Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (root->track_dirty && list_empty(&root->dirty_list)) {
228                 list_add(&root->dirty_list,
229                          &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(root->ref_cows && trans->transid !=
250                 root->fs_info->running_transaction->transid);
251         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
260                                      new_root_objectid, &disk_key, level,
261                                      buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 index;              /* shifted logical */
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Increment the upper half of tree_mod_seq, set lower half zero.
358  *
359  * Must be called with fs_info->tree_mod_seq_lock held.
360  */
361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
362 {
363         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
364         seq &= 0xffffffff00000000ull;
365         seq += 1ull << 32;
366         atomic64_set(&fs_info->tree_mod_seq, seq);
367         return seq;
368 }
369
370 /*
371  * Increment the lower half of tree_mod_seq.
372  *
373  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
374  * are generated should not technically require a spin lock here. (Rationale:
375  * incrementing the minor while incrementing the major seq number is between its
376  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
377  * just returns a unique sequence number as usual.) We have decided to leave
378  * that requirement in here and rethink it once we notice it really imposes a
379  * problem on some workload.
380  */
381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
382 {
383         return atomic64_inc_return(&fs_info->tree_mod_seq);
384 }
385
386 /*
387  * return the last minor in the previous major tree_mod_seq number
388  */
389 u64 btrfs_tree_mod_seq_prev(u64 seq)
390 {
391         return (seq & 0xffffffff00000000ull) - 1ull;
392 }
393
394 /*
395  * This adds a new blocker to the tree mod log's blocker list if the @elem
396  * passed does not already have a sequence number set. So when a caller expects
397  * to record tree modifications, it should ensure to set elem->seq to zero
398  * before calling btrfs_get_tree_mod_seq.
399  * Returns a fresh, unused tree log modification sequence number, even if no new
400  * blocker was added.
401  */
402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
403                            struct seq_list *elem)
404 {
405         u64 seq;
406
407         tree_mod_log_write_lock(fs_info);
408         spin_lock(&fs_info->tree_mod_seq_lock);
409         if (!elem->seq) {
410                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
411                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
412         }
413         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
414         spin_unlock(&fs_info->tree_mod_seq_lock);
415         tree_mod_log_write_unlock(fs_info);
416
417         return seq;
418 }
419
420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
421                             struct seq_list *elem)
422 {
423         struct rb_root *tm_root;
424         struct rb_node *node;
425         struct rb_node *next;
426         struct seq_list *cur_elem;
427         struct tree_mod_elem *tm;
428         u64 min_seq = (u64)-1;
429         u64 seq_putting = elem->seq;
430
431         if (!seq_putting)
432                 return;
433
434         spin_lock(&fs_info->tree_mod_seq_lock);
435         list_del(&elem->list);
436         elem->seq = 0;
437
438         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
439                 if (cur_elem->seq < min_seq) {
440                         if (seq_putting > cur_elem->seq) {
441                                 /*
442                                  * blocker with lower sequence number exists, we
443                                  * cannot remove anything from the log
444                                  */
445                                 spin_unlock(&fs_info->tree_mod_seq_lock);
446                                 return;
447                         }
448                         min_seq = cur_elem->seq;
449                 }
450         }
451         spin_unlock(&fs_info->tree_mod_seq_lock);
452
453         /*
454          * anything that's lower than the lowest existing (read: blocked)
455          * sequence number can be removed from the tree.
456          */
457         tree_mod_log_write_lock(fs_info);
458         tm_root = &fs_info->tree_mod_log;
459         for (node = rb_first(tm_root); node; node = next) {
460                 next = rb_next(node);
461                 tm = container_of(node, struct tree_mod_elem, node);
462                 if (tm->seq > min_seq)
463                         continue;
464                 rb_erase(node, tm_root);
465                 kfree(tm);
466         }
467         tree_mod_log_write_unlock(fs_info);
468 }
469
470 /*
471  * key order of the log:
472  *       index -> sequence
473  *
474  * the index is the shifted logical of the *new* root node for root replace
475  * operations, or the shifted logical of the affected block for all other
476  * operations.
477  *
478  * Note: must be called with write lock (tree_mod_log_write_lock).
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm);
489
490         spin_lock(&fs_info->tree_mod_seq_lock);
491         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
492         spin_unlock(&fs_info->tree_mod_seq_lock);
493
494         tm_root = &fs_info->tree_mod_log;
495         new = &tm_root->rb_node;
496         while (*new) {
497                 cur = container_of(*new, struct tree_mod_elem, node);
498                 parent = *new;
499                 if (cur->index < tm->index)
500                         new = &((*new)->rb_left);
501                 else if (cur->index > tm->index)
502                         new = &((*new)->rb_right);
503                 else if (cur->seq < tm->seq)
504                         new = &((*new)->rb_left);
505                 else if (cur->seq > tm->seq)
506                         new = &((*new)->rb_right);
507                 else
508                         return -EEXIST;
509         }
510
511         rb_link_node(&tm->node, parent, new);
512         rb_insert_color(&tm->node, tm_root);
513         return 0;
514 }
515
516 /*
517  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
518  * returns zero with the tree_mod_log_lock acquired. The caller must hold
519  * this until all tree mod log insertions are recorded in the rb tree and then
520  * call tree_mod_log_write_unlock() to release.
521  */
522 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
523                                     struct extent_buffer *eb) {
524         smp_mb();
525         if (list_empty(&(fs_info)->tree_mod_seq_list))
526                 return 1;
527         if (eb && btrfs_header_level(eb) == 0)
528                 return 1;
529
530         tree_mod_log_write_lock(fs_info);
531         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
532                 tree_mod_log_write_unlock(fs_info);
533                 return 1;
534         }
535
536         return 0;
537 }
538
539 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
540 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
541                                     struct extent_buffer *eb)
542 {
543         smp_mb();
544         if (list_empty(&(fs_info)->tree_mod_seq_list))
545                 return 0;
546         if (eb && btrfs_header_level(eb) == 0)
547                 return 0;
548
549         return 1;
550 }
551
552 static struct tree_mod_elem *
553 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
554                     enum mod_log_op op, gfp_t flags)
555 {
556         struct tree_mod_elem *tm;
557
558         tm = kzalloc(sizeof(*tm), flags);
559         if (!tm)
560                 return NULL;
561
562         tm->index = eb->start >> PAGE_CACHE_SHIFT;
563         if (op != MOD_LOG_KEY_ADD) {
564                 btrfs_node_key(eb, &tm->key, slot);
565                 tm->blockptr = btrfs_node_blockptr(eb, slot);
566         }
567         tm->op = op;
568         tm->slot = slot;
569         tm->generation = btrfs_node_ptr_generation(eb, slot);
570         RB_CLEAR_NODE(&tm->node);
571
572         return tm;
573 }
574
575 static noinline int
576 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
577                         struct extent_buffer *eb, int slot,
578                         enum mod_log_op op, gfp_t flags)
579 {
580         struct tree_mod_elem *tm;
581         int ret;
582
583         if (!tree_mod_need_log(fs_info, eb))
584                 return 0;
585
586         tm = alloc_tree_mod_elem(eb, slot, op, flags);
587         if (!tm)
588                 return -ENOMEM;
589
590         if (tree_mod_dont_log(fs_info, eb)) {
591                 kfree(tm);
592                 return 0;
593         }
594
595         ret = __tree_mod_log_insert(fs_info, tm);
596         tree_mod_log_write_unlock(fs_info);
597         if (ret)
598                 kfree(tm);
599
600         return ret;
601 }
602
603 static noinline int
604 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
605                          struct extent_buffer *eb, int dst_slot, int src_slot,
606                          int nr_items, gfp_t flags)
607 {
608         struct tree_mod_elem *tm = NULL;
609         struct tree_mod_elem **tm_list = NULL;
610         int ret = 0;
611         int i;
612         int locked = 0;
613
614         if (!tree_mod_need_log(fs_info, eb))
615                 return 0;
616
617         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
618         if (!tm_list)
619                 return -ENOMEM;
620
621         tm = kzalloc(sizeof(*tm), flags);
622         if (!tm) {
623                 ret = -ENOMEM;
624                 goto free_tms;
625         }
626
627         tm->index = eb->start >> PAGE_CACHE_SHIFT;
628         tm->slot = src_slot;
629         tm->move.dst_slot = dst_slot;
630         tm->move.nr_items = nr_items;
631         tm->op = MOD_LOG_MOVE_KEYS;
632
633         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
634                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
635                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
636                 if (!tm_list[i]) {
637                         ret = -ENOMEM;
638                         goto free_tms;
639                 }
640         }
641
642         if (tree_mod_dont_log(fs_info, eb))
643                 goto free_tms;
644         locked = 1;
645
646         /*
647          * When we override something during the move, we log these removals.
648          * This can only happen when we move towards the beginning of the
649          * buffer, i.e. dst_slot < src_slot.
650          */
651         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
652                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653                 if (ret)
654                         goto free_tms;
655         }
656
657         ret = __tree_mod_log_insert(fs_info, tm);
658         if (ret)
659                 goto free_tms;
660         tree_mod_log_write_unlock(fs_info);
661         kfree(tm_list);
662
663         return 0;
664 free_tms:
665         for (i = 0; i < nr_items; i++) {
666                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
667                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
668                 kfree(tm_list[i]);
669         }
670         if (locked)
671                 tree_mod_log_write_unlock(fs_info);
672         kfree(tm_list);
673         kfree(tm);
674
675         return ret;
676 }
677
678 static inline int
679 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
680                        struct tree_mod_elem **tm_list,
681                        int nritems)
682 {
683         int i, j;
684         int ret;
685
686         for (i = nritems - 1; i >= 0; i--) {
687                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
688                 if (ret) {
689                         for (j = nritems - 1; j > i; j--)
690                                 rb_erase(&tm_list[j]->node,
691                                          &fs_info->tree_mod_log);
692                         return ret;
693                 }
694         }
695
696         return 0;
697 }
698
699 static noinline int
700 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
701                          struct extent_buffer *old_root,
702                          struct extent_buffer *new_root, gfp_t flags,
703                          int log_removal)
704 {
705         struct tree_mod_elem *tm = NULL;
706         struct tree_mod_elem **tm_list = NULL;
707         int nritems = 0;
708         int ret = 0;
709         int i;
710
711         if (!tree_mod_need_log(fs_info, NULL))
712                 return 0;
713
714         if (log_removal && btrfs_header_level(old_root) > 0) {
715                 nritems = btrfs_header_nritems(old_root);
716                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
717                                   flags);
718                 if (!tm_list) {
719                         ret = -ENOMEM;
720                         goto free_tms;
721                 }
722                 for (i = 0; i < nritems; i++) {
723                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
724                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
725                         if (!tm_list[i]) {
726                                 ret = -ENOMEM;
727                                 goto free_tms;
728                         }
729                 }
730         }
731
732         tm = kzalloc(sizeof(*tm), flags);
733         if (!tm) {
734                 ret = -ENOMEM;
735                 goto free_tms;
736         }
737
738         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
739         tm->old_root.logical = old_root->start;
740         tm->old_root.level = btrfs_header_level(old_root);
741         tm->generation = btrfs_header_generation(old_root);
742         tm->op = MOD_LOG_ROOT_REPLACE;
743
744         if (tree_mod_dont_log(fs_info, NULL))
745                 goto free_tms;
746
747         if (tm_list)
748                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
749         if (!ret)
750                 ret = __tree_mod_log_insert(fs_info, tm);
751
752         tree_mod_log_write_unlock(fs_info);
753         if (ret)
754                 goto free_tms;
755         kfree(tm_list);
756
757         return ret;
758
759 free_tms:
760         if (tm_list) {
761                 for (i = 0; i < nritems; i++)
762                         kfree(tm_list[i]);
763                 kfree(tm_list);
764         }
765         kfree(tm);
766
767         return ret;
768 }
769
770 static struct tree_mod_elem *
771 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
772                       int smallest)
773 {
774         struct rb_root *tm_root;
775         struct rb_node *node;
776         struct tree_mod_elem *cur = NULL;
777         struct tree_mod_elem *found = NULL;
778         u64 index = start >> PAGE_CACHE_SHIFT;
779
780         tree_mod_log_read_lock(fs_info);
781         tm_root = &fs_info->tree_mod_log;
782         node = tm_root->rb_node;
783         while (node) {
784                 cur = container_of(node, struct tree_mod_elem, node);
785                 if (cur->index < index) {
786                         node = node->rb_left;
787                 } else if (cur->index > index) {
788                         node = node->rb_right;
789                 } else if (cur->seq < min_seq) {
790                         node = node->rb_left;
791                 } else if (!smallest) {
792                         /* we want the node with the highest seq */
793                         if (found)
794                                 BUG_ON(found->seq > cur->seq);
795                         found = cur;
796                         node = node->rb_left;
797                 } else if (cur->seq > min_seq) {
798                         /* we want the node with the smallest seq */
799                         if (found)
800                                 BUG_ON(found->seq < cur->seq);
801                         found = cur;
802                         node = node->rb_right;
803                 } else {
804                         found = cur;
805                         break;
806                 }
807         }
808         tree_mod_log_read_unlock(fs_info);
809
810         return found;
811 }
812
813 /*
814  * this returns the element from the log with the smallest time sequence
815  * value that's in the log (the oldest log item). any element with a time
816  * sequence lower than min_seq will be ignored.
817  */
818 static struct tree_mod_elem *
819 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
820                            u64 min_seq)
821 {
822         return __tree_mod_log_search(fs_info, start, min_seq, 1);
823 }
824
825 /*
826  * this returns the element from the log with the largest time sequence
827  * value that's in the log (the most recent log item). any element with
828  * a time sequence lower than min_seq will be ignored.
829  */
830 static struct tree_mod_elem *
831 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
832 {
833         return __tree_mod_log_search(fs_info, start, min_seq, 0);
834 }
835
836 static noinline int
837 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
838                      struct extent_buffer *src, unsigned long dst_offset,
839                      unsigned long src_offset, int nr_items)
840 {
841         int ret = 0;
842         struct tree_mod_elem **tm_list = NULL;
843         struct tree_mod_elem **tm_list_add, **tm_list_rem;
844         int i;
845         int locked = 0;
846
847         if (!tree_mod_need_log(fs_info, NULL))
848                 return 0;
849
850         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
851                 return 0;
852
853         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
854                           GFP_NOFS);
855         if (!tm_list)
856                 return -ENOMEM;
857
858         tm_list_add = tm_list;
859         tm_list_rem = tm_list + nr_items;
860         for (i = 0; i < nr_items; i++) {
861                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
862                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
863                 if (!tm_list_rem[i]) {
864                         ret = -ENOMEM;
865                         goto free_tms;
866                 }
867
868                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
869                     MOD_LOG_KEY_ADD, GFP_NOFS);
870                 if (!tm_list_add[i]) {
871                         ret = -ENOMEM;
872                         goto free_tms;
873                 }
874         }
875
876         if (tree_mod_dont_log(fs_info, NULL))
877                 goto free_tms;
878         locked = 1;
879
880         for (i = 0; i < nr_items; i++) {
881                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
882                 if (ret)
883                         goto free_tms;
884                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
885                 if (ret)
886                         goto free_tms;
887         }
888
889         tree_mod_log_write_unlock(fs_info);
890         kfree(tm_list);
891
892         return 0;
893
894 free_tms:
895         for (i = 0; i < nr_items * 2; i++) {
896                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
897                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
898                 kfree(tm_list[i]);
899         }
900         if (locked)
901                 tree_mod_log_write_unlock(fs_info);
902         kfree(tm_list);
903
904         return ret;
905 }
906
907 static inline void
908 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
909                      int dst_offset, int src_offset, int nr_items)
910 {
911         int ret;
912         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
913                                        nr_items, GFP_NOFS);
914         BUG_ON(ret < 0);
915 }
916
917 static noinline void
918 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
919                           struct extent_buffer *eb, int slot, int atomic)
920 {
921         int ret;
922
923         ret = tree_mod_log_insert_key(fs_info, eb, slot,
924                                         MOD_LOG_KEY_REPLACE,
925                                         atomic ? GFP_ATOMIC : GFP_NOFS);
926         BUG_ON(ret < 0);
927 }
928
929 static noinline int
930 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
931 {
932         struct tree_mod_elem **tm_list = NULL;
933         int nritems = 0;
934         int i;
935         int ret = 0;
936
937         if (btrfs_header_level(eb) == 0)
938                 return 0;
939
940         if (!tree_mod_need_log(fs_info, NULL))
941                 return 0;
942
943         nritems = btrfs_header_nritems(eb);
944         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
945                           GFP_NOFS);
946         if (!tm_list)
947                 return -ENOMEM;
948
949         for (i = 0; i < nritems; i++) {
950                 tm_list[i] = alloc_tree_mod_elem(eb, i,
951                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
952                 if (!tm_list[i]) {
953                         ret = -ENOMEM;
954                         goto free_tms;
955                 }
956         }
957
958         if (tree_mod_dont_log(fs_info, eb))
959                 goto free_tms;
960
961         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
962         tree_mod_log_write_unlock(fs_info);
963         if (ret)
964                 goto free_tms;
965         kfree(tm_list);
966
967         return 0;
968
969 free_tms:
970         for (i = 0; i < nritems; i++)
971                 kfree(tm_list[i]);
972         kfree(tm_list);
973
974         return ret;
975 }
976
977 static noinline void
978 tree_mod_log_set_root_pointer(struct btrfs_root *root,
979                               struct extent_buffer *new_root_node,
980                               int log_removal)
981 {
982         int ret;
983         ret = tree_mod_log_insert_root(root->fs_info, root->node,
984                                        new_root_node, GFP_NOFS, log_removal);
985         BUG_ON(ret < 0);
986 }
987
988 /*
989  * check if the tree block can be shared by multiple trees
990  */
991 int btrfs_block_can_be_shared(struct btrfs_root *root,
992                               struct extent_buffer *buf)
993 {
994         /*
995          * Tree blocks not in refernece counted trees and tree roots
996          * are never shared. If a block was allocated after the last
997          * snapshot and the block was not allocated by tree relocation,
998          * we know the block is not shared.
999          */
1000         if (root->ref_cows &&
1001             buf != root->node && buf != root->commit_root &&
1002             (btrfs_header_generation(buf) <=
1003              btrfs_root_last_snapshot(&root->root_item) ||
1004              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005                 return 1;
1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007         if (root->ref_cows &&
1008             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009                 return 1;
1010 #endif
1011         return 0;
1012 }
1013
1014 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015                                        struct btrfs_root *root,
1016                                        struct extent_buffer *buf,
1017                                        struct extent_buffer *cow,
1018                                        int *last_ref)
1019 {
1020         u64 refs;
1021         u64 owner;
1022         u64 flags;
1023         u64 new_flags = 0;
1024         int ret;
1025
1026         /*
1027          * Backrefs update rules:
1028          *
1029          * Always use full backrefs for extent pointers in tree block
1030          * allocated by tree relocation.
1031          *
1032          * If a shared tree block is no longer referenced by its owner
1033          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034          * use full backrefs for extent pointers in tree block.
1035          *
1036          * If a tree block is been relocating
1037          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038          * use full backrefs for extent pointers in tree block.
1039          * The reason for this is some operations (such as drop tree)
1040          * are only allowed for blocks use full backrefs.
1041          */
1042
1043         if (btrfs_block_can_be_shared(root, buf)) {
1044                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045                                                btrfs_header_level(buf), 1,
1046                                                &refs, &flags);
1047                 if (ret)
1048                         return ret;
1049                 if (refs == 0) {
1050                         ret = -EROFS;
1051                         btrfs_std_error(root->fs_info, ret);
1052                         return ret;
1053                 }
1054         } else {
1055                 refs = 1;
1056                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059                 else
1060                         flags = 0;
1061         }
1062
1063         owner = btrfs_header_owner(buf);
1064         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1066
1067         if (refs > 1) {
1068                 if ((owner == root->root_key.objectid ||
1069                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072                         BUG_ON(ret); /* -ENOMEM */
1073
1074                         if (root->root_key.objectid ==
1075                             BTRFS_TREE_RELOC_OBJECTID) {
1076                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077                                 BUG_ON(ret); /* -ENOMEM */
1078                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079                                 BUG_ON(ret); /* -ENOMEM */
1080                         }
1081                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1082                 } else {
1083
1084                         if (root->root_key.objectid ==
1085                             BTRFS_TREE_RELOC_OBJECTID)
1086                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087                         else
1088                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089                         BUG_ON(ret); /* -ENOMEM */
1090                 }
1091                 if (new_flags != 0) {
1092                         int level = btrfs_header_level(buf);
1093
1094                         ret = btrfs_set_disk_extent_flags(trans, root,
1095                                                           buf->start,
1096                                                           buf->len,
1097                                                           new_flags, level, 0);
1098                         if (ret)
1099                                 return ret;
1100                 }
1101         } else {
1102                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103                         if (root->root_key.objectid ==
1104                             BTRFS_TREE_RELOC_OBJECTID)
1105                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106                         else
1107                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108                         BUG_ON(ret); /* -ENOMEM */
1109                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110                         BUG_ON(ret); /* -ENOMEM */
1111                 }
1112                 clean_tree_block(trans, root, buf);
1113                 *last_ref = 1;
1114         }
1115         return 0;
1116 }
1117
1118 /*
1119  * does the dirty work in cow of a single block.  The parent block (if
1120  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1121  * dirty and returned locked.  If you modify the block it needs to be marked
1122  * dirty again.
1123  *
1124  * search_start -- an allocation hint for the new block
1125  *
1126  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1127  * bytes the allocator should try to find free next to the block it returns.
1128  * This is just a hint and may be ignored by the allocator.
