Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-drm-fsl-dcu.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
40 {
41         /* check the # of cached NAT entries and prefree segments */
42         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43                                 excess_prefree_segs(sbi))
44                 f2fs_sync_fs(sbi->sb, true);
45 }
46
47 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48                 enum dirty_type dirty_type)
49 {
50         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
51
52         /* need not be added */
53         if (IS_CURSEG(sbi, segno))
54                 return;
55
56         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57                 dirty_i->nr_dirty[dirty_type]++;
58
59         if (dirty_type == DIRTY) {
60                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
61                 enum dirty_type t = sentry->type;
62
63                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
64                         dirty_i->nr_dirty[t]++;
65         }
66 }
67
68 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
69                 enum dirty_type dirty_type)
70 {
71         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
72
73         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
74                 dirty_i->nr_dirty[dirty_type]--;
75
76         if (dirty_type == DIRTY) {
77                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
78                 enum dirty_type t = sentry->type;
79
80                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
81                         dirty_i->nr_dirty[t]--;
82
83                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
84                         clear_bit(GET_SECNO(sbi, segno),
85                                                 dirty_i->victim_secmap);
86         }
87 }
88
89 /*
90  * Should not occur error such as -ENOMEM.
91  * Adding dirty entry into seglist is not critical operation.
92  * If a given segment is one of current working segments, it won't be added.
93  */
94 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
95 {
96         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
97         unsigned short valid_blocks;
98
99         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
100                 return;
101
102         mutex_lock(&dirty_i->seglist_lock);
103
104         valid_blocks = get_valid_blocks(sbi, segno, 0);
105
106         if (valid_blocks == 0) {
107                 __locate_dirty_segment(sbi, segno, PRE);
108                 __remove_dirty_segment(sbi, segno, DIRTY);
109         } else if (valid_blocks < sbi->blocks_per_seg) {
110                 __locate_dirty_segment(sbi, segno, DIRTY);
111         } else {
112                 /* Recovery routine with SSR needs this */
113                 __remove_dirty_segment(sbi, segno, DIRTY);
114         }
115
116         mutex_unlock(&dirty_i->seglist_lock);
117 }
118
119 /*
120  * Should call clear_prefree_segments after checkpoint is done.
121  */
122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
123 {
124         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
125         unsigned int segno = -1;
126         unsigned int total_segs = TOTAL_SEGS(sbi);
127
128         mutex_lock(&dirty_i->seglist_lock);
129         while (1) {
130                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
131                                 segno + 1);
132                 if (segno >= total_segs)
133                         break;
134                 __set_test_and_free(sbi, segno);
135         }
136         mutex_unlock(&dirty_i->seglist_lock);
137 }
138
139 void clear_prefree_segments(struct f2fs_sb_info *sbi)
140 {
141         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
143         unsigned int total_segs = TOTAL_SEGS(sbi);
144         unsigned int start = 0, end = -1;
145
146         mutex_lock(&dirty_i->seglist_lock);
147
148         while (1) {
149                 int i;
150                 start = find_next_bit(prefree_map, total_segs, end + 1);
151                 if (start >= total_segs)
152                         break;
153                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
154
155                 for (i = start; i < end; i++)
156                         clear_bit(i, prefree_map);
157
158                 dirty_i->nr_dirty[PRE] -= end - start;
159
160                 if (!test_opt(sbi, DISCARD))
161                         continue;
162
163                 blkdev_issue_discard(sbi->sb->s_bdev,
164                                 START_BLOCK(sbi, start) <<
165                                 sbi->log_sectors_per_block,
166                                 (1 << (sbi->log_sectors_per_block +
167                                 sbi->log_blocks_per_seg)) * (end - start),
168                                 GFP_NOFS, 0);
169         }
170         mutex_unlock(&dirty_i->seglist_lock);
171 }
172
173 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
174 {
175         struct sit_info *sit_i = SIT_I(sbi);
176         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177                 sit_i->dirty_sentries++;
178 }
179
180 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181                                         unsigned int segno, int modified)
182 {
183         struct seg_entry *se = get_seg_entry(sbi, segno);
184         se->type = type;
185         if (modified)
186                 __mark_sit_entry_dirty(sbi, segno);
187 }
188
189 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
190 {
191         struct seg_entry *se;
192         unsigned int segno, offset;
193         long int new_vblocks;
194
195         segno = GET_SEGNO(sbi, blkaddr);
196
197         se = get_seg_entry(sbi, segno);
198         new_vblocks = se->valid_blocks + del;
199         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
200
201         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
202                                 (new_vblocks > sbi->blocks_per_seg)));
203
204         se->valid_blocks = new_vblocks;
205         se->mtime = get_mtime(sbi);
206         SIT_I(sbi)->max_mtime = se->mtime;
207
208         /* Update valid block bitmap */
209         if (del > 0) {
210                 if (f2fs_set_bit(offset, se->cur_valid_map))
211                         BUG();
212         } else {
213                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
214                         BUG();
215         }
216         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217                 se->ckpt_valid_blocks += del;
218
219         __mark_sit_entry_dirty(sbi, segno);
220
221         /* update total number of valid blocks to be written in ckpt area */
222         SIT_I(sbi)->written_valid_blocks += del;
223
224         if (sbi->segs_per_sec > 1)
225                 get_sec_entry(sbi, segno)->valid_blocks += del;
226 }
227
228 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229                         block_t old_blkaddr, block_t new_blkaddr)
230 {
231         update_sit_entry(sbi, new_blkaddr, 1);
232         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233                 update_sit_entry(sbi, old_blkaddr, -1);
234 }
235
236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
237 {
238         unsigned int segno = GET_SEGNO(sbi, addr);
239         struct sit_info *sit_i = SIT_I(sbi);
240
241         f2fs_bug_on(addr == NULL_ADDR);
