MIPS: O32: Use compat_sys_getsockopt.
[linux-drm-fsl-dcu.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83         if (held) {
84                 btrfs_set_lock_blocking_rw(held, held_rw);
85                 if (held_rw == BTRFS_WRITE_LOCK)
86                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87                 else if (held_rw == BTRFS_READ_LOCK)
88                         held_rw = BTRFS_READ_LOCK_BLOCKING;
89         }
90         btrfs_set_path_blocking(p);
91
92         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93                 if (p->nodes[i] && p->locks[i]) {
94                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96                                 p->locks[i] = BTRFS_WRITE_LOCK;
97                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98                                 p->locks[i] = BTRFS_READ_LOCK;
99                 }
100         }
101
102         if (held)
103                 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109         if (!p)
110                 return;
111         btrfs_release_path(p);
112         kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123         int i;
124
125         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126                 p->slots[i] = 0;
127                 if (!p->nodes[i])
128                         continue;
129                 if (p->locks[i]) {
130                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131                         p->locks[i] = 0;
132                 }
133                 free_extent_buffer(p->nodes[i]);
134                 p->nodes[i] = NULL;
135         }
136 }
137
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150         struct extent_buffer *eb;
151
152         while (1) {
153                 rcu_read_lock();
154                 eb = rcu_dereference(root->node);
155
156                 /*
157                  * RCU really hurts here, we could free up the root node because
158                  * it was cow'ed but we may not get the new root node yet so do
159                  * the inc_not_zero dance and if it doesn't work then
160                  * synchronize_rcu and try again.
161                  */
162                 if (atomic_inc_not_zero(&eb->refs)) {
163                         rcu_read_unlock();
164                         break;
165                 }
166                 rcu_read_unlock();
167                 synchronize_rcu();
168         }
169         return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178         struct extent_buffer *eb;
179
180         while (1) {
181                 eb = btrfs_root_node(root);
182                 btrfs_tree_lock(eb);
183                 if (eb == root->node)
184                         break;
185                 btrfs_tree_unlock(eb);
186                 free_extent_buffer(eb);
187         }
188         return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197         struct extent_buffer *eb;
198
199         while (1) {
200                 eb = btrfs_root_node(root);
201                 btrfs_tree_read_lock(eb);
202                 if (eb == root->node)
203                         break;
204                 btrfs_tree_read_unlock(eb);
205                 free_extent_buffer(eb);
206         }
207         return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218                 return;
219
220         spin_lock(&root->fs_info->trans_lock);
221         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222                 /* Want the extent tree to be the last on the list */
223                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224                         list_move_tail(&root->dirty_list,
225                                        &root->fs_info->dirty_cowonly_roots);
226                 else
227                         list_move(&root->dirty_list,
228                                   &root->fs_info->dirty_cowonly_roots);
229         }
230         spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234  * used by snapshot creation to make a copy of a root for a tree with
235  * a given objectid.  The buffer with the new root node is returned in
236  * cow_ret, and this func returns zero on success or a negative error code.