1129  */
1130 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131                              struct btrfs_root *root,
1132                              struct extent_buffer *buf,
1133                              struct extent_buffer *parent, int parent_slot,
1134                              struct extent_buffer **cow_ret,
1135                              u64 search_start, u64 empty_size)
1136 {
1137         struct btrfs_disk_key disk_key;
1138         struct extent_buffer *cow;
1139         int level, ret;
1140         int last_ref = 0;
1141         int unlock_orig = 0;
1142         u64 parent_start;
1143
1144         if (*cow_ret == buf)
1145                 unlock_orig = 1;
1146
1147         btrfs_assert_tree_locked(buf);
1148
1149         WARN_ON(root->ref_cows && trans->transid !=
1150                 root->fs_info->running_transaction->transid);
1151         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1152
1153         level = btrfs_header_level(buf);
1154
1155         if (level == 0)
1156                 btrfs_item_key(buf, &disk_key, 0);
1157         else
1158                 btrfs_node_key(buf, &disk_key, 0);
1159
1160         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161                 if (parent)
1162                         parent_start = parent->start;
1163                 else
1164                         parent_start = 0;
1165         } else
1166                 parent_start = 0;
1167
1168         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169                                      root->root_key.objectid, &disk_key,
1170                                      level, search_start, empty_size);
1171         if (IS_ERR(cow))
1172                 return PTR_ERR(cow);
1173
1174         /* cow is set to blocking by btrfs_init_new_buffer */
1175
1176         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177         btrfs_set_header_bytenr(cow, cow->start);
1178         btrfs_set_header_generation(cow, trans->transid);
1179         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181                                      BTRFS_HEADER_FLAG_RELOC);
1182         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184         else
1185                 btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1188                             BTRFS_FSID_SIZE);
1189
1190         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191         if (ret) {
1192                 btrfs_abort_transaction(trans, root, ret);
1193                 return ret;
1194         }
1195
1196         if (root->ref_cows) {
1197                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198                 if (ret)
1199                         return ret;
1200         }
1201
1202         if (buf == root->node) {
1203                 WARN_ON(parent && parent != buf);
1204                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206                         parent_start = buf->start;
1207                 else
1208                         parent_start = 0;
1209
1210                 extent_buffer_get(cow);
1211                 tree_mod_log_set_root_pointer(root, cow, 1);
1212                 rcu_assign_pointer(root->node, cow);
1213
1214                 btrfs_free_tree_block(trans, root, buf, parent_start,
1215                                       last_ref);
1216                 free_extent_buffer(buf);
1217                 add_root_to_dirty_list(root);
1218         } else {
1219                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220                         parent_start = parent->start;
1221                 else
1222                         parent_start = 0;
1223
1224                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1225                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1227                 btrfs_set_node_blockptr(parent, parent_slot,
1228                                         cow->start);
1229                 btrfs_set_node_ptr_generation(parent, parent_slot,
1230                                               trans->transid);
1231                 btrfs_mark_buffer_dirty(parent);
1232                 if (last_ref) {
1233                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1234                         if (ret) {
1235                                 btrfs_abort_transaction(trans, root, ret);
1236                                 return ret;
1237                         }
1238                 }
1239                 btrfs_free_tree_block(trans, root, buf, parent_start,
1240                                       last_ref);
1241         }
1242         if (unlock_orig)
1243                 btrfs_tree_unlock(buf);
1244         free_extent_buffer_stale(buf);
1245         btrfs_mark_buffer_dirty(cow);
1246         *cow_ret = cow;
1247         return 0;
1248 }
1249
1250 /*
1251  * returns the logical address of the oldest predecessor of the given root.
1252  * entries older than time_seq are ignored.
1253  */
1254 static struct tree_mod_elem *
1255 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256                            struct extent_buffer *eb_root, u64 time_seq)
1257 {
1258         struct tree_mod_elem *tm;
1259         struct tree_mod_elem *found = NULL;
1260         u64 root_logical = eb_root->start;
1261         int looped = 0;
1262
1263         if (!time_seq)
1264                 return NULL;
1265
1266         /*
1267          * the very last operation that's logged for a root is the replacement
1268          * operation (if it is replaced at all). this has the index of the *new*
1269          * root, making it the very first operation that's logged for this root.
1270          */
1271         while (1) {
1272                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273                                                 time_seq);
1274                 if (!looped && !tm)
1275                         return NULL;
1276                 /*
1277                  * if there are no tree operation for the oldest root, we simply
1278                  * return it. this should only happen if that (old) root is at
1279                  * level 0.
1280                  */
1281                 if (!tm)
1282                         break;
1283
1284                 /*
1285                  * if there's an operation that's not a root replacement, we
1286                  * found the oldest version of our root. normally, we'll find a
1287                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288                  */
1289                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1290                         break;
1291
1292                 found = tm;
1293                 root_logical = tm->old_root.logical;
1294                 looped = 1;
1295         }
1296
1297         /* if there's no old root to return, return what we found instead */
1298         if (!found)
1299                 found = tm;
1300
1301         return found;
1302 }
1303
1304 /*
1305  * tm is a pointer to the first operation to rewind within eb. then, all
1306  * previous operations will be rewinded (until we reach something older than
1307  * time_seq).
1308  */
1309 static void
1310 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311                       u64 time_seq, struct tree_mod_elem *first_tm)
1312 {
1313         u32 n;
1314         struct rb_node *next;
1315         struct tree_mod_elem *tm = first_tm;
1316         unsigned long o_dst;
1317         unsigned long o_src;
1318         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320         n = btrfs_header_nritems(eb);
1321         tree_mod_log_read_lock(fs_info);
1322         while (tm && tm->seq >= time_seq) {
1323                 /*
1324                  * all the operations are recorded with the operator used for
1325                  * the modification. as we're going backwards, we do the
1326                  * opposite of each operation here.
1327                  */
1328                 switch (tm->op) {
1329                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330                         BUG_ON(tm->slot < n);
1331                         /* Fallthrough */
1332                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333                 case MOD_LOG_KEY_REMOVE:
1334                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1335                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336                         btrfs_set_node_ptr_generation(eb, tm->slot,
1337                                                       tm->generation);
1338                         n++;
1339                         break;
1340                 case MOD_LOG_KEY_REPLACE:
1341                         BUG_ON(tm->slot >= n);
1342                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1343                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344                         btrfs_set_node_ptr_generation(eb, tm->slot,
1345                                                       tm->generation);
1346                         break;
1347                 case MOD_LOG_KEY_ADD:
1348                         /* if a move operation is needed it's in the log */
1349                         n--;
1350                         break;
1351                 case MOD_LOG_MOVE_KEYS:
1352                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354                         memmove_extent_buffer(eb, o_dst, o_src,
1355                                               tm->move.nr_items * p_size);
1356                         break;
1357                 case MOD_LOG_ROOT_REPLACE:
1358                         /*
1359                          * this operation is special. for roots, this must be
1360                          * handled explicitly before rewinding.
1361                          * for non-roots, this operation may exist if the node
1362                          * was a root: root A -> child B; then A gets empty and
1363                          * B is promoted to the new root. in the mod log, we'll
1364                          * have a root-replace operation for B, a tree block
1365                          * that is no root. we simply ignore that operation.
1366                          */
1367                         break;
1368                 }
1369                 next = rb_next(&tm->node);
1370                 if (!next)
1371                         break;
1372                 tm = container_of(next, struct tree_mod_elem, node);
1373                 if (tm->index != first_tm->index)
1374                         break;
1375         }
1376         tree_mod_log_read_unlock(fs_info);
1377         btrfs_set_header_nritems(eb, n);
1378 }
1379
1380 /*
1381  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382  * is returned. If rewind operations happen, a fresh buffer is returned. The
1383  * returned buffer is always read-locked. If the returned buffer is not the
1384  * input buffer, the lock on the input buffer is released and the input buffer
1385  * is freed (its refcount is decremented).
1386  */
1387 static struct extent_buffer *
1388 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389                     struct extent_buffer *eb, u64 time_seq)
1390 {
1391         struct extent_buffer *eb_rewin;
1392         struct tree_mod_elem *tm;
1393
1394         if (!time_seq)
1395                 return eb;
1396
1397         if (btrfs_header_level(eb) == 0)
1398                 return eb;
1399
1400         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401         if (!tm)
1402                 return eb;
1403
1404         btrfs_set_path_blocking(path);
1405         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408                 BUG_ON(tm->slot != 0);
1409                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410                                                 fs_info->tree_root->nodesize);
1411                 if (!eb_rewin) {
1412                         btrfs_tree_read_unlock_blocking(eb);
1413                         free_extent_buffer(eb);
1414                         return NULL;
1415                 }
1416                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1417                 btrfs_set_header_backref_rev(eb_rewin,
1418                                              btrfs_header_backref_rev(eb));
1419                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421         } else {
1422                 eb_rewin = btrfs_clone_extent_buffer(eb);
1423                 if (!eb_rewin) {
1424                         btrfs_tree_read_unlock_blocking(eb);
1425                         free_extent_buffer(eb);
1426                         return NULL;
1427                 }
1428         }
1429
1430         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431         btrfs_tree_read_unlock_blocking(eb);
1432         free_extent_buffer(eb);
1433
1434         extent_buffer_get(eb_rewin);
1435         btrfs_tree_read_lock(eb_rewin);
1436         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437         WARN_ON(btrfs_header_nritems(eb_rewin) >
1438                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440         return eb_rewin;
1441 }
1442
1443 /*
1444  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445  * value. If there are no changes, the current root->root_node is returned. If
1446  * anything changed in between, there's a fresh buffer allocated on which the
1447  * rewind operations are done. In any case, the returned buffer is read locked.
1448  * Returns NULL on error (with no locks held).
1449  */
1450 static inline struct extent_buffer *
1451 get_old_root(struct btrfs_root *root, u64 time_seq)
1452 {
1453         struct tree_mod_elem *tm;
1454         struct extent_buffer *eb = NULL;
1455         struct extent_buffer *eb_root;
1456         struct extent_buffer *old;
1457         struct tree_mod_root *old_root = NULL;
1458         u64 old_generation = 0;
1459         u64 logical;
1460         u32 blocksize;
1461
1462         eb_root = btrfs_read_lock_root_node(root);
1463         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464         if (!tm)
1465                 return eb_root;
1466
1467         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468                 old_root = &tm->old_root;
1469                 old_generation = tm->generation;
1470                 logical = old_root->logical;
1471         } else {
1472                 logical = eb_root->start;
1473         }
1474
1475         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477                 btrfs_tree_read_unlock(eb_root);
1478                 free_extent_buffer(eb_root);
1479                 blocksize = btrfs_level_size(root, old_root->level);
1480                 old = read_tree_block(root, logical, blocksize, 0);
1481                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482                         free_extent_buffer(old);
1483                         btrfs_warn(root->fs_info,
1484                                 "failed to read tree block %llu from get_old_root", logical);
1485                 } else {
1486                         eb = btrfs_clone_extent_buffer(old);
1487                         free_extent_buffer(old);
1488                 }
1489         } else if (old_root) {
1490                 btrfs_tree_read_unlock(eb_root);
1491                 free_extent_buffer(eb_root);
1492                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493         } else {
1494                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495                 eb = btrfs_clone_extent_buffer(eb_root);
1496                 btrfs_tree_read_unlock_blocking(eb_root);
1497                 free_extent_buffer(eb_root);
1498         }
1499
1500         if (!eb)
1501                 return NULL;
1502         extent_buffer_get(eb);
1503         btrfs_tree_read_lock(eb);
1504         if (old_root) {
1505                 btrfs_set_header_bytenr(eb, eb->start);
1506                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508                 btrfs_set_header_level(eb, old_root->level);
1509                 btrfs_set_header_generation(eb, old_generation);
1510         }
1511         if (tm)
1512                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513         else
1514                 WARN_ON(btrfs_header_level(eb) != 0);
1515         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517         return eb;
1518 }
1519
1520 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521 {
1522         struct tree_mod_elem *tm;
1523         int level;
1524         struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528                 level = tm->old_root.level;
1529         } else {
1530                 level = btrfs_header_level(eb_root);
1531         }
1532         free_extent_buffer(eb_root);
1533
1534         return level;
1535 }
1536
1537 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538                                    struct btrfs_root *root,
1539                                    struct extent_buffer *buf)
1540 {
1541         /* ensure we can see the force_cow */
1542         smp_rmb();
1543
1544         /*
1545          * We do not need to cow a block if
1546          * 1) this block is not created or changed in this transaction;
1547          * 2) this block does not belong to TREE_RELOC tree;
1548          * 3) the root is not forced COW.
1549          *
1550          * What is forced COW:
1551          *    when we create snapshot during commiting the transaction,
1552          *    after we've finished coping src root, we must COW the shared
1553          *    block to ensure the metadata consistency.
1554          */
1555         if (btrfs_header_generation(buf) == trans->transid &&
1556             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559             !root->force_cow)
1560                 return 0;
1561         return 1;
1562 }
1563
1564 /*
1565  * cows a single block, see __btrfs_cow_block for the real work.
1566  * This version of it has extra checks so that a block isn't cow'd more than
1567  * once per transaction, as long as it hasn't been written yet
1568  */
1569 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570                     struct btrfs_root *root, struct extent_buffer *buf,
1571                     struct extent_buffer *parent, int parent_slot,
1572                     struct extent_buffer **cow_ret)
1573 {
1574         u64 search_start;
1575         int ret;
1576
1577         if (trans->transaction != root->fs_info->running_transaction)
1578                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579                        trans->transid,
1580                        root->fs_info->running_transaction->transid);
1581
1582         if (trans->transid != root->fs_info->generation)
1583                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584                        trans->transid, root->fs_info->generation);
1585
1586         if (!should_cow_block(trans, root, buf)) {
1587                 *cow_ret = buf;
1588                 return 0;
1589         }
1590
1591         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593         if (parent)
1594                 btrfs_set_lock_blocking(parent);
1595         btrfs_set_lock_blocking(buf);
1596
1597         ret = __btrfs_cow_block(trans, root, buf, parent,
1598                                  parent_slot, cow_ret, search_start, 0);
1599
1600         trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602         return ret;
1603 }
1604
1605 /*
1606  * helper function for defrag to decide if two blocks pointed to by a
1607  * node are actually close by
1608  */
1609 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610 {
1611         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612                 return 1;
1613         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614                 return 1;
1615         return 0;
1616 }
1617
1618 /*
1619  * compare two keys in a memcmp fashion
1620  */
1621 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622 {
1623         struct btrfs_key k1;
1624
1625         btrfs_disk_key_to_cpu(&k1, disk);
1626
1627         return btrfs_comp_cpu_keys(&k1, k2);
1628 }
1629
1630 /*
1631  * same as comp_keys only with two btrfs_key's
1632  */
1633 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634 {
1635         if (k1->objectid > k2->objectid)
1636                 return 1;
1637         if (k1->objectid < k2->objectid)
1638                 return -1;
1639         if (k1->type > k2->type)
1640                 return 1;
1641         if (k1->type < k2->type)
1642                 return -1;
1643         if (k1->offset > k2->offset)
1644                 return 1;
1645         if (k1->offset < k2->offset)
1646                 return -1;
1647         return 0;
1648 }
1649
1650 /*
1651  * this is used by the defrag code to go through all the
1652  * leaves pointed to by a node and reallocate them so that
1653  * disk order is close to key order
1654  */
1655 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656                        struct btrfs_root *root, struct extent_buffer *parent,
1657                        int start_slot, u64 *last_ret,
1658                        struct btrfs_key *progress)
1659 {
1660         struct extent_buffer *cur;
1661         u64 blocknr;
1662         u64 gen;
1663         u64 search_start = *last_ret;
1664         u64 last_block = 0;
1665         u64 other;
1666         u32 parent_nritems;
1667         int end_slot;
1668         int i;
1669         int err = 0;
1670         int parent_level;
1671         int uptodate;
1672         u32 blocksize;
1673         int progress_passed = 0;
1674         struct btrfs_disk_key disk_key;
1675
1676         parent_level = btrfs_header_level(parent);
1677
1678         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679         WARN_ON(trans->transid != root->fs_info->generation);
1680
1681         parent_nritems = btrfs_header_nritems(parent);
1682         blocksize = btrfs_level_size(root, parent_level - 1);
1683         end_slot = parent_nritems;
1684
1685         if (parent_nritems == 1)
1686                 return 0;
1687
1688         btrfs_set_lock_blocking(parent);
1689
1690         for (i = start_slot; i < end_slot; i++) {
1691                 int close = 1;
1692
1693                 btrfs_node_key(parent, &disk_key, i);
1694                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695                         continue;
1696
1697                 progress_passed = 1;
1698                 blocknr = btrfs_node_blockptr(parent, i);
1699                 gen = btrfs_node_ptr_generation(parent, i);
1700                 if (last_block == 0)
1701                         last_block = blocknr;
1702
1703                 if (i > 0) {
1704                         other = btrfs_node_blockptr(parent, i - 1);
1705                         close = close_blocks(blocknr, other, blocksize);
1706                 }
1707                 if (!close && i < end_slot - 2) {
1708                         other = btrfs_node_blockptr(parent, i + 1);
1709                         close = close_blocks(blocknr, other, blocksize);
1710                 }
1711                 if (close) {
1712                         last_block = blocknr;
1713                         continue;
1714                 }
1715
1716                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717                 if (cur)
1718                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719                 else
1720                         uptodate = 0;
1721                 if (!cur || !uptodate) {
1722                         if (!cur) {
1723                                 cur = read_tree_block(root, blocknr,
1724                                                          blocksize, gen);
1725                                 if (!cur || !extent_buffer_uptodate(cur)) {
1726                                         free_extent_buffer(cur);
1727                                         return -EIO;
1728                                 }
1729                         } else if (!uptodate) {
1730                                 err = btrfs_read_buffer(cur, gen);
1731                                 if (err) {
1732                                         free_extent_buffer(cur);
1733                                         return err;
1734                                 }
1735                         }
1736                 }
1737                 if (search_start == 0)
1738                         search_start = last_block;
1739
1740                 btrfs_tree_lock(cur);
1741                 btrfs_set_lock_blocking(cur);
1742                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1743                                         &cur, search_start,
1744                                         min(16 * blocksize,
1745                                             (end_slot - i) * blocksize));
1746                 if (err) {
1747                         btrfs_tree_unlock(cur);
1748                         free_extent_buffer(cur);
1749                         break;
1750                 }
1751                 search_start = cur->start;
1752                 last_block = cur->start;
1753                 *last_ret = search_start;
1754                 btrfs_tree_unlock(cur);
1755                 free_extent_buffer(cur);
1756         }
1757         return err;
1758 }
1759
1760 /*
1761  * The leaf data grows from end-to-front in the node.
1762  * this returns the address of the start of the last item,
1763  * which is the stop of the leaf data stack
1764  */
1765 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766                                          struct extent_buffer *leaf)
1767 {
1768         u32 nr = btrfs_header_nritems(leaf);
1769         if (nr == 0)
1770                 return BTRFS_LEAF_DATA_SIZE(root);
1771         return btrfs_item_offset_nr(leaf, nr - 1);
1772 }
1773
1774
1775 /*
1776  * search for key in the extent_buffer.  The items start at offset p,
1777  * and they are item_size apart.  There are 'max' items in p.
1778  *
1779  * the slot in the array is returned via slot, and it points to
1780  * the place where you would insert key if it is not found in
1781  * the array.
1782  *
1783  * slot may point to max if the key is bigger than all of the keys
1784  */
1785 static noinline int generic_bin_search(struct extent_buffer *eb,
1786                                        unsigned long p,
1787                                        int item_size, struct btrfs_key *key,
1788                                        int max, int *slot)
1789 {
1790         int low = 0;
1791         int high = max;
1792         int mid;
1793         int ret;
1794         struct btrfs_disk_key *tmp = NULL;
1795         struct btrfs_disk_key unaligned;
1796         unsigned long offset;
1797         char *kaddr = NULL;
1798         unsigned long map_start = 0;
1799         unsigned long map_len = 0;
1800         int err;
1801
1802         while (low < high) {
1803                 mid = (low + high) / 2;
1804                 offset = p + mid * item_size;
1805
1806                 if (!kaddr || offset < map_start ||
1807                     (offset + sizeof(struct btrfs_disk_key)) >
1808                     map_start + map_len) {
1809
1810                         err = map_private_extent_buffer(eb, offset,
1811                                                 sizeof(struct btrfs_disk_key),
1812                                                 &kaddr, &map_start, &map_len);
1813
1814                         if (!err) {
1815                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816                                                         map_start);
1817                         } else {
1818                                 read_extent_buffer(eb, &unaligned,
1819                                                    offset, sizeof(unaligned));
1820                                 tmp = &unaligned;
1821                         }
1822
1823                 } else {
1824                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825                                                         map_start);
1826                 }
1827                 ret = comp_keys(tmp, key);
1828
1829                 if (ret < 0)
1830                         low = mid + 1;
1831                 else if (ret > 0)
1832                         high = mid;
1833                 else {
1834                         *slot = mid;
1835                         return 0;
1836                 }
1837         }
1838         *slot = low;
1839         return 1;
1840 }
1841
1842 /*
1843  * simple bin_search frontend that does the right thing for
1844  * leaves vs nodes
1845  */
1846 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847                       int level, int *slot)
1848 {
1849         if (level == 0)
1850                 return generic_bin_search(eb,
1851                                           offsetof(struct btrfs_leaf, items),
1852                                           sizeof(struct btrfs_item),
1853                                           key, btrfs_header_nritems(eb),
1854                                           slot);
1855         else
1856                 return generic_bin_search(eb,
1857                                           offsetof(struct btrfs_node, ptrs),
1858                                           sizeof(struct btrfs_key_ptr),
1859                                           key, btrfs_header_nritems(eb),
1860                                           slot);
1861 }
1862
1863 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864                      int level, int *slot)
1865 {
1866         return bin_search(eb, key, level, slot);
1867 }
1868
1869 static void root_add_used(struct btrfs_root *root, u32 size)
1870 {
1871         spin_lock(&root->accounting_lock);
1872         btrfs_set_root_used(&root->root_item,
1873                             btrfs_root_used(&root->root_item) + size);
1874         spin_unlock(&root->accounting_lock);
1875 }
1876
1877 static void root_sub_used(struct btrfs_root *root, u32 size)
1878 {
1879         spin_lock(&root->accounting_lock);
1880         btrfs_set_root_used(&root->root_item,
1881                             btrfs_root_used(&root->root_item) - size);
1882         spin_unlock(&root->accounting_lock);
1883 }
1884
1885 /* given a node and slot number, this reads the blocks it points to.  The
1886  * extent buffer is returned with a reference taken (but unlocked).