242         if (addr == NEW_ADDR)
243                 return;
244
245         /* add it into sit main buffer */
246         mutex_lock(&sit_i->sentry_lock);
247
248         update_sit_entry(sbi, addr, -1);
249
250         /* add it into dirty seglist */
251         locate_dirty_segment(sbi, segno);
252
253         mutex_unlock(&sit_i->sentry_lock);
254 }
255
256 /*
257  * This function should be resided under the curseg_mutex lock
258  */
259 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260                                         struct f2fs_summary *sum)
261 {
262         struct curseg_info *curseg = CURSEG_I(sbi, type);
263         void *addr = curseg->sum_blk;
264         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
265         memcpy(addr, sum, sizeof(struct f2fs_summary));
266 }
267
268 /*
269  * Calculate the number of current summary pages for writing
270  */
271 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
272 {
273         int valid_sum_count = 0;
274         int i, sum_in_page;
275
276         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277                 if (sbi->ckpt->alloc_type[i] == SSR)
278                         valid_sum_count += sbi->blocks_per_seg;
279                 else
280                         valid_sum_count += curseg_blkoff(sbi, i);
281         }
282
283         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
284                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
285         if (valid_sum_count <= sum_in_page)
286                 return 1;
287         else if ((valid_sum_count - sum_in_page) <=
288                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
289                 return 2;
290         return 3;
291 }
292
293 /*
294  * Caller should put this summary page
295  */
296 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
297 {
298         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
299 }
300
301 static void write_sum_page(struct f2fs_sb_info *sbi,
302                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
303 {
304         struct page *page = grab_meta_page(sbi, blk_addr);
305         void *kaddr = page_address(page);
306         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
307         set_page_dirty(page);
308         f2fs_put_page(page, 1);
309 }
310
311 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
312 {
313         struct curseg_info *curseg = CURSEG_I(sbi, type);
314         unsigned int segno = curseg->segno + 1;
315         struct free_segmap_info *free_i = FREE_I(sbi);
316
317         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
318                 return !test_bit(segno, free_i->free_segmap);
319         return 0;
320 }
321
322 /*
323  * Find a new segment from the free segments bitmap to right order
324  * This function should be returned with success, otherwise BUG
325  */
326 static void get_new_segment(struct f2fs_sb_info *sbi,
327                         unsigned int *newseg, bool new_sec, int dir)
328 {
329         struct free_segmap_info *free_i = FREE_I(sbi);
330         unsigned int segno, secno, zoneno;
331         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
332         unsigned int hint = *newseg / sbi->segs_per_sec;
333         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
334         unsigned int left_start = hint;
335         bool init = true;
336         int go_left = 0;
337         int i;
338
339         write_lock(&free_i->segmap_lock);
340
341         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
342                 segno = find_next_zero_bit(free_i->free_segmap,
343                                         TOTAL_SEGS(sbi), *newseg + 1);
344                 if (segno - *newseg < sbi->segs_per_sec -
345                                         (*newseg % sbi->segs_per_sec))
346                         goto got_it;
347         }
348 find_other_zone:
349         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
350         if (secno >= TOTAL_SECS(sbi)) {
351                 if (dir == ALLOC_RIGHT) {
352                         secno = find_next_zero_bit(free_i->free_secmap,
353                                                         TOTAL_SECS(sbi), 0);
354                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
355                 } else {
356                         go_left = 1;
357                         left_start = hint - 1;
358                 }
359         }
360         if (go_left == 0)
361                 goto skip_left;
362
363         while (test_bit(left_start, free_i->free_secmap)) {
364                 if (left_start > 0) {
365                         left_start--;
366                         continue;
367                 }
368                 left_start = find_next_zero_bit(free_i->free_secmap,
369                                                         TOTAL_SECS(sbi), 0);
370                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
371                 break;
372         }
373         secno = left_start;
374 skip_left:
375         hint = secno;
376         segno = secno * sbi->segs_per_sec;
377         zoneno = secno / sbi->secs_per_zone;
378
379         /* give up on finding another zone */
380         if (!init)
381                 goto got_it;
382         if (sbi->secs_per_zone == 1)
383                 goto got_it;
384         if (zoneno == old_zoneno)
385                 goto got_it;
386         if (dir == ALLOC_LEFT) {
387                 if (!go_left && zoneno + 1 >= total_zones)
388                         goto got_it;
389                 if (go_left && zoneno == 0)
390                         goto got_it;
391         }
392         for (i = 0; i < NR_CURSEG_TYPE; i++)
393                 if (CURSEG_I(sbi, i)->zone == zoneno)
394                         break;
395
396         if (i < NR_CURSEG_TYPE) {
397                 /* zone is in user, try another */
398                 if (go_left)
399                         hint = zoneno * sbi->secs_per_zone - 1;
400                 else if (zoneno + 1 >= total_zones)
401                         hint = 0;
402                 else
403                         hint = (zoneno + 1) * sbi->secs_per_zone;
404                 init = false;
405                 goto find_other_zone;
406         }
407 got_it:
408         /* set it as dirty segment in free segmap */
409         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
410         __set_inuse(sbi, segno);
411         *newseg = segno;
412         write_unlock(&free_i->segmap_lock);
413 }
414
415 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
416 {
417         struct curseg_info *curseg = CURSEG_I(sbi, type);
418         struct summary_footer *sum_footer;
419
420         curseg->segno = curseg->next_segno;
421         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
422         curseg->next_blkoff = 0;
423         curseg->next_segno = NULL_SEGNO;
424
425         sum_footer = &(curseg->sum_blk->footer);
426         memset(sum_footer, 0, sizeof(struct summary_footer));
427         if (IS_DATASEG(type))
428                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
429         if (IS_NODESEG(type))
430                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
431         __set_sit_entry_type(sbi, type, curseg->segno, modified);
432 }
433
434 /*
435  * Allocate a current working segment.
436  * This function always allocates a free segment in LFS manner.