237  */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239                       struct btrfs_root *root,
240                       struct extent_buffer *buf,
241                       struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243         struct extent_buffer *cow;
244         int ret = 0;
245         int level;
246         struct btrfs_disk_key disk_key;
247
248         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249                 trans->transid != root->fs_info->running_transaction->transid);
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260                         &disk_key, level, buf->start, 0);
261         if (IS_ERR(cow))
262                 return PTR_ERR(cow);
263
264         copy_extent_buffer(cow, buf, 0, 0, cow->len);
265         btrfs_set_header_bytenr(cow, cow->start);
266         btrfs_set_header_generation(cow, trans->transid);
267         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269                                      BTRFS_HEADER_FLAG_RELOC);
270         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272         else
273                 btrfs_set_header_owner(cow, new_root_objectid);
274
275         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276                             BTRFS_FSID_SIZE);
277
278         WARN_ON(btrfs_header_generation(buf) > trans->transid);
279         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280                 ret = btrfs_inc_ref(trans, root, cow, 1);
281         else
282                 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284         if (ret)
285                 return ret;
286
287         btrfs_mark_buffer_dirty(cow);
288         *cow_ret = cow;
289         return 0;
290 }
291
292 enum mod_log_op {
293         MOD_LOG_KEY_REPLACE,
294         MOD_LOG_KEY_ADD,
295         MOD_LOG_KEY_REMOVE,
296         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298         MOD_LOG_MOVE_KEYS,
299         MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303         int dst_slot;
304         int nr_items;
305 };
306
307 struct tree_mod_root {
308         u64 logical;
309         u8 level;
310 };
311
312 struct tree_mod_elem {
313         struct rb_node node;
314         u64 index;              /* shifted logical */
315         u64 seq;
316         enum mod_log_op op;
317
318         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319         int slot;
320
321         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322         u64 generation;
323
324         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325         struct btrfs_disk_key key;
326         u64 blockptr;
327
328         /* this is used for op == MOD_LOG_MOVE_KEYS */
329         struct tree_mod_move move;
330
331         /* this is used for op == MOD_LOG_ROOT_REPLACE */
332         struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337         read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342         read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347         write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352         write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356  * Pull a new tree mod seq number for our operation.
357  */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360         return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         tree_mod_log_write_lock(fs_info);
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         if (!elem->seq) {
377                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379         }
380         spin_unlock(&fs_info->tree_mod_seq_lock);
381         tree_mod_log_write_unlock(fs_info);
382
383         return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387                             struct seq_list *elem)
388 {
389         struct rb_root *tm_root;
390         struct rb_node *node;
391         struct rb_node *next;
392         struct seq_list *cur_elem;
393         struct tree_mod_elem *tm;
394         u64 min_seq = (u64)-1;
395         u64 seq_putting = elem->seq;
396
397         if (!seq_putting)
398                 return;
399
400         spin_lock(&fs_info->tree_mod_seq_lock);
401         list_del(&elem->list);
402         elem->seq = 0;
403
404         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405                 if (cur_elem->seq < min_seq) {
406                         if (seq_putting > cur_elem->seq) {
407                                 /*
408                                  * blocker with lower sequence number exists, we
409                                  * cannot remove anything from the log
410                                  */
411                                 spin_unlock(&fs_info->tree_mod_seq_lock);
412                                 return;
413                         }
414                         min_seq = cur_elem->seq;
415                 }
416         }
417         spin_unlock(&fs_info->tree_mod_seq_lock);
418
419         /*
420          * anything that's lower than the lowest existing (read: blocked)
421          * sequence number can be removed from the tree.
422          */
423         tree_mod_log_write_lock(fs_info);
424         tm_root = &fs_info->tree_mod_log;
425         for (node = rb_first(tm_root); node; node = next) {
426                 next = rb_next(node);
427                 tm = container_of(node, struct tree_mod_elem, node);
428                 if (tm->seq > min_seq)
429                         continue;
430                 rb_erase(node, tm_root);
431                 kfree(tm);
432         }
433         tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437  * key order of the log:
438  *       index -> sequence
439  *
440  * the index is the shifted logical of the *new* root node for root replace
441  * operations, or the shifted logical of the affected block for all other
442  * operations.
443  *
444  * Note: must be called with write lock (tree_mod_log_write_lock).
445  */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449         struct rb_root *tm_root;
450         struct rb_node **new;
451         struct rb_node *parent = NULL;
452         struct tree_mod_elem *cur;
453
454         BUG_ON(!tm);
455
456         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458         tm_root = &fs_info->tree_mod_log;
459         new = &tm_root->rb_node;
460         while (*new) {
461                 cur = container_of(*new, struct tree_mod_elem, node);
462                 parent = *new;
463                 if (cur->index < tm->index)
464                         new = &((*new)->rb_left);
465                 else if (cur->index > tm->index)
466                         new = &((*new)->rb_right);
467                 else if (cur->seq < tm->seq)
468                         new = &((*new)->rb_left);
469                 else if (cur->seq > tm->seq)
470                         new = &((*new)->rb_right);
471                 else
472                         return -EEXIST;
473         }
474
475         rb_link_node(&tm->node, parent, new);
476         rb_insert_color(&tm->node, tm_root);
477         return 0;
478 }
479
480 /*
481  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482  * returns zero with the tree_mod_log_lock acquired. The caller must hold
483  * this until all tree mod log insertions are recorded in the rb tree and then
484  * call tree_mod_log_write_unlock() to release.
