal_aborted(journal))) {
547                 printk(KERN_EMERG "journal commit I/O error\n");
548                 err = -EIO;
549         }
550         return err;
551 }
552
553 /*
554  * Log buffer allocation routines:
555  */
556
557 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
558 {
559         unsigned long blocknr;
560
561         spin_lock(&journal->j_state_lock);
562         J_ASSERT(journal->j_free > 1);
563
564         blocknr = journal->j_head;
565         journal->j_head++;
566         journal->j_free--;
567         if (journal->j_head == journal->j_last)
568                 journal->j_head = journal->j_first;
569         spin_unlock(&journal->j_state_lock);
570         return jbd2_journal_bmap(journal, blocknr, retp);
571 }
572
573 /*
574  * Conversion of logical to physical block numbers for the journal
575  *
576  * On external journals the journal blocks are identity-mapped, so
577  * this is a no-op.  If needed, we can use j_blk_offset - everything is
578  * ready.
579  */
580 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
581                  unsigned long long *retp)
582 {
583         int err = 0;
584         unsigned long long ret;
585
586         if (journal->j_inode) {
587                 ret = bmap(journal->j_inode, blocknr);
588                 if (ret)
589                         *retp = ret;
590                 else {
591                         char b[BDEVNAME_SIZE];
592
593                         printk(KERN_ALERT "%s: journal block not found "
594                                         "at offset %lu on %s\n",
595                                 __FUNCTION__,
596                                 blocknr,
597                                 bdevname(journal->j_dev, b));
598                         err = -EIO;
599                         __journal_abort_soft(journal, err);
600                 }
601         } else {
602                 *retp = blocknr; /* +journal->j_blk_offset */
603         }
604         return err;
605 }
606
607 /*
608  * We play buffer_head aliasing tricks to write data/metadata blocks to
609  * the journal without copying their contents, but for journal
610  * descriptor blocks we do need to generate bona fide buffers.
611  *
612  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
613  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
614  * But we don't bother doing that, so there will be coherency problems with
615  * mmaps of blockdevs which hold live JBD-controlled filesystems.
616  */
617 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
618 {
619         struct buffer_head *bh;
620         unsigned long long blocknr;
621         int err;
622
623         err = jbd2_journal_next_log_block(journal, &blocknr);
624
625         if (err)
626                 return NULL;
627
628         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
629         lock_buffer(bh);
630         memset(bh->b_data, 0, journal->j_blocksize);
631         set_buffer_uptodate(bh);
632         unlock_buffer(bh);
633         BUFFER_TRACE(bh, "return this buffer");
634         return jbd2_journal_add_journal_head(bh);
635 }
636
637 /*
638  * Management for journal control blocks: functions to create and
639  * destroy journal_t structures, and to initialise and read existing
640  * journal blocks from disk.  */
641
642 /* First: create and setup a journal_t object in memory.  We initialise
643  * very few fields yet: that has to wait until we have created the
644  * journal structures from from scratch, or loaded them from disk. */
645
646 static journal_t * journal_init_common (void)
647 {
648         journal_t *journal;
649         int err;
650
651         journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
652         if (!journal)
653                 goto fail;
654         memset(journal, 0, sizeof(*journal));
655
656         init_waitqueue_head(&journal->j_wait_transaction_locked);
657         init_waitqueue_head(&journal->j_wait_logspace);
658         init_waitqueue_head(&journal->j_wait_done_commit);
659         init_waitqueue_head(&journal->j_wait_checkpoint);
660         init_waitqueue_head(&journal->j_wait_commit);
661         init_waitqueue_head(&journal->j_wait_updates);
662         mutex_init(&journal->j_barrier);
663         mutex_init(&journal->j_checkpoint_mutex);
664         spin_lock_init(&journal->j_revoke_lock);
665         spin_lock_init(&journal->j_list_lock);
666         spin_lock_init(&journal->j_state_lock);
667
668         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
669
670         /* The journal is marked for error until we succeed with recovery! */
671         journal->j_flags = JBD2_ABORT;
672
673         /* Set up a default-sized revoke table for the new mount. */
674         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
675         if (err) {
676                 kfree(journal);
677                 goto fail;
678         }
679         return journal;
680 fail:
681         return NULL;
682 }
683
684 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
685  *
686  * Create a journal structure assigned some fixed set of disk blocks to
687  * the journal.  We don't actually touch those disk blocks yet, but we
688  * need to set up all of the mapping information to tell the journaling
689  * system where the journal blocks are.
690  *
691  */
692
693 /**
694  *  journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
695  *  @bdev: Block device on which to create the journal
696  *  @fs_dev: Device which hold journalled filesystem for this journal.
697  *  @start: Block nr Start of journal.
698  *  @len:  Length of the journal in blocks.
699  *  @blocksize: blocksize of journalling device
700  *  @returns: a newly created journal_t *
701  *
702  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
703  *  range of blocks on an arbitrary block device.
704  *
705  */
706 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
707                         struct block_device *fs_dev,
708                         unsigned long long start, int len, int blocksize)
709 {
710         journal_t *journal = journal_init_common();
711         struct buffer_head *bh;
712         int n;
713
714         if (!journal)
715                 return NULL;
716
717         /* journal descriptor can store up to n blocks -bzzz */
718         journal->j_blocksize = blocksize;
719         n = journal->j_blocksize / sizeof(journal_block_tag_t);
720         journal->j_wbufsize = n;
721         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
722         if (!journal->j_wbuf) {
723                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
724                         __FUNCTION__);
725                 kfree(journal);
726                 journal = NULL;
727                 goto out;
728         }
729         journal->j_dev = bdev;
730         journal->j_fs_dev = fs_dev;
731         journal->j_blk_offset = start;
732         journal->j_maxlen = len;
733
734         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
735         J_ASSERT(bh != NULL);
736         journal->j_sb_buffer = bh;
737         journal->j_superblock = (journal_superblock_t *)bh->b_data;
738 out:
739         return journal;
740 }
741
742 /**
743  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
744  *  @inode: An inode to create the journal in
745  *
746  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
747  * the journal.  The inode must exist already, must support bmap() and
748  * must have all data blocks preallocated.
