Merge branch 'acpi-hotplug'
[linux-drm-fsl-dcu.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    100     /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)                                                   \
24         ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
25         (t == CURSEG_WARM_DATA))
26
27 #define IS_NODESEG(t)                                                   \
28         ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
29         (t == CURSEG_WARM_NODE))
30
31 #define IS_CURSEG(sbi, seg)                                             \
32         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
33          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
34          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
35          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
36          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
37          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38
39 #define IS_CURSEC(sbi, secno)                                           \
40         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
41           sbi->segs_per_sec) || \
42          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
43           sbi->segs_per_sec) || \
44          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
45           sbi->segs_per_sec) || \
46          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
47           sbi->segs_per_sec) || \
48          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
49           sbi->segs_per_sec) || \
50          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
51           sbi->segs_per_sec))   \
52
53 #define START_BLOCK(sbi, segno)                                         \
54         (SM_I(sbi)->seg0_blkaddr +                                      \
55          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
56 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
57         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
58
59 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
60
61 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
62         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
64         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
65 #define GET_SEGNO(sbi, blk_addr)                                        \
66         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
67         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
68                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
69 #define GET_SECNO(sbi, segno)                                   \
70         ((segno) / sbi->segs_per_sec)
71 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
72         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
73
74 #define GET_SUM_BLOCK(sbi, segno)                               \
75         ((sbi->sm_info->ssa_blkaddr) + segno)
76
77 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
78 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
79
80 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
81         (segno % sit_i->sents_per_block)
82 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
83         (segno / SIT_ENTRY_PER_BLOCK)
84 #define START_SEGNO(sit_i, segno)               \
85         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr)                    \
87         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
90
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
92         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
94         (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
95 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
96         (min((int)max_hw_blocks, BIO_MAX_PAGES))
97
98 /* during checkpoint, bio_private is used to synchronize the last bio */
99 struct bio_private {
100         struct f2fs_sb_info *sbi;
101         bool is_sync;
102         void *wait;
103 };
104
105 /*
106  * indicate a block allocation direction: RIGHT and LEFT.
107  * RIGHT means allocating new sections towards the end of volume.
108  * LEFT means the opposite direction.
109  */
110 enum {
111         ALLOC_RIGHT = 0,
112         ALLOC_LEFT
113 };
114
115 /*
116  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
117  * LFS writes data sequentially with cleaning operations.
118  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
119  */
120 enum {
121         LFS = 0,
122         SSR
123 };
124
125 /*
126  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
127  * GC_CB is based on cost-benefit algorithm.
128  * GC_GREEDY is based on greedy algorithm.
129  */
130 enum {
131         GC_CB = 0,
132         GC_GREEDY
133 };
134
135 /*
136  * BG_GC means the background cleaning job.
137  * FG_GC means the on-demand cleaning job.
138  */
139 enum {
140         BG_GC = 0,
141         FG_GC
142 };
143
144 /* for a function parameter to select a victim segment */
145 struct victim_sel_policy {
146         int alloc_mode;                 /* LFS or SSR */
147         int gc_mode;                    /* GC_CB or GC_GREEDY */
148         unsigned long *dirty_segmap;    /* dirty segment bitmap */
149         unsigned int max_search;        /* maximum # of segments to search */
150         unsigned int offset;            /* last scanned bitmap offset */
151         unsigned int ofs_unit;          /* bitmap search unit */
152         unsigned int min_cost;          /* minimum cost */
153         unsigned int min_segno;         /* segment # having min. cost */
154 };
155
156 struct seg_entry {
157         unsigned short valid_blocks;    /* # of valid blocks */
158         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
159         /*
160          * # of valid blocks and the validity bitmap stored in the the last
161          * checkpoint pack. This information is used by the SSR mode.