485  */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487                                     struct extent_buffer *eb) {
488         smp_mb();
489         if (list_empty(&(fs_info)->tree_mod_seq_list))
490                 return 1;
491         if (eb && btrfs_header_level(eb) == 0)
492                 return 1;
493
494         tree_mod_log_write_lock(fs_info);
495         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496                 tree_mod_log_write_unlock(fs_info);
497                 return 1;
498         }
499
500         return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505                                     struct extent_buffer *eb)
506 {
507         smp_mb();
508         if (list_empty(&(fs_info)->tree_mod_seq_list))
509                 return 0;
510         if (eb && btrfs_header_level(eb) == 0)
511                 return 0;
512
513         return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518                     enum mod_log_op op, gfp_t flags)
519 {
520         struct tree_mod_elem *tm;
521
522         tm = kzalloc(sizeof(*tm), flags);
523         if (!tm)
524                 return NULL;
525
526         tm->index = eb->start >> PAGE_CACHE_SHIFT;
527         if (op != MOD_LOG_KEY_ADD) {
528                 btrfs_node_key(eb, &tm->key, slot);
529                 tm->blockptr = btrfs_node_blockptr(eb, slot);
530         }
531         tm->op = op;
532         tm->slot = slot;
533         tm->generation = btrfs_node_ptr_generation(eb, slot);
534         RB_CLEAR_NODE(&tm->node);
535
536         return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541                         struct extent_buffer *eb, int slot,
542                         enum mod_log_op op, gfp_t flags)
543 {
544         struct tree_mod_elem *tm;
545         int ret;
546
547         if (!tree_mod_need_log(fs_info, eb))
548                 return 0;
549
550         tm = alloc_tree_mod_elem(eb, slot, op, flags);
551         if (!tm)
552                 return -ENOMEM;
553
554         if (tree_mod_dont_log(fs_info, eb)) {
555                 kfree(tm);
556                 return 0;
557         }
558
559         ret = __tree_mod_log_insert(fs_info, tm);
560         tree_mod_log_write_unlock(fs_info);
561         if (ret)
562                 kfree(tm);
563
564         return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569                          struct extent_buffer *eb, int dst_slot, int src_slot,
570                          int nr_items, gfp_t flags)
571 {
572         struct tree_mod_elem *tm = NULL;
573         struct tree_mod_elem **tm_list = NULL;
574         int ret = 0;
575         int i;
576         int locked = 0;
577
578         if (!tree_mod_need_log(fs_info, eb))
579                 return 0;
580
581         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582         if (!tm_list)
583                 return -ENOMEM;
584
585         tm = kzalloc(sizeof(*tm), flags);
586         if (!tm) {
587                 ret = -ENOMEM;
588                 goto free_tms;
589         }
590
591         tm->index = eb->start >> PAGE_CACHE_SHIFT;
592         tm->slot = src_slot;
593         tm->move.dst_slot = dst_slot;
594         tm->move.nr_items = nr_items;
595         tm->op = MOD_LOG_MOVE_KEYS;
596
597         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600                 if (!tm_list[i]) {
601                         ret = -ENOMEM;
602                         goto free_tms;
603                 }
604         }
605
606         if (tree_mod_dont_log(fs_info, eb))
607                 goto free_tms;
608         locked = 1;
609
610         /*
611          * When we override something during the move, we log these removals.
612          * This can only happen when we move towards the beginning of the
613          * buffer, i.e. dst_slot < src_slot.