749  */
750 journal_t * jbd2_journal_init_inode (struct inode *inode)
751 {
752         struct buffer_head *bh;
753         journal_t *journal = journal_init_common();
754         int err;
755         int n;
756         unsigned long long blocknr;
757
758         if (!journal)
759                 return NULL;
760
761         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
762         journal->j_inode = inode;
763         jbd_debug(1,
764                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
765                   journal, inode->i_sb->s_id, inode->i_ino,
766                   (long long) inode->i_size,
767                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
768
769         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
770         journal->j_blocksize = inode->i_sb->s_blocksize;
771
772         /* journal descriptor can store up to n blocks -bzzz */
773         n = journal->j_blocksize / sizeof(journal_block_tag_t);
774         journal->j_wbufsize = n;
775         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
776         if (!journal->j_wbuf) {
777                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
778                         __FUNCTION__);
779                 kfree(journal);
780                 return NULL;
781         }
782
783         err = jbd2_journal_bmap(journal, 0, &blocknr);
784         /* If that failed, give up */
785         if (err) {
786                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
787                        __FUNCTION__);
788                 kfree(journal);
789                 return NULL;
790         }
791
792         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
793         J_ASSERT(bh != NULL);
794         journal->j_sb_buffer = bh;
795         journal->j_superblock = (journal_superblock_t *)bh->b_data;
796
797         return journal;
798 }
799
800 /*
801  * If the journal init or create aborts, we need to mark the journal
802  * superblock as being NULL to prevent the journal destroy from writing
803  * back a bogus superblock.
804  */
805 static void journal_fail_superblock (journal_t *journal)
806 {
807         struct buffer_head *bh = journal->j_sb_buffer;
808         brelse(bh);
809         journal->j_sb_buffer = NULL;
810 }
811
812 /*
813  * Given a journal_t structure, initialise the various fields for
814  * startup of a new journaling session.  We use this both when creating
815  * a journal, and after recovering an old journal to reset it for
816  * subsequent use.
817  */
818
819 static int journal_reset(journal_t *journal)
820 {
821         journal_superblock_t *sb = journal->j_superblock;
822         unsigned long long first, last;
823
824         first = be32_to_cpu(sb->s_first);
825         last = be32_to_cpu(sb->s_maxlen);
826
827         journal->j_first = first;
828         journal->j_last = last;
829
830         journal->j_head = first;
831         journal->j_tail = first;
832         journal->j_free = last - first;
833
834         journal->j_tail_sequence = journal->j_transaction_sequence;
835         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
836         journal->j_commit_request = journal->j_commit_sequence;
837
838         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
839
840         /* Add the dynamic fields and write it to disk. */
841         jbd2_journal_update_superblock(journal, 1);
842         jbd2_journal_start_thread(journal);
843         return 0;
844 }
845
846 /**
847  * int jbd2_journal_create() - Initialise the new journal file
848  * @journal: Journal to create. This structure must have been initialised
849  *
850  * Given a journal_t structure which tells us which disk blocks we can
851  * use, create a new journal superblock and initialise all of the
852  * journal fields from scratch.
853  **/
854 int jbd2_journal_create(journal_t *journal)
855 {
856         unsigned long long blocknr;
857         struct buffer_head *bh;
858         journal_superblock_t *sb;
859         int i, err;
860
861         if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
862                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
863                         journal->j_maxlen);
864                 journal_fail_superblock(journal);
865                 return -EINVAL;
866         }
867
868         if (journal->j_inode == NULL) {
869                 /*
870                  * We don't know what block to start at!
871                  */
872                 printk(KERN_EMERG
873                        "%s: creation of journal on external device!\n",
874                        __FUNCTION__);
875                 BUG();
876         }
877
878         /* Zero out the entire journal on disk.  We cannot afford to
879            have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
880         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
881         for (i = 0; i < journal->j_maxlen; i++) {
882                 err = jbd2_journal_bmap(journal, i, &blocknr);
883                 if (err)
884                         return err;
885                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
886                 lock_buffer(bh);
887                 memset (bh->b_data, 0, journal->j_blocksize);
888                 BUFFER_TRACE(bh, "marking dirty");
889                 mark_buffer_dirty(bh);
890                 BUFFER_TRACE(bh, "marking uptodate");
891                 set_buffer_uptodate(bh);
892                 unlock_buffer(bh);
893                 __brelse(bh);
894         }
895
896         sync_blockdev(journal->j_dev);
897         jbd_debug(1, "JBD: journal cleared.\n");
898
899         /* OK, fill in the initial static fields in the new superblock */
900         sb = journal->j_superblock;
901
902         sb->s_header.h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
903         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
904
905         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
906         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
907         sb->s_first     = cpu_to_be32(1);
908
909         journal->j_transaction_sequence = 1;
910
911         journal->j_flags &= ~JBD2_ABORT;
912         journal->j_format_version = 2;
913
914         return journal_reset(journal);
915 }
916
917 /**
918  * void jbd2_journal_update_superblock() - Update journal sb on disk.
919  * @journal: The journal to update.
920  * @wait: Set to '0' if you don't want to wait for IO completion.
921  *
922  * Update a journal's dynamic superblock fields and write it to disk,
923  * optionally waiting for the IO to complete.
924  */
925 void jbd2_journal_update_superblock(journal_t *journal, int wait)
926 {
927         journal_superblock_t *sb = journal->j_superblock;
928         struct buffer_head *bh = journal->j_sb_buffer;
929
930         /*
931          * As a special case, if the on-disk copy is already marked as needing
932          * no recovery (s_start == 0) and there are no outstanding transactions
933          * in the filesystem, then we can safely defer the superblock update
934          * until the next commit by setting JBD2_FLUSHED.  This avoids
935          * attempting a write to a potential-readonly device.