162          */
163         unsigned short ckpt_valid_blocks;
164         unsigned char *ckpt_valid_map;
165         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
166         unsigned long long mtime;       /* modification time of the segment */
167 };
168
169 struct sec_entry {
170         unsigned int valid_blocks;      /* # of valid blocks in a section */
171 };
172
173 struct segment_allocation {
174         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
175 };
176
177 struct sit_info {
178         const struct segment_allocation *s_ops;
179
180         block_t sit_base_addr;          /* start block address of SIT area */
181         block_t sit_blocks;             /* # of blocks used by SIT area */
182         block_t written_valid_blocks;   /* # of valid blocks in main area */
183         char *sit_bitmap;               /* SIT bitmap pointer */
184         unsigned int bitmap_size;       /* SIT bitmap size */
185
186         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
187         unsigned int dirty_sentries;            /* # of dirty sentries */
188         unsigned int sents_per_block;           /* # of SIT entries per block */
189         struct mutex sentry_lock;               /* to protect SIT cache */
190         struct seg_entry *sentries;             /* SIT segment-level cache */
191         struct sec_entry *sec_entries;          /* SIT section-level cache */
192
193         /* for cost-benefit algorithm in cleaning procedure */
194         unsigned long long elapsed_time;        /* elapsed time after mount */
195         unsigned long long mounted_time;        /* mount time */
196         unsigned long long min_mtime;           /* min. modification time */
197         unsigned long long max_mtime;           /* max. modification time */
198 };
199
200 struct free_segmap_info {
201         unsigned int start_segno;       /* start segment number logically */
202         unsigned int free_segments;     /* # of free segments */
203         unsigned int free_sections;     /* # of free sections */
204         rwlock_t segmap_lock;           /* free segmap lock */
205         unsigned long *free_segmap;     /* free segment bitmap */
206         unsigned long *free_secmap;     /* free section bitmap */
207 };
208
209 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
210 enum dirty_type {
211         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
212         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
213         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
214         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
215         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
216         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
217         DIRTY,                  /* to count # of dirty segments */
218         PRE,                    /* to count # of entirely obsolete segments */
219         NR_DIRTY_TYPE
220 };
221
222 struct dirty_seglist_info {
223         const struct victim_selection *v_ops;   /* victim selction operation */
224         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
225         struct mutex seglist_lock;              /* lock for segment bitmaps */
226         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
227         unsigned long *victim_secmap;           /* background GC victims */
228 };
229
230 /* victim selection function for cleaning and SSR */
231 struct victim_selection {
232         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
233                                                         int, int, char);
234 };
235
236 /* for active log information */
237 struct curseg_info {
238         struct mutex curseg_mutex;              /* lock for consistency */
239         struct f2fs_summary_block *sum_blk;     /* cached summary block */
240         unsigned char alloc_type;               /* current allocation type */
241         unsigned int segno;                     /* current segment number */
242         unsigned short next_blkoff;             /* next block offset to write */
243         unsigned int zone;                      /* current zone number */
244         unsigned int next_segno;                /* preallocated segment */
245 };
246
247 /*
248  * inline functions
249  */
250 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
251 {
252         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
253 }
254
255 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
256                                                 unsigned int segno)
257 {
258         struct sit_info *sit_i = SIT_I(sbi);
259         return &sit_i->sentries[segno];
260 }
261
262 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
263                                                 unsigned int segno)
264 {
265         struct sit_info *sit_i = SIT_I(sbi);
266         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
267 }
268
269 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
270                                 unsigned int segno, int section)
271 {
272         /*
273          * In order to get # of valid blocks in a section instantly from many
274          * segments, f2fs manages two counting structures separately.
275          */
276         if (section > 1)
277                 return get_sec_entry(sbi, segno)->valid_blocks;
278         else
279                 return get_seg_entry(sbi, segno)->valid_blocks;
280 }
281
282 static inline void seg_info_from_raw_sit(struct seg_entry *se,
283                                         struct f2fs_sit_entry *rs)
284 {
285         se->valid_blocks = GET_SIT_VBLOCKS(rs);
286         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
287         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
289         se->type = GET_SIT_TYPE(rs);
290         se->mtime = le64_to_cpu(rs->mtime);
291 }
292
293 static inline void seg_info_to_raw_sit(struct seg_entry *se,
294                                         struct f2fs_sit_entry *rs)
295 {
296         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
297                                         se->valid_blocks;
298         rs->vblocks = cpu_to_le16(raw_vblocks);
299         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
300         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301         se->ckpt_valid_blocks = se->valid_blocks;
302         rs->mtime = cpu_to_le64(se->mtime);
303 }
304