614          */
615         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617                 if (ret)
618                         goto free_tms;
619         }
620
621         ret = __tree_mod_log_insert(fs_info, tm);
622         if (ret)
623                 goto free_tms;
624         tree_mod_log_write_unlock(fs_info);
625         kfree(tm_list);
626
627         return 0;
628 free_tms:
629         for (i = 0; i < nr_items; i++) {
630                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632                 kfree(tm_list[i]);
633         }
634         if (locked)
635                 tree_mod_log_write_unlock(fs_info);
636         kfree(tm_list);
637         kfree(tm);
638
639         return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644                        struct tree_mod_elem **tm_list,
645                        int nritems)
646 {
647         int i, j;
648         int ret;
649
650         for (i = nritems - 1; i >= 0; i--) {
651                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652                 if (ret) {
653                         for (j = nritems - 1; j > i; j--)
654                                 rb_erase(&tm_list[j]->node,
655                                          &fs_info->tree_mod_log);
656                         return ret;
657                 }
658         }
659
660         return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665                          struct extent_buffer *old_root,
666                          struct extent_buffer *new_root, gfp_t flags,
667                          int log_removal)
668 {
669         struct tree_mod_elem *tm = NULL;
670         struct tree_mod_elem **tm_list = NULL;
671         int nritems = 0;
672         int ret = 0;
673         int i;
674
675         if (!tree_mod_need_log(fs_info, NULL))
676                 return 0;
677
678         if (log_removal && btrfs_header_level(old_root) > 0) {
679                 nritems = btrfs_header_nritems(old_root);
680                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681                                   flags);
682                 if (!tm_list) {
683                         ret = -ENOMEM;
684                         goto free_tms;
685                 }
686                 for (i = 0; i < nritems; i++) {
687                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
688                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689                         if (!tm_list[i]) {
690                                 ret = -ENOMEM;
691                                 goto free_tms;
692                         }
693                 }
694         }
695
696         tm = kzalloc(sizeof(*tm), flags);
697         if (!tm) {
698                 ret = -ENOMEM;
699                 goto free_tms;
700         }
701
702         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703         tm->old_root.logical = old_root->start;
704         tm->old_root.level = btrfs_header_level(old_root);
705         tm->generation = btrfs_header_generation(old_root);
706         tm->op = MOD_LOG_ROOT_REPLACE;
707
708         if (tree_mod_dont_log(fs_info, NULL))
709                 goto free_tms;
710
711         if (tm_list)
712                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713         if (!ret)
714                 ret = __tree_mod_log_insert(fs_info, tm);
715
716         tree_mod_log_write_unlock(fs_info);
717         if (ret)
718                 goto free_tms;
719         kfree(tm_list);
720
721         return ret;
722
723 free_tms:
724         if (tm_list) {
725                 for (i = 0; i < nritems; i++)
726                         kfree(tm_list[i]);
727                 kfree(tm_list);
728         }
729         kfree(tm);
730
731         return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736                       int smallest)
737 {
738         struct rb_root *tm_root;
739         struct rb_node *node;
740         struct tree_mod_elem *cur = NULL;
741         struct tree_mod_elem *found = NULL;
742         u64 index = start >> PAGE_CACHE_SHIFT;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->index < index) {
750                         node = node->rb_left;
751                 } else if (cur->index > index) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909         if (!tm_list)
910                 return -ENOMEM;
911
912         for (i = 0; i < nritems; i++) {
913                 tm_list[i] = alloc_tree_mod_elem(eb, i,
914                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915                 if (!tm_list[i]) {
916                         ret = -ENOMEM;
917                         goto free_tms;
918                 }
919         }
920
921         if (tree_mod_dont_log(fs_info, eb))
922                 goto free_tms;
923
924         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925         tree_mod_log_write_unlock(fs_info);
926         if (ret)
927                 goto free_tms;
928         kfree(tm_list);
929
930         return 0;
931
932 free_tms:
933         for (i = 0; i < nritems; i++)
934                 kfree(tm_list[i]);
935         kfree(tm_list);
936
937         return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942                               struct extent_buffer *new_root_node,
943                               int log_removal)
944 {
945         int ret;
946         ret = tree_mod_log_insert_root(root->fs_info, root->node,
947                                        new_root_node, GFP_NOFS, log_removal);
948         BUG_ON(ret < 0);
949 }
950
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955                               struct extent_buffer *buf)
956 {
957         /*
958          * Tree blocks not in refernece counted trees and tree roots
959          * are never shared. If a block was allocated after the last
960          * snapshot and the block was not allocated by tree relocation,
961          * we know the block is not shared.