936          */
937         if (sb->s_start == 0 && journal->j_tail_sequence ==
938                                 journal->j_transaction_sequence) {
939                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
940                         "(start %ld, seq %d, errno %d)\n",
941                         journal->j_tail, journal->j_tail_sequence,
942                         journal->j_errno);
943                 goto out;
944         }
945
946         spin_lock(&journal->j_state_lock);
947         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
948                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
949
950         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
951         sb->s_start    = cpu_to_be32(journal->j_tail);
952         sb->s_errno    = cpu_to_be32(journal->j_errno);
953         spin_unlock(&journal->j_state_lock);
954
955         BUFFER_TRACE(bh, "marking dirty");
956         mark_buffer_dirty(bh);
957         if (wait)
958                 sync_dirty_buffer(bh);
959         else
960                 ll_rw_block(SWRITE, 1, &bh);
961
962 out:
963         /* If we have just flushed the log (by marking s_start==0), then
964          * any future commit will have to be careful to update the
965          * superblock again to re-record the true start of the log. */
966
967         spin_lock(&journal->j_state_lock);
968         if (sb->s_start)
969                 journal->j_flags &= ~JBD2_FLUSHED;
970         else
971                 journal->j_flags |= JBD2_FLUSHED;
972         spin_unlock(&journal->j_state_lock);
973 }
974
975 /*
976  * Read the superblock for a given journal, performing initial
977  * validation of the format.
978  */
979
980 static int journal_get_superblock(journal_t *journal)
981 {
982         struct buffer_head *bh;
983         journal_superblock_t *sb;
984         int err = -EIO;
985
986         bh = journal->j_sb_buffer;
987
988         J_ASSERT(bh != NULL);
989         if (!buffer_uptodate(bh)) {
990                 ll_rw_block(READ, 1, &bh);
991                 wait_on_buffer(bh);
992                 if (!buffer_uptodate(bh)) {
993                         printk (KERN_ERR
994                                 "JBD: IO error reading journal superblock\n");
995                         goto out;
996                 }
997         }
998
999         sb = journal->j_superblock;
1000
1001         err = -EINVAL;
1002
1003         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1004             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1005                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1006                 goto out;
1007         }
1008
1009         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1010         case JBD2_SUPERBLOCK_V1:
1011                 journal->j_format_version = 1;
1012                 break;
1013         case JBD2_SUPERBLOCK_V2:
1014                 journal->j_format_version = 2;
1015                 break;
1016         default:
1017                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1018                 goto out;
1019         }
1020
1021         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1022                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1023         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1024                 printk (KERN_WARNING "JBD: journal file too short\n");
1025                 goto out;
1026         }
1027
1028         return 0;
1029
1030 out:
1031         journal_fail_superblock(journal);
1032         return err;
1033 }
1034
1035 /*
1036  * Load the on-disk journal superblock and read the key fields into the
1037  * journal_t.
1038  */
1039
1040 static int load_superblock(journal_t *journal)
1041 {
1042         int err;
1043         journal_superblock_t *sb;
1044
1045         err = journal_get_superblock(journal);
1046         if (err)
1047                 return err;
1048
1049         sb = journal->j_superblock;
1050
1051         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1052         journal->j_tail = be32_to_cpu(sb->s_start);
1053         journal->j_first = be32_to_cpu(sb->s_first);
1054         journal->j_last = be32_to_cpu(sb->s_maxlen);
1055         journal->j_errno = be32_to_cpu(sb->s_errno);
1056
1057         return 0;
1058 }
1059
1060
1061 /**
1062  * int jbd2_journal_load() - Read journal from disk.
1063  * @journal: Journal to act on.
1064  *
1065  * Given a journal_t structure which tells us which disk blocks contain
1066  * a journal, read the journal from disk to initialise the in-memory
1067  * structures.
1068  */
1069 int jbd2_journal_load(journal_t *journal)
1070 {
1071         int err;
1072         journal_superblock_t *sb;
1073
1074         err = load_superblock(journal);
1075         if (err)
1076                 return err;
1077
1078         sb = journal->j_superblock;
1079         /* If this is a V2 superblock, then we have to check the
1080          * features flags on it. */
1081
1082         if (journal->j_format_version >= 2) {
1083                 if ((sb->s_feature_ro_compat &
1084                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1085                     (sb->s_feature_incompat &
1086                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1087                         printk (KERN_WARNING
1088                                 "JBD: Unrecognised features on journal\n");
1089                         return -EINVAL;
1090                 }
1091         }
1092
1093         /*
1094          * Create a slab for this blocksize
1095          */
1096         err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1097         if (err)
1098                 return err;
1099
1100         /* Let the recovery code check whether it needs to recover any
1101          * data from the journal. */
1102         if (jbd2_journal_recover(journal))
1103                 goto recovery_error;
1104
1105         /* OK, we've finished with the dynamic journal bits:
1106          * reinitialise the dynamic contents of the superblock in memory
1107          * and reset them on disk. */
1108         if (journal_reset(journal))
1109                 goto recovery_error;
1110
1111         journal->j_flags &= ~JBD2_ABORT;
1112         journal->j_flags |= JBD2_LOADED;
1113         return 0;
1114
1115 recovery_error:
1116         printk (KERN_WARNING "JBD: recovery failed\n");
1117         return -EIO;
1118 }
1119
1120 /**
1121  * void jbd2_journal_destroy() - Release a journal_t structure.
1122  * @journal: Journal to act on.
1123  *
1124  * Release a journal_t structure once it is no longer in use by the
1125  * journaled object.