1887  * NULL is returned on error.
1888  */
1889 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890                                    struct extent_buffer *parent, int slot)
1891 {
1892         int level = btrfs_header_level(parent);
1893         struct extent_buffer *eb;
1894
1895         if (slot < 0)
1896                 return NULL;
1897         if (slot >= btrfs_header_nritems(parent))
1898                 return NULL;
1899
1900         BUG_ON(level == 0);
1901
1902         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903                              btrfs_level_size(root, level - 1),
1904                              btrfs_node_ptr_generation(parent, slot));
1905         if (eb && !extent_buffer_uptodate(eb)) {
1906                 free_extent_buffer(eb);
1907                 eb = NULL;
1908         }
1909
1910         return eb;
1911 }
1912
1913 /*
1914  * node level balancing, used to make sure nodes are in proper order for
1915  * item deletion.  We balance from the top down, so we have to make sure
1916  * that a deletion won't leave an node completely empty later on.
1917  */
1918 static noinline int balance_level(struct btrfs_trans_handle *trans,
1919                          struct btrfs_root *root,
1920                          struct btrfs_path *path, int level)
1921 {
1922         struct extent_buffer *right = NULL;
1923         struct extent_buffer *mid;
1924         struct extent_buffer *left = NULL;
1925         struct extent_buffer *parent = NULL;
1926         int ret = 0;
1927         int wret;
1928         int pslot;
1929         int orig_slot = path->slots[level];
1930         u64 orig_ptr;
1931
1932         if (level == 0)
1933                 return 0;
1934
1935         mid = path->nodes[level];
1936
1937         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943         if (level < BTRFS_MAX_LEVEL - 1) {
1944                 parent = path->nodes[level + 1];
1945                 pslot = path->slots[level + 1];
1946         }
1947
1948         /*
1949          * deal with the case where there is only one pointer in the root
1950          * by promoting the node below to a root
1951          */
1952         if (!parent) {
1953                 struct extent_buffer *child;
1954
1955                 if (btrfs_header_nritems(mid) != 1)
1956                         return 0;
1957
1958                 /* promote the child to a root */
1959                 child = read_node_slot(root, mid, 0);
1960                 if (!child) {
1961                         ret = -EROFS;
1962                         btrfs_std_error(root->fs_info, ret);
1963                         goto enospc;
1964                 }
1965
1966                 btrfs_tree_lock(child);
1967                 btrfs_set_lock_blocking(child);
1968                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969                 if (ret) {
1970                         btrfs_tree_unlock(child);
1971                         free_extent_buffer(child);
1972                         goto enospc;
1973                 }
1974
1975                 tree_mod_log_set_root_pointer(root, child, 1);
1976                 rcu_assign_pointer(root->node, child);
1977
1978                 add_root_to_dirty_list(root);
1979                 btrfs_tree_unlock(child);
1980
1981                 path->locks[level] = 0;
1982                 path->nodes[level] = NULL;
1983                 clean_tree_block(trans, root, mid);
1984                 btrfs_tree_unlock(mid);
1985                 /* once for the path */
1986                 free_extent_buffer(mid);
1987
1988                 root_sub_used(root, mid->len);
1989                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1990                 /* once for the root ptr */
1991                 free_extent_buffer_stale(mid);
1992                 return 0;
1993         }
1994         if (btrfs_header_nritems(mid) >
1995             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996                 return 0;
1997
1998         left = read_node_slot(root, parent, pslot - 1);
1999         if (left) {
2000                 btrfs_tree_lock(left);
2001                 btrfs_set_lock_blocking(left);
2002                 wret = btrfs_cow_block(trans, root, left,
2003                                        parent, pslot - 1, &left);
2004                 if (wret) {
2005                         ret = wret;
2006                         goto enospc;
2007                 }
2008         }
2009         right = read_node_slot(root, parent, pslot + 1);
2010         if (right) {
2011                 btrfs_tree_lock(right);
2012                 btrfs_set_lock_blocking(right);
2013                 wret = btrfs_cow_block(trans, root, right,
2014                                        parent, pslot + 1, &right);
2015                 if (wret) {
2016                         ret = wret;
2017                         goto enospc;
2018                 }
2019         }
2020
2021         /* first, try to make some room in the middle buffer */
2022         if (left) {
2023                 orig_slot += btrfs_header_nritems(left);
2024                 wret = push_node_left(trans, root, left, mid, 1);
2025                 if (wret < 0)
2026                         ret = wret;
2027         }
2028
2029         /*
2030          * then try to empty the right most buffer into the middle
2031          */
2032         if (right) {
2033                 wret = push_node_left(trans, root, mid, right, 1);
2034                 if (wret < 0 && wret != -ENOSPC)
2035                         ret = wret;
2036                 if (btrfs_header_nritems(right) == 0) {
2037                         clean_tree_block(trans, root, right);
2038                         btrfs_tree_unlock(right);
2039                         del_ptr(root, path, level + 1, pslot + 1);
2040                         root_sub_used(root, right->len);
2041                         btrfs_free_tree_block(trans, root, right, 0, 1);
2042                         free_extent_buffer_stale(right);
2043                         right = NULL;
2044                 } else {
2045                         struct btrfs_disk_key right_key;
2046                         btrfs_node_key(right, &right_key, 0);
2047                         tree_mod_log_set_node_key(root->fs_info, parent,
2048                                                   pslot + 1, 0);
2049                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2050                         btrfs_mark_buffer_dirty(parent);
2051                 }
2052         }
2053         if (btrfs_header_nritems(mid) == 1) {
2054                 /*
2055                  * we're not allowed to leave a node with one item in the
2056                  * tree during a delete.  A deletion from lower in the tree
2057                  * could try to delete the only pointer in this node.
2058                  * So, pull some keys from the left.
2059                  * There has to be a left pointer at this point because
2060                  * otherwise we would have pulled some pointers from the
2061                  * right
2062                  */
2063                 if (!left) {
2064                         ret = -EROFS;
2065                         btrfs_std_error(root->fs_info, ret);
2066                         goto enospc;
2067                 }
2068                 wret = balance_node_right(trans, root, mid, left);
2069                 if (wret < 0) {
2070                         ret = wret;
2071                         goto enospc;
2072                 }
2073                 if (wret == 1) {
2074                         wret = push_node_left(trans, root, left, mid, 1);
2075                         if (wret < 0)
2076                                 ret = wret;
2077                 }
2078                 BUG_ON(wret == 1);
2079         }
2080         if (btrfs_header_nritems(mid) == 0) {
2081                 clean_tree_block(trans, root, mid);
2082                 btrfs_tree_unlock(mid);
2083                 del_ptr(root, path, level + 1, pslot);
2084                 root_sub_used(root, mid->len);
2085                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2086                 free_extent_buffer_stale(mid);
2087                 mid = NULL;
2088         } else {
2089                 /* update the parent key to reflect our changes */
2090                 struct btrfs_disk_key mid_key;
2091                 btrfs_node_key(mid, &mid_key, 0);
2092                 tree_mod_log_set_node_key(root->fs_info, parent,
2093                                           pslot, 0);
2094                 btrfs_set_node_key(parent, &mid_key, pslot);
2095                 btrfs_mark_buffer_dirty(parent);
2096         }
2097
2098         /* update the path */
2099         if (left) {
2100                 if (btrfs_header_nritems(left) > orig_slot) {
2101                         extent_buffer_get(left);
2102                         /* left was locked after cow */
2103                         path->nodes[level] = left;
2104                         path->slots[level + 1] -= 1;
2105                         path->slots[level] = orig_slot;
2106                         if (mid) {
2107                                 btrfs_tree_unlock(mid);
2108                                 free_extent_buffer(mid);
2109                         }
2110                 } else {
2111                         orig_slot -= btrfs_header_nritems(left);
2112                         path->slots[level] = orig_slot;
2113                 }
2114         }
2115         /* double check we haven't messed things up */
2116         if (orig_ptr !=
2117             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118                 BUG();
2119 enospc:
2120         if (right) {
2121                 btrfs_tree_unlock(right);
2122                 free_extent_buffer(right);
2123         }
2124         if (left) {
2125                 if (path->nodes[level] != left)
2126                         btrfs_tree_unlock(left);
2127                 free_extent_buffer(left);
2128         }
2129         return ret;
2130 }
2131
2132 /* Node balancing for insertion.  Here we only split or push nodes around
2133  * when they are completely full.  This is also done top down, so we
2134  * have to be pessimistic.
2135  */
2136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137                                           struct btrfs_root *root,
2138                                           struct btrfs_path *path, int level)
2139 {
2140         struct extent_buffer *right = NULL;
2141         struct extent_buffer *mid;
2142         struct extent_buffer *left = NULL;
2143         struct extent_buffer *parent = NULL;
2144         int ret = 0;
2145         int wret;
2146         int pslot;
2147         int orig_slot = path->slots[level];
2148
2149         if (level == 0)
2150                 return 1;
2151
2152         mid = path->nodes[level];
2153         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155         if (level < BTRFS_MAX_LEVEL - 1) {
2156                 parent = path->nodes[level + 1];
2157                 pslot = path->slots[level + 1];
2158         }
2159
2160         if (!parent)
2161                 return 1;
2162
2163         left = read_node_slot(root, parent, pslot - 1);
2164
2165         /* first, try to make some room in the middle buffer */
2166         if (left) {
2167                 u32 left_nr;
2168
2169                 btrfs_tree_lock(left);
2170                 btrfs_set_lock_blocking(left);
2171
2172                 left_nr = btrfs_header_nritems(left);
2173                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174                         wret = 1;
2175                 } else {
2176                         ret = btrfs_cow_block(trans, root, left, parent,
2177                                               pslot - 1, &left);
2178                         if (ret)
2179                                 wret = 1;
2180                         else {
2181                                 wret = push_node_left(trans, root,
2182                                                       left, mid, 0);
2183                         }
2184                 }
2185                 if (wret < 0)
2186                         ret = wret;
2187                 if (wret == 0) {
2188                         struct btrfs_disk_key disk_key;
2189                         orig_slot += left_nr;
2190                         btrfs_node_key(mid, &disk_key, 0);
2191                         tree_mod_log_set_node_key(root->fs_info, parent,
2192                                                   pslot, 0);
2193                         btrfs_set_node_key(parent, &disk_key, pslot);
2194                         btrfs_mark_buffer_dirty(parent);
2195                         if (btrfs_header_nritems(left) > orig_slot) {
2196                                 path->nodes[level] = left;
2197                                 path->slots[level + 1] -= 1;
2198                                 path->slots[level] = orig_slot;
2199                                 btrfs_tree_unlock(mid);
2200                                 free_extent_buffer(mid);
2201                         } else {
2202                                 orig_slot -=
2203                                         btrfs_header_nritems(left);
2204                                 path->slots[level] = orig_slot;
2205                                 btrfs_tree_unlock(left);
2206                                 free_extent_buffer(left);
2207                         }
2208                         return 0;
2209                 }
2210                 btrfs_tree_unlock(left);
2211                 free_extent_buffer(left);
2212         }
2213         right = read_node_slot(root, parent, pslot + 1);
2214
2215         /*
2216          * then try to empty the right most buffer into the middle
2217          */
2218         if (right) {
2219                 u32 right_nr;
2220
2221                 btrfs_tree_lock(right);
2222                 btrfs_set_lock_blocking(right);
2223
2224                 right_nr = btrfs_header_nritems(right);
2225                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226                         wret = 1;
2227                 } else {
2228                         ret = btrfs_cow_block(trans, root, right,
2229                                               parent, pslot + 1,
2230                                               &right);
2231                         if (ret)
2232                                 wret = 1;
2233                         else {
2234                                 wret = balance_node_right(trans, root,
2235                                                           right, mid);
2236                         }
2237                 }
2238                 if (wret < 0)
2239                         ret = wret;
2240                 if (wret == 0) {
2241                         struct btrfs_disk_key disk_key;
2242
2243                         btrfs_node_key(right, &disk_key, 0);
2244                         tree_mod_log_set_node_key(root->fs_info, parent,
2245                                                   pslot + 1, 0);
2246                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247                         btrfs_mark_buffer_dirty(parent);
2248
2249                         if (btrfs_header_nritems(mid) <= orig_slot) {
2250                                 path->nodes[level] = right;
2251                                 path->slots[level + 1] += 1;
2252                                 path->slots[level] = orig_slot -
2253                                         btrfs_header_nritems(mid);
2254                                 btrfs_tree_unlock(mid);
2255                                 free_extent_buffer(mid);
2256                         } else {
2257                                 btrfs_tree_unlock(right);
2258                                 free_extent_buffer(right);
2259                         }
2260                         return 0;
2261                 }
2262                 btrfs_tree_unlock(right);
2263                 free_extent_buffer(right);
2264         }
2265         return 1;
2266 }
2267
2268 /*
2269  * readahead one full node of leaves, finding things that are close
2270  * to the block in 'slot', and triggering ra on them.
2271  */
2272 static void reada_for_search(struct btrfs_root *root,
2273                              struct btrfs_path *path,
2274                              int level, int slot, u64 objectid)
2275 {
2276         struct extent_buffer *node;
2277         struct btrfs_disk_key disk_key;
2278         u32 nritems;
2279         u64 search;
2280         u64 target;
2281         u64 nread = 0;
2282         u64 gen;
2283         int direction = path->reada;
2284         struct extent_buffer *eb;
2285         u32 nr;
2286         u32 blocksize;
2287         u32 nscan = 0;
2288
2289         if (level != 1)
2290                 return;
2291
2292         if (!path->nodes[level])
2293                 return;
2294
2295         node = path->nodes[level];
2296
2297         search = btrfs_node_blockptr(node, slot);
2298         blocksize = btrfs_level_size(root, level - 1);
2299         eb = btrfs_find_tree_block(root, search, blocksize);
2300         if (eb) {
2301                 free_extent_buffer(eb);
2302                 return;
2303         }
2304
2305         target = search;
2306
2307         nritems = btrfs_header_nritems(node);
2308         nr = slot;
2309
2310         while (1) {
2311                 if (direction < 0) {
2312                         if (nr == 0)
2313                                 break;
2314                         nr--;
2315                 } else if (direction > 0) {
2316                         nr++;
2317                         if (nr >= nritems)
2318                                 break;
2319                 }
2320                 if (path->reada < 0 && objectid) {
2321                         btrfs_node_key(node, &disk_key, nr);
2322                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323                                 break;
2324                 }
2325                 search = btrfs_node_blockptr(node, nr);
2326                 if ((search <= target && target - search <= 65536) ||
2327                     (search > target && search - target <= 65536)) {
2328                         gen = btrfs_node_ptr_generation(node, nr);
2329                         readahead_tree_block(root, search, blocksize, gen);
2330                         nread += blocksize;
2331                 }
2332                 nscan++;
2333                 if ((nread > 65536 || nscan > 32))
2334                         break;
2335         }
2336 }
2337
2338 static noinline void reada_for_balance(struct btrfs_root *root,
2339                                        struct btrfs_path *path, int level)
2340 {
2341         int slot;
2342         int nritems;
2343         struct extent_buffer *parent;
2344         struct extent_buffer *eb;
2345         u64 gen;
2346         u64 block1 = 0;
2347         u64 block2 = 0;
2348         int blocksize;
2349
2350         parent = path->nodes[level + 1];
2351         if (!parent)
2352                 return;
2353
2354         nritems = btrfs_header_nritems(parent);
2355         slot = path->slots[level + 1];
2356         blocksize = btrfs_level_size(root, level);
2357
2358         if (slot > 0) {
2359                 block1 = btrfs_node_blockptr(parent, slot - 1);
2360                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2361                 eb = btrfs_find_tree_block(root, block1, blocksize);
2362                 /*
2363                  * if we get -eagain from btrfs_buffer_uptodate, we
2364                  * don't want to return eagain here.  That will loop
2365                  * forever
2366                  */
2367                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368                         block1 = 0;
2369                 free_extent_buffer(eb);
2370         }
2371         if (slot + 1 < nritems) {
2372                 block2 = btrfs_node_blockptr(parent, slot + 1);
2373                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2374                 eb = btrfs_find_tree_block(root, block2, blocksize);
2375                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376                         block2 = 0;
2377                 free_extent_buffer(eb);
2378         }
2379
2380         if (block1)
2381                 readahead_tree_block(root, block1, blocksize, 0);
2382         if (block2)
2383                 readahead_tree_block(root, block2, blocksize, 0);
2384 }
2385
2386
2387 /*
2388  * when we walk down the tree, it is usually safe to unlock the higher layers
2389  * in the tree.  The exceptions are when our path goes through slot 0, because
2390  * operations on the tree might require changing key pointers higher up in the
2391  * tree.
2392  *
2393  * callers might also have set path->keep_locks, which tells this code to keep
2394  * the lock if the path points to the last slot in the block.  This is part of
2395  * walking through the tree, and selecting the next slot in the higher block.
2396  *
2397  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2398  * if lowest_unlock is 1, level 0 won't be unlocked
2399  */
2400 static noinline void unlock_up(struct btrfs_path *path, int level,
2401                                int lowest_unlock, int min_write_lock_level,
2402                                int *write_lock_level)
2403 {
2404         int i;
2405         int skip_level = level;
2406         int no_skips = 0;
2407         struct extent_buffer *t;
2408
2409         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410                 if (!path->nodes[i])
2411                         break;
2412                 if (!path->locks[i])
2413                         break;
2414                 if (!no_skips && path->slots[i] == 0) {
2415                         skip_level = i + 1;
2416                         continue;
2417                 }
2418                 if (!no_skips && path->keep_locks) {
2419                         u32 nritems;
2420                         t = path->nodes[i];
2421                         nritems = btrfs_header_nritems(t);
2422                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423                                 skip_level = i + 1;
2424                                 continue;
2425                         }
2426                 }
2427                 if (skip_level < i && i >= lowest_unlock)
2428                         no_skips = 1;
2429
2430                 t = path->nodes[i];
2431                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432                         btrfs_tree_unlock_rw(t, path->locks[i]);
2433                         path->locks[i] = 0;
2434                         if (write_lock_level &&
2435                             i > min_write_lock_level &&
2436                             i <= *write_lock_level) {
2437                                 *write_lock_level = i - 1;
2438                         }
2439                 }
2440         }
2441 }
2442
2443 /*
2444  * This releases any locks held in the path starting at level and
2445  * going all the way up to the root.
2446  *
2447  * btrfs_search_slot will keep the lock held on higher nodes in a few
2448  * corner cases, such as COW of the block at slot zero in the node.  This
2449  * ignores those rules, and it should only be called when there are no
2450  * more updates to be done higher up in the tree.
2451  */
2452 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453 {
2454         int i;
2455
2456         if (path->keep_locks)
2457                 return;
2458
2459         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460                 if (!path->nodes[i])
2461                         continue;
2462                 if (!path->locks[i])
2463                         continue;
2464                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465                 path->locks[i] = 0;
2466         }
2467 }
2468
2469 /*
2470  * helper function for btrfs_search_slot.  The goal is to find a block
2471  * in cache without setting the path to blocking.  If we find the block
2472  * we return zero and the path is unchanged.
2473  *
2474  * If we can't find the block, we set the path blocking and do some
2475  * reada.  -EAGAIN is returned and the search must be repeated.
2476  */
2477 static int
2478 read_block_for_search(struct btrfs_trans_handle *trans,
2479                        struct btrfs_root *root, struct btrfs_path *p,
2480                        struct extent_buffer **eb_ret, int level, int slot,
2481                        struct btrfs_key *key, u64 time_seq)
2482 {
2483         u64 blocknr;
2484         u64 gen;
2485         u32 blocksize;
2486         struct extent_buffer *b = *eb_ret;
2487         struct extent_buffer *tmp;
2488         int ret;
2489
2490         blocknr = btrfs_node_blockptr(b, slot);
2491         gen = btrfs_node_ptr_generation(b, slot);
2492         blocksize = btrfs_level_size(root, level - 1);
2493
2494         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495         if (tmp) {
2496                 /* first we do an atomic uptodate check */
2497                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2498                         *eb_ret = tmp;
2499                         return 0;
2500                 }
2501
2502                 /* the pages were up to date, but we failed
2503                  * the generation number check.  Do a full
2504                  * read for the generation number that is correct.
2505                  * We must do this without dropping locks so
2506                  * we can trust our generation number
2507                  */
2508                 btrfs_set_path_blocking(p);
2509
2510                 /* now we're allowed to do a blocking uptodate check */
2511                 ret = btrfs_read_buffer(tmp, gen);
2512                 if (!ret) {
2513                         *eb_ret = tmp;
2514                         return 0;
2515                 }
2516                 free_extent_buffer(tmp);
2517                 btrfs_release_path(p);
2518                 return -EIO;
2519         }
2520
2521         /*
2522          * reduce lock contention at high levels
2523          * of the btree by dropping locks before
2524          * we read.  Don't release the lock on the current
2525          * level because we need to walk this node to figure
2526          * out which blocks to read.