962          */
963         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964             buf != root->node && buf != root->commit_root &&
965             (btrfs_header_generation(buf) <=
966              btrfs_root_last_snapshot(&root->root_item) ||
967              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968                 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972                 return 1;
973 #endif
974         return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978                                        struct btrfs_root *root,
979                                        struct extent_buffer *buf,
980                                        struct extent_buffer *cow,
981                                        int *last_ref)
982 {
983         u64 refs;
984         u64 owner;
985         u64 flags;
986         u64 new_flags = 0;
987         int ret;
988
989         /*
990          * Backrefs update rules:
991          *
992          * Always use full backrefs for extent pointers in tree block
993          * allocated by tree relocation.
994          *
995          * If a shared tree block is no longer referenced by its owner
996          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997          * use full backrefs for extent pointers in tree block.
998          *
999          * If a tree block is been relocating
1000          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001          * use full backrefs for extent pointers in tree block.
1002          * The reason for this is some operations (such as drop tree)
1003          * are only allowed for blocks use full backrefs.
1004          */
1005
1006         if (btrfs_block_can_be_shared(root, buf)) {
1007                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                                btrfs_header_level(buf), 1,
1009                                                &refs, &flags);
1010                 if (ret)
1011                         return ret;
1012                 if (refs == 0) {
1013                         ret = -EROFS;
1014                         btrfs_std_error(root->fs_info, ret);
1015                         return ret;
1016                 }
1017         } else {
1018                 refs = 1;
1019                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                 else
1023                         flags = 0;
1024         }
1025
1026         owner = btrfs_header_owner(buf);
1027         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030         if (refs > 1) {
1031                 if ((owner == root->root_key.objectid ||
1032                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                         ret = btrfs_inc_ref(trans, root, buf, 1);
1035                         BUG_ON(ret); /* -ENOMEM */
1036
1037                         if (root->root_key.objectid ==
1038                             BTRFS_TREE_RELOC_OBJECTID) {
1039                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                 BUG_ON(ret); /* -ENOMEM */
1043                         }
1044                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                 } else {
1046
1047                         if (root->root_key.objectid ==
1048                             BTRFS_TREE_RELOC_OBJECTID)
1049                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1050                         else
1051                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1052                         BUG_ON(ret); /* -ENOMEM */
1053                 }
1054                 if (new_flags != 0) {
1055                         int level = btrfs_header_level(buf);
1056
1057                         ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                           buf->start,
1059                                                           buf->len,
1060                                                           new_flags, level, 0);
1061                         if (ret)
1062                                 return ret;
1063                 }
1064         } else {
1065                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                         if (root->root_key.objectid ==
1067                             BTRFS_TREE_RELOC_OBJECTID)
1068                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1069                         else
1070                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                         ret = btrfs_dec_ref(trans, root, buf, 1);
1073                         BUG_ON(ret); /* -ENOMEM */
1074                 }
1075                 clean_tree_block(trans, root->fs_info, buf);
1076                 *last_ref = 1;
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                              struct btrfs_root *root,
1095                              struct extent_buffer *buf,
1096                              struct extent_buffer *parent, int parent_slot,
1097                              struct extent_buffer **cow_ret,
1098                              u64 search_start, u64 empty_size)
1099 {
1100         struct btrfs_disk_key disk_key;
1101         struct extent_buffer *cow;
1102         int level, ret;
1103         int last_ref = 0;
1104         int unlock_orig = 0;
1105         u64 parent_start;
1106
1107         if (*cow_ret == buf)
1108                 unlock_orig = 1;
1109
1110         btrfs_assert_tree_locked(buf);
1111
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->fs_info->running_transaction->transid);
1114         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                 trans->transid != root->last_trans);
1116
1117         level = btrfs_header_level(buf);
1118
1119         if (level == 0)
1120                 btrfs_item_key(buf, &disk_key, 0);