1126  */
1127 void jbd2_journal_destroy(journal_t *journal)
1128 {
1129         /* Wait for the commit thread to wake up and die. */
1130         journal_kill_thread(journal);
1131
1132         /* Force a final log commit */
1133         if (journal->j_running_transaction)
1134                 jbd2_journal_commit_transaction(journal);
1135
1136         /* Force any old transactions to disk */
1137
1138         /* Totally anal locking here... */
1139         spin_lock(&journal->j_list_lock);
1140         while (journal->j_checkpoint_transactions != NULL) {
1141                 spin_unlock(&journal->j_list_lock);
1142                 jbd2_log_do_checkpoint(journal);
1143                 spin_lock(&journal->j_list_lock);
1144         }
1145
1146         J_ASSERT(journal->j_running_transaction == NULL);
1147         J_ASSERT(journal->j_committing_transaction == NULL);
1148         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1149         spin_unlock(&journal->j_list_lock);
1150
1151         /* We can now mark the journal as empty. */
1152         journal->j_tail = 0;
1153         journal->j_tail_sequence = ++journal->j_transaction_sequence;
1154         if (journal->j_sb_buffer) {
1155                 jbd2_journal_update_superblock(journal, 1);
1156                 brelse(journal->j_sb_buffer);
1157         }
1158
1159         if (journal->j_inode)
1160                 iput(journal->j_inode);
1161         if (journal->j_revoke)
1162                 jbd2_journal_destroy_revoke(journal);
1163         kfree(journal->j_wbuf);
1164         kfree(journal);
1165 }
1166
1167
1168 /**
1169  *int jbd2_journal_check_used_features () - Check if features specified are used.
1170  * @journal: Journal to check.
1171  * @compat: bitmask of compatible features
1172  * @ro: bitmask of features that force read-only mount
1173  * @incompat: bitmask of incompatible features
1174  *
1175  * Check whether the journal uses all of a given set of
1176  * features.  Return true (non-zero) if it does.
1177  **/
1178
1179 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1180                                  unsigned long ro, unsigned long incompat)
1181 {
1182         journal_superblock_t *sb;
1183
1184         if (!compat && !ro && !incompat)
1185                 return 1;
1186         if (journal->j_format_version == 1)
1187                 return 0;
1188
1189         sb = journal->j_superblock;
1190
1191         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1192             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1193             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1194                 return 1;
1195
1196         return 0;
1197 }
1198
1199 /**
1200  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1201  * @journal: Journal to check.
1202  * @compat: bitmask of compatible features
1203  * @ro: bitmask of features that force read-only mount
1204  * @incompat: bitmask of incompatible features
1205  *
1206  * Check whether the journaling code supports the use of
1207  * all of a given set of features on this journal.  Return true
1208  * (non-zero) if it can. */
1209
1210 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1211                                       unsigned long ro, unsigned long incompat)
1212 {
1213         journal_superblock_t *sb;
1214
1215         if (!compat && !ro && !incompat)
1216                 return 1;
1217
1218         sb = journal->j_superblock;
1219
1220         /* We can support any known requested features iff the
1221          * superblock is in version 2.  Otherwise we fail to support any
1222          * extended sb features. */
1223
1224         if (journal->j_format_version != 2)
1225                 return 0;
1226
1227         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1228             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1229             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1230                 return 1;
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1237  * @journal: Journal to act on.
1238  * @compat: bitmask of compatible features
1239  * @ro: bitmask of features that force read-only mount
1240  * @incompat: bitmask of incompatible features
1241  *
1242  * Mark a given journal feature as present on the
1243  * superblock.  Returns true if the requested features could be set.
1244  *
1245  */
1246
1247 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1248                           unsigned long ro, unsigned long incompat)
1249 {
1250         journal_superblock_t *sb;
1251
1252         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1253                 return 1;
1254
1255         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1256                 return 0;
1257
1258         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1259                   compat, ro, incompat);
1260
1261         sb = journal->j_superblock;
1262
1263         sb->s_feature_compat    |= cpu_to_be32(compat);
1264         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1265         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1266
1267         return 1;
1268 }
1269
1270
1271 /**
1272  * int jbd2_journal_update_format () - Update on-disk journal structure.
1273  * @journal: Journal to act on.
1274  *
1275  * Given an initialised but unloaded journal struct, poke about in the
1276  * on-disk structure to update it to the most recent supported version.
1277  */
1278 int jbd2_journal_update_format (journal_t *journal)
1279 {
1280         journal_superblock_t *sb;
1281         int err;
1282
1283         err = journal_get_superblock(journal);
1284         if (err)
1285                 return err;
1286
1287         sb = journal->j_superblock;
1288
1289         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1290         case JBD2_SUPERBLOCK_V2:
1291                 return 0;
1292         case JBD2_SUPERBLOCK_V1:
1293                 return journal_convert_superblock_v1(journal, sb);
1294         default:
1295                 break;
1296         }
1297         return -EINVAL;
1298 }
1299
1300 static int journal_convert_superblock_v1(journal_t *journal,
1301                                          journal_superblock_t *sb)
1302 {
1303         int offset, blocksize;
1304         struct buffer_head *bh;
1305
1306         printk(KERN_WARNING
1307                 "JBD: Converting superblock from version 1 to 2.\n");
1308
1309         /* Pre-initialise new fields to zero */
1310         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1311         blocksize = be32_to_cpu(sb->s_blocksize);
1312         memset(&sb->s_feature_compat, 0, blocksize-offset);
1313
1314         sb->s_nr_users = cpu_to_be32(1);
1315         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1316         journal->j_format_version = 2;
1317
1318         bh = journal->j_sb_buffer;
1319         BUFFER_TRACE(bh, "marking dirty");
1320         mark_buffer_dirty(bh);
1321         sync_dirty_buffer(bh);
1322         return 0;
1323 }
1324
1325
1326 /**
1327  * int jbd2_journal_flush () - Flush journal
1328  * @journal: Journal to act on.
1329  *
1330  * Flush all data for a given journal to disk and empty the journal.
1331  * Filesystems can use this when remounting readonly to ensure that
1332  * recovery does not need to happen on remount.