2527          */
2528         btrfs_unlock_up_safe(p, level + 1);
2529         btrfs_set_path_blocking(p);
2530
2531         free_extent_buffer(tmp);
2532         if (p->reada)
2533                 reada_for_search(root, p, level, slot, key->objectid);
2534
2535         btrfs_release_path(p);
2536
2537         ret = -EAGAIN;
2538         tmp = read_tree_block(root, blocknr, blocksize, 0);
2539         if (tmp) {
2540                 /*
2541                  * If the read above didn't mark this buffer up to date,
2542                  * it will never end up being up to date.  Set ret to EIO now
2543                  * and give up so that our caller doesn't loop forever
2544                  * on our EAGAINs.
2545                  */
2546                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547                         ret = -EIO;
2548                 free_extent_buffer(tmp);
2549         }
2550         return ret;
2551 }
2552
2553 /*
2554  * helper function for btrfs_search_slot.  This does all of the checks
2555  * for node-level blocks and does any balancing required based on
2556  * the ins_len.
2557  *
2558  * If no extra work was required, zero is returned.  If we had to
2559  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560  * start over
2561  */
2562 static int
2563 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564                        struct btrfs_root *root, struct btrfs_path *p,
2565                        struct extent_buffer *b, int level, int ins_len,
2566                        int *write_lock_level)
2567 {
2568         int ret;
2569         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571                 int sret;
2572
2573                 if (*write_lock_level < level + 1) {
2574                         *write_lock_level = level + 1;
2575                         btrfs_release_path(p);
2576                         goto again;
2577                 }
2578
2579                 btrfs_set_path_blocking(p);
2580                 reada_for_balance(root, p, level);
2581                 sret = split_node(trans, root, p, level);
2582                 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                 BUG_ON(sret > 0);
2585                 if (sret) {
2586                         ret = sret;
2587                         goto done;
2588                 }
2589                 b = p->nodes[level];
2590         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2591                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592                 int sret;
2593
2594                 if (*write_lock_level < level + 1) {
2595                         *write_lock_level = level + 1;
2596                         btrfs_release_path(p);
2597                         goto again;
2598                 }
2599
2600                 btrfs_set_path_blocking(p);
2601                 reada_for_balance(root, p, level);
2602                 sret = balance_level(trans, root, p, level);
2603                 btrfs_clear_path_blocking(p, NULL, 0);
2604
2605                 if (sret) {
2606                         ret = sret;
2607                         goto done;
2608                 }
2609                 b = p->nodes[level];
2610                 if (!b) {
2611                         btrfs_release_path(p);
2612                         goto again;
2613                 }
2614                 BUG_ON(btrfs_header_nritems(b) == 1);
2615         }
2616         return 0;
2617
2618 again:
2619         ret = -EAGAIN;
2620 done:
2621         return ret;
2622 }
2623
2624 static void key_search_validate(struct extent_buffer *b,
2625                                 struct btrfs_key *key,
2626                                 int level)
2627 {
2628 #ifdef CONFIG_BTRFS_ASSERT
2629         struct btrfs_disk_key disk_key;
2630
2631         btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633         if (level == 0)
2634                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635                     offsetof(struct btrfs_leaf, items[0].key),
2636                     sizeof(disk_key)));
2637         else
2638                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639                     offsetof(struct btrfs_node, ptrs[0].key),
2640                     sizeof(disk_key)));
2641 #endif
2642 }
2643
2644 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645                       int level, int *prev_cmp, int *slot)
2646 {
2647         if (*prev_cmp != 0) {
2648                 *prev_cmp = bin_search(b, key, level, slot);
2649                 return *prev_cmp;
2650         }
2651
2652         key_search_validate(b, key, level);
2653         *slot = 0;
2654
2655         return 0;
2656 }
2657
2658 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659                 u64 iobjectid, u64 ioff, u8 key_type,
2660                 struct btrfs_key *found_key)
2661 {
2662         int ret;
2663         struct btrfs_key key;
2664         struct extent_buffer *eb;
2665         struct btrfs_path *path;
2666
2667         key.type = key_type;
2668         key.objectid = iobjectid;
2669         key.offset = ioff;
2670
2671         if (found_path == NULL) {
2672                 path = btrfs_alloc_path();
2673                 if (!path)
2674                         return -ENOMEM;
2675         } else
2676                 path = found_path;
2677
2678         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679         if ((ret < 0) || (found_key == NULL)) {
2680                 if (path != found_path)
2681                         btrfs_free_path(path);
2682                 return ret;
2683         }
2684
2685         eb = path->nodes[0];
2686         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687                 ret = btrfs_next_leaf(fs_root, path);
2688                 if (ret)
2689                         return ret;
2690                 eb = path->nodes[0];
2691         }
2692
2693         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694         if (found_key->type != key.type ||
2695                         found_key->objectid != key.objectid)
2696                 return 1;
2697
2698         return 0;
2699 }
2700
2701 /*
2702  * look for key in the tree.  path is filled in with nodes along the way
2703  * if key is found, we return zero and you can find the item in the leaf
2704  * level of the path (level 0)
2705  *
2706  * If the key isn't found, the path points to the slot where it should
2707  * be inserted, and 1 is returned.  If there are other errors during the
2708  * search a negative error number is returned.
2709  *
2710  * if ins_len > 0, nodes and leaves will be split as we walk down the
2711  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2712  * possible)
2713  */
2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2716                       ins_len, int cow)
2717 {
2718         struct extent_buffer *b;
2719         int slot;
2720         int ret;
2721         int err;
2722         int level;
2723         int lowest_unlock = 1;
2724         int root_lock;
2725         /* everything at write_lock_level or lower must be write locked */
2726         int write_lock_level = 0;
2727         u8 lowest_level = 0;
2728         int min_write_lock_level;
2729         int prev_cmp;
2730
2731         lowest_level = p->lowest_level;
2732         WARN_ON(lowest_level && ins_len > 0);
2733         WARN_ON(p->nodes[0] != NULL);
2734         BUG_ON(!cow && ins_len);
2735
2736         if (ins_len < 0) {
2737                 lowest_unlock = 2;
2738
2739                 /* when we are removing items, we might have to go up to level
2740                  * two as we update tree pointers  Make sure we keep write
2741                  * for those levels as well
2742                  */
2743                 write_lock_level = 2;
2744         } else if (ins_len > 0) {
2745                 /*
2746                  * for inserting items, make sure we have a write lock on
2747                  * level 1 so we can update keys
2748                  */
2749                 write_lock_level = 1;
2750         }
2751
2752         if (!cow)
2753                 write_lock_level = -1;
2754
2755         if (cow && (p->keep_locks || p->lowest_level))
2756                 write_lock_level = BTRFS_MAX_LEVEL;
2757
2758         min_write_lock_level = write_lock_level;
2759
2760 again:
2761         prev_cmp = -1;
2762         /*
2763          * we try very hard to do read locks on the root
2764          */
2765         root_lock = BTRFS_READ_LOCK;
2766         level = 0;
2767         if (p->search_commit_root) {
2768                 /*
2769                  * the commit roots are read only
2770                  * so we always do read locks
2771                  */
2772                 if (p->need_commit_sem)
2773                         down_read(&root->fs_info->commit_root_sem);
2774                 b = root->commit_root;
2775                 extent_buffer_get(b);
2776                 level = btrfs_header_level(b);
2777                 if (p->need_commit_sem)
2778                         up_read(&root->fs_info->commit_root_sem);
2779                 if (!p->skip_locking)
2780                         btrfs_tree_read_lock(b);
2781         } else {
2782                 if (p->skip_locking) {
2783                         b = btrfs_root_node(root);
2784                         level = btrfs_header_level(b);
2785                 } else {
2786                         /* we don't know the level of the root node
2787                          * until we actually have it read locked
2788                          */
2789                         b = btrfs_read_lock_root_node(root);
2790                         level = btrfs_header_level(b);
2791                         if (level <= write_lock_level) {
2792                                 /* whoops, must trade for write lock */
2793                                 btrfs_tree_read_unlock(b);
2794                                 free_extent_buffer(b);
2795                                 b = btrfs_lock_root_node(root);
2796                                 root_lock = BTRFS_WRITE_LOCK;
2797
2798                                 /* the level might have changed, check again */
2799                                 level = btrfs_header_level(b);
2800                         }
2801                 }
2802         }
2803         p->nodes[level] = b;
2804         if (!p->skip_locking)
2805                 p->locks[level] = root_lock;
2806
2807         while (b) {
2808                 level = btrfs_header_level(b);
2809
2810                 /*
2811                  * setup the path here so we can release it under lock
2812                  * contention with the cow code
2813                  */
2814                 if (cow) {
2815                         /*
2816                          * if we don't really need to cow this block
2817                          * then we don't want to set the path blocking,
2818                          * so we test it here
2819                          */
2820                         if (!should_cow_block(trans, root, b))
2821                                 goto cow_done;
2822
2823                         btrfs_set_path_blocking(p);
2824
2825                         /*
2826                          * must have write locks on this node and the
2827                          * parent
2828                          */
2829                         if (level > write_lock_level ||
2830                             (level + 1 > write_lock_level &&
2831                             level + 1 < BTRFS_MAX_LEVEL &&
2832                             p->nodes[level + 1])) {
2833                                 write_lock_level = level + 1;
2834                                 btrfs_release_path(p);
2835                                 goto again;
2836                         }
2837
2838                         err = btrfs_cow_block(trans, root, b,
2839                                               p->nodes[level + 1],
2840                                               p->slots[level + 1], &b);
2841                         if (err) {
2842                                 ret = err;
2843                                 goto done;
2844                         }
2845                 }
2846 cow_done:
2847                 p->nodes[level] = b;
2848                 btrfs_clear_path_blocking(p, NULL, 0);
2849
2850                 /*
2851                  * we have a lock on b and as long as we aren't changing
2852                  * the tree, there is no way to for the items in b to change.
2853                  * It is safe to drop the lock on our parent before we
2854                  * go through the expensive btree search on b.
2855                  *
2856                  * If we're inserting or deleting (ins_len != 0), then we might
2857                  * be changing slot zero, which may require changing the parent.
2858                  * So, we can't drop the lock until after we know which slot
2859                  * we're operating on.
2860                  */
2861                 if (!ins_len && !p->keep_locks) {
2862                         int u = level + 1;
2863
2864                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2865                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2866                                 p->locks[u] = 0;
2867                         }
2868                 }
2869
2870                 ret = key_search(b, key, level, &prev_cmp, &slot);
2871
2872                 if (level != 0) {
2873                         int dec = 0;
2874                         if (ret && slot > 0) {
2875                                 dec = 1;
2876                                 slot -= 1;
2877                         }
2878                         p->slots[level] = slot;
2879                         err = setup_nodes_for_search(trans, root, p, b, level,
2880                                              ins_len, &write_lock_level);
2881                         if (err == -EAGAIN)
2882                                 goto again;
2883                         if (err) {
2884                                 ret = err;
2885                                 goto done;
2886                         }
2887                         b = p->nodes[level];
2888                         slot = p->slots[level];
2889
2890                         /*
2891                          * slot 0 is special, if we change the key
2892                          * we have to update the parent pointer
2893                          * which means we must have a write lock
2894                          * on the parent
2895                          */
2896                         if (slot == 0 && ins_len &&
2897                             write_lock_level < level + 1) {
2898                                 write_lock_level = level + 1;
2899                                 btrfs_release_path(p);
2900                                 goto again;
2901                         }
2902
2903                         unlock_up(p, level, lowest_unlock,
2904                                   min_write_lock_level, &write_lock_level);
2905
2906                         if (level == lowest_level) {
2907                                 if (dec)
2908                                         p->slots[level]++;
2909                                 goto done;
2910                         }
2911
2912                         err = read_block_for_search(trans, root, p,
2913                                                     &b, level, slot, key, 0);
2914                         if (err == -EAGAIN)
2915                                 goto again;
2916                         if (err) {
2917                                 ret = err;
2918                                 goto done;
2919                         }
2920
2921                         if (!p->skip_locking) {
2922                                 level = btrfs_header_level(b);
2923                                 if (level <= write_lock_level) {
2924                                         err = btrfs_try_tree_write_lock(b);
2925                                         if (!err) {
2926                                                 btrfs_set_path_blocking(p);
2927                                                 btrfs_tree_lock(b);
2928                                                 btrfs_clear_path_blocking(p, b,
2929                                                                   BTRFS_WRITE_LOCK);
2930                                         }
2931                                         p->locks[level] = BTRFS_WRITE_LOCK;
2932                                 } else {
2933                                         err = btrfs_try_tree_read_lock(b);
2934                                         if (!err) {
2935                                                 btrfs_set_path_blocking(p);
2936                                                 btrfs_tree_read_lock(b);
2937                                                 btrfs_clear_path_blocking(p, b,
2938                                                                   BTRFS_READ_LOCK);
2939                                         }
2940                                         p->locks[level] = BTRFS_READ_LOCK;
2941                                 }
2942                                 p->nodes[level] = b;
2943                         }
2944                 } else {
2945                         p->slots[level] = slot;
2946                         if (ins_len > 0 &&
2947                             btrfs_leaf_free_space(root, b) < ins_len) {
2948                                 if (write_lock_level < 1) {
2949                                         write_lock_level = 1;
2950                                         btrfs_release_path(p);
2951                                         goto again;
2952                                 }
2953
2954                                 btrfs_set_path_blocking(p);
2955                                 err = split_leaf(trans, root, key,
2956                                                  p, ins_len, ret == 0);
2957                                 btrfs_clear_path_blocking(p, NULL, 0);
2958
2959                                 BUG_ON(err > 0);
2960                                 if (err) {
2961                                         ret = err;
2962                                         goto done;
2963                                 }
2964                         }
2965                         if (!p->search_for_split)
2966                                 unlock_up(p, level, lowest_unlock,
2967                                           min_write_lock_level, &write_lock_level);
2968                         goto done;
2969                 }
2970         }
2971         ret = 1;
2972 done:
2973         /*
2974          * we don't really know what they plan on doing with the path
2975          * from here on, so for now just mark it as blocking
2976          */
2977         if (!p->leave_spinning)
2978                 btrfs_set_path_blocking(p);
2979         if (ret < 0)
2980                 btrfs_release_path(p);
2981         return ret;
2982 }
2983
2984 /*
2985  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2986  * current state of the tree together with the operations recorded in the tree
2987  * modification log to search for the key in a previous version of this tree, as
2988  * denoted by the time_seq parameter.
2989  *
2990  * Naturally, there is no support for insert, delete or cow operations.
2991  *
2992  * The resulting path and return value will be set up as if we called
2993  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2994  */
2995 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2996                           struct btrfs_path *p, u64 time_seq)
2997 {
2998         struct extent_buffer *b;
2999         int slot;
3000         int ret;
3001         int err;
3002         int level;
3003         int lowest_unlock = 1;
3004         u8 lowest_level = 0;
3005         int prev_cmp = -1;
3006
3007         lowest_level = p->lowest_level;
3008         WARN_ON(p->nodes[0] != NULL);
3009
3010         if (p->search_commit_root) {
3011                 BUG_ON(time_seq);
3012                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
3013         }
3014
3015 again:
3016         b = get_old_root(root, time_seq);
3017         level = btrfs_header_level(b);
3018         p->locks[level] = BTRFS_READ_LOCK;
3019
3020         while (b) {
3021                 level = btrfs_header_level(b);
3022                 p->nodes[level] = b;
3023                 btrfs_clear_path_blocking(p, NULL, 0);
3024
3025                 /*
3026                  * we have a lock on b and as long as we aren't changing
3027                  * the tree, there is no way to for the items in b to change.
3028                  * It is safe to drop the lock on our parent before we
3029                  * go through the expensive btree search on b.
3030                  */
3031                 btrfs_unlock_up_safe(p, level + 1);
3032
3033                 /*
3034                  * Since we can unwind eb's we want to do a real search every
3035                  * time.
3036                  */
3037                 prev_cmp = -1;
3038                 ret = key_search(b, key, level, &prev_cmp, &slot);
3039
3040                 if (level != 0) {
3041                         int dec = 0;
3042                         if (ret && slot > 0) {
3043                                 dec = 1;
3044                                 slot -= 1;
3045                         }
3046                         p->slots[level] = slot;
3047                         unlock_up(p, level, lowest_unlock, 0, NULL);
3048
3049                         if (level == lowest_level) {
3050                                 if (dec)
3051                                         p->slots[level]++;
3052                                 goto done;
3053                         }
3054
3055                         err = read_block_for_search(NULL, root, p, &b, level,
3056                                                     slot, key, time_seq);
3057                         if (err == -EAGAIN)
3058                                 goto again;
3059                         if (err) {
3060                                 ret = err;
3061                                 goto done;
3062                         }
3063
3064                         level = btrfs_header_level(b);
3065                         err = btrfs_try_tree_read_lock(b);
3066                         if (!err) {
3067                                 btrfs_set_path_blocking(p);
3068                                 btrfs_tree_read_lock(b);
3069                                 btrfs_clear_path_blocking(p, b,
3070                                                           BTRFS_READ_LOCK);
3071                         }
3072                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3073                         if (!b) {
3074                                 ret = -ENOMEM;
3075                                 goto done;
3076                         }
3077                         p->locks[level] = BTRFS_READ_LOCK;
3078                         p->nodes[level] = b;
3079                 } else {
3080                         p->slots[level] = slot;
3081                         unlock_up(p, level, lowest_unlock, 0, NULL);
3082                         goto done;
3083                 }
3084         }
3085         ret = 1;
3086 done:
3087         if (!p->leave_spinning)
3088                 btrfs_set_path_blocking(p);
3089         if (ret < 0)
3090                 btrfs_release_path(p);
3091
3092         return ret;
3093 }
3094
3095 /*
3096  * helper to use instead of search slot if no exact match is needed but
3097  * instead the next or previous item should be returned.
3098  * When find_higher is true, the next higher item is returned, the next lower
3099  * otherwise.
3100  * When return_any and find_higher are both true, and no higher item is found,
3101  * return the next lower instead.
3102  * When return_any is true and find_higher is false, and no lower item is found,
3103  * return the next higher instead.
3104  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3105  * < 0 on error
3106  */
3107 int btrfs_search_slot_for_read(struct btrfs_root *root,
3108                                struct btrfs_key *key, struct btrfs_path *p,
3109                                int find_higher, int return_any)
3110 {
3111         int ret;
3112         struct extent_buffer *leaf;
3113
3114 again:
3115         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3116         if (ret <= 0)
3117                 return ret;
3118         /*
3119          * a return value of 1 means the path is at the position where the
3120          * item should be inserted. Normally this is the next bigger item,
3121          * but in case the previous item is the last in a leaf, path points
3122          * to the first free slot in the previous leaf, i.e. at an invalid
3123          * item.
3124          */
3125         leaf = p->nodes[0];
3126
3127         if (find_higher) {
3128                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3129                         ret = btrfs_next_leaf(root, p);
3130                         if (ret <= 0)
3131                                 return ret;
3132                         if (!return_any)
3133                                 return 1;
3134                         /*
3135                          * no higher item found, return the next
3136                          * lower instead
3137                          */
3138                         return_any = 0;
3139                         find_higher = 0;
3140                         btrfs_release_path(p);
3141                         goto again;
3142                 }
3143         } else {
3144                 if (p->slots[0] == 0) {
3145                         ret = btrfs_prev_leaf(root, p);
3146                         if (ret < 0)
3147                                 return ret;
3148                         if (!ret) {
3149                                 leaf = p->nodes[0];
3150                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3151                                         p->slots[0]--;
3152                                 return 0;
3153                         }
3154                         if (!return_any)
3155                                 return 1;
3156                         /*
3157                          * no lower item found, return the next
3158                          * higher instead
3159                          */
3160                         return_any = 0;
3161                         find_higher = 1;
3162                         btrfs_release_path(p);
3163                         goto again;
3164                 } else {
3165                         --p->slots[0];
3166                 }
3167         }
3168         return 0;
3169 }
3170
3171 /*
3172  * adjust the pointers going up the tree, starting at level
3173  * making sure the right key of each node is points to 'key'.
3174  * This is used after shifting pointers to the left, so it stops
3175  * fixing up pointers when a given leaf/node is not in slot 0 of the
3176  * higher levels
3177  *
3178  */
3179 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3180                            struct btrfs_disk_key *key, int level)
3181 {
3182         int i;
3183         struct extent_buffer *t;
3184
3185         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3186                 int tslot = path->slots[i];
3187                 if (!path->nodes[i])
3188                         break;
3189                 t = path->nodes[i];
3190                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3191                 btrfs_set_node_key(t, key, tslot);
3192                 btrfs_mark_buffer_dirty(path->nodes[i]);
3193                 if (tslot != 0)
3194                         break;
3195         }
3196 }
3197
3198 /*
3199  * update item key.
3200  *
3201  * This function isn't completely safe. It's the caller's responsibility
3202  * that the new key won't break the order
3203  */
3204 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3205                              struct btrfs_key *new_key)
3206 {
3207         struct btrfs_disk_key disk_key;
3208         struct extent_buffer *eb;
3209         int slot;
3210
3211         eb = path->nodes[0];
3212         slot = path->slots[0];
3213         if (slot > 0) {
3214                 btrfs_item_key(eb, &disk_key, slot - 1);
3215                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3216         }
3217         if (slot < btrfs_header_nritems(eb) - 1) {
3218                 btrfs_item_key(eb, &disk_key, slot + 1);
3219                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3220         }
3221
3222         btrfs_cpu_key_to_disk(&disk_key, new_key);
3223         btrfs_set_item_key(eb, &disk_key, slot);
3224         btrfs_mark_buffer_dirty(eb);
3225         if (slot == 0)
3226                 fixup_low_keys(root, path, &disk_key, 1);
3227 }
3228
3229 /*
3230  * try to push data from one node into the next node left in the
3231  * tree.