1121         else
1122                 btrfs_node_key(buf, &disk_key, 0);
1123
1124         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                 if (parent)
1126                         parent_start = parent->start;
1127                 else
1128                         parent_start = 0;
1129         } else
1130                 parent_start = 0;
1131
1132         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                         root->root_key.objectid, &disk_key, level,
1134                         search_start, empty_size);
1135         if (IS_ERR(cow))
1136                 return PTR_ERR(cow);
1137
1138         /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141         btrfs_set_header_bytenr(cow, cow->start);
1142         btrfs_set_header_generation(cow, trans->transid);
1143         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                      BTRFS_HEADER_FLAG_RELOC);
1146         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148         else
1149                 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                             BTRFS_FSID_SIZE);
1153
1154         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155         if (ret) {
1156                 btrfs_abort_transaction(trans, root, ret);
1157                 return ret;
1158         }
1159
1160         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                 if (ret)
1163                         return ret;
1164         }
1165
1166         if (buf == root->node) {
1167                 WARN_ON(parent && parent != buf);
1168                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170                         parent_start = buf->start;
1171                 else
1172                         parent_start = 0;
1173
1174                 extent_buffer_get(cow);
1175                 tree_mod_log_set_root_pointer(root, cow, 1);
1176                 rcu_assign_pointer(root->node, cow);
1177
1178                 btrfs_free_tree_block(trans, root, buf, parent_start,
1179                                       last_ref);
1180                 free_extent_buffer(buf);
1181                 add_root_to_dirty_list(root);
1182         } else {
1183                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184                         parent_start = parent->start;
1185                 else
1186                         parent_start = 0;
1187
1188                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191                 btrfs_set_node_blockptr(parent, parent_slot,
1192                                         cow->start);
1193                 btrfs_set_node_ptr_generation(parent, parent_slot,
1194                                               trans->transid);
1195                 btrfs_mark_buffer_dirty(parent);
1196                 if (last_ref) {
1197                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1198                         if (ret) {
1199                                 btrfs_abort_transaction(trans, root, ret);
1200                                 return ret;
1201                         }
1202                 }
1203                 btrfs_free_tree_block(trans, root, buf, parent_start,
1204                                       last_ref);
1205         }
1206         if (unlock_orig)
1207                 btrfs_tree_unlock(buf);
1208         free_extent_buffer_stale(buf);
1209         btrfs_mark_buffer_dirty(cow);
1210         *cow_ret = cow;
1211         return 0;
1212 }
1213
1214 /*
1215  * returns the logical address of the oldest predecessor of the given root.
1216  * entries older than time_seq are ignored.
1217  */
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220                            struct extent_buffer *eb_root, u64 time_seq)
1221 {
1222         struct tree_mod_elem *tm;
1223         struct tree_mod_elem *found = NULL;
1224         u64 root_logical = eb_root->start;
1225         int looped = 0;
1226
1227         if (!time_seq)
1228                 return NULL;
1229
1230         /*
1231          * the very last operation that's logged for a root is the replacement
1232          * operation (if it is replaced at all). this has the index of the *new*
1233          * root, making it the very first operation that's logged for this root.
1234          */
1235         while (1) {
1236                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237                                                 time_seq);
1238                 if (!looped && !tm)
1239                         return NULL;
1240                 /*
1241                  * if there are no tree operation for the oldest root, we simply
1242                  * return it. this should only happen if that (old) root is at
1243                  * level 0.
1244                  */
1245                 if (!tm)
1246                         break;
1247
1248                 /*
1249                  * if there's an operation that's not a root replacement, we
1250                  * found the oldest version of our root. normally, we'll find a
1251                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1252                  */
1253                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254                         break;
1255
1256                 found = tm;
1257                 root_logical = tm->old_root.logical;
1258                 looped = 1;
1259         }
1260
1261         /* if there's no old root to return, return what we found instead */
1262         if (!found)
1263                 found = tm;
1264
1265         return found;
1266 }
1267
1268 /*
1269  * tm is a pointer to the first operation to rewind within eb. then, all
1270  * previous operations will be rewinded (until we reach something older than
1271  * time_seq).