1333  */
1334
1335 int jbd2_journal_flush(journal_t *journal)
1336 {
1337         int err = 0;
1338         transaction_t *transaction = NULL;
1339         unsigned long old_tail;
1340
1341         spin_lock(&journal->j_state_lock);
1342
1343         /* Force everything buffered to the log... */
1344         if (journal->j_running_transaction) {
1345                 transaction = journal->j_running_transaction;
1346                 __jbd2_log_start_commit(journal, transaction->t_tid);
1347         } else if (journal->j_committing_transaction)
1348                 transaction = journal->j_committing_transaction;
1349
1350         /* Wait for the log commit to complete... */
1351         if (transaction) {
1352                 tid_t tid = transaction->t_tid;
1353
1354                 spin_unlock(&journal->j_state_lock);
1355                 jbd2_log_wait_commit(journal, tid);
1356         } else {
1357                 spin_unlock(&journal->j_state_lock);
1358         }
1359
1360         /* ...and flush everything in the log out to disk. */
1361         spin_lock(&journal->j_list_lock);
1362         while (!err && journal->j_checkpoint_transactions != NULL) {
1363                 spin_unlock(&journal->j_list_lock);
1364                 err = jbd2_log_do_checkpoint(journal);
1365                 spin_lock(&journal->j_list_lock);
1366         }
1367         spin_unlock(&journal->j_list_lock);
1368         jbd2_cleanup_journal_tail(journal);
1369
1370         /* Finally, mark the journal as really needing no recovery.
1371          * This sets s_start==0 in the underlying superblock, which is
1372          * the magic code for a fully-recovered superblock.  Any future
1373          * commits of data to the journal will restore the current
1374          * s_start value. */
1375         spin_lock(&journal->j_state_lock);
1376         old_tail = journal->j_tail;
1377         journal->j_tail = 0;
1378         spin_unlock(&journal->j_state_lock);
1379         jbd2_journal_update_superblock(journal, 1);
1380         spin_lock(&journal->j_state_lock);
1381         journal->j_tail = old_tail;
1382
1383         J_ASSERT(!journal->j_running_transaction);
1384         J_ASSERT(!journal->j_committing_transaction);
1385         J_ASSERT(!journal->j_checkpoint_transactions);
1386         J_ASSERT(journal->j_head == journal->j_tail);
1387         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1388         spin_unlock(&journal->j_state_lock);
1389         return err;
1390 }
1391
1392 /**
1393  * int jbd2_journal_wipe() - Wipe journal contents
1394  * @journal: Journal to act on.
1395  * @write: flag (see below)
1396  *
1397  * Wipe out all of the contents of a journal, safely.  This will produce
1398  * a warning if the journal contains any valid recovery information.
1399  * Must be called between journal_init_*() and jbd2_journal_load().
1400  *
1401  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1402  * we merely suppress recovery.
1403  */
1404
1405 int jbd2_journal_wipe(journal_t *journal, int write)
1406 {
1407         journal_superblock_t *sb;
1408         int err = 0;
1409
1410         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1411
1412         err = load_superblock(journal);
1413         if (err)
1414                 return err;
1415
1416         sb = journal->j_superblock;
1417
1418         if (!journal->j_tail)
1419                 goto no_recovery;
1420
1421         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1422                 write ? "Clearing" : "Ignoring");
1423
1424         err = jbd2_journal_skip_recovery(journal);
1425         if (write)
1426                 jbd2_journal_update_superblock(journal, 1);
1427
1428  no_recovery:
1429         return err;
1430 }
1431
1432 /*
1433  * journal_dev_name: format a character string to describe on what
1434  * device this journal is present.
1435  */
1436
1437 static const char *journal_dev_name(journal_t *journal, char *buffer)
1438 {
1439         struct block_device *bdev;
1440
1441         if (journal->j_inode)
1442                 bdev = journal->j_inode->i_sb->s_bdev;
1443         else
1444                 bdev = journal->j_dev;
1445
1446         return bdevname(bdev, buffer);
1447 }
1448
1449 /*
1450  * Journal abort has very specific semantics, which we describe
1451  * for journal abort.
1452  *
1453  * Two internal function, which provide abort to te jbd layer
1454  * itself are here.
1455  */
1456
1457 /*
1458  * Quick version for internal journal use (doesn't lock the journal).
1459  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1460  * and don't attempt to make any other journal updates.
1461  */
1462 void __jbd2_journal_abort_hard(journal_t *journal)
1463 {
1464         transaction_t *transaction;
1465         char b[BDEVNAME_SIZE];
1466
1467         if (journal->j_flags & JBD2_ABORT)
1468                 return;
1469
1470         printk(KERN_ERR "Aborting journal on device %s.\n",
1471                 journal_dev_name(journal, b));
1472
1473         spin_lock(&journal->j_state_lock);
1474         journal->j_flags |= JBD2_ABORT;
1475         transaction = journal->j_running_transaction;
1476         if (transaction)
1477                 __jbd2_log_start_commit(journal, transaction->t_tid);
1478         spin_unlock(&journal->j_state_lock);
1479 }
1480
1481 /* Soft abort: record the abort error status in the journal superblock,
1482  * but don't do any other IO. */
1483 static void __journal_abort_soft (journal_t *journal, int errno)
1484 {
1485         if (journal->j_flags & JBD2_ABORT)
1486                 return;
1487
1488         if (!journal->j_errno)
1489                 journal->j_errno = errno;
1490
1491         __jbd2_journal_abort_hard(journal);
1492
1493         if (errno)
1494                 jbd2_journal_update_superblock(journal, 1);
1495 }
1496
1497 /**
1498  * void jbd2_journal_abort () - Shutdown the journal immediately.
1499  * @journal: the journal to shutdown.
1500  * @errno:   an error number to record in the journal indicating
1501  *           the reason for the shutdown.
1502  *
1503  * Perform a complete, immediate shutdown of the ENTIRE
1504  * journal (not of a single transaction).  This operation cannot be
1505  * undone without closing and reopening the journal.
1506  *
1507  * The jbd2_journal_abort function is intended to support higher level error
1508  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1509  * mode.
1510  *
1511  * Journal abort has very specific semantics.  Any existing dirty,
1512  * unjournaled buffers in the main filesystem will still be written to
1513  * disk by bdflush, but the journaling mechanism will be suspended
1514  * immediately and no further transaction commits will be honoured.
1515  *
1516  * Any dirty, journaled buffers will be written back to disk without
1517  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1518  * filesystem, but we _do_ attempt to leave as much data as possible
1519  * behind for fsck to use for cleanup.