437  */
438 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
439 {
440         struct curseg_info *curseg = CURSEG_I(sbi, type);
441         unsigned int segno = curseg->segno;
442         int dir = ALLOC_LEFT;
443
444         write_sum_page(sbi, curseg->sum_blk,
445                                 GET_SUM_BLOCK(sbi, segno));
446         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
447                 dir = ALLOC_RIGHT;
448
449         if (test_opt(sbi, NOHEAP))
450                 dir = ALLOC_RIGHT;
451
452         get_new_segment(sbi, &segno, new_sec, dir);
453         curseg->next_segno = segno;
454         reset_curseg(sbi, type, 1);
455         curseg->alloc_type = LFS;
456 }
457
458 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
459                         struct curseg_info *seg, block_t start)
460 {
461         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
462         block_t ofs;
463         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
464                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
465                         && !f2fs_test_bit(ofs, se->cur_valid_map))
466                         break;
467         }
468         seg->next_blkoff = ofs;
469 }
470
471 /*
472  * If a segment is written by LFS manner, next block offset is just obtained
473  * by increasing the current block offset. However, if a segment is written by
474  * SSR manner, next block offset obtained by calling __next_free_blkoff
475  */
476 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
477                                 struct curseg_info *seg)
478 {
479         if (seg->alloc_type == SSR)
480                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
481         else
482                 seg->next_blkoff++;
483 }
484
485 /*
486  * This function always allocates a used segment (from dirty seglist) by SSR
487  * manner, so it should recover the existing segment information of valid blocks
488  */
489 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
490 {
491         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492         struct curseg_info *curseg = CURSEG_I(sbi, type);
493         unsigned int new_segno = curseg->next_segno;
494         struct f2fs_summary_block *sum_node;
495         struct page *sum_page;
496
497         write_sum_page(sbi, curseg->sum_blk,
498                                 GET_SUM_BLOCK(sbi, curseg->segno));
499         __set_test_and_inuse(sbi, new_segno);
500
501         mutex_lock(&dirty_i->seglist_lock);
502         __remove_dirty_segment(sbi, new_segno, PRE);
503         __remove_dirty_segment(sbi, new_segno, DIRTY);
504         mutex_unlock(&dirty_i->seglist_lock);
505
506         reset_curseg(sbi, type, 1);
507         curseg->alloc_type = SSR;
508         __next_free_blkoff(sbi, curseg, 0);
509
510         if (reuse) {
511                 sum_page = get_sum_page(sbi, new_segno);
512                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
513                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
514                 f2fs_put_page(sum_page, 1);
515         }
516 }
517
518 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
519 {
520         struct curseg_info *curseg = CURSEG_I(sbi, type);
521         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
522
523         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
524                 return v_ops->get_victim(sbi,
525                                 &(curseg)->next_segno, BG_GC, type, SSR);
526
527         /* For data segments, let's do SSR more intensively */
528         for (; type >= CURSEG_HOT_DATA; type--)
529                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
530                                                 BG_GC, type, SSR))
531                         return 1;
532         return 0;
533 }
534
535 /*
536  * flush out current segment and replace it with new segment
537  * This function should be returned with success, otherwise BUG
538  */
539 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
540                                                 int type, bool force)
541 {
542         struct curseg_info *curseg = CURSEG_I(sbi, type);
543
544         if (force)
545                 new_curseg(sbi, type, true);
546         else if (type == CURSEG_WARM_NODE)
547                 new_curseg(sbi, type, false);
548         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
549                 new_curseg(sbi, type, false);
550         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
551                 change_curseg(sbi, type, true);
552         else
553                 new_curseg(sbi, type, false);
554
555         stat_inc_seg_type(sbi, curseg);
556 }
557
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
559 {
560         struct curseg_info *curseg;
561         unsigned int old_curseg;
562         int i;
563
564         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565                 curseg = CURSEG_I(sbi, i);
566                 old_curseg = curseg->segno;
567                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568                 locate_dirty_segment(sbi, old_curseg);
569         }
570 }
571
572 static const struct segment_allocation default_salloc_ops = {
573         .allocate_segment = allocate_segment_by_default,
574 };
575
576 static void f2fs_end_io_write(struct bio *bio, int err)
577 {
578         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580         struct bio_private *p = bio->bi_private;
581
582         do {
583                 struct page *page = bvec->bv_page;
584
585                 if (--bvec >= bio->bi_io_vec)
586                         prefetchw(&bvec->bv_page->flags);
587                 if (!uptodate) {
588                         SetPageError(page);
589                         if (page->mapping)
590                                 set_bit(AS_EIO, &page->mapping->flags);
591                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592                         p->sbi->sb->s_flags |= MS_RDONLY;
593                 }
594                 end_page_writeback(page);
595                 dec_page_count(p->sbi, F2FS_WRITEBACK);
596         } while (bvec >= bio->bi_io_vec);
597
598         if (p->is_sync)
599                 complete(p->wait);
600
601         if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
602                         !list_empty(&p->sbi->cp_wait.task_list))
603                 wake_up(&p->sbi->cp_wait);
604
605         kfree(p);
606         bio_put(bio);
607 }
608
609 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
610 {
611         struct bio *bio;
612
613         /* No failure on bio allocation */
614         bio = bio_alloc(GFP_NOIO, npages);
615         bio->bi_bdev = bdev;
616         bio->bi_private = NULL;
617
618         return bio;
619 }
620
621 static void do_submit_bio(struct f2fs_sb_info *sbi,
622                                 enum page_type type, bool sync)
623 {
624         int rw = sync ? WRITE_SYNC : WRITE;
625         enum page_type btype = type > META ? META : type;
626
627         if (type >= META_FLUSH)
628                 rw = WRITE_FLUSH_FUA;
629
630         if (btype == META)
631                 rw |= REQ_META;
632
633         if (sbi->bio[btype]) {
634                 struct bio_private *p = sbi->bio[btype]->bi_private;
635                 p->sbi = sbi;
636                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
637
638                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
639
640                 if (type == META_FLUSH) {
641                         DECLARE_COMPLETION_ONSTACK(wait);
642                         p->is_sync = true;
643                         p->wait = &wait;
644                         submit_bio(rw, sbi->bio[btype]);
645                         wait_for_completion(&wait);
646                 } else {
647                         p->is_sync = false;
648                         submit_bio(rw, sbi->bio[btype]);
649                 }
650                 sbi->bio[btype] = NULL;
651         }
652 }
653
654 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
655 {
656         down_write(&sbi->bio_sem);
657         do_submit_bio(sbi, type, sync);
658         up_write(&sbi->bio_sem);
659 }
660
661 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
662                                 block_t blk_addr, enum page_type type)
663 {
664         struct block_device *bdev = sbi->sb->s_bdev;
665         int bio_blocks;
666
667         verify_block_addr(sbi, blk_addr);
668
669         down_write(&sbi->bio_sem);
670
671         inc_page_count(sbi, F2FS_WRITEBACK);
672
673         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
674                 do_submit_bio(sbi, type, false);
675 alloc_new:
676         if (sbi->bio[type] == NULL) {
677                 struct bio_private *priv;
678 retry:
679                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
680                 if (!priv) {
681                         cond_resched();
682                         goto retry;
683                 }
684
685                 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
686                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
687                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
688                 sbi->bio[type]->bi_private = priv;
689                 /*
690                  * The end_io will be assigned at the sumbission phase.
691                  * Until then, let bio_add_page() merge consecutive IOs as much
692                  * as possible.