3232  *
3233  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3234  * error, and > 0 if there was no room in the left hand block.
3235  */
3236 static int push_node_left(struct btrfs_trans_handle *trans,
3237                           struct btrfs_root *root, struct extent_buffer *dst,
3238                           struct extent_buffer *src, int empty)
3239 {
3240         int push_items = 0;
3241         int src_nritems;
3242         int dst_nritems;
3243         int ret = 0;
3244
3245         src_nritems = btrfs_header_nritems(src);
3246         dst_nritems = btrfs_header_nritems(dst);
3247         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3248         WARN_ON(btrfs_header_generation(src) != trans->transid);
3249         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3250
3251         if (!empty && src_nritems <= 8)
3252                 return 1;
3253
3254         if (push_items <= 0)
3255                 return 1;
3256
3257         if (empty) {
3258                 push_items = min(src_nritems, push_items);
3259                 if (push_items < src_nritems) {
3260                         /* leave at least 8 pointers in the node if
3261                          * we aren't going to empty it
3262                          */
3263                         if (src_nritems - push_items < 8) {
3264                                 if (push_items <= 8)
3265                                         return 1;
3266                                 push_items -= 8;
3267                         }
3268                 }
3269         } else
3270                 push_items = min(src_nritems - 8, push_items);
3271
3272         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3273                                    push_items);
3274         if (ret) {
3275                 btrfs_abort_transaction(trans, root, ret);
3276                 return ret;
3277         }
3278         copy_extent_buffer(dst, src,
3279                            btrfs_node_key_ptr_offset(dst_nritems),
3280                            btrfs_node_key_ptr_offset(0),
3281                            push_items * sizeof(struct btrfs_key_ptr));
3282
3283         if (push_items < src_nritems) {
3284                 /*
3285                  * don't call tree_mod_log_eb_move here, key removal was already
3286                  * fully logged by tree_mod_log_eb_copy above.
3287                  */
3288                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3289                                       btrfs_node_key_ptr_offset(push_items),
3290                                       (src_nritems - push_items) *
3291                                       sizeof(struct btrfs_key_ptr));
3292         }
3293         btrfs_set_header_nritems(src, src_nritems - push_items);
3294         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3295         btrfs_mark_buffer_dirty(src);
3296         btrfs_mark_buffer_dirty(dst);
3297
3298         return ret;
3299 }
3300
3301 /*
3302  * try to push data from one node into the next node right in the
3303  * tree.
3304  *
3305  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3306  * error, and > 0 if there was no room in the right hand block.
3307  *
3308  * this will  only push up to 1/2 the contents of the left node over
3309  */
3310 static int balance_node_right(struct btrfs_trans_handle *trans,
3311                               struct btrfs_root *root,
3312                               struct extent_buffer *dst,
3313                               struct extent_buffer *src)
3314 {
3315         int push_items = 0;
3316         int max_push;
3317         int src_nritems;
3318         int dst_nritems;
3319         int ret = 0;
3320
3321         WARN_ON(btrfs_header_generation(src) != trans->transid);
3322         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3323
3324         src_nritems = btrfs_header_nritems(src);
3325         dst_nritems = btrfs_header_nritems(dst);
3326         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3327         if (push_items <= 0)
3328                 return 1;
3329
3330         if (src_nritems < 4)
3331                 return 1;
3332
3333         max_push = src_nritems / 2 + 1;
3334         /* don't try to empty the node */
3335         if (max_push >= src_nritems)
3336                 return 1;
3337
3338         if (max_push < push_items)
3339                 push_items = max_push;
3340
3341         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3342         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3343                                       btrfs_node_key_ptr_offset(0),
3344                                       (dst_nritems) *
3345                                       sizeof(struct btrfs_key_ptr));
3346
3347         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3348                                    src_nritems - push_items, push_items);
3349         if (ret) {
3350                 btrfs_abort_transaction(trans, root, ret);
3351                 return ret;
3352         }
3353         copy_extent_buffer(dst, src,
3354                            btrfs_node_key_ptr_offset(0),
3355                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3356                            push_items * sizeof(struct btrfs_key_ptr));
3357
3358         btrfs_set_header_nritems(src, src_nritems - push_items);
3359         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3360
3361         btrfs_mark_buffer_dirty(src);
3362         btrfs_mark_buffer_dirty(dst);
3363
3364         return ret;
3365 }
3366
3367 /*
3368  * helper function to insert a new root level in the tree.
3369  * A new node is allocated, and a single item is inserted to
3370  * point to the existing root
3371  *
3372  * returns zero on success or < 0 on failure.
3373  */
3374 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3375                            struct btrfs_root *root,
3376                            struct btrfs_path *path, int level)
3377 {
3378         u64 lower_gen;
3379         struct extent_buffer *lower;
3380         struct extent_buffer *c;
3381         struct extent_buffer *old;
3382         struct btrfs_disk_key lower_key;
3383
3384         BUG_ON(path->nodes[level]);
3385         BUG_ON(path->nodes[level-1] != root->node);
3386
3387         lower = path->nodes[level-1];
3388         if (level == 1)
3389                 btrfs_item_key(lower, &lower_key, 0);
3390         else
3391                 btrfs_node_key(lower, &lower_key, 0);
3392
3393         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3394                                    root->root_key.objectid, &lower_key,
3395                                    level, root->node->start, 0);
3396         if (IS_ERR(c))
3397                 return PTR_ERR(c);
3398
3399         root_add_used(root, root->nodesize);
3400
3401         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3402         btrfs_set_header_nritems(c, 1);
3403         btrfs_set_header_level(c, level);
3404         btrfs_set_header_bytenr(c, c->start);
3405         btrfs_set_header_generation(c, trans->transid);
3406         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3407         btrfs_set_header_owner(c, root->root_key.objectid);
3408
3409         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3410                             BTRFS_FSID_SIZE);
3411
3412         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3413                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3414
3415         btrfs_set_node_key(c, &lower_key, 0);
3416         btrfs_set_node_blockptr(c, 0, lower->start);
3417         lower_gen = btrfs_header_generation(lower);
3418         WARN_ON(lower_gen != trans->transid);
3419
3420         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3421
3422         btrfs_mark_buffer_dirty(c);
3423
3424         old = root->node;
3425         tree_mod_log_set_root_pointer(root, c, 0);
3426         rcu_assign_pointer(root->node, c);
3427
3428         /* the super has an extra ref to root->node */
3429         free_extent_buffer(old);
3430
3431         add_root_to_dirty_list(root);
3432         extent_buffer_get(c);
3433         path->nodes[level] = c;
3434         path->locks[level] = BTRFS_WRITE_LOCK;
3435         path->slots[level] = 0;
3436         return 0;
3437 }
3438
3439 /*
3440  * worker function to insert a single pointer in a node.
3441  * the node should have enough room for the pointer already
3442  *
3443  * slot and level indicate where you want the key to go, and
3444  * blocknr is the block the key points to.
3445  */
3446 static void insert_ptr(struct btrfs_trans_handle *trans,
3447                        struct btrfs_root *root, struct btrfs_path *path,
3448                        struct btrfs_disk_key *key, u64 bytenr,
3449                        int slot, int level)
3450 {
3451         struct extent_buffer *lower;
3452         int nritems;
3453         int ret;
3454
3455         BUG_ON(!path->nodes[level]);
3456         btrfs_assert_tree_locked(path->nodes[level]);
3457         lower = path->nodes[level];
3458         nritems = btrfs_header_nritems(lower);
3459         BUG_ON(slot > nritems);
3460         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3461         if (slot != nritems) {
3462                 if (level)
3463                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3464                                              slot, nritems - slot);
3465                 memmove_extent_buffer(lower,
3466                               btrfs_node_key_ptr_offset(slot + 1),
3467                               btrfs_node_key_ptr_offset(slot),
3468                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3469         }
3470         if (level) {
3471                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3472                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3473                 BUG_ON(ret < 0);
3474         }
3475         btrfs_set_node_key(lower, key, slot);
3476         btrfs_set_node_blockptr(lower, slot, bytenr);
3477         WARN_ON(trans->transid == 0);
3478         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3479         btrfs_set_header_nritems(lower, nritems + 1);
3480         btrfs_mark_buffer_dirty(lower);
3481 }
3482
3483 /*
3484  * split the node at the specified level in path in two.
3485  * The path is corrected to point to the appropriate node after the split
3486  *
3487  * Before splitting this tries to make some room in the node by pushing
3488  * left and right, if either one works, it returns right away.
3489  *
3490  * returns 0 on success and < 0 on failure
3491  */
3492 static noinline int split_node(struct btrfs_trans_handle *trans,
3493                                struct btrfs_root *root,
3494                                struct btrfs_path *path, int level)
3495 {
3496         struct extent_buffer *c;
3497         struct extent_buffer *split;
3498         struct btrfs_disk_key disk_key;
3499         int mid;
3500         int ret;
3501         u32 c_nritems;
3502
3503         c = path->nodes[level];
3504         WARN_ON(btrfs_header_generation(c) != trans->transid);
3505         if (c == root->node) {
3506                 /*
3507                  * trying to split the root, lets make a new one
3508                  *
3509                  * tree mod log: We don't log_removal old root in
3510                  * insert_new_root, because that root buffer will be kept as a
3511                  * normal node. We are going to log removal of half of the
3512                  * elements below with tree_mod_log_eb_copy. We're holding a
3513                  * tree lock on the buffer, which is why we cannot race with
3514                  * other tree_mod_log users.
3515                  */
3516                 ret = insert_new_root(trans, root, path, level + 1);
3517                 if (ret)
3518                         return ret;
3519         } else {
3520                 ret = push_nodes_for_insert(trans, root, path, level);
3521                 c = path->nodes[level];
3522                 if (!ret && btrfs_header_nritems(c) <
3523                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3524                         return 0;
3525                 if (ret < 0)
3526                         return ret;
3527         }
3528
3529         c_nritems = btrfs_header_nritems(c);
3530         mid = (c_nritems + 1) / 2;
3531         btrfs_node_key(c, &disk_key, mid);
3532
3533         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3534                                         root->root_key.objectid,
3535                                         &disk_key, level, c->start, 0);
3536         if (IS_ERR(split))
3537                 return PTR_ERR(split);
3538
3539         root_add_used(root, root->nodesize);
3540
3541         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3542         btrfs_set_header_level(split, btrfs_header_level(c));
3543         btrfs_set_header_bytenr(split, split->start);
3544         btrfs_set_header_generation(split, trans->transid);
3545         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3546         btrfs_set_header_owner(split, root->root_key.objectid);
3547         write_extent_buffer(split, root->fs_info->fsid,
3548                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3549         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3550                             btrfs_header_chunk_tree_uuid(split),
3551                             BTRFS_UUID_SIZE);
3552
3553         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3554                                    mid, c_nritems - mid);
3555         if (ret) {
3556                 btrfs_abort_transaction(trans, root, ret);
3557                 return ret;
3558         }
3559         copy_extent_buffer(split, c,
3560                            btrfs_node_key_ptr_offset(0),
3561                            btrfs_node_key_ptr_offset(mid),
3562                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3563         btrfs_set_header_nritems(split, c_nritems - mid);
3564         btrfs_set_header_nritems(c, mid);
3565         ret = 0;
3566
3567         btrfs_mark_buffer_dirty(c);
3568         btrfs_mark_buffer_dirty(split);
3569
3570         insert_ptr(trans, root, path, &disk_key, split->start,
3571                    path->slots[level + 1] + 1, level + 1);
3572
3573         if (path->slots[level] >= mid) {
3574                 path->slots[level] -= mid;
3575                 btrfs_tree_unlock(c);
3576                 free_extent_buffer(c);
3577                 path->nodes[level] = split;
3578                 path->slots[level + 1] += 1;
3579         } else {
3580                 btrfs_tree_unlock(split);
3581                 free_extent_buffer(split);
3582         }
3583         return ret;
3584 }
3585
3586 /*
3587  * how many bytes are required to store the items in a leaf.  start
3588  * and nr indicate which items in the leaf to check.  This totals up the
3589  * space used both by the item structs and the item data
3590  */
3591 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3592 {
3593         struct btrfs_item *start_item;
3594         struct btrfs_item *end_item;
3595         struct btrfs_map_token token;
3596         int data_len;
3597         int nritems = btrfs_header_nritems(l);
3598         int end = min(nritems, start + nr) - 1;
3599
3600         if (!nr)
3601                 return 0;
3602         btrfs_init_map_token(&token);
3603         start_item = btrfs_item_nr(start);
3604         end_item = btrfs_item_nr(end);
3605         data_len = btrfs_token_item_offset(l, start_item, &token) +
3606                 btrfs_token_item_size(l, start_item, &token);
3607         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3608         data_len += sizeof(struct btrfs_item) * nr;
3609         WARN_ON(data_len < 0);
3610         return data_len;
3611 }
3612
3613 /*
3614  * The space between the end of the leaf items and
3615  * the start of the leaf data.  IOW, how much room
3616  * the leaf has left for both items and data
3617  */
3618 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3619                                    struct extent_buffer *leaf)
3620 {
3621         int nritems = btrfs_header_nritems(leaf);
3622         int ret;
3623         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3624         if (ret < 0) {
3625                 btrfs_crit(root->fs_info,
3626                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3627                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3628                        leaf_space_used(leaf, 0, nritems), nritems);
3629         }
3630         return ret;
3631 }
3632
3633 /*
3634  * min slot controls the lowest index we're willing to push to the
3635  * right.  We'll push up to and including min_slot, but no lower
3636  */
3637 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3638                                       struct btrfs_root *root,
3639                                       struct btrfs_path *path,
3640                                       int data_size, int empty,
3641                                       struct extent_buffer *right,
3642                                       int free_space, u32 left_nritems,
3643                                       u32 min_slot)
3644 {
3645         struct extent_buffer *left = path->nodes[0];
3646         struct extent_buffer *upper = path->nodes[1];
3647         struct btrfs_map_token token;
3648         struct btrfs_disk_key disk_key;
3649         int slot;
3650         u32 i;
3651         int push_space = 0;
3652         int push_items = 0;
3653         struct btrfs_item *item;
3654         u32 nr;
3655         u32 right_nritems;
3656         u32 data_end;
3657         u32 this_item_size;
3658
3659         btrfs_init_map_token(&token);
3660
3661         if (empty)
3662                 nr = 0;
3663         else
3664                 nr = max_t(u32, 1, min_slot);
3665
3666         if (path->slots[0] >= left_nritems)
3667                 push_space += data_size;
3668
3669         slot = path->slots[1];
3670         i = left_nritems - 1;
3671         while (i >= nr) {
3672                 item = btrfs_item_nr(i);
3673
3674                 if (!empty && push_items > 0) {
3675                         if (path->slots[0] > i)
3676                                 break;
3677                         if (path->slots[0] == i) {
3678                                 int space = btrfs_leaf_free_space(root, left);
3679                                 if (space + push_space * 2 > free_space)
3680                                         break;
3681                         }
3682                 }
3683
3684                 if (path->slots[0] == i)
3685                         push_space += data_size;
3686
3687                 this_item_size = btrfs_item_size(left, item);
3688                 if (this_item_size + sizeof(*item) + push_space > free_space)
3689                         break;
3690
3691                 push_items++;
3692                 push_space += this_item_size + sizeof(*item);
3693                 if (i == 0)
3694                         break;
3695                 i--;
3696         }
3697
3698         if (push_items == 0)
3699                 goto out_unlock;
3700
3701         WARN_ON(!empty && push_items == left_nritems);
3702
3703         /* push left to right */
3704         right_nritems = btrfs_header_nritems(right);
3705
3706         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3707         push_space -= leaf_data_end(root, left);
3708
3709         /* make room in the right data area */
3710         data_end = leaf_data_end(root, right);
3711         memmove_extent_buffer(right,
3712                               btrfs_leaf_data(right) + data_end - push_space,
3713                               btrfs_leaf_data(right) + data_end,
3714                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3715
3716         /* copy from the left data area */
3717         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3718                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3719                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3720                      push_space);
3721
3722         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3723                               btrfs_item_nr_offset(0),
3724                               right_nritems * sizeof(struct btrfs_item));
3725
3726         /* copy the items from left to right */
3727         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3728                    btrfs_item_nr_offset(left_nritems - push_items),
3729                    push_items * sizeof(struct btrfs_item));
3730
3731         /* update the item pointers */
3732         right_nritems += push_items;
3733         btrfs_set_header_nritems(right, right_nritems);
3734         push_space = BTRFS_LEAF_DATA_SIZE(root);
3735         for (i = 0; i < right_nritems; i++) {
3736                 item = btrfs_item_nr(i);
3737                 push_space -= btrfs_token_item_size(right, item, &token);
3738                 btrfs_set_token_item_offset(right, item, push_space, &token);
3739         }
3740
3741         left_nritems -= push_items;
3742         btrfs_set_header_nritems(left, left_nritems);
3743
3744         if (left_nritems)
3745                 btrfs_mark_buffer_dirty(left);
3746         else
3747                 clean_tree_block(trans, root, left);
3748
3749         btrfs_mark_buffer_dirty(right);
3750
3751         btrfs_item_key(right, &disk_key, 0);
3752         btrfs_set_node_key(upper, &disk_key, slot + 1);
3753         btrfs_mark_buffer_dirty(upper);
3754
3755         /* then fixup the leaf pointer in the path */
3756         if (path->slots[0] >= left_nritems) {
3757                 path->slots[0] -= left_nritems;
3758                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3759                         clean_tree_block(trans, root, path->nodes[0]);
3760                 btrfs_tree_unlock(path->nodes[0]);
3761                 free_extent_buffer(path->nodes[0]);
3762                 path->nodes[0] = right;
3763                 path->slots[1] += 1;
3764         } else {
3765                 btrfs_tree_unlock(right);
3766                 free_extent_buffer(right);
3767         }
3768         return 0;
3769
3770 out_unlock:
3771         btrfs_tree_unlock(right);
3772         free_extent_buffer(right);
3773         return 1;
3774 }
3775
3776 /*
3777  * push some data in the path leaf to the right, trying to free up at
3778  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3779  *
3780  * returns 1 if the push failed because the other node didn't have enough
3781  * room, 0 if everything worked out and < 0 if there were major errors.