305 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
306                 unsigned int max, unsigned int segno)
307 {
308         unsigned int ret;
309         read_lock(&free_i->segmap_lock);
310         ret = find_next_bit(free_i->free_segmap, max, segno);
311         read_unlock(&free_i->segmap_lock);
312         return ret;
313 }
314
315 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
316 {
317         struct free_segmap_info *free_i = FREE_I(sbi);
318         unsigned int secno = segno / sbi->segs_per_sec;
319         unsigned int start_segno = secno * sbi->segs_per_sec;
320         unsigned int next;
321
322         write_lock(&free_i->segmap_lock);
323         clear_bit(segno, free_i->free_segmap);
324         free_i->free_segments++;
325
326         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
327         if (next >= start_segno + sbi->segs_per_sec) {
328                 clear_bit(secno, free_i->free_secmap);
329                 free_i->free_sections++;
330         }
331         write_unlock(&free_i->segmap_lock);
332 }
333
334 static inline void __set_inuse(struct f2fs_sb_info *sbi,
335                 unsigned int segno)
336 {
337         struct free_segmap_info *free_i = FREE_I(sbi);
338         unsigned int secno = segno / sbi->segs_per_sec;
339         set_bit(segno, free_i->free_segmap);
340         free_i->free_segments--;
341         if (!test_and_set_bit(secno, free_i->free_secmap))
342                 free_i->free_sections--;
343 }
344
345 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
346                 unsigned int segno)
347 {
348         struct free_segmap_info *free_i = FREE_I(sbi);
349         unsigned int secno = segno / sbi->segs_per_sec;
350         unsigned int start_segno = secno * sbi->segs_per_sec;
351         unsigned int next;
352
353         write_lock(&free_i->segmap_lock);
354         if (test_and_clear_bit(segno, free_i->free_segmap)) {
355                 free_i->free_segments++;
356
357                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
358                                                                 start_segno);
359                 if (next >= start_segno + sbi->segs_per_sec) {
360                         if (test_and_clear_bit(secno, free_i->free_secmap))
361                                 free_i->free_sections++;
362                 }
363         }
364         write_unlock(&free_i->segmap_lock);
365 }
366
367 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
368                 unsigned int segno)
369 {
370         struct free_segmap_info *free_i = FREE_I(sbi);
371         unsigned int secno = segno / sbi->segs_per_sec;
372         write_lock(&free_i->segmap_lock);
373         if (!test_and_set_bit(segno, free_i->free_segmap)) {
374                 free_i->free_segments--;
375                 if (!test_and_set_bit(secno, free_i->free_secmap))
376                         free_i->free_sections--;
377         }
378         write_unlock(&free_i->segmap_lock);
379 }
380
381 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
382                 void *dst_addr)
383 {
384         struct sit_info *sit_i = SIT_I(sbi);
385         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
386 }
387
388 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
389 {
390         struct sit_info *sit_i = SIT_I(sbi);
391         block_t vblocks;
392
393         mutex_lock(&sit_i->sentry_lock);
394         vblocks = sit_i->written_valid_blocks;
395         mutex_unlock(&sit_i->sentry_lock);
396
397         return vblocks;
398 }
399
400 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
401 {
402         struct free_segmap_info *free_i = FREE_I(sbi);
403         unsigned int free_segs;
404
405         read_lock(&free_i->segmap_lock);
406         free_segs = free_i->free_segments;
407         read_unlock(&free_i->segmap_lock);
408
409         return free_segs;
410 }
411
412 static inline int reserved_segments(struct f2fs_sb_info *sbi)
413 {
414         return SM_I(sbi)->reserved_segments;
415 }
416
417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
418 {
419         struct free_segmap_info *free_i = FREE_I(sbi);
420         unsigned int free_secs;
421
422         read_lock(&free_i->segmap_lock);
423         free_secs = free_i->free_sections;
424         read_unlock(&free_i->segmap_lock);
425
426         return free_secs;
427 }
428
429 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
430 {
431         return DIRTY_I(sbi)->nr_dirty[PRE];
432 }
433
434 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
435 {
436         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
437                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
438                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
439                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
440                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
441                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
442 }
443
444 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
445 {
446         return SM_I(sbi)->ovp_segments;
447 }
448
449 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
450 {
451         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
452 }
453
454 static inline int reserved_sections(struct f2fs_sb_info *sbi)
455 {
456         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
457 }
458
459 static inline bool need_SSR(struct f2fs_sb_info *sbi)
460 {
461         return ((prefree_segments(sbi) / sbi->segs_per_sec)
462                         + free_sections(sbi) < overprovision_sections(sbi));
463 }
464
465 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
466 {
467         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
468         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
469
470         if (sbi->por_doing)
471                 return false;
472
473         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
474                                                 reserved_sections(sbi)));
475 }
476
477 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
478 {
479         return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
480 }
481
482 static inline int utilization(struct f2fs_sb_info *sbi)
483 {
484         return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
485 }
486
487 /*
488  * Sometimes f2fs may be better to drop out-of-place update policy.