693                  */
694         }
695
696         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
697                                                         PAGE_CACHE_SIZE) {
698                 do_submit_bio(sbi, type, false);
699                 goto alloc_new;
700         }
701
702         sbi->last_block_in_bio[type] = blk_addr;
703
704         up_write(&sbi->bio_sem);
705         trace_f2fs_submit_write_page(page, blk_addr, type);
706 }
707
708 void f2fs_wait_on_page_writeback(struct page *page,
709                                 enum page_type type, bool sync)
710 {
711         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
712         if (PageWriteback(page)) {
713                 f2fs_submit_bio(sbi, type, sync);
714                 wait_on_page_writeback(page);
715         }
716 }
717
718 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
719 {
720         struct curseg_info *curseg = CURSEG_I(sbi, type);
721         if (curseg->next_blkoff < sbi->blocks_per_seg)
722                 return true;
723         return false;
724 }
725
726 static int __get_segment_type_2(struct page *page, enum page_type p_type)
727 {
728         if (p_type == DATA)
729                 return CURSEG_HOT_DATA;
730         else
731                 return CURSEG_HOT_NODE;
732 }
733
734 static int __get_segment_type_4(struct page *page, enum page_type p_type)
735 {
736         if (p_type == DATA) {
737                 struct inode *inode = page->mapping->host;
738
739                 if (S_ISDIR(inode->i_mode))
740                         return CURSEG_HOT_DATA;
741                 else
742                         return CURSEG_COLD_DATA;
743         } else {
744                 if (IS_DNODE(page) && !is_cold_node(page))
745                         return CURSEG_HOT_NODE;
746                 else
747                         return CURSEG_COLD_NODE;
748         }
749 }
750
751 static int __get_segment_type_6(struct page *page, enum page_type p_type)
752 {
753         if (p_type == DATA) {
754                 struct inode *inode = page->mapping->host;
755
756                 if (S_ISDIR(inode->i_mode))
757                         return CURSEG_HOT_DATA;
758                 else if (is_cold_data(page) || file_is_cold(inode))
759                         return CURSEG_COLD_DATA;
760                 else
761                         return CURSEG_WARM_DATA;
762         } else {
763                 if (IS_DNODE(page))
764                         return is_cold_node(page) ? CURSEG_WARM_NODE :
765                                                 CURSEG_HOT_NODE;
766                 else
767                         return CURSEG_COLD_NODE;
768         }
769 }
770
771 static int __get_segment_type(struct page *page, enum page_type p_type)
772 {
773         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
774         switch (sbi->active_logs) {
775         case 2:
776                 return __get_segment_type_2(page, p_type);
777         case 4:
778                 return __get_segment_type_4(page, p_type);
779         }
780         /* NR_CURSEG_TYPE(6) logs by default */
781         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
782         return __get_segment_type_6(page, p_type);
783 }
784
785 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
786                         block_t old_blkaddr, block_t *new_blkaddr,
787                         struct f2fs_summary *sum, enum page_type p_type)
788 {
789         struct sit_info *sit_i = SIT_I(sbi);
790         struct curseg_info *curseg;
791         unsigned int old_cursegno;
792         int type;
793
794         type = __get_segment_type(page, p_type);
795         curseg = CURSEG_I(sbi, type);
796
797         mutex_lock(&curseg->curseg_mutex);
798
799         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
800         old_cursegno = curseg->segno;
801
802         /*
803          * __add_sum_entry should be resided under the curseg_mutex
804          * because, this function updates a summary entry in the
805          * current summary block.
806          */
807         __add_sum_entry(sbi, type, sum);
808
809         mutex_lock(&sit_i->sentry_lock);
810         __refresh_next_blkoff(sbi, curseg);
811
812         stat_inc_block_count(sbi, curseg);
813
814         /*
815          * SIT information should be updated before segment allocation,
816          * since SSR needs latest valid block information.
817          */
818         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
819
820         if (!__has_curseg_space(sbi, type))
821                 sit_i->s_ops->allocate_segment(sbi, type, false);
822
823         locate_dirty_segment(sbi, old_cursegno);
824         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
825         mutex_unlock(&sit_i->sentry_lock);
826
827         if (p_type == NODE)
828                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
829
830         /* writeout dirty page into bdev */
831         submit_write_page(sbi, page, *new_blkaddr, p_type);
832
833         mutex_unlock(&curseg->curseg_mutex);
834 }
835
836 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
837 {
838         set_page_writeback(page);
839         submit_write_page(sbi, page, page->index, META);
840 }
841
842 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
843                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
844 {
845         struct f2fs_summary sum;
846         set_summary(&sum, nid, 0, 0);
847         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
848 }
849
850 void write_data_page(struct inode *inode, struct page *page,
851                 struct dnode_of_data *dn, block_t old_blkaddr,
852                 block_t *new_blkaddr)
853 {
854         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
855         struct f2fs_summary sum;
856         struct node_info ni;
857
858         f2fs_bug_on(old_blkaddr == NULL_ADDR);
859         get_node_info(sbi, dn->nid, &ni);
860         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
861
862         do_write_page(sbi, page, old_blkaddr,
863                         new_blkaddr, &sum, DATA);
864 }
865
866 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
867                                         block_t old_blk_addr)
868 {
869         submit_write_page(sbi, page, old_blk_addr, DATA);
870 }
871
872 void recover_data_page(struct f2fs_sb_info *sbi,
873                         struct page *page, struct f2fs_summary *sum,
874                         block_t old_blkaddr, block_t new_blkaddr)
875 {
876         struct sit_info *sit_i = SIT_I(sbi);
877         struct curseg_info *curseg;
878         unsigned int segno, old_cursegno;
879         struct seg_entry *se;
880         int type;
881
882         segno = GET_SEGNO(sbi, new_blkaddr);
883         se = get_seg_entry(sbi, segno);
884         type = se->type;
885
886         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
887                 if (old_blkaddr == NULL_ADDR)
888                         type = CURSEG_COLD_DATA;
889                 else
890                         type = CURSEG_WARM_DATA;
891         }
892         curseg = CURSEG_I(sbi, type);
893
894         mutex_lock(&curseg->curseg_mutex);
895         mutex_lock(&sit_i->sentry_lock);
896
897         old_cursegno = curseg->segno;
898
899         /* change the current segment */
900         if (segno != curseg->segno) {
901                 curseg->next_segno = segno;
902                 change_curseg(sbi, type, true);
903         }
904
905         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
906                                         (sbi->blocks_per_seg - 1);
907         __add_sum_entry(sbi, type, sum);
908
909         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
910
911         locate_dirty_segment(sbi, old_cursegno);
912         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
913
914         mutex_unlock(&sit_i->sentry_lock);
915         mutex_unlock(&curseg->curseg_mutex);
916 }
917