3782  *
3783  * this will push starting from min_slot to the end of the leaf.  It won't
3784  * push any slot lower than min_slot
3785  */
3786 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3787                            *root, struct btrfs_path *path,
3788                            int min_data_size, int data_size,
3789                            int empty, u32 min_slot)
3790 {
3791         struct extent_buffer *left = path->nodes[0];
3792         struct extent_buffer *right;
3793         struct extent_buffer *upper;
3794         int slot;
3795         int free_space;
3796         u32 left_nritems;
3797         int ret;
3798
3799         if (!path->nodes[1])
3800                 return 1;
3801
3802         slot = path->slots[1];
3803         upper = path->nodes[1];
3804         if (slot >= btrfs_header_nritems(upper) - 1)
3805                 return 1;
3806
3807         btrfs_assert_tree_locked(path->nodes[1]);
3808
3809         right = read_node_slot(root, upper, slot + 1);
3810         if (right == NULL)
3811                 return 1;
3812
3813         btrfs_tree_lock(right);
3814         btrfs_set_lock_blocking(right);
3815
3816         free_space = btrfs_leaf_free_space(root, right);
3817         if (free_space < data_size)
3818                 goto out_unlock;
3819
3820         /* cow and double check */
3821         ret = btrfs_cow_block(trans, root, right, upper,
3822                               slot + 1, &right);
3823         if (ret)
3824                 goto out_unlock;
3825
3826         free_space = btrfs_leaf_free_space(root, right);
3827         if (free_space < data_size)
3828                 goto out_unlock;
3829
3830         left_nritems = btrfs_header_nritems(left);
3831         if (left_nritems == 0)
3832                 goto out_unlock;
3833
3834         if (path->slots[0] == left_nritems && !empty) {
3835                 /* Key greater than all keys in the leaf, right neighbor has
3836                  * enough room for it and we're not emptying our leaf to delete
3837                  * it, therefore use right neighbor to insert the new item and
3838                  * no need to touch/dirty our left leaft. */
3839                 btrfs_tree_unlock(left);
3840                 free_extent_buffer(left);
3841                 path->nodes[0] = right;
3842                 path->slots[0] = 0;
3843                 path->slots[1]++;
3844                 return 0;
3845         }
3846
3847         return __push_leaf_right(trans, root, path, min_data_size, empty,
3848                                 right, free_space, left_nritems, min_slot);
3849 out_unlock:
3850         btrfs_tree_unlock(right);
3851         free_extent_buffer(right);
3852         return 1;
3853 }
3854
3855 /*
3856  * push some data in the path leaf to the left, trying to free up at
3857  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3858  *
3859  * max_slot can put a limit on how far into the leaf we'll push items.  The
3860  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3861  * items
3862  */
3863 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3864                                      struct btrfs_root *root,
3865                                      struct btrfs_path *path, int data_size,
3866                                      int empty, struct extent_buffer *left,
3867                                      int free_space, u32 right_nritems,
3868                                      u32 max_slot)
3869 {
3870         struct btrfs_disk_key disk_key;
3871         struct extent_buffer *right = path->nodes[0];
3872         int i;
3873         int push_space = 0;
3874         int push_items = 0;
3875         struct btrfs_item *item;
3876         u32 old_left_nritems;
3877         u32 nr;
3878         int ret = 0;
3879         u32 this_item_size;
3880         u32 old_left_item_size;
3881         struct btrfs_map_token token;
3882
3883         btrfs_init_map_token(&token);
3884
3885         if (empty)
3886                 nr = min(right_nritems, max_slot);
3887         else
3888                 nr = min(right_nritems - 1, max_slot);
3889
3890         for (i = 0; i < nr; i++) {
3891                 item = btrfs_item_nr(i);
3892
3893                 if (!empty && push_items > 0) {
3894                         if (path->slots[0] < i)
3895                                 break;
3896                         if (path->slots[0] == i) {
3897                                 int space = btrfs_leaf_free_space(root, right);
3898                                 if (space + push_space * 2 > free_space)
3899                                         break;
3900                         }
3901                 }
3902
3903                 if (path->slots[0] == i)
3904                         push_space += data_size;
3905
3906                 this_item_size = btrfs_item_size(right, item);
3907                 if (this_item_size + sizeof(*item) + push_space > free_space)
3908                         break;
3909
3910                 push_items++;
3911                 push_space += this_item_size + sizeof(*item);
3912         }
3913
3914         if (push_items == 0) {
3915                 ret = 1;
3916                 goto out;
3917         }
3918         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3919
3920         /* push data from right to left */
3921         copy_extent_buffer(left, right,
3922                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3923                            btrfs_item_nr_offset(0),
3924                            push_items * sizeof(struct btrfs_item));
3925
3926         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3927                      btrfs_item_offset_nr(right, push_items - 1);
3928
3929         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3930                      leaf_data_end(root, left) - push_space,
3931                      btrfs_leaf_data(right) +
3932                      btrfs_item_offset_nr(right, push_items - 1),
3933                      push_space);
3934         old_left_nritems = btrfs_header_nritems(left);
3935         BUG_ON(old_left_nritems <= 0);
3936
3937         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3938         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3939                 u32 ioff;
3940
3941                 item = btrfs_item_nr(i);
3942
3943                 ioff = btrfs_token_item_offset(left, item, &token);
3944                 btrfs_set_token_item_offset(left, item,
3945                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3946                       &token);
3947         }
3948         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3949
3950         /* fixup right node */
3951         if (push_items > right_nritems)
3952                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3953                        right_nritems);
3954
3955         if (push_items < right_nritems) {
3956                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3957                                                   leaf_data_end(root, right);
3958                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3959                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3960                                       btrfs_leaf_data(right) +
3961                                       leaf_data_end(root, right), push_space);
3962
3963                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3964                               btrfs_item_nr_offset(push_items),
3965                              (btrfs_header_nritems(right) - push_items) *
3966                              sizeof(struct btrfs_item));
3967         }
3968         right_nritems -= push_items;
3969         btrfs_set_header_nritems(right, right_nritems);
3970         push_space = BTRFS_LEAF_DATA_SIZE(root);
3971         for (i = 0; i < right_nritems; i++) {
3972                 item = btrfs_item_nr(i);
3973
3974                 push_space = push_space - btrfs_token_item_size(right,
3975                                                                 item, &token);
3976                 btrfs_set_token_item_offset(right, item, push_space, &token);
3977         }
3978
3979         btrfs_mark_buffer_dirty(left);
3980         if (right_nritems)
3981                 btrfs_mark_buffer_dirty(right);
3982         else
3983                 clean_tree_block(trans, root, right);
3984
3985         btrfs_item_key(right, &disk_key, 0);
3986         fixup_low_keys(root, path, &disk_key, 1);
3987
3988         /* then fixup the leaf pointer in the path */
3989         if (path->slots[0] < push_items) {
3990                 path->slots[0] += old_left_nritems;
3991                 btrfs_tree_unlock(path->nodes[0]);
3992                 free_extent_buffer(path->nodes[0]);
3993                 path->nodes[0] = left;
3994                 path->slots[1] -= 1;
3995         } else {
3996                 btrfs_tree_unlock(left);
3997                 free_extent_buffer(left);
3998                 path->slots[0] -= push_items;
3999         }
4000         BUG_ON(path->slots[0] < 0);
4001         return ret;
4002 out:
4003         btrfs_tree_unlock(left);
4004         free_extent_buffer(left);
4005         return ret;
4006 }
4007
4008 /*
4009  * push some data in the path leaf to the left, trying to free up at
4010  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011  *
4012  * max_slot can put a limit on how far into the leaf we'll push items.  The
4013  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014  * items
4015  */
4016 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017                           *root, struct btrfs_path *path, int min_data_size,
4018                           int data_size, int empty, u32 max_slot)
4019 {
4020         struct extent_buffer *right = path->nodes[0];
4021         struct extent_buffer *left;
4022         int slot;
4023         int free_space;
4024         u32 right_nritems;
4025         int ret = 0;
4026
4027         slot = path->slots[1];
4028         if (slot == 0)
4029                 return 1;
4030         if (!path->nodes[1])
4031                 return 1;
4032
4033         right_nritems = btrfs_header_nritems(right);
4034         if (right_nritems == 0)
4035                 return 1;
4036
4037         btrfs_assert_tree_locked(path->nodes[1]);
4038
4039         left = read_node_slot(root, path->nodes[1], slot - 1);
4040         if (left == NULL)
4041                 return 1;
4042
4043         btrfs_tree_lock(left);
4044         btrfs_set_lock_blocking(left);
4045
4046         free_space = btrfs_leaf_free_space(root, left);
4047         if (free_space < data_size) {
4048                 ret = 1;
4049                 goto out;
4050         }
4051
4052         /* cow and double check */
4053         ret = btrfs_cow_block(trans, root, left,
4054                               path->nodes[1], slot - 1, &left);
4055         if (ret) {
4056                 /* we hit -ENOSPC, but it isn't fatal here */
4057                 if (ret == -ENOSPC)
4058                         ret = 1;
4059                 goto out;
4060         }
4061
4062         free_space = btrfs_leaf_free_space(root, left);
4063         if (free_space < data_size) {
4064                 ret = 1;
4065                 goto out;
4066         }
4067
4068         return __push_leaf_left(trans, root, path, min_data_size,
4069                                empty, left, free_space, right_nritems,
4070                                max_slot);
4071 out:
4072         btrfs_tree_unlock(left);
4073         free_extent_buffer(left);
4074         return ret;
4075 }
4076
4077 /*
4078  * split the path's leaf in two, making sure there is at least data_size
4079  * available for the resulting leaf level of the path.
4080  */
4081 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4082                                     struct btrfs_root *root,
4083                                     struct btrfs_path *path,
4084                                     struct extent_buffer *l,
4085                                     struct extent_buffer *right,
4086                                     int slot, int mid, int nritems)
4087 {
4088         int data_copy_size;
4089         int rt_data_off;
4090         int i;
4091         struct btrfs_disk_key disk_key;
4092         struct btrfs_map_token token;
4093
4094         btrfs_init_map_token(&token);
4095
4096         nritems = nritems - mid;
4097         btrfs_set_header_nritems(right, nritems);
4098         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4099
4100         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4101                            btrfs_item_nr_offset(mid),
4102                            nritems * sizeof(struct btrfs_item));
4103
4104         copy_extent_buffer(right, l,
4105                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4106                      data_copy_size, btrfs_leaf_data(l) +
4107                      leaf_data_end(root, l), data_copy_size);
4108
4109         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4110                       btrfs_item_end_nr(l, mid);
4111
4112         for (i = 0; i < nritems; i++) {
4113                 struct btrfs_item *item = btrfs_item_nr(i);
4114                 u32 ioff;
4115
4116                 ioff = btrfs_token_item_offset(right, item, &token);
4117                 btrfs_set_token_item_offset(right, item,
4118                                             ioff + rt_data_off, &token);
4119         }
4120
4121         btrfs_set_header_nritems(l, mid);
4122         btrfs_item_key(right, &disk_key, 0);
4123         insert_ptr(trans, root, path, &disk_key, right->start,
4124                    path->slots[1] + 1, 1);
4125
4126         btrfs_mark_buffer_dirty(right);
4127         btrfs_mark_buffer_dirty(l);
4128         BUG_ON(path->slots[0] != slot);
4129
4130         if (mid <= slot) {
4131                 btrfs_tree_unlock(path->nodes[0]);
4132                 free_extent_buffer(path->nodes[0]);
4133                 path->nodes[0] = right;
4134                 path->slots[0] -= mid;
4135                 path->slots[1] += 1;
4136         } else {
4137                 btrfs_tree_unlock(right);
4138                 free_extent_buffer(right);
4139         }
4140
4141         BUG_ON(path->slots[0] < 0);
4142 }
4143
4144 /*
4145  * double splits happen when we need to insert a big item in the middle
4146  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4147  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4148  *          A                 B                 C
4149  *
4150  * We avoid this by trying to push the items on either side of our target
4151  * into the adjacent leaves.  If all goes well we can avoid the double split
4152  * completely.
4153  */
4154 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4155                                           struct btrfs_root *root,
4156                                           struct btrfs_path *path,
4157                                           int data_size)
4158 {
4159         int ret;
4160         int progress = 0;
4161         int slot;
4162         u32 nritems;
4163         int space_needed = data_size;
4164
4165         slot = path->slots[0];
4166         if (slot < btrfs_header_nritems(path->nodes[0]))
4167                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4168
4169         /*
4170          * try to push all the items after our slot into the
4171          * right leaf
4172          */
4173         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4174         if (ret < 0)
4175                 return ret;
4176
4177         if (ret == 0)
4178                 progress++;
4179
4180         nritems = btrfs_header_nritems(path->nodes[0]);
4181         /*
4182          * our goal is to get our slot at the start or end of a leaf.  If
4183          * we've done so we're done
4184          */
4185         if (path->slots[0] == 0 || path->slots[0] == nritems)
4186                 return 0;
4187
4188         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4189                 return 0;
4190
4191         /* try to push all the items before our slot into the next leaf */
4192         slot = path->slots[0];
4193         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4194         if (ret < 0)
4195                 return ret;
4196
4197         if (ret == 0)
4198                 progress++;
4199
4200         if (progress)
4201                 return 0;
4202         return 1;
4203 }
4204
4205 /*
4206  * split the path's leaf in two, making sure there is at least data_size
4207  * available for the resulting leaf level of the path.
4208  *
4209  * returns 0 if all went well and < 0 on failure.
4210  */
4211 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4212                                struct btrfs_root *root,
4213                                struct btrfs_key *ins_key,
4214                                struct btrfs_path *path, int data_size,
4215                                int extend)
4216 {
4217         struct btrfs_disk_key disk_key;
4218         struct extent_buffer *l;
4219         u32 nritems;
4220         int mid;
4221         int slot;
4222         struct extent_buffer *right;
4223         int ret = 0;
4224         int wret;
4225         int split;
4226         int num_doubles = 0;
4227         int tried_avoid_double = 0;
4228
4229         l = path->nodes[0];
4230         slot = path->slots[0];
4231         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4232             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4233                 return -EOVERFLOW;
4234
4235         /* first try to make some room by pushing left and right */
4236         if (data_size && path->nodes[1]) {
4237                 int space_needed = data_size;
4238
4239                 if (slot < btrfs_header_nritems(l))
4240                         space_needed -= btrfs_leaf_free_space(root, l);
4241
4242                 wret = push_leaf_right(trans, root, path, space_needed,
4243                                        space_needed, 0, 0);
4244                 if (wret < 0)
4245                         return wret;
4246                 if (wret) {
4247                         wret = push_leaf_left(trans, root, path, space_needed,
4248                                               space_needed, 0, (u32)-1);
4249                         if (wret < 0)
4250                                 return wret;
4251                 }
4252                 l = path->nodes[0];
4253
4254                 /* did the pushes work? */
4255                 if (btrfs_leaf_free_space(root, l) >= data_size)
4256                         return 0;
4257         }
4258
4259         if (!path->nodes[1]) {
4260                 ret = insert_new_root(trans, root, path, 1);
4261                 if (ret)
4262                         return ret;
4263         }
4264 again:
4265         split = 1;
4266         l = path->nodes[0];
4267         slot = path->slots[0];
4268         nritems = btrfs_header_nritems(l);
4269         mid = (nritems + 1) / 2;
4270
4271         if (mid <= slot) {
4272                 if (nritems == 1 ||
4273                     leaf_space_used(l, mid, nritems - mid) + data_size >
4274                         BTRFS_LEAF_DATA_SIZE(root)) {
4275                         if (slot >= nritems) {
4276                                 split = 0;
4277                         } else {
4278                                 mid = slot;
4279                                 if (mid != nritems &&
4280                                     leaf_space_used(l, mid, nritems - mid) +
4281                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4282                                         if (data_size && !tried_avoid_double)
4283                                                 goto push_for_double;
4284                                         split = 2;
4285                                 }
4286                         }
4287                 }
4288         } else {
4289                 if (leaf_space_used(l, 0, mid) + data_size >
4290                         BTRFS_LEAF_DATA_SIZE(root)) {
4291                         if (!extend && data_size && slot == 0) {
4292                                 split = 0;
4293                         } else if ((extend || !data_size) && slot == 0) {
4294                                 mid = 1;
4295                         } else {
4296                                 mid = slot;
4297                                 if (mid != nritems &&
4298                                     leaf_space_used(l, mid, nritems - mid) +
4299                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4300                                         if (data_size && !tried_avoid_double)
4301                                                 goto push_for_double;
4302                                         split = 2;
4303                                 }
4304                         }
4305                 }
4306         }
4307
4308         if (split == 0)
4309                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4310         else
4311                 btrfs_item_key(l, &disk_key, mid);
4312
4313         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4314                                         root->root_key.objectid,
4315                                         &disk_key, 0, l->start, 0);
4316         if (IS_ERR(right))
4317                 return PTR_ERR(right);
4318
4319         root_add_used(root, root->leafsize);
4320
4321         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4322         btrfs_set_header_bytenr(right, right->start);
4323         btrfs_set_header_generation(right, trans->transid);
4324         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4325         btrfs_set_header_owner(right, root->root_key.objectid);
4326         btrfs_set_header_level(right, 0);
4327         write_extent_buffer(right, root->fs_info->fsid,
4328                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4329
4330         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4331                             btrfs_header_chunk_tree_uuid(right),
4332                             BTRFS_UUID_SIZE);
4333
4334         if (split == 0) {
4335                 if (mid <= slot) {
4336                         btrfs_set_header_nritems(right, 0);
4337                         insert_ptr(trans, root, path, &disk_key, right->start,
4338                                    path->slots[1] + 1, 1);
4339                         btrfs_tree_unlock(path->nodes[0]);
4340                         free_extent_buffer(path->nodes[0]);
4341                         path->nodes[0] = right;
4342                         path->slots[0] = 0;
4343                         path->slots[1] += 1;
4344                 } else {
4345                         btrfs_set_header_nritems(right, 0);
4346                         insert_ptr(trans, root, path, &disk_key, right->start,
4347                                           path->slots[1], 1);
4348                         btrfs_tree_unlock(path->nodes[0]);
4349                         free_extent_buffer(path->nodes[0]);
4350                         path->nodes[0] = right;
4351                         path->slots[0] = 0;
4352                         if (path->slots[1] == 0)
4353                                 fixup_low_keys(root, path, &disk_key, 1);
4354                 }
4355                 btrfs_mark_buffer_dirty(right);
4356                 return ret;
4357         }
4358
4359         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4360
4361         if (split == 2) {
4362                 BUG_ON(num_doubles != 0);
4363                 num_doubles++;
4364                 goto again;
4365         }
4366
4367         return 0;
4368
4369 push_for_double:
4370         push_for_double_split(trans, root, path, data_size);
4371         tried_avoid_double = 1;
4372         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4373                 return 0;
4374         goto again;
4375 }
4376
4377 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4378                                          struct btrfs_root *root,
4379                                          struct btrfs_path *path, int ins_len)
4380 {
4381         struct btrfs_key key;
4382         struct extent_buffer *leaf;
4383         struct btrfs_file_extent_item *fi;
4384         u64 extent_len = 0;
4385         u32 item_size;
4386         int ret;
4387
4388         leaf = path->nodes[0];
4389         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4390
4391         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4392                key.type != BTRFS_EXTENT_CSUM_KEY);
4393
4394         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4395                 return 0;
4396
4397         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4398         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4399                 fi = btrfs_item_ptr(leaf, path->slots[0],
4400                                     struct btrfs_file_extent_item);
4401                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4402         }
4403         btrfs_release_path(path);
4404
4405         path->keep_locks = 1;
4406         path->search_for_split = 1;
4407         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4408         path->search_for_split = 0;
4409         if (ret < 0)
4410                 goto err;
4411
4412         ret = -EAGAIN;
4413         leaf = path->nodes[0];
4414         /* if our item isn't there or got smaller, return now */
4415         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416                 goto err;
4417
4418         /* the leaf has  changed, it now has room.  return now */
4419         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4420                 goto err;
4421
4422         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423                 fi = btrfs_item_ptr(leaf, path->slots[0],
4424                                     struct btrfs_file_extent_item);
4425                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426                         goto err;
4427         }
4428
4429         btrfs_set_path_blocking(path);
4430         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431         if (ret)
4432                 goto err;
4433
4434         path->keep_locks = 0;
4435         btrfs_unlock_up_safe(path, 1);
4436         return 0;
4437 err:
4438         path->keep_locks = 0;
4439         return ret;
4440 }
4441
4442 static noinline int split_item(struct btrfs_trans_handle *trans,
4443                                struct btrfs_root *root,
4444                                struct btrfs_path *path,
4445                                struct btrfs_key *new_key,
4446                                unsigned long split_offset)
4447 {
4448         struct extent_buffer *leaf;
4449         struct btrfs_item *item;
4450         struct btrfs_item *new_item;
4451         int slot;
4452         char *buf;
4453         u32 nritems;
4454         u32 item_size;
4455         u32 orig_offset;
4456         struct btrfs_disk_key disk_key;
4457
4458         leaf = path->nodes[0];
4459         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4460
4461         btrfs_set_path_blocking(path);
4462
4463         item = btrfs_item_nr(path->slots[0]);
4464         orig_offset = btrfs_item_offset(leaf, item);
4465         item_size = btrfs_item_size(leaf, item);
4466
4467         buf = kmalloc(item_size, GFP_NOFS);
4468         if (!buf)
4469                 return -ENOMEM;
4470
4471         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4472                             path->slots[0]), item_size);
4473
4474         slot = path->slots[0] + 1;
4475         nritems = btrfs_header_nritems(leaf);
4476         if (slot != nritems) {
4477                 /* shift the items */
4478                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4479                                 btrfs_item_nr_offset(slot),
4480                                 (nritems - slot) * sizeof(struct btrfs_item));
4481         }
4482
4483         btrfs_cpu_key_to_disk(&disk_key, new_key);
4484         btrfs_set_item_key(leaf, &disk_key, slot);
4485
4486         new_item = btrfs_item_nr(slot);
4487
4488         btrfs_set_item_offset(leaf, new_item, orig_offset);
4489         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4490
4491         btrfs_set_item_offset(leaf, item,
4492                               orig_offset + item_size - split_offset);
4493         btrfs_set_item_size(leaf, item, split_offset);
4494
4495         btrfs_set_header_nritems(leaf, nritems + 1);
4496
4497         /* write the data for the start of the original item */
4498         write_extent_buffer(leaf, buf,
4499                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4500                             split_offset);
4501
4502         /* write the data for the new item */
4503         write_extent_buffer(leaf, buf + split_offset,
4504                             btrfs_item_ptr_offset(leaf, slot),
4505                             item_size - split_offset);
4506         btrfs_mark_buffer_dirty(leaf);
4507
4508         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4509         kfree(buf);
4510         return 0;
4511 }
4512
4513 /*
4514  * This function splits a single item into two items,
4515  * giving 'new_key' to the new item and splitting the
4516  * old one at split_offset (from the start of the item).
4517  *
4518  * The path may be released by this operation.  After
4519  * the split, the path is pointing to the old item.  The
4520  * new item is going to be in the same node as the old one.
4521  *
4522  * Note, the item being split must be smaller enough to live alone on
4523  * a tree block with room for one extra struct btrfs_item
4524  *
4525  * This allows us to split the item in place, keeping a lock on the
4526  * leaf the entire time.
4527  */
4528 int btrfs_split_item(struct btrfs_trans_handle *trans,
4529                      struct btrfs_root *root,
4530                      struct btrfs_path *path,
4531                      struct btrfs_key *new_key,
4532                      unsigned long split_offset)
4533 {
4534         int ret;
4535         ret = setup_leaf_for_split(trans, root, path,
4536                                    sizeof(struct btrfs_item));
4537         if (ret)
4538                 return ret;
4539
4540         ret = split_item(trans, root, path, new_key, split_offset);
4541         return ret;
4542 }
4543
4544 /*
4545  * This function duplicate a item, giving 'new_key' to the new item.
4546  * It guarantees both items live in the same tree leaf and the new item
4547  * is contiguous with the original item.
4548  *
4549  * This allows us to split file extent in place, keeping a lock on the
4550  * leaf the entire time.
4551  */
4552 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4553                          struct btrfs_root *root,
4554                          struct btrfs_path *path,
4555                          struct btrfs_key *new_key)
4556 {
4557         struct extent_buffer *leaf;
4558         int ret;
4559         u32 item_size;
4560
4561         leaf = path->nodes[0];
4562         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4563         ret = setup_leaf_for_split(trans, root, path,
4564                                    item_size + sizeof(struct btrfs_item));
4565         if (ret)
4566                 return ret;
4567
4568         path->slots[0]++;
4569         setup_items_for_insert(root, path, new_key, &item_size,
4570                                item_size, item_size +
4571                                sizeof(struct btrfs_item), 1);
4572         leaf = path->nodes[0];
4573         memcpy_extent_buffer(leaf,
4574                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4575                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4576                              item_size);
4577         return 0;
4578 }
4579
4580 /*
4581  * make the item pointed to by the path smaller.  new_size indicates
4582  * how small to make it, and from_end tells us if we just chop bytes
4583  * off the end of the item or if we shift the item to chop bytes off
4584  * the front.