1272  */
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275                       u64 time_seq, struct tree_mod_elem *first_tm)
1276 {
1277         u32 n;
1278         struct rb_node *next;
1279         struct tree_mod_elem *tm = first_tm;
1280         unsigned long o_dst;
1281         unsigned long o_src;
1282         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1283
1284         n = btrfs_header_nritems(eb);
1285         tree_mod_log_read_lock(fs_info);
1286         while (tm && tm->seq >= time_seq) {
1287                 /*
1288                  * all the operations are recorded with the operator used for
1289                  * the modification. as we're going backwards, we do the
1290                  * opposite of each operation here.
1291                  */
1292                 switch (tm->op) {
1293                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294                         BUG_ON(tm->slot < n);
1295                         /* Fallthrough */
1296                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297                 case MOD_LOG_KEY_REMOVE:
1298                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1299                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300                         btrfs_set_node_ptr_generation(eb, tm->slot,
1301                                                       tm->generation);
1302                         n++;
1303                         break;
1304                 case MOD_LOG_KEY_REPLACE:
1305                         BUG_ON(tm->slot >= n);
1306                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1307                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308                         btrfs_set_node_ptr_generation(eb, tm->slot,
1309                                                       tm->generation);
1310                         break;
1311                 case MOD_LOG_KEY_ADD:
1312                         /* if a move operation is needed it's in the log */
1313                         n--;
1314                         break;
1315                 case MOD_LOG_MOVE_KEYS:
1316                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318                         memmove_extent_buffer(eb, o_dst, o_src,
1319                                               tm->move.nr_items * p_size);
1320                         break;
1321                 case MOD_LOG_ROOT_REPLACE:
1322                         /*
1323                          * this operation is special. for roots, this must be
1324                          * handled explicitly before rewinding.
1325                          * for non-roots, this operation may exist if the node
1326                          * was a root: root A -> child B; then A gets empty and
1327                          * B is promoted to the new root. in the mod log, we'll
1328                          * have a root-replace operation for B, a tree block
1329                          * that is no root. we simply ignore that operation.
1330                          */
1331                         break;
1332                 }
1333                 next = rb_next(&tm->node);
1334                 if (!next)
1335                         break;
1336                 tm = container_of(next, struct tree_mod_elem, node);
1337                 if (tm->index != first_tm->index)
1338                         break;
1339         }
1340         tree_mod_log_read_unlock(fs_info);
1341         btrfs_set_header_nritems(eb, n);
1342 }
1343
1344 /*
1345  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346  * is returned. If rewind operations happen, a fresh buffer is returned. The
1347  * returned buffer is always read-locked. If the returned buffer is not the
1348  * input buffer, the lock on the input buffer is released and the input buffer
1349  * is freed (its refcount is decremented).
1350  */
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353                     struct extent_buffer *eb, u64 time_seq)
1354 {
1355         struct extent_buffer *eb_rewin;
1356         struct tree_mod_elem *tm;
1357
1358         if (!time_seq)
1359                 return eb;
1360
1361         if (btrfs_header_level(eb) == 0)
1362                 return eb;
1363
1364         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365         if (!tm)
1366                 return eb;
1367
1368         btrfs_set_path_blocking(path);
1369         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1370
1371         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372                 BUG_ON(tm->slot != 0);
1373                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374                 if (!eb_rewin) {
1375                         btrfs_tree_read_unlock_blocking(eb);
1376                         free_extent_buffer(eb);
1377                         return NULL;
1378                 }
1379                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1380                 btrfs_set_header_backref_rev(eb_rewin,
1381                                              btrfs_header_backref_rev(eb));
1382                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384         } else {
1385                 eb_rewin = btrfs_clone_extent_buffer(eb);
1386                 if (!eb_rewin) {
1387                         btrfs_tree_read_unlock_blocking(eb);
1388                         free_extent_buffer(eb);
1389                         return NULL;
1390                 }
1391         }
1392
1393         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394         btrfs_tree_read_unlock_blocking(eb);
1395         free_extent_buffer(eb);
1396
1397         extent_buffer_get(eb_rewin);
1398         btrfs_tree_read_lock(eb_rewin);
1399         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400         WARN_ON(btrfs_header_nritems(eb_rewin) >
1401                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1402
1403         return eb_rewin;
1404 }
1405
1406 /*
1407  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408  * value. If there are no changes, the current root->root_node is returned. If
1409  * anything changed in between, there's a fresh buffer allocated on which the
1410  * rewind operations are done. In any case, the returned buffer is read locked.