918 void rewrite_node_page(struct f2fs_sb_info *sbi,
919                         struct page *page, struct f2fs_summary *sum,
920                         block_t old_blkaddr, block_t new_blkaddr)
921 {
922         struct sit_info *sit_i = SIT_I(sbi);
923         int type = CURSEG_WARM_NODE;
924         struct curseg_info *curseg;
925         unsigned int segno, old_cursegno;
926         block_t next_blkaddr = next_blkaddr_of_node(page);
927         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
928
929         curseg = CURSEG_I(sbi, type);
930
931         mutex_lock(&curseg->curseg_mutex);
932         mutex_lock(&sit_i->sentry_lock);
933
934         segno = GET_SEGNO(sbi, new_blkaddr);
935         old_cursegno = curseg->segno;
936
937         /* change the current segment */
938         if (segno != curseg->segno) {
939                 curseg->next_segno = segno;
940                 change_curseg(sbi, type, true);
941         }
942         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
943                                         (sbi->blocks_per_seg - 1);
944         __add_sum_entry(sbi, type, sum);
945
946         /* change the current log to the next block addr in advance */
947         if (next_segno != segno) {
948                 curseg->next_segno = next_segno;
949                 change_curseg(sbi, type, true);
950         }
951         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
952                                         (sbi->blocks_per_seg - 1);
953
954         /* rewrite node page */
955         set_page_writeback(page);
956         submit_write_page(sbi, page, new_blkaddr, NODE);
957         f2fs_submit_bio(sbi, NODE, true);
958         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
959
960         locate_dirty_segment(sbi, old_cursegno);
961         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
962
963         mutex_unlock(&sit_i->sentry_lock);
964         mutex_unlock(&curseg->curseg_mutex);
965 }
966
967 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
968 {
969         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
970         struct curseg_info *seg_i;
971         unsigned char *kaddr;
972         struct page *page;
973         block_t start;
974         int i, j, offset;
975
976         start = start_sum_block(sbi);
977
978         page = get_meta_page(sbi, start++);
979         kaddr = (unsigned char *)page_address(page);
980
981         /* Step 1: restore nat cache */
982         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
983         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
984
985         /* Step 2: restore sit cache */
986         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
987         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
988                                                 SUM_JOURNAL_SIZE);
989         offset = 2 * SUM_JOURNAL_SIZE;
990
991         /* Step 3: restore summary entries */
992         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
993                 unsigned short blk_off;
994                 unsigned int segno;
995
996                 seg_i = CURSEG_I(sbi, i);
997                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
998                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
999                 seg_i->next_segno = segno;
1000                 reset_curseg(sbi, i, 0);
1001                 seg_i->alloc_type = ckpt->alloc_type[i];
1002                 seg_i->next_blkoff = blk_off;
1003
1004                 if (seg_i->alloc_type == SSR)
1005                         blk_off = sbi->blocks_per_seg;
1006
1007                 for (j = 0; j < blk_off; j++) {
1008                         struct f2fs_summary *s;
1009                         s = (struct f2fs_summary *)(kaddr + offset);
1010                         seg_i->sum_blk->entries[j] = *s;
1011                         offset += SUMMARY_SIZE;
1012                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1013                                                 SUM_FOOTER_SIZE)
1014                                 continue;
1015
1016                         f2fs_put_page(page, 1);
1017                         page = NULL;
1018
1019                         page = get_meta_page(sbi, start++);
1020                         kaddr = (unsigned char *)page_address(page);
1021                         offset = 0;
1022                 }
1023         }
1024         f2fs_put_page(page, 1);
1025         return 0;
1026 }
1027
1028 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1029 {
1030         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1031         struct f2fs_summary_block *sum;
1032         struct curseg_info *curseg;
1033         struct page *new;
1034         unsigned short blk_off;
1035         unsigned int segno = 0;
1036         block_t blk_addr = 0;
1037
1038         /* get segment number and block addr */
1039         if (IS_DATASEG(type)) {
1040                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1041                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1042                                                         CURSEG_HOT_DATA]);
1043                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1044                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1045                 else
1046                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1047         } else {
1048                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1049                                                         CURSEG_HOT_NODE]);
1050                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1051                                                         CURSEG_HOT_NODE]);
1052                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1053                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1054                                                         type - CURSEG_HOT_NODE);
1055                 else
1056                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1057         }
1058
1059         new = get_meta_page(sbi, blk_addr);
1060         sum = (struct f2fs_summary_block *)page_address(new);
1061
1062         if (IS_NODESEG(type)) {
1063                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1064                         struct f2fs_summary *ns = &sum->entries[0];
1065                         int i;
1066                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1067                                 ns->version = 0;
1068                                 ns->ofs_in_node = 0;
1069                         }
1070                 } else {
1071                         if (restore_node_summary(sbi, segno, sum)) {
1072                                 f2fs_put_page(new, 1);
1073                                 return -EINVAL;
1074                         }
1075                 }
1076         }
1077
1078         /* set uncompleted segment to curseg */
1079         curseg = CURSEG_I(sbi, type);
1080         mutex_lock(&curseg->curseg_mutex);
1081         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1082         curseg->next_segno = segno;
1083         reset_curseg(sbi, type, 0);
1084         curseg->alloc_type = ckpt->alloc_type[type];
1085         curseg->next_blkoff = blk_off;
1086         mutex_unlock(&curseg->curseg_mutex);
1087         f2fs_put_page(new, 1);
1088         return 0;
1089 }
1090
1091 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1092 {
1093         int type = CURSEG_HOT_DATA;
1094
1095         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1096                 /* restore for compacted data summary */
1097                 if (read_compacted_summaries(sbi))
1098                         return -EINVAL;
1099                 type = CURSEG_HOT_NODE;
1100         }
1101
1102         for (; type <= CURSEG_COLD_NODE; type++)
1103                 if (read_normal_summaries(sbi, type))
1104                         return -EINVAL;
1105         return 0;
1106 }
1107