4585  */
4586 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4587                          u32 new_size, int from_end)
4588 {
4589         int slot;
4590         struct extent_buffer *leaf;
4591         struct btrfs_item *item;
4592         u32 nritems;
4593         unsigned int data_end;
4594         unsigned int old_data_start;
4595         unsigned int old_size;
4596         unsigned int size_diff;
4597         int i;
4598         struct btrfs_map_token token;
4599
4600         btrfs_init_map_token(&token);
4601
4602         leaf = path->nodes[0];
4603         slot = path->slots[0];
4604
4605         old_size = btrfs_item_size_nr(leaf, slot);
4606         if (old_size == new_size)
4607                 return;
4608
4609         nritems = btrfs_header_nritems(leaf);
4610         data_end = leaf_data_end(root, leaf);
4611
4612         old_data_start = btrfs_item_offset_nr(leaf, slot);
4613
4614         size_diff = old_size - new_size;
4615
4616         BUG_ON(slot < 0);
4617         BUG_ON(slot >= nritems);
4618
4619         /*
4620          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4621          */
4622         /* first correct the data pointers */
4623         for (i = slot; i < nritems; i++) {
4624                 u32 ioff;
4625                 item = btrfs_item_nr(i);
4626
4627                 ioff = btrfs_token_item_offset(leaf, item, &token);
4628                 btrfs_set_token_item_offset(leaf, item,
4629                                             ioff + size_diff, &token);
4630         }
4631
4632         /* shift the data */
4633         if (from_end) {
4634                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635                               data_end + size_diff, btrfs_leaf_data(leaf) +
4636                               data_end, old_data_start + new_size - data_end);
4637         } else {
4638                 struct btrfs_disk_key disk_key;
4639                 u64 offset;
4640
4641                 btrfs_item_key(leaf, &disk_key, slot);
4642
4643                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4644                         unsigned long ptr;
4645                         struct btrfs_file_extent_item *fi;
4646
4647                         fi = btrfs_item_ptr(leaf, slot,
4648                                             struct btrfs_file_extent_item);
4649                         fi = (struct btrfs_file_extent_item *)(
4650                              (unsigned long)fi - size_diff);
4651
4652                         if (btrfs_file_extent_type(leaf, fi) ==
4653                             BTRFS_FILE_EXTENT_INLINE) {
4654                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4655                                 memmove_extent_buffer(leaf, ptr,
4656                                       (unsigned long)fi,
4657                                       offsetof(struct btrfs_file_extent_item,
4658                                                  disk_bytenr));
4659                         }
4660                 }
4661
4662                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4663                               data_end + size_diff, btrfs_leaf_data(leaf) +
4664                               data_end, old_data_start - data_end);
4665
4666                 offset = btrfs_disk_key_offset(&disk_key);
4667                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4668                 btrfs_set_item_key(leaf, &disk_key, slot);
4669                 if (slot == 0)
4670                         fixup_low_keys(root, path, &disk_key, 1);
4671         }
4672
4673         item = btrfs_item_nr(slot);
4674         btrfs_set_item_size(leaf, item, new_size);
4675         btrfs_mark_buffer_dirty(leaf);
4676
4677         if (btrfs_leaf_free_space(root, leaf) < 0) {
4678                 btrfs_print_leaf(root, leaf);
4679                 BUG();
4680         }
4681 }
4682
4683 /*
4684  * make the item pointed to by the path bigger, data_size is the added size.
4685  */
4686 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4687                        u32 data_size)
4688 {
4689         int slot;
4690         struct extent_buffer *leaf;
4691         struct btrfs_item *item;
4692         u32 nritems;
4693         unsigned int data_end;
4694         unsigned int old_data;
4695         unsigned int old_size;
4696         int i;
4697         struct btrfs_map_token token;
4698
4699         btrfs_init_map_token(&token);
4700
4701         leaf = path->nodes[0];
4702
4703         nritems = btrfs_header_nritems(leaf);
4704         data_end = leaf_data_end(root, leaf);
4705
4706         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4707                 btrfs_print_leaf(root, leaf);
4708                 BUG();
4709         }
4710         slot = path->slots[0];
4711         old_data = btrfs_item_end_nr(leaf, slot);
4712
4713         BUG_ON(slot < 0);
4714         if (slot >= nritems) {
4715                 btrfs_print_leaf(root, leaf);
4716                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4717                        slot, nritems);
4718                 BUG_ON(1);
4719         }
4720
4721         /*
4722          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4723          */
4724         /* first correct the data pointers */
4725         for (i = slot; i < nritems; i++) {
4726                 u32 ioff;
4727                 item = btrfs_item_nr(i);
4728
4729                 ioff = btrfs_token_item_offset(leaf, item, &token);
4730                 btrfs_set_token_item_offset(leaf, item,
4731                                             ioff - data_size, &token);
4732         }
4733
4734         /* shift the data */
4735         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4736                       data_end - data_size, btrfs_leaf_data(leaf) +
4737                       data_end, old_data - data_end);
4738
4739         data_end = old_data;
4740         old_size = btrfs_item_size_nr(leaf, slot);
4741         item = btrfs_item_nr(slot);
4742         btrfs_set_item_size(leaf, item, old_size + data_size);
4743         btrfs_mark_buffer_dirty(leaf);
4744
4745         if (btrfs_leaf_free_space(root, leaf) < 0) {
4746                 btrfs_print_leaf(root, leaf);
4747                 BUG();
4748         }
4749 }
4750
4751 /*
4752  * this is a helper for btrfs_insert_empty_items, the main goal here is
4753  * to save stack depth by doing the bulk of the work in a function
4754  * that doesn't call btrfs_search_slot
4755  */
4756 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4757                             struct btrfs_key *cpu_key, u32 *data_size,
4758                             u32 total_data, u32 total_size, int nr)
4759 {
4760         struct btrfs_item *item;
4761         int i;
4762         u32 nritems;
4763         unsigned int data_end;
4764         struct btrfs_disk_key disk_key;
4765         struct extent_buffer *leaf;
4766         int slot;
4767         struct btrfs_map_token token;
4768
4769         btrfs_init_map_token(&token);
4770
4771         leaf = path->nodes[0];
4772         slot = path->slots[0];
4773
4774         nritems = btrfs_header_nritems(leaf);
4775         data_end = leaf_data_end(root, leaf);
4776
4777         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4778                 btrfs_print_leaf(root, leaf);
4779                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4780                        total_size, btrfs_leaf_free_space(root, leaf));
4781                 BUG();
4782         }
4783
4784         if (slot != nritems) {
4785                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4786
4787                 if (old_data < data_end) {
4788                         btrfs_print_leaf(root, leaf);
4789                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4790                                slot, old_data, data_end);
4791                         BUG_ON(1);
4792                 }
4793                 /*
4794                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4795                  */
4796                 /* first correct the data pointers */
4797                 for (i = slot; i < nritems; i++) {
4798                         u32 ioff;
4799
4800                         item = btrfs_item_nr( i);
4801                         ioff = btrfs_token_item_offset(leaf, item, &token);
4802                         btrfs_set_token_item_offset(leaf, item,
4803                                                     ioff - total_data, &token);
4804                 }
4805                 /* shift the items */
4806                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4807                               btrfs_item_nr_offset(slot),
4808                               (nritems - slot) * sizeof(struct btrfs_item));
4809
4810                 /* shift the data */
4811                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4812                               data_end - total_data, btrfs_leaf_data(leaf) +
4813                               data_end, old_data - data_end);
4814                 data_end = old_data;
4815         }
4816
4817         /* setup the item for the new data */
4818         for (i = 0; i < nr; i++) {
4819                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4820                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4821                 item = btrfs_item_nr(slot + i);
4822                 btrfs_set_token_item_offset(leaf, item,
4823                                             data_end - data_size[i], &token);
4824                 data_end -= data_size[i];
4825                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4826         }
4827
4828         btrfs_set_header_nritems(leaf, nritems + nr);
4829
4830         if (slot == 0) {
4831                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4832                 fixup_low_keys(root, path, &disk_key, 1);
4833         }
4834         btrfs_unlock_up_safe(path, 1);
4835         btrfs_mark_buffer_dirty(leaf);
4836
4837         if (btrfs_leaf_free_space(root, leaf) < 0) {
4838                 btrfs_print_leaf(root, leaf);
4839                 BUG();
4840         }
4841 }
4842
4843 /*
4844  * Given a key and some data, insert items into the tree.
4845  * This does all the path init required, making room in the tree if needed.
4846  */
4847 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4848                             struct btrfs_root *root,
4849                             struct btrfs_path *path,
4850                             struct btrfs_key *cpu_key, u32 *data_size,
4851                             int nr)
4852 {
4853         int ret = 0;
4854         int slot;
4855         int i;
4856         u32 total_size = 0;
4857         u32 total_data = 0;
4858
4859         for (i = 0; i < nr; i++)
4860                 total_data += data_size[i];
4861
4862         total_size = total_data + (nr * sizeof(struct btrfs_item));
4863         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4864         if (ret == 0)
4865                 return -EEXIST;
4866         if (ret < 0)
4867                 return ret;
4868
4869         slot = path->slots[0];
4870         BUG_ON(slot < 0);
4871
4872         setup_items_for_insert(root, path, cpu_key, data_size,
4873                                total_data, total_size, nr);
4874         return 0;
4875 }
4876
4877 /*
4878  * Given a key and some data, insert an item into the tree.
4879  * This does all the path init required, making room in the tree if needed.
4880  */
4881 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4882                       *root, struct btrfs_key *cpu_key, void *data, u32
4883                       data_size)
4884 {
4885         int ret = 0;
4886         struct btrfs_path *path;
4887         struct extent_buffer *leaf;
4888         unsigned long ptr;
4889
4890         path = btrfs_alloc_path();
4891         if (!path)
4892                 return -ENOMEM;
4893         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4894         if (!ret) {
4895                 leaf = path->nodes[0];
4896                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4897                 write_extent_buffer(leaf, data, ptr, data_size);
4898                 btrfs_mark_buffer_dirty(leaf);
4899         }
4900         btrfs_free_path(path);
4901         return ret;
4902 }
4903
4904 /*
4905  * delete the pointer from a given node.
4906  *
4907  * the tree should have been previously balanced so the deletion does not
4908  * empty a node.
4909  */
4910 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4911                     int level, int slot)
4912 {
4913         struct extent_buffer *parent = path->nodes[level];
4914         u32 nritems;
4915         int ret;
4916
4917         nritems = btrfs_header_nritems(parent);
4918         if (slot != nritems - 1) {
4919                 if (level)
4920                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4921                                              slot + 1, nritems - slot - 1);
4922                 memmove_extent_buffer(parent,
4923                               btrfs_node_key_ptr_offset(slot),
4924                               btrfs_node_key_ptr_offset(slot + 1),
4925                               sizeof(struct btrfs_key_ptr) *
4926                               (nritems - slot - 1));
4927         } else if (level) {
4928                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4929                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4930                 BUG_ON(ret < 0);
4931         }
4932
4933         nritems--;
4934         btrfs_set_header_nritems(parent, nritems);
4935         if (nritems == 0 && parent == root->node) {
4936                 BUG_ON(btrfs_header_level(root->node) != 1);
4937                 /* just turn the root into a leaf and break */
4938                 btrfs_set_header_level(root->node, 0);
4939         } else if (slot == 0) {
4940                 struct btrfs_disk_key disk_key;
4941
4942                 btrfs_node_key(parent, &disk_key, 0);
4943                 fixup_low_keys(root, path, &disk_key, level + 1);
4944         }
4945         btrfs_mark_buffer_dirty(parent);
4946 }
4947
4948 /*
4949  * a helper function to delete the leaf pointed to by path->slots[1] and
4950  * path->nodes[1].
4951  *
4952  * This deletes the pointer in path->nodes[1] and frees the leaf
4953  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4954  *
4955  * The path must have already been setup for deleting the leaf, including
4956  * all the proper balancing.  path->nodes[1] must be locked.
4957  */
4958 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4959                                     struct btrfs_root *root,
4960                                     struct btrfs_path *path,
4961                                     struct extent_buffer *leaf)
4962 {
4963         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4964         del_ptr(root, path, 1, path->slots[1]);
4965
4966         /*
4967          * btrfs_free_extent is expensive, we want to make sure we
4968          * aren't holding any locks when we call it
4969          */
4970         btrfs_unlock_up_safe(path, 0);
4971
4972         root_sub_used(root, leaf->len);
4973
4974         extent_buffer_get(leaf);
4975         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4976         free_extent_buffer_stale(leaf);
4977 }
4978 /*
4979  * delete the item at the leaf level in path.  If that empties
4980  * the leaf, remove it from the tree
4981  */
4982 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4983                     struct btrfs_path *path, int slot, int nr)
4984 {
4985         struct extent_buffer *leaf;
4986         struct btrfs_item *item;
4987         int last_off;
4988         int dsize = 0;
4989         int ret = 0;
4990         int wret;
4991         int i;
4992         u32 nritems;
4993         struct btrfs_map_token token;
4994
4995         btrfs_init_map_token(&token);
4996
4997         leaf = path->nodes[0];
4998         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4999
5000         for (i = 0; i < nr; i++)
5001                 dsize += btrfs_item_size_nr(leaf, slot + i);
5002
5003         nritems = btrfs_header_nritems(leaf);
5004
5005         if (slot + nr != nritems) {
5006                 int data_end = leaf_data_end(root, leaf);
5007
5008                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5009                               data_end + dsize,
5010                               btrfs_leaf_data(leaf) + data_end,
5011                               last_off - data_end);
5012
5013                 for (i = slot + nr; i < nritems; i++) {
5014                         u32 ioff;
5015
5016                         item = btrfs_item_nr(i);
5017                         ioff = btrfs_token_item_offset(leaf, item, &token);
5018                         btrfs_set_token_item_offset(leaf, item,
5019                                                     ioff + dsize, &token);
5020                 }
5021
5022                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5023                               btrfs_item_nr_offset(slot + nr),
5024                               sizeof(struct btrfs_item) *
5025                               (nritems - slot - nr));
5026         }
5027         btrfs_set_header_nritems(leaf, nritems - nr);
5028         nritems -= nr;
5029
5030         /* delete the leaf if we've emptied it */
5031         if (nritems == 0) {
5032                 if (leaf == root->node) {
5033                         btrfs_set_header_level(leaf, 0);
5034                 } else {
5035                         btrfs_set_path_blocking(path);
5036                         clean_tree_block(trans, root, leaf);
5037                         btrfs_del_leaf(trans, root, path, leaf);
5038                 }
5039         } else {
5040                 int used = leaf_space_used(leaf, 0, nritems);
5041                 if (slot == 0) {
5042                         struct btrfs_disk_key disk_key;
5043
5044                         btrfs_item_key(leaf, &disk_key, 0);
5045                         fixup_low_keys(root, path, &disk_key, 1);
5046                 }
5047
5048                 /* delete the leaf if it is mostly empty */
5049                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5050                         /* push_leaf_left fixes the path.
5051                          * make sure the path still points to our leaf
5052                          * for possible call to del_ptr below
5053                          */
5054                         slot = path->slots[1];
5055                         extent_buffer_get(leaf);
5056
5057                         btrfs_set_path_blocking(path);
5058                         wret = push_leaf_left(trans, root, path, 1, 1,
5059                                               1, (u32)-1);
5060                         if (wret < 0 && wret != -ENOSPC)
5061                                 ret = wret;
5062
5063                         if (path->nodes[0] == leaf &&
5064                             btrfs_header_nritems(leaf)) {
5065                                 wret = push_leaf_right(trans, root, path, 1,
5066                                                        1, 1, 0);
5067                                 if (wret < 0 && wret != -ENOSPC)
5068                                         ret = wret;
5069                         }
5070
5071                         if (btrfs_header_nritems(leaf) == 0) {
5072                                 path->slots[1] = slot;
5073                                 btrfs_del_leaf(trans, root, path, leaf);
5074                                 free_extent_buffer(leaf);
5075                                 ret = 0;
5076                         } else {
5077                                 /* if we're still in the path, make sure
5078                                  * we're dirty.  Otherwise, one of the
5079                                  * push_leaf functions must have already
5080                                  * dirtied this buffer
5081                                  */
5082                                 if (path->nodes[0] == leaf)
5083                                         btrfs_mark_buffer_dirty(leaf);
5084                                 free_extent_buffer(leaf);
5085                         }
5086                 } else {
5087                         btrfs_mark_buffer_dirty(leaf);
5088                 }
5089         }
5090         return ret;
5091 }
5092
5093 /*
5094  * search the tree again to find a leaf with lesser keys
5095  * returns 0 if it found something or 1 if there are no lesser leaves.
5096  * returns < 0 on io errors.
5097  *
5098  * This may release the path, and so you may lose any locks held at the
5099  * time you call it.
5100  */
5101 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5102 {
5103         struct btrfs_key key;
5104         struct btrfs_disk_key found_key;
5105         int ret;
5106
5107         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5108
5109         if (key.offset > 0) {
5110                 key.offset--;
5111         } else if (key.type > 0) {
5112                 key.type--;
5113                 key.offset = (u64)-1;
5114         } else if (key.objectid > 0) {
5115                 key.objectid--;
5116                 key.type = (u8)-1;
5117                 key.offset = (u64)-1;
5118         } else {
5119                 return 1;
5120         }
5121
5122         btrfs_release_path(path);
5123         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5124         if (ret < 0)
5125                 return ret;
5126         btrfs_item_key(path->nodes[0], &found_key, 0);
5127         ret = comp_keys(&found_key, &key);
5128         if (ret < 0)
5129                 return 0;
5130         return 1;
5131 }
5132
5133 /*
5134  * A helper function to walk down the tree starting at min_key, and looking
5135  * for nodes or leaves that are have a minimum transaction id.
5136  * This is used by the btree defrag code, and tree logging
5137  *
5138  * This does not cow, but it does stuff the starting key it finds back
5139  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140  * key and get a writable path.
5141  *
5142  * This does lock as it descends, and path->keep_locks should be set
5143  * to 1 by the caller.
5144  *
5145  * This honors path->lowest_level to prevent descent past a given level
5146  * of the tree.
5147  *
5148  * min_trans indicates the oldest transaction that you are interested
5149  * in walking through.  Any nodes or leaves older than min_trans are
5150  * skipped over (without reading them).
5151  *
5152  * returns zero if something useful was found, < 0 on error and 1 if there
5153  * was nothing in the tree that matched the search criteria.
5154  */
5155 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5156                          struct btrfs_path *path,
5157                          u64 min_trans)
5158 {
5159         struct extent_buffer *cur;
5160         struct btrfs_key found_key;
5161         int slot;
5162         int sret;
5163         u32 nritems;
5164         int level;
5165         int ret = 1;
5166
5167         WARN_ON(!path->keep_locks);
5168 again:
5169         cur = btrfs_read_lock_root_node(root);
5170         level = btrfs_header_level(cur);
5171         WARN_ON(path->nodes[level]);
5172         path->nodes[level] = cur;
5173         path->locks[level] = BTRFS_READ_LOCK;
5174
5175         if (btrfs_header_generation(cur) < min_trans) {
5176                 ret = 1;
5177                 goto out;
5178         }
5179         while (1) {
5180                 nritems = btrfs_header_nritems(cur);
5181                 level = btrfs_header_level(cur);
5182                 sret = bin_search(cur, min_key, level, &slot);
5183
5184                 /* at the lowest level, we're done, setup the path and exit */
5185                 if (level == path->lowest_level) {
5186                         if (slot >= nritems)
5187                                 goto find_next_key;
5188                         ret = 0;
5189                         path->slots[level] = slot;
5190                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5191                         goto out;
5192                 }
5193                 if (sret && slot > 0)
5194                         slot--;
5195                 /*
5196                  * check this node pointer against the min_trans parameters.
5197                  * If it is too old, old, skip to the next one.
5198                  */
5199                 while (slot < nritems) {
5200                         u64 gen;
5201
5202                         gen = btrfs_node_ptr_generation(cur, slot);
5203                         if (gen < min_trans) {
5204                                 slot++;
5205                                 continue;
5206                         }
5207                         break;
5208                 }
5209 find_next_key:
5210                 /*
5211                  * we didn't find a candidate key in this node, walk forward
5212                  * and find another one
5213                  */
5214                 if (slot >= nritems) {
5215                         path->slots[level] = slot;
5216                         btrfs_set_path_blocking(path);
5217                         sret = btrfs_find_next_key(root, path, min_key, level,
5218                                                   min_trans);
5219                         if (sret == 0) {
5220                                 btrfs_release_path(path);
5221                                 goto again;
5222                         } else {
5223                                 goto out;
5224                         }
5225                 }
5226                 /* save our key for returning back */
5227                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5228                 path->slots[level] = slot;
5229                 if (level == path->lowest_level) {
5230                         ret = 0;
5231                         unlock_up(path, level, 1, 0, NULL);
5232                         goto out;
5233                 }
5234                 btrfs_set_path_blocking(path);
5235                 cur = read_node_slot(root, cur, slot);
5236                 BUG_ON(!cur); /* -ENOMEM */
5237
5238                 btrfs_tree_read_lock(cur);
5239
5240                 path->locks[level - 1] = BTRFS_READ_LOCK;
5241                 path->nodes[level - 1] = cur;
5242                 unlock_up(path, level, 1, 0, NULL);
5243                 btrfs_clear_path_blocking(path, NULL, 0);
5244         }
5245 out:
5246         if (ret == 0)
5247                 memcpy(min_key, &found_key, sizeof(found_key));
5248         btrfs_set_path_blocking(path);
5249         return ret;
5250 }
5251
5252 static void tree_move_down(struct btrfs_root *root,
5253                            struct btrfs_path *path,
5254                            int *level, int root_level)
5255 {
5256         BUG_ON(*level == 0);
5257         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5258                                         path->slots[*level]);
5259         path->slots[*level - 1] = 0;
5260         (*level)--;
5261 }
5262
5263 static int tree_move_next_or_upnext(struct btrfs_root *root,
5264                                     struct btrfs_path *path,
5265                                     int *level, int root_level)
5266 {
5267         int ret = 0;
5268         int nritems;
5269         nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271         path->slots[*level]++;
5272
5273         while (path->slots[*level] >= nritems) {
5274                 if (*level == root_level)
5275                         return -1;
5276
5277                 /* move upnext */
5278                 path->slots[*level] = 0;
5279                 free_extent_buffer(path->nodes[*level]);
5280                 path->nodes[*level] = NULL;
5281                 (*level)++;
5282                 path->slots[*level]++;
5283
5284                 nritems = btrfs_header_nritems(path->nodes[*level]);
5285                 ret = 1;
5286         }
5287         return ret;
5288 }
5289
5290 /*
5291  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292  * or down.