489  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
490  * data in the original place likewise other traditional file systems.
491  * But, currently set 100 in percentage, which means it is disabled.
492  * See below need_inplace_update().
493  */
494 #define MIN_IPU_UTIL            100
495 static inline bool need_inplace_update(struct inode *inode)
496 {
497         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
498         if (S_ISDIR(inode->i_mode))
499                 return false;
500         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
501                 return true;
502         return false;
503 }
504
505 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
506                 int type)
507 {
508         struct curseg_info *curseg = CURSEG_I(sbi, type);
509         return curseg->segno;
510 }
511
512 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
513                 int type)
514 {
515         struct curseg_info *curseg = CURSEG_I(sbi, type);
516         return curseg->alloc_type;
517 }
518
519 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
520 {
521         struct curseg_info *curseg = CURSEG_I(sbi, type);
522         return curseg->next_blkoff;
523 }
524
525 #ifdef CONFIG_F2FS_CHECK_FS
526 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
527 {
528         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
529         BUG_ON(segno > end_segno);
530 }
531
532 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
533 {
534         struct f2fs_sm_info *sm_info = SM_I(sbi);
535         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
536         block_t start_addr = sm_info->seg0_blkaddr;
537         block_t end_addr = start_addr + total_blks - 1;
538         BUG_ON(blk_addr < start_addr);
539         BUG_ON(blk_addr > end_addr);
540 }
541
542 /*
543  * Summary block is always treated as invalid block
544  */
545 static inline void check_block_count(struct f2fs_sb_info *sbi,
546                 int segno, struct f2fs_sit_entry *raw_sit)
547 {
548         struct f2fs_sm_info *sm_info = SM_I(sbi);
549         unsigned int end_segno = sm_info->segment_count - 1;
550         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
551         int valid_blocks = 0;
552         int cur_pos = 0, next_pos;
553
554         /* check segment usage */
555         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
556
557         /* check boundary of a given segment number */
558         BUG_ON(segno > end_segno);
559
560         /* check bitmap with valid block count */
561         do {
562                 if (is_valid) {
563                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
564                                         sbi->blocks_per_seg,
565                                         cur_pos);
566                         valid_blocks += next_pos - cur_pos;
567                 } else
568                         next_pos = find_next_bit_le(&raw_sit->valid_map,
569                                         sbi->blocks_per_seg,
570                                         cur_pos);
571                 cur_pos = next_pos;
572                 is_valid = !is_valid;
573         } while (cur_pos < sbi->blocks_per_seg);
574         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
575 }
576 #else
577 #define check_seg_range(sbi, segno)
578 #define verify_block_addr(sbi, blk_addr)
579 #define check_block_count(sbi, segno, raw_sit)
580 #endif
581
582 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
583                                                 unsigned int start)
584 {
585         struct sit_info *sit_i = SIT_I(sbi);
586         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
587         block_t blk_addr = sit_i->sit_base_addr + offset;
588
589         check_seg_range(sbi, start);
590
591         /* calculate sit block address */
592         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
593                 blk_addr += sit_i->sit_blocks;
594
595         return blk_addr;
596 }
597
598 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
599                                                 pgoff_t block_addr)
600 {
601         struct sit_info *sit_i = SIT_I(sbi);
602         block_addr -= sit_i->sit_base_addr;
603         if (block_addr < sit_i->sit_blocks)
604                 block_addr += sit_i->sit_blocks;
605         else
606                 block_addr -= sit_i->sit_blocks;
607
608         return block_addr + sit_i->sit_base_addr;
609 }
610
611 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
612 {
613         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
614
615         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
616                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
617         else
618                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
619 }
620
621 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
622 {
623         struct sit_info *sit_i = SIT_I(sbi);
624         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
625                                                 sit_i->mounted_time;
626 }
627
628 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
629                         unsigned int ofs_in_node, unsigned char version)
630 {
631         sum->nid = cpu_to_le32(nid);
632         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
633         sum->version = version;
634 }
635
636 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
637 {
638         return __start_cp_addr(sbi) +
639                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
640 }
641
642 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
643 {
644         return __start_cp_addr(sbi) +
645                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
646                                 - (base + 1) + type;
647 }
648
649 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
650 {
651         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
652                 return true;
653         return false;
654 }
655
656 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
657 {
658         struct block_device *bdev = sbi->sb->s_bdev;
659         struct request_queue *q = bdev_get_queue(bdev);
660         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
661 }