1108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1109 {
1110         struct page *page;
1111         unsigned char *kaddr;
1112         struct f2fs_summary *summary;
1113         struct curseg_info *seg_i;
1114         int written_size = 0;
1115         int i, j;
1116
1117         page = grab_meta_page(sbi, blkaddr++);
1118         kaddr = (unsigned char *)page_address(page);
1119
1120         /* Step 1: write nat cache */
1121         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1122         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1123         written_size += SUM_JOURNAL_SIZE;
1124
1125         /* Step 2: write sit cache */
1126         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1127         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1128                                                 SUM_JOURNAL_SIZE);
1129         written_size += SUM_JOURNAL_SIZE;
1130
1131         /* Step 3: write summary entries */
1132         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1133                 unsigned short blkoff;
1134                 seg_i = CURSEG_I(sbi, i);
1135                 if (sbi->ckpt->alloc_type[i] == SSR)
1136                         blkoff = sbi->blocks_per_seg;
1137                 else
1138                         blkoff = curseg_blkoff(sbi, i);
1139
1140                 for (j = 0; j < blkoff; j++) {
1141                         if (!page) {
1142                                 page = grab_meta_page(sbi, blkaddr++);
1143                                 kaddr = (unsigned char *)page_address(page);
1144                                 written_size = 0;
1145                         }
1146                         summary = (struct f2fs_summary *)(kaddr + written_size);
1147                         *summary = seg_i->sum_blk->entries[j];
1148                         written_size += SUMMARY_SIZE;
1149
1150                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1151                                                         SUM_FOOTER_SIZE)
1152                                 continue;
1153
1154                         set_page_dirty(page);
1155                         f2fs_put_page(page, 1);
1156                         page = NULL;
1157                 }
1158         }
1159         if (page) {
1160                 set_page_dirty(page);
1161                 f2fs_put_page(page, 1);
1162         }
1163 }
1164
1165 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1166                                         block_t blkaddr, int type)
1167 {
1168         int i, end;
1169         if (IS_DATASEG(type))
1170                 end = type + NR_CURSEG_DATA_TYPE;
1171         else
1172                 end = type + NR_CURSEG_NODE_TYPE;
1173
1174         for (i = type; i < end; i++) {
1175                 struct curseg_info *sum = CURSEG_I(sbi, i);
1176                 mutex_lock(&sum->curseg_mutex);
1177                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1178                 mutex_unlock(&sum->curseg_mutex);
1179         }
1180 }
1181
1182 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1183 {
1184         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1185                 write_compacted_summaries(sbi, start_blk);
1186         else
1187                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1188 }
1189
1190 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1191 {
1192         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1193                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1194 }
1195
1196 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1197                                         unsigned int val, int alloc)
1198 {
1199         int i;
1200
1201         if (type == NAT_JOURNAL) {
1202                 for (i = 0; i < nats_in_cursum(sum); i++) {
1203                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1204                                 return i;
1205                 }
1206                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1207                         return update_nats_in_cursum(sum, 1);
1208         } else if (type == SIT_JOURNAL) {
1209                 for (i = 0; i < sits_in_cursum(sum); i++)
1210                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1211                                 return i;
1212                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1213                         return update_sits_in_cursum(sum, 1);
1214         }
1215         return -1;
1216 }
1217
1218 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1219                                         unsigned int segno)
1220 {
1221         struct sit_info *sit_i = SIT_I(sbi);
1222         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1223         block_t blk_addr = sit_i->sit_base_addr + offset;
1224
1225         check_seg_range(sbi, segno);
1226
1227         /* calculate sit block address */
1228         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1229                 blk_addr += sit_i->sit_blocks;
1230
1231         return get_meta_page(sbi, blk_addr);
1232 }
1233
1234 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1235                                         unsigned int start)
1236 {
1237         struct sit_info *sit_i = SIT_I(sbi);
1238         struct page *src_page, *dst_page;
1239         pgoff_t src_off, dst_off;
1240         void *src_addr, *dst_addr;
1241
1242         src_off = current_sit_addr(sbi, start);
1243         dst_off = next_sit_addr(sbi, src_off);
1244
1245         /* get current sit block page without lock */
1246         src_page = get_meta_page(sbi, src_off);
1247         dst_page = grab_meta_page(sbi, dst_off);
1248         f2fs_bug_on(PageDirty(src_page));
1249
1250         src_addr = page_address(src_page);
1251         dst_addr = page_address(dst_page);
1252         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1253
1254         set_page_dirty(dst_page);
1255         f2fs_put_page(src_page, 1);
1256
1257         set_to_next_sit(sit_i, start);
1258
1259         return dst_page;
1260 }
1261
1262 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1263 {
1264         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1265         struct f2fs_summary_block *sum = curseg->sum_blk;
1266         int i;
1267
1268         /*
1269          * If the journal area in the current summary is full of sit entries,
1270          * all the sit entries will be flushed. Otherwise the sit entries
1271          * are not able to replace with newly hot sit entries.
1272          */
1273         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1274                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1275                         unsigned int segno;
1276                         segno = le32_to_cpu(segno_in_journal(sum, i));
1277                         __mark_sit_entry_dirty(sbi, segno);
1278                 }
1279                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1280                 return true;
1281         }
1282         return false;
1283 }
1284
1285 /*
1286  * CP calls this function, which flushes SIT entries including sit_journal,
1287  * and moves prefree segs to free segs.
1288  */
1289 void flush_sit_entries(struct f2fs_sb_info *sbi)
1290 {
1291         struct sit_info *sit_i = SIT_I(sbi);
1292         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1293         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1294         struct f2fs_summary_block *sum = curseg->sum_blk;
1295         unsigned long nsegs = TOTAL_SEGS(sbi);
1296         struct page *page = NULL;
1297         struct f2fs_sit_block *raw_sit = NULL;
1298         unsigned int start = 0, end = 0;
1299         unsigned int segno = -1;
1300         bool flushed;
1301
1302         mutex_lock(&curseg->curseg_mutex);
1303         mutex_lock(&sit_i->sentry_lock);
1304
1305         /*
1306          * "flushed" indicates whether sit entries in journal are flushed
1307          * to the SIT area or not.