1520  *
1521  * Any attempt to get a new transaction handle on a journal which is in
1522  * ABORT state will just result in an -EROFS error return.  A
1523  * jbd2_journal_stop on an existing handle will return -EIO if we have
1524  * entered abort state during the update.
1525  *
1526  * Recursive transactions are not disturbed by journal abort until the
1527  * final jbd2_journal_stop, which will receive the -EIO error.
1528  *
1529  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1530  * which will be recorded (if possible) in the journal superblock.  This
1531  * allows a client to record failure conditions in the middle of a
1532  * transaction without having to complete the transaction to record the
1533  * failure to disk.  ext3_error, for example, now uses this
1534  * functionality.
1535  *
1536  * Errors which originate from within the journaling layer will NOT
1537  * supply an errno; a null errno implies that absolutely no further
1538  * writes are done to the journal (unless there are any already in
1539  * progress).
1540  *
1541  */
1542
1543 void jbd2_journal_abort(journal_t *journal, int errno)
1544 {
1545         __journal_abort_soft(journal, errno);
1546 }
1547
1548 /**
1549  * int jbd2_journal_errno () - returns the journal's error state.
1550  * @journal: journal to examine.
1551  *
1552  * This is the errno numbet set with jbd2_journal_abort(), the last
1553  * time the journal was mounted - if the journal was stopped
1554  * without calling abort this will be 0.
1555  *
1556  * If the journal has been aborted on this mount time -EROFS will
1557  * be returned.
1558  */
1559 int jbd2_journal_errno(journal_t *journal)
1560 {
1561         int err;
1562
1563         spin_lock(&journal->j_state_lock);
1564         if (journal->j_flags & JBD2_ABORT)
1565                 err = -EROFS;
1566         else
1567                 err = journal->j_errno;
1568         spin_unlock(&journal->j_state_lock);
1569         return err;
1570 }
1571
1572 /**
1573  * int jbd2_journal_clear_err () - clears the journal's error state
1574  * @journal: journal to act on.
1575  *
1576  * An error must be cleared or Acked to take a FS out of readonly
1577  * mode.
1578  */
1579 int jbd2_journal_clear_err(journal_t *journal)
1580 {
1581         int err = 0;
1582
1583         spin_lock(&journal->j_state_lock);
1584         if (journal->j_flags & JBD2_ABORT)
1585                 err = -EROFS;
1586         else
1587                 journal->j_errno = 0;
1588         spin_unlock(&journal->j_state_lock);
1589         return err;
1590 }
1591
1592 /**
1593  * void jbd2_journal_ack_err() - Ack journal err.
1594  * @journal: journal to act on.
1595  *
1596  * An error must be cleared or Acked to take a FS out of readonly
1597  * mode.
1598  */
1599 void jbd2_journal_ack_err(journal_t *journal)
1600 {
1601         spin_lock(&journal->j_state_lock);
1602         if (journal->j_errno)
1603                 journal->j_flags |= JBD2_ACK_ERR;
1604         spin_unlock(&journal->j_state_lock);
1605 }
1606
1607 int jbd2_journal_blocks_per_page(struct inode *inode)
1608 {
1609         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1610 }
1611
1612 /*
1613  * helper functions to deal with 32 or 64bit block numbers.
1614  */
1615 size_t journal_tag_bytes(journal_t *journal)
1616 {
1617         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1618                 return JBD_TAG_SIZE64;
1619         else
1620                 return JBD_TAG_SIZE32;
1621 }
1622
1623 /*
1624  * Simple support for retrying memory allocations.  Introduced to help to
1625  * debug different VM deadlock avoidance strategies.
1626  */
1627 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1628 {
1629         return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1630 }
1631
1632 /*
1633  * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1634  * and allocate frozen and commit buffers from these slabs.
1635  *
1636  * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1637  * cause bh to cross page boundary.
1638  */
1639
1640 #define JBD_MAX_SLABS 5
1641 #define JBD_SLAB_INDEX(size)  (size >> 11)
1642
1643 static struct kmem_cache *jbd_slab[JBD_MAX_SLABS];
1644 static const char *jbd_slab_names[JBD_MAX_SLABS] = {
1645         "jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k"
1646 };
1647
1648 static void jbd2_journal_destroy_jbd_slabs(void)
1649 {
1650         int i;
1651
1652         for (i = 0; i < JBD_MAX_SLABS; i++) {
1653                 if (jbd_slab[i])
1654                         kmem_cache_destroy(jbd_slab[i]);
1655                 jbd_slab[i] = NULL;
1656         }
1657 }
1658
1659 static int jbd2_journal_create_jbd_slab(size_t slab_size)
1660 {
1661         int i = JBD_SLAB_INDEX(slab_size);
1662
1663         BUG_ON(i >= JBD_MAX_SLABS);
1664
1665         /*
1666          * Check if we already have a slab created for this size
1667          */
1668         if (jbd_slab[i])
1669                 return 0;
1670
1671         /*
1672          * Create a slab and force alignment to be same as slabsize -
1673          * this will make sure that allocations won't cross the page
1674          * boundary.