5293  */
5294 static int tree_advance(struct btrfs_root *root,
5295                         struct btrfs_path *path,
5296                         int *level, int root_level,
5297                         int allow_down,
5298                         struct btrfs_key *key)
5299 {
5300         int ret;
5301
5302         if (*level == 0 || !allow_down) {
5303                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5304         } else {
5305                 tree_move_down(root, path, level, root_level);
5306                 ret = 0;
5307         }
5308         if (ret >= 0) {
5309                 if (*level == 0)
5310                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5311                                         path->slots[*level]);
5312                 else
5313                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5314                                         path->slots[*level]);
5315         }
5316         return ret;
5317 }
5318
5319 static int tree_compare_item(struct btrfs_root *left_root,
5320                              struct btrfs_path *left_path,
5321                              struct btrfs_path *right_path,
5322                              char *tmp_buf)
5323 {
5324         int cmp;
5325         int len1, len2;
5326         unsigned long off1, off2;
5327
5328         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5329         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5330         if (len1 != len2)
5331                 return 1;
5332
5333         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5334         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5335                                 right_path->slots[0]);
5336
5337         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5338
5339         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5340         if (cmp)
5341                 return 1;
5342         return 0;
5343 }
5344
5345 #define ADVANCE 1
5346 #define ADVANCE_ONLY_NEXT -1
5347
5348 /*
5349  * This function compares two trees and calls the provided callback for
5350  * every changed/new/deleted item it finds.
5351  * If shared tree blocks are encountered, whole subtrees are skipped, making
5352  * the compare pretty fast on snapshotted subvolumes.
5353  *
5354  * This currently works on commit roots only. As commit roots are read only,
5355  * we don't do any locking. The commit roots are protected with transactions.
5356  * Transactions are ended and rejoined when a commit is tried in between.
5357  *
5358  * This function checks for modifications done to the trees while comparing.
5359  * If it detects a change, it aborts immediately.
5360  */
5361 int btrfs_compare_trees(struct btrfs_root *left_root,
5362                         struct btrfs_root *right_root,
5363                         btrfs_changed_cb_t changed_cb, void *ctx)
5364 {
5365         int ret;
5366         int cmp;
5367         struct btrfs_path *left_path = NULL;
5368         struct btrfs_path *right_path = NULL;
5369         struct btrfs_key left_key;
5370         struct btrfs_key right_key;
5371         char *tmp_buf = NULL;
5372         int left_root_level;
5373         int right_root_level;
5374         int left_level;
5375         int right_level;
5376         int left_end_reached;
5377         int right_end_reached;
5378         int advance_left;
5379         int advance_right;
5380         u64 left_blockptr;
5381         u64 right_blockptr;
5382         u64 left_gen;
5383         u64 right_gen;
5384
5385         left_path = btrfs_alloc_path();
5386         if (!left_path) {
5387                 ret = -ENOMEM;
5388                 goto out;
5389         }
5390         right_path = btrfs_alloc_path();
5391         if (!right_path) {
5392                 ret = -ENOMEM;
5393                 goto out;
5394         }
5395
5396         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5397         if (!tmp_buf) {
5398                 ret = -ENOMEM;
5399                 goto out;
5400         }
5401
5402         left_path->search_commit_root = 1;
5403         left_path->skip_locking = 1;
5404         right_path->search_commit_root = 1;
5405         right_path->skip_locking = 1;
5406
5407         /*
5408          * Strategy: Go to the first items of both trees. Then do
5409          *
5410          * If both trees are at level 0
5411          *   Compare keys of current items
5412          *     If left < right treat left item as new, advance left tree
5413          *       and repeat
5414          *     If left > right treat right item as deleted, advance right tree
5415          *       and repeat
5416          *     If left == right do deep compare of items, treat as changed if
5417          *       needed, advance both trees and repeat
5418          * If both trees are at the same level but not at level 0
5419          *   Compare keys of current nodes/leafs
5420          *     If left < right advance left tree and repeat
5421          *     If left > right advance right tree and repeat
5422          *     If left == right compare blockptrs of the next nodes/leafs
5423          *       If they match advance both trees but stay at the same level
5424          *         and repeat
5425          *       If they don't match advance both trees while allowing to go
5426          *         deeper and repeat
5427          * If tree levels are different
5428          *   Advance the tree that needs it and repeat
5429          *
5430          * Advancing a tree means:
5431          *   If we are at level 0, try to go to the next slot. If that's not
5432          *   possible, go one level up and repeat. Stop when we found a level
5433          *   where we could go to the next slot. We may at this point be on a
5434          *   node or a leaf.
5435          *
5436          *   If we are not at level 0 and not on shared tree blocks, go one
5437          *   level deeper.
5438          *
5439          *   If we are not at level 0 and on shared tree blocks, go one slot to
5440          *   the right if possible or go up and right.
5441          */
5442
5443         down_read(&left_root->fs_info->commit_root_sem);
5444         left_level = btrfs_header_level(left_root->commit_root);
5445         left_root_level = left_level;
5446         left_path->nodes[left_level] = left_root->commit_root;
5447         extent_buffer_get(left_path->nodes[left_level]);
5448
5449         right_level = btrfs_header_level(right_root->commit_root);
5450         right_root_level = right_level;
5451         right_path->nodes[right_level] = right_root->commit_root;
5452         extent_buffer_get(right_path->nodes[right_level]);
5453         up_read(&left_root->fs_info->commit_root_sem);
5454
5455         if (left_level == 0)
5456                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5457                                 &left_key, left_path->slots[left_level]);
5458         else
5459                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5460                                 &left_key, left_path->slots[left_level]);
5461         if (right_level == 0)
5462                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5463                                 &right_key, right_path->slots[right_level]);
5464         else
5465                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5466                                 &right_key, right_path->slots[right_level]);
5467
5468         left_end_reached = right_end_reached = 0;
5469         advance_left = advance_right = 0;
5470
5471         while (1) {
5472                 if (advance_left && !left_end_reached) {
5473                         ret = tree_advance(left_root, left_path, &left_level,
5474                                         left_root_level,
5475                                         advance_left != ADVANCE_ONLY_NEXT,
5476                                         &left_key);
5477                         if (ret < 0)
5478                                 left_end_reached = ADVANCE;
5479                         advance_left = 0;
5480                 }
5481                 if (advance_right && !right_end_reached) {
5482                         ret = tree_advance(right_root, right_path, &right_level,
5483                                         right_root_level,
5484                                         advance_right != ADVANCE_ONLY_NEXT,
5485                                         &right_key);
5486                         if (ret < 0)
5487                                 right_end_reached = ADVANCE;
5488                         advance_right = 0;
5489                 }
5490
5491                 if (left_end_reached && right_end_reached) {
5492                         ret = 0;
5493                         goto out;
5494                 } else if (left_end_reached) {
5495                         if (right_level == 0) {
5496                                 ret = changed_cb(left_root, right_root,
5497                                                 left_path, right_path,
5498                                                 &right_key,
5499                                                 BTRFS_COMPARE_TREE_DELETED,
5500                                                 ctx);
5501                                 if (ret < 0)
5502                                         goto out;
5503                         }
5504                         advance_right = ADVANCE;
5505                         continue;
5506                 } else if (right_end_reached) {
5507                         if (left_level == 0) {
5508                                 ret = changed_cb(left_root, right_root,
5509                                                 left_path, right_path,
5510                                                 &left_key,
5511                                                 BTRFS_COMPARE_TREE_NEW,
5512                                                 ctx);
5513                                 if (ret < 0)
5514                                         goto out;
5515                         }
5516                         advance_left = ADVANCE;
5517                         continue;
5518                 }
5519
5520                 if (left_level == 0 && right_level == 0) {
5521                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5522                         if (cmp < 0) {
5523                                 ret = changed_cb(left_root, right_root,
5524                                                 left_path, right_path,
5525                                                 &left_key,
5526                                                 BTRFS_COMPARE_TREE_NEW,
5527                                                 ctx);
5528                                 if (ret < 0)
5529                                         goto out;
5530                                 advance_left = ADVANCE;
5531                         } else if (cmp > 0) {
5532                                 ret = changed_cb(left_root, right_root,
5533                                                 left_path, right_path,
5534                                                 &right_key,
5535                                                 BTRFS_COMPARE_TREE_DELETED,
5536                                                 ctx);
5537                                 if (ret < 0)
5538                                         goto out;
5539                                 advance_right = ADVANCE;
5540                         } else {
5541                                 enum btrfs_compare_tree_result cmp;
5542
5543                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5544                                 ret = tree_compare_item(left_root, left_path,
5545                                                 right_path, tmp_buf);
5546                                 if (ret)
5547                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5548                                 else
5549                                         cmp = BTRFS_COMPARE_TREE_SAME;
5550                                 ret = changed_cb(left_root, right_root,
5551                                                  left_path, right_path,
5552                                                  &left_key, cmp, ctx);
5553                                 if (ret < 0)
5554                                         goto out;
5555                                 advance_left = ADVANCE;
5556                                 advance_right = ADVANCE;
5557                         }
5558                 } else if (left_level == right_level) {
5559                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5560                         if (cmp < 0) {
5561                                 advance_left = ADVANCE;
5562                         } else if (cmp > 0) {
5563                                 advance_right = ADVANCE;
5564                         } else {
5565                                 left_blockptr = btrfs_node_blockptr(
5566                                                 left_path->nodes[left_level],
5567                                                 left_path->slots[left_level]);
5568                                 right_blockptr = btrfs_node_blockptr(
5569                                                 right_path->nodes[right_level],
5570                                                 right_path->slots[right_level]);
5571                                 left_gen = btrfs_node_ptr_generation(
5572                                                 left_path->nodes[left_level],
5573                                                 left_path->slots[left_level]);
5574                                 right_gen = btrfs_node_ptr_generation(
5575                                                 right_path->nodes[right_level],
5576                                                 right_path->slots[right_level]);
5577                                 if (left_blockptr == right_blockptr &&
5578                                     left_gen == right_gen) {
5579                                         /*
5580                                          * As we're on a shared block, don't
5581                                          * allow to go deeper.
5582                                          */
5583                                         advance_left = ADVANCE_ONLY_NEXT;
5584                                         advance_right = ADVANCE_ONLY_NEXT;
5585                                 } else {
5586                                         advance_left = ADVANCE;
5587                                         advance_right = ADVANCE;
5588                                 }
5589                         }
5590                 } else if (left_level < right_level) {
5591                         advance_right = ADVANCE;
5592                 } else {
5593                         advance_left = ADVANCE;
5594                 }
5595         }
5596
5597 out:
5598         btrfs_free_path(left_path);
5599         btrfs_free_path(right_path);
5600         kfree(tmp_buf);
5601         return ret;
5602 }
5603
5604 /*
5605  * this is similar to btrfs_next_leaf, but does not try to preserve
5606  * and fixup the path.  It looks for and returns the next key in the
5607  * tree based on the current path and the min_trans parameters.
5608  *
5609  * 0 is returned if another key is found, < 0 if there are any errors
5610  * and 1 is returned if there are no higher keys in the tree
5611  *
5612  * path->keep_locks should be set to 1 on the search made before
5613  * calling this function.
5614  */
5615 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5616                         struct btrfs_key *key, int level, u64 min_trans)
5617 {
5618         int slot;
5619         struct extent_buffer *c;
5620
5621         WARN_ON(!path->keep_locks);
5622         while (level < BTRFS_MAX_LEVEL) {
5623                 if (!path->nodes[level])
5624                         return 1;
5625
5626                 slot = path->slots[level] + 1;
5627                 c = path->nodes[level];
5628 next:
5629                 if (slot >= btrfs_header_nritems(c)) {
5630                         int ret;
5631                         int orig_lowest;
5632                         struct btrfs_key cur_key;
5633                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5634                             !path->nodes[level + 1])
5635                                 return 1;
5636
5637                         if (path->locks[level + 1]) {
5638                                 level++;
5639                                 continue;
5640                         }
5641
5642                         slot = btrfs_header_nritems(c) - 1;
5643                         if (level == 0)
5644                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5645                         else
5646                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5647
5648                         orig_lowest = path->lowest_level;
5649                         btrfs_release_path(path);
5650                         path->lowest_level = level;
5651                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5652                                                 0, 0);
5653                         path->lowest_level = orig_lowest;
5654                         if (ret < 0)
5655                                 return ret;
5656
5657                         c = path->nodes[level];
5658                         slot = path->slots[level];
5659                         if (ret == 0)
5660                                 slot++;
5661                         goto next;
5662                 }
5663
5664                 if (level == 0)
5665                         btrfs_item_key_to_cpu(c, key, slot);
5666                 else {
5667                         u64 gen = btrfs_node_ptr_generation(c, slot);
5668
5669                         if (gen < min_trans) {
5670                                 slot++;
5671                                 goto next;
5672                         }
5673                         btrfs_node_key_to_cpu(c, key, slot);
5674                 }
5675                 return 0;
5676         }
5677         return 1;
5678 }
5679
5680 /*
5681  * search the tree again to find a leaf with greater keys
5682  * returns 0 if it found something or 1 if there are no greater leaves.
5683  * returns < 0 on io errors.
5684  */
5685 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5686 {
5687         return btrfs_next_old_leaf(root, path, 0);
5688 }
5689
5690 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5691                         u64 time_seq)
5692 {
5693         int slot;
5694         int level;
5695         struct extent_buffer *c;
5696         struct extent_buffer *next;
5697         struct btrfs_key key;
5698         u32 nritems;
5699         int ret;
5700         int old_spinning = path->leave_spinning;
5701         int next_rw_lock = 0;
5702
5703         nritems = btrfs_header_nritems(path->nodes[0]);
5704         if (nritems == 0)
5705                 return 1;
5706
5707         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5708 again:
5709         level = 1;
5710         next = NULL;
5711         next_rw_lock = 0;
5712         btrfs_release_path(path);
5713
5714         path->keep_locks = 1;
5715         path->leave_spinning = 1;
5716
5717         if (time_seq)
5718                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5719         else
5720                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5721         path->keep_locks = 0;
5722
5723         if (ret < 0)
5724                 return ret;
5725
5726         nritems = btrfs_header_nritems(path->nodes[0]);
5727         /*
5728          * by releasing the path above we dropped all our locks.  A balance
5729          * could have added more items next to the key that used to be
5730          * at the very end of the block.  So, check again here and
5731          * advance the path if there are now more items available.
5732          */
5733         if (nritems > 0 && path->slots[0] < nritems - 1) {
5734                 if (ret == 0)
5735                         path->slots[0]++;
5736                 ret = 0;
5737                 goto done;
5738         }
5739
5740         while (level < BTRFS_MAX_LEVEL) {
5741                 if (!path->nodes[level]) {
5742                         ret = 1;
5743                         goto done;
5744                 }
5745
5746                 slot = path->slots[level] + 1;
5747                 c = path->nodes[level];
5748                 if (slot >= btrfs_header_nritems(c)) {
5749                         level++;
5750                         if (level == BTRFS_MAX_LEVEL) {
5751                                 ret = 1;
5752                                 goto done;
5753                         }
5754                         continue;
5755                 }
5756
5757                 if (next) {
5758                         btrfs_tree_unlock_rw(next, next_rw_lock);
5759                         free_extent_buffer(next);
5760                 }
5761
5762                 next = c;
5763                 next_rw_lock = path->locks[level];
5764                 ret = read_block_for_search(NULL, root, path, &next, level,
5765                                             slot, &key, 0);
5766                 if (ret == -EAGAIN)
5767                         goto again;
5768
5769                 if (ret < 0) {
5770                         btrfs_release_path(path);
5771                         goto done;
5772                 }
5773
5774                 if (!path->skip_locking) {
5775                         ret = btrfs_try_tree_read_lock(next);
5776                         if (!ret && time_seq) {
5777                                 /*
5778                                  * If we don't get the lock, we may be racing
5779                                  * with push_leaf_left, holding that lock while
5780                                  * itself waiting for the leaf we've currently
5781                                  * locked. To solve this situation, we give up
5782                                  * on our lock and cycle.
5783                                  */
5784                                 free_extent_buffer(next);
5785                                 btrfs_release_path(path);
5786                                 cond_resched();
5787                                 goto again;
5788                         }
5789                         if (!ret) {
5790                                 btrfs_set_path_blocking(path);
5791                                 btrfs_tree_read_lock(next);
5792                                 btrfs_clear_path_blocking(path, next,
5793                                                           BTRFS_READ_LOCK);
5794                         }
5795                         next_rw_lock = BTRFS_READ_LOCK;
5796                 }
5797                 break;
5798         }
5799         path->slots[level] = slot;
5800         while (1) {
5801                 level--;
5802                 c = path->nodes[level];
5803                 if (path->locks[level])
5804                         btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806                 free_extent_buffer(c);
5807                 path->nodes[level] = next;
5808                 path->slots[level] = 0;
5809                 if (!path->skip_locking)
5810                         path->locks[level] = next_rw_lock;
5811                 if (!level)
5812                         break;
5813
5814                 ret = read_block_for_search(NULL, root, path, &next, level,
5815                                             0, &key, 0);
5816                 if (ret == -EAGAIN)
5817                         goto again;
5818
5819                 if (ret < 0) {
5820                         btrfs_release_path(path);
5821                         goto done;
5822                 }
5823
5824                 if (!path->skip_locking) {
5825                         ret = btrfs_try_tree_read_lock(next);
5826                         if (!ret) {
5827                                 btrfs_set_path_blocking(path);
5828                                 btrfs_tree_read_lock(next);
5829                                 btrfs_clear_path_blocking(path, next,
5830                                                           BTRFS_READ_LOCK);
5831                         }
5832                         next_rw_lock = BTRFS_READ_LOCK;
5833                 }
5834         }
5835         ret = 0;
5836 done:
5837         unlock_up(path, 0, 1, 0, NULL);
5838         path->leave_spinning = old_spinning;
5839         if (!old_spinning)
5840                 btrfs_set_path_blocking(path);
5841
5842         return ret;
5843 }
5844
5845 /*
5846  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847  * searching until it gets past min_objectid or finds an item of 'type'
5848  *
5849  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850  */
5851 int btrfs_previous_item(struct btrfs_root *root,
5852                         struct btrfs_path *path, u64 min_objectid,
5853                         int type)
5854 {
5855         struct btrfs_key found_key;
5856         struct extent_buffer *leaf;
5857         u32 nritems;
5858         int ret;
5859
5860         while (1) {
5861                 if (path->slots[0] == 0) {
5862                         btrfs_set_path_blocking(path);
5863                         ret = btrfs_prev_leaf(root, path);
5864                         if (ret != 0)
5865                                 return ret;
5866                 } else {
5867                         path->slots[0]--;
5868                 }
5869                 leaf = path->nodes[0];
5870                 nritems = btrfs_header_nritems(leaf);
5871                 if (nritems == 0)
5872                         return 1;
5873                 if (path->slots[0] == nritems)
5874                         path->slots[0]--;
5875
5876                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877                 if (found_key.objectid < min_objectid)
5878                         break;
5879                 if (found_key.type == type)
5880                         return 0;
5881                 if (found_key.objectid == min_objectid &&
5882                     found_key.type < type)
5883                         break;
5884         }
5885         return 1;
5886 }
5887
5888 /*
5889  * search in extent tree to find a previous Metadata/Data extent item with
5890  * min objecitd.
5891  *
5892  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893  */
5894 int btrfs_previous_extent_item(struct btrfs_root *root,
5895                         struct btrfs_path *path, u64 min_objectid)
5896 {
5897         struct btrfs_key found_key;
5898         struct extent_buffer *leaf;
5899         u32 nritems;
5900         int ret;
5901
5902         while (1) {
5903                 if (path->slots[0] == 0) {
5904                         btrfs_set_path_blocking(path);
5905                         ret = btrfs_prev_leaf(root, path);
5906                         if (ret != 0)
5907                                 return ret;
5908                 } else {
5909                         path->slots[0]--;
5910                 }
5911                 leaf = path->nodes[0];
5912                 nritems = btrfs_header_nritems(leaf);
5913                 if (nritems == 0)
5914                         return 1;
5915                 if (path->slots[0] == nritems)
5916                         path->slots[0]--;
5917
5918                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919                 if (found_key.objectid < min_objectid)
5920                         break;
5921                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5923                         return 0;
5924                 if (found_key.objectid == min_objectid &&
5925                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926                         break;
5927         }
5928         return 1;
5929 }