1308          */
1309         flushed = flush_sits_in_journal(sbi);
1310
1311         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1312                 struct seg_entry *se = get_seg_entry(sbi, segno);
1313                 int sit_offset, offset;
1314
1315                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1316
1317                 if (flushed)
1318                         goto to_sit_page;
1319
1320                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1321                 if (offset >= 0) {
1322                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1323                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1324                         goto flush_done;
1325                 }
1326 to_sit_page:
1327                 if (!page || (start > segno) || (segno > end)) {
1328                         if (page) {
1329                                 f2fs_put_page(page, 1);
1330                                 page = NULL;
1331                         }
1332
1333                         start = START_SEGNO(sit_i, segno);
1334                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1335
1336                         /* read sit block that will be updated */
1337                         page = get_next_sit_page(sbi, start);
1338                         raw_sit = page_address(page);
1339                 }
1340
1341                 /* udpate entry in SIT block */
1342                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1343 flush_done:
1344                 __clear_bit(segno, bitmap);
1345                 sit_i->dirty_sentries--;
1346         }
1347         mutex_unlock(&sit_i->sentry_lock);
1348         mutex_unlock(&curseg->curseg_mutex);
1349
1350         /* writeout last modified SIT block */
1351         f2fs_put_page(page, 1);
1352
1353         set_prefree_as_free_segments(sbi);
1354 }
1355
1356 static int build_sit_info(struct f2fs_sb_info *sbi)
1357 {
1358         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1359         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1360         struct sit_info *sit_i;
1361         unsigned int sit_segs, start;
1362         char *src_bitmap, *dst_bitmap;
1363         unsigned int bitmap_size;
1364
1365         /* allocate memory for SIT information */
1366         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1367         if (!sit_i)
1368                 return -ENOMEM;
1369
1370         SM_I(sbi)->sit_info = sit_i;
1371
1372         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1373         if (!sit_i->sentries)
1374                 return -ENOMEM;
1375
1376         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1377         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1378         if (!sit_i->dirty_sentries_bitmap)
1379                 return -ENOMEM;
1380
1381         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1382                 sit_i->sentries[start].cur_valid_map
1383                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1384                 sit_i->sentries[start].ckpt_valid_map
1385                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1386                 if (!sit_i->sentries[start].cur_valid_map
1387                                 || !sit_i->sentries[start].ckpt_valid_map)
1388                         return -ENOMEM;
1389         }
1390
1391         if (sbi->segs_per_sec > 1) {
1392                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1393                                         sizeof(struct sec_entry));
1394                 if (!sit_i->sec_entries)
1395                         return -ENOMEM;
1396         }
1397
1398         /* get information related with SIT */
1399         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1400
1401         /* setup SIT bitmap from ckeckpoint pack */
1402         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1403         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1404
1405         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1406         if (!dst_bitmap)
1407                 return -ENOMEM;
1408
1409         /* init SIT information */
1410         sit_i->s_ops = &default_salloc_ops;
1411
1412         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1413         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1414         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1415         sit_i->sit_bitmap = dst_bitmap;
1416         sit_i->bitmap_size = bitmap_size;
1417         sit_i->dirty_sentries = 0;
1418         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1419         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1420         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1421         mutex_init(&sit_i->sentry_lock);
1422         return 0;
1423 }
1424
1425 static int build_free_segmap(struct f2fs_sb_info *sbi)
1426 {
1427         struct f2fs_sm_info *sm_info = SM_I(sbi);
1428         struct free_segmap_info *free_i;
1429         unsigned int bitmap_size, sec_bitmap_size;
1430
1431         /* allocate memory for free segmap information */
1432         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1433         if (!free_i)
1434                 return -ENOMEM;
1435
1436         SM_I(sbi)->free_info = free_i;
1437
1438         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1439         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1440         if (!free_i->free_segmap)
1441                 return -ENOMEM;
1442
1443         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1444         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1445         if (!free_i->free_secmap)
1446                 return -ENOMEM;
1447
1448         /* set all segments as dirty temporarily */
1449         memset(free_i->free_segmap, 0xff, bitmap_size);
1450         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1451
1452         /* init free segmap information */
1453         free_i->start_segno =
1454                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1455         free_i->free_segments = 0;
1456         free_i->free_sections = 0;
1457         rwlock_init(&free_i->segmap_lock);
1458         return 0;
1459 }
1460
1461 static int build_curseg(struct f2fs_sb_info *sbi)
1462 {
1463         struct curseg_info *array;
1464         int i;
1465
1466         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1467         if (!array)
1468                 return -ENOMEM;
1469
1470         SM_I(sbi)->curseg_array = array;
1471
1472         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1473                 mutex_init(&array[i].curseg_mutex);
1474                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1475                 if (!array[i].sum_blk)
1476                         return -ENOMEM;
1477                 array[i].segno = NULL_SEGNO;
1478                 array[i].next_blkoff = 0;
1479         }
1480         return restore_curseg_summaries(sbi);
1481 }
1482
1483 static void build_sit_entries(struct f2fs_sb_info *sbi)
1484 {
1485         struct sit_info *sit_i = SIT_I(sbi);
1486         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1487         struct f2fs_summary_block *sum = curseg->sum_blk;
1488         unsigned int start;
1489
1490         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1491                 struct seg_entry *se = &sit_i->sentries[start];
1492                 struct f2fs_sit_block *sit_blk;
1493                 struct f2fs_sit_entry sit;
1494                 struct page *page;
1495                 int i;
1496
1497                 mutex_lock(&curseg->curseg_mutex);
1498                 for (i = 0; i < sits_in_cursum(sum); i++) {
1499                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1500                                 sit = sit_in_journal(sum, i);
1501                                 mutex_unlock(&curseg->curseg_mutex);
1502                                 goto got_it;
1503                         }
1504                 }
1505                 mutex_unlock(&curseg->curseg_mutex);
1506                 page = get_current_sit_page(sbi, start);
1507                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1508                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1509                 f2fs_put_page(page, 1);
1510 got_it:
1511                 check_block_count(sbi, start, &sit);
1512                 seg_info_from_raw_sit(se, &sit);
1513                 if (sbi->segs_per_sec > 1) {
1514                         struct sec_entry *e = get_sec_entry(sbi, start);