1675          */
1676         jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
1677                                 slab_size, slab_size, 0, NULL, NULL);
1678         if (!jbd_slab[i]) {
1679                 printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
1680                 return -ENOMEM;
1681         }
1682         return 0;
1683 }
1684
1685 void * jbd2_slab_alloc(size_t size, gfp_t flags)
1686 {
1687         int idx;
1688
1689         idx = JBD_SLAB_INDEX(size);
1690         BUG_ON(jbd_slab[idx] == NULL);
1691         return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
1692 }
1693
1694 void jbd2_slab_free(void *ptr,  size_t size)
1695 {
1696         int idx;
1697
1698         idx = JBD_SLAB_INDEX(size);
1699         BUG_ON(jbd_slab[idx] == NULL);
1700         kmem_cache_free(jbd_slab[idx], ptr);
1701 }
1702
1703 /*
1704  * Journal_head storage management
1705  */
1706 static struct kmem_cache *jbd2_journal_head_cache;
1707 #ifdef CONFIG_JBD_DEBUG
1708 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1709 #endif
1710
1711 static int journal_init_jbd2_journal_head_cache(void)
1712 {
1713         int retval;
1714
1715         J_ASSERT(jbd2_journal_head_cache == 0);
1716         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1717                                 sizeof(struct journal_head),
1718                                 0,              /* offset */
1719                                 0,              /* flags */
1720                                 NULL,           /* ctor */
1721                                 NULL);          /* dtor */
1722         retval = 0;
1723         if (jbd2_journal_head_cache == 0) {
1724                 retval = -ENOMEM;
1725                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1726         }
1727         return retval;
1728 }
1729
1730 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1731 {
1732         J_ASSERT(jbd2_journal_head_cache != NULL);
1733         kmem_cache_destroy(jbd2_journal_head_cache);
1734         jbd2_journal_head_cache = NULL;
1735 }
1736
1737 /*
1738  * journal_head splicing and dicing
1739  */
1740 static struct journal_head *journal_alloc_journal_head(void)
1741 {
1742         struct journal_head *ret;
1743         static unsigned long last_warning;
1744
1745 #ifdef CONFIG_JBD_DEBUG
1746         atomic_inc(&nr_journal_heads);
1747 #endif
1748         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1749         if (ret == 0) {
1750                 jbd_debug(1, "out of memory for journal_head\n");
1751                 if (time_after(jiffies, last_warning + 5*HZ)) {
1752                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1753                                __FUNCTION__);
1754                         last_warning = jiffies;
1755                 }
1756                 while (ret == 0) {
1757                         yield();
1758                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1759                 }
1760         }
1761         return ret;
1762 }
1763
1764 static void journal_free_journal_head(struct journal_head *jh)
1765 {
1766 #ifdef CONFIG_JBD_DEBUG
1767         atomic_dec(&nr_journal_heads);
1768         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1769 #endif
1770         kmem_cache_free(jbd2_journal_head_cache, jh);
1771 }
1772
1773 /*
1774  * A journal_head is attached to a buffer_head whenever JBD has an
1775  * interest in the buffer.
1776  *
1777  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1778  * is set.  This bit is tested in core kernel code where we need to take
1779  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1780  * there.
1781  *
1782  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1783  *
1784  * When a buffer has its BH_JBD bit set it is immune from being released by
1785  * core kernel code, mainly via ->b_count.
1786  *
1787  * A journal_head may be detached from its buffer_head when the journal_head's
1788  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1789  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1790  * journal_head can be dropped if needed.
1791  *
1792  * Various places in the kernel want to attach a journal_head to a buffer_head
1793  * _before_ attaching the journal_head to a transaction.  To protect the
1794  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1795  * journal_head's b_jcount refcount by one.  The caller must call
1796  * jbd2_journal_put_journal_head() to undo this.
1797  *
1798  * So the typical usage would be:
1799  *
1800  *      (Attach a journal_head if needed.  Increments b_jcount)
1801  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1802  *      ...
1803  *      jh->b_transaction = xxx;
1804  *      jbd2_journal_put_journal_head(jh);
1805  *
1806  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1807  * because it has a non-zero b_transaction.
1808  */
1809
1810 /*
1811  * Give a buffer_head a journal_head.
1812  *
1813  * Doesn't need the journal lock.
1814  * May sleep.
1815  */
1816 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1817 {
1818         struct journal_head *jh;
1819         struct journal_head *new_jh = NULL;
1820
1821 repeat:
1822         if (!buffer_jbd(bh)) {
1823                 new_jh = journal_alloc_journal_head();
1824                 memset(new_jh, 0, sizeof(*new_jh));
1825         }
1826
1827         jbd_lock_bh_journal_head(bh);
1828         if (buffer_jbd(bh)) {
1829                 jh = bh2jh(bh);
1830         } else {
1831                 J_ASSERT_BH(bh,
1832                         (atomic_read(&bh->b_count) > 0) ||
1833                         (bh->b_page && bh->b_page->mapping));
1834
1835                 if (!new_jh) {
1836                         jbd_unlock_bh_journal_head(bh);
1837                         goto repeat;
1838                 }
1839
1840                 jh = new_jh;
1841                 new_jh = NULL;          /* We consumed it */
1842                 set_buffer_jbd(bh);
1843                 bh->b_private = jh;
1844                 jh->b_bh = bh;
1845                 get_bh(bh);
1846                 BUFFER_TRACE(bh, "added journal_head");
1847         }
1848         jh->b_jcount++;
1849         jbd_unlock_bh_journal_head(bh);
1850         if (new_jh)
1851                 journal_free_journal_head(new_jh);
1852         return bh->b_private;
1853 }
1854
1855 /*
1856  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1857  * having a journal_head, return NULL
1858  */
1859 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1860 {
1861         struct journal_head *jh = NULL;
1862
1863         jbd_lock_bh_journal_head(bh);
1864         if (buffer_jbd(bh)) {
1865                 jh = bh2jh(bh);
1866                 jh->b_jcount++;
1867         }
1868         jbd_unlock_bh_journal_head(bh);
1869         return jh;
1870 }
1871
1872 static void __journal_remove_journal_head(struct buffer_head *bh)
1873 {
1874         struct journal_head *jh = bh2jh(bh);
1875
1876         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1877
1878         get_bh(bh);
1879         if (jh->b_jcount == 0) {
1880                 if (jh->b_transaction == NULL &&
1881                                 jh->b_next_transaction == NULL &&
1882                                 jh->b_cp_transaction == NULL) {
1883                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1884                         J_ASSERT_BH(bh, buffer_jbd(bh));
1885                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1886                         BUFFER_TRACE(bh, "remove journal_head");
1887                         if (jh->b_frozen_data) {
1888                                 printk(KERN_WARNING "%s: freeing "
1889                                                 "b_frozen_data\n",
1890                                                 __FUNCTION__);
1891                                 jbd2_slab_free(jh->b_frozen_data, bh->b_size);
1892                         }
1893                         if (jh->b_committed_data) {
1894                                 printk(KERN_WARNING "%s: freeing "
1895                                                 "b_committed_data\n",
1896                                                 __FUNCTION__);
1897                                 jbd2_slab_free(jh->b_committed_data, bh->b_size);
1898                         }
1899                         bh->b_private = NULL;
1900                         jh->b_bh = NULL;        /* debug, really */
1901                         clear_buffer_jbd(bh);
1902                         __brelse(bh);
1903                         journal_free_journal_head(jh);
1904                 } else {
1905                         BUFFER_TRACE(bh, "journal_head was locked");
1906                 }
1907         }
1908 }
1909
1910 /*
1911  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1912  * and has a zero b_jcount then remove and release its journal_head.   If we did
1913  * see that the buffer is not used by any transaction we also "logically"
1914  * decrement ->b_count.
1915  *
1916  * We in fact take an additional increment on ->b_count as a convenience,
1917  * because the caller usually wants to do additional things with the bh
1918  * after calling here.
1919  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1920  * time.  Once the caller has run __brelse(), the buffer is eligible for
1921  * reaping by try_to_free_buffers().
1922  */
1923 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1924 {
1925         jbd_lock_bh_journal_head(bh);
1926         __journal_remove_journal_head(bh);
1927         jbd_unlock_bh_journal_head(bh);
1928 }
1929
1930 /*
1931  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1932  * release the journal_head from the buffer_head.
1933  */
1934 void jbd2_journal_put_journal_head(struct journal_head *jh)
1935 {
1936         struct buffer_head *bh = jh2bh(jh);
1937
1938         jbd_lock_bh_journal_head(bh);
1939         J_ASSERT_JH(jh, jh->b_jcount > 0);
1940         --jh->b_jcount;
1941         if (!jh->b_jcount && !jh->b_transaction) {
1942                 __journal_remove_journal_head(bh);
1943                 __brelse(bh);
1944         }
1945         jbd_unlock_bh_journal_head(bh);
1946 }
1947
1948 /*
1949  * /proc tunables
1950  */
1951 #if defined(CONFIG_JBD_DEBUG)
1952 int jbd2_journal_enable_debug;
1953 EXPORT_SYMBOL(jbd2_journal_enable_debug);
1954 #endif
1955
1956 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1957
1958 static struct proc_dir_entry *proc_jbd_debug;
1959
1960 static int read_jbd_debug(char *page, char **start, off_t off,
1961                           int count, int *eof, void *data)
1962 {
1963         int ret;
1964
1965         ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug);
1966         *eof = 1;
1967         return ret;
1968 }
1969
1970 static int write_jbd_debug(struct file *file, const char __user *buffer,
1971                            unsigned long count, void *data)
1972 {
1973         char buf[32];
1974
1975         if (count > ARRAY_SIZE(buf) - 1)
1976                 count = ARRAY_SIZE(buf) - 1;
1977         if (copy_from_user(buf, buffer, count))
1978                 return -EFAULT;
1979         buf[ARRAY_SIZE(buf) - 1] = '\0';
1980         jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10);
1981         return count;
1982 }
1983
1984 #define JBD_PROC_NAME "sys/fs/jbd2-debug"
1985
1986 static void __init create_jbd_proc_entry(void)
1987 {
1988         proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1989         if (proc_jbd_debug) {
1990                 /* Why is this so hard? */
1991                 proc_jbd_debug->read_proc = read_jbd_debug;
1992                 proc_jbd_debug->write_proc = write_jbd_debug;
1993         }
1994 }
1995
1996 static void __exit jbd2_remove_jbd_proc_entry(void)
1997 {
1998         if (proc_jbd_debug)
1999                 remove_proc_entry(JBD_PROC_NAME, NULL);
2000 }
2001
2002 #else
2003
2004 #define create_jbd_proc_entry() do {} while (0)
2005 #define jbd2_remove_jbd_proc_entry() do {} while (0)
2006
2007 #endif
2008
2009 struct kmem_cache *jbd2_handle_cache;
2010
2011 static int __init journal_init_handle_cache(void)
2012 {
2013         jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2014                                 sizeof(handle_t),
2015                                 0,              /* offset */
2016                                 0,              /* flags */
2017                                 NULL,           /* ctor */
2018                                 NULL);          /* dtor */
2019         if (jbd2_handle_cache == NULL) {
2020                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2021                 return -ENOMEM;
2022         }
2023         return 0;
2024 }
2025
2026 static void jbd2_journal_destroy_handle_cache(void)
2027 {
2028         if (jbd2_handle_cache)
2029                 kmem_cache_destroy(jbd2_handle_cache);
2030 }
2031
2032 /*
2033  * Module startup and shutdown
2034  */
2035
2036 static int __init journal_init_caches(void)
2037 {
2038         int ret;
2039
2040         ret = jbd2_journal_init_revoke_caches();
2041         if (ret == 0)
2042                 ret = journal_init_jbd2_journal_head_cache();
2043         if (ret == 0)
2044                 ret = journal_init_handle_cache();
2045         return ret;
2046 }
2047
2048 static void jbd2_journal_destroy_caches(void)
2049 {
2050         jbd2_journal_destroy_revoke_caches();
2051         jbd2_journal_destroy_jbd2_journal_head_cache();
2052         jbd2_journal_destroy_handle_cache();
2053         jbd2_journal_destroy_jbd_slabs();
2054 }
2055
2056 static int __init journal_init(void)
2057 {
2058         int ret;
2059
2060         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2061
2062         ret = journal_init_caches();
2063         if (ret != 0)
2064                 jbd2_journal_destroy_caches();
2065         create_jbd_proc_entry();
2066         return ret;
2067 }
2068
2069 static void __exit journal_exit(void)
2070 {
2071 #ifdef CONFIG_JBD_DEBUG
2072         int n = atomic_read(&nr_journal_heads);
2073         if (n)
2074                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2075 #endif
2076         jbd2_remove_jbd_proc_entry();
2077         jbd2_journal_destroy_caches();
2078 }
2079
2080 MODULE_LICENSE("GPL");
2081 module_init(journal_init);
2082 module_exit(journal_exit);
2083