1515                         e->valid_blocks += se->valid_blocks;
1516                 }
1517         }
1518 }
1519
1520 static void init_free_segmap(struct f2fs_sb_info *sbi)
1521 {
1522         unsigned int start;
1523         int type;
1524
1525         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1526                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1527                 if (!sentry->valid_blocks)
1528                         __set_free(sbi, start);
1529         }
1530
1531         /* set use the current segments */
1532         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1533                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1534                 __set_test_and_inuse(sbi, curseg_t->segno);
1535         }
1536 }
1537
1538 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1539 {
1540         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1541         struct free_segmap_info *free_i = FREE_I(sbi);
1542         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1543         unsigned short valid_blocks;
1544
1545         while (1) {
1546                 /* find dirty segment based on free segmap */
1547                 segno = find_next_inuse(free_i, total_segs, offset);
1548                 if (segno >= total_segs)
1549                         break;
1550                 offset = segno + 1;
1551                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1552                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1553                         continue;
1554                 mutex_lock(&dirty_i->seglist_lock);
1555                 __locate_dirty_segment(sbi, segno, DIRTY);
1556                 mutex_unlock(&dirty_i->seglist_lock);
1557         }
1558 }
1559
1560 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1561 {
1562         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1563         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1564
1565         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1566         if (!dirty_i->victim_secmap)
1567                 return -ENOMEM;
1568         return 0;
1569 }
1570
1571 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1572 {
1573         struct dirty_seglist_info *dirty_i;
1574         unsigned int bitmap_size, i;
1575
1576         /* allocate memory for dirty segments list information */
1577         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1578         if (!dirty_i)
1579                 return -ENOMEM;
1580
1581         SM_I(sbi)->dirty_info = dirty_i;
1582         mutex_init(&dirty_i->seglist_lock);
1583
1584         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1585
1586         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1587                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1588                 if (!dirty_i->dirty_segmap[i])
1589                         return -ENOMEM;
1590         }
1591
1592         init_dirty_segmap(sbi);
1593         return init_victim_secmap(sbi);
1594 }
1595
1596 /*
1597  * Update min, max modified time for cost-benefit GC algorithm
1598  */
1599 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1600 {
1601         struct sit_info *sit_i = SIT_I(sbi);
1602         unsigned int segno;
1603
1604         mutex_lock(&sit_i->sentry_lock);
1605
1606         sit_i->min_mtime = LLONG_MAX;
1607
1608         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1609                 unsigned int i;
1610                 unsigned long long mtime = 0;
1611
1612                 for (i = 0; i < sbi->segs_per_sec; i++)
1613                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1614
1615                 mtime = div_u64(mtime, sbi->segs_per_sec);
1616
1617                 if (sit_i->min_mtime > mtime)
1618                         sit_i->min_mtime = mtime;
1619         }
1620         sit_i->max_mtime = get_mtime(sbi);
1621         mutex_unlock(&sit_i->sentry_lock);
1622 }
1623
1624 int build_segment_manager(struct f2fs_sb_info *sbi)
1625 {
1626         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1627         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1628         struct f2fs_sm_info *sm_info;
1629         int err;
1630
1631         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1632         if (!sm_info)
1633                 return -ENOMEM;
1634
1635         /* init sm info */
1636         sbi->sm_info = sm_info;
1637         INIT_LIST_HEAD(&sm_info->wblist_head);
1638         spin_lock_init(&sm_info->wblist_lock);
1639         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1640         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1641         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1642         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1643         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1644         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1645         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1646         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1647
1648         err = build_sit_info(sbi);
1649         if (err)
1650                 return err;
1651         err = build_free_segmap(sbi);
1652         if (err)
1653                 return err;
1654         err = build_curseg(sbi);
1655         if (err)
1656                 return err;
1657
1658         /* reinit free segmap based on SIT */
1659         build_sit_entries(sbi);
1660
1661         init_free_segmap(sbi);
1662         err = build_dirty_segmap(sbi);
1663         if (err)
1664                 return err;
1665
1666         init_min_max_mtime(sbi);
1667         return 0;
1668 }
1669
1670 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1671                 enum dirty_type dirty_type)
1672 {
1673         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1674
1675         mutex_lock(&dirty_i->seglist_lock);
1676         kfree(dirty_i->dirty_segmap[dirty_type]);
1677         dirty_i->nr_dirty[dirty_type] = 0;
1678         mutex_unlock(&dirty_i->seglist_lock);
1679 }
1680
1681 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1682 {
1683         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1684         kfree(dirty_i->victim_secmap);
1685 }
1686
1687 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1688 {
1689         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1690         int i;
1691
1692         if (!dirty_i)
1693                 return;
1694
1695         /* discard pre-free/dirty segments list */
1696         for (i = 0; i < NR_DIRTY_TYPE; i++)
1697                 discard_dirty_segmap(sbi, i);
1698
1699         destroy_victim_secmap(sbi);
1700         SM_I(sbi)->dirty_info = NULL;
1701         kfree(dirty_i);
1702 }
1703
1704 static void destroy_curseg(struct f2fs_sb_info *sbi)
1705 {
1706         struct curseg_info *array = SM_I(sbi)->curseg_array;
1707         int i;
1708
1709         if (!array)
1710                 return;
1711         SM_I(sbi)->curseg_array = NULL;
1712         for (i = 0; i < NR_CURSEG_TYPE; i++)
1713                 kfree(array[i].sum_blk);
1714         kfree(array);
1715 }
1716
1717 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1718 {
1719         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1720         if (!free_i)
1721                 return;
1722         SM_I(sbi)->free_info = NULL;
1723         kfree(free_i->free_segmap);
1724         kfree(free_i->free_secmap);
1725         kfree(free_i);
1726 }
1727
1728 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1729 {
1730         struct sit_info *sit_i = SIT_I(sbi);
1731         unsigned int start;
1732
1733         if (!sit_i)
1734                 return;
1735
1736         if (sit_i->sentries) {
1737                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1738                         kfree(sit_i->sentries[start].cur_valid_map);
1739                         kfree(sit_i->sentries[start].ckpt_valid_map);
1740                 }
1741         }
1742         vfree(sit_i->sentries);
1743         vfree(sit_i->sec_entries);
1744         kfree(sit_i->dirty_sentries_bitmap);
1745
1746         SM_I(sbi)->sit_info = NULL;
1747         kfree(sit_i->sit_bitmap);
1748         kfree(sit_i);
1749 }
1750
1751 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1752 {
1753         struct f2fs_sm_info *sm_info = SM_I(sbi);
1754         if (!sm_info)
1755                 return;
1756         destroy_dirty_segmap(sbi);
1757         destroy_curseg(sbi);
1758         destroy_free_segmap(sbi);
1759         destroy_sit_info(sbi);
1760         sbi->sm_info = NULL;
1761         kfree(sm_info);
1762 }