1411  * Returns NULL on error (with no locks held).
1412  */
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1415 {
1416         struct tree_mod_elem *tm;
1417         struct extent_buffer *eb = NULL;
1418         struct extent_buffer *eb_root;
1419         struct extent_buffer *old;
1420         struct tree_mod_root *old_root = NULL;
1421         u64 old_generation = 0;
1422         u64 logical;
1423
1424         eb_root = btrfs_read_lock_root_node(root);
1425         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426         if (!tm)
1427                 return eb_root;
1428
1429         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430                 old_root = &tm->old_root;
1431                 old_generation = tm->generation;
1432                 logical = old_root->logical;
1433         } else {
1434                 logical = eb_root->start;
1435         }
1436
1437         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439                 btrfs_tree_read_unlock(eb_root);
1440                 free_extent_buffer(eb_root);
1441                 old = read_tree_block(root, logical, 0);
1442                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1443                         if (!IS_ERR(old))
1444                                 free_extent_buffer(old);
1445                         btrfs_warn(root->fs_info,
1446                                 "failed to read tree block %llu from get_old_root", logical);
1447                 } else {
1448                         eb = btrfs_clone_extent_buffer(old);
1449                         free_extent_buffer(old);
1450                 }
1451         } else if (old_root) {
1452                 btrfs_tree_read_unlock(eb_root);
1453                 free_extent_buffer(eb_root);
1454                 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1455         } else {
1456                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1457                 eb = btrfs_clone_extent_buffer(eb_root);
1458                 btrfs_tree_read_unlock_blocking(eb_root);
1459                 free_extent_buffer(eb_root);
1460         }
1461
1462         if (!eb)
1463                 return NULL;
1464         extent_buffer_get(eb);
1465         btrfs_tree_read_lock(eb);
1466         if (old_root) {
1467                 btrfs_set_header_bytenr(eb, eb->start);
1468                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1469                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1470                 btrfs_set_header_level(eb, old_root->level);
1471                 btrfs_set_header_generation(eb, old_generation);
1472         }
1473         if (tm)
1474                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1475         else
1476                 WARN_ON(btrfs_header_level(eb) != 0);
1477         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1478
1479         return eb;
1480 }
1481
1482 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 {
1484         struct tree_mod_elem *tm;
1485         int level;
1486         struct extent_buffer *eb_root = btrfs_root_node(root);
1487
1488         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1489         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1490                 level = tm->old_root.level;
1491         } else {
1492                 level = btrfs_header_level(eb_root);
1493         }
1494         free_extent_buffer(eb_root);
1495
1496         return level;
1497 }
1498
1499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1500                                    struct btrfs_root *root,
1501                                    struct extent_buffer *buf)
1502 {
1503         if (btrfs_test_is_dummy_root(root))
1504                 return 0;
1505
1506         /* ensure we can see the force_cow */
1507         smp_rmb();
1508
1509         /*
1510          * We do not need to cow a block if
1511          * 1) this block is not created or changed in this transaction;
1512          * 2) this block does not belong to TREE_RELOC tree;
1513          * 3) the root is not forced COW.
1514          *
1515          * What is forced COW:
1516          *    when we create snapshot during commiting the transaction,
1517          *    after we've finished coping src root, we must COW the shared
1518          *    block to ensure the metadata consistency.
1519          */
1520         if (btrfs_header_generation(buf) == trans->transid &&
1521             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1522             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1523               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1524             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1525                 return 0;
1526         return 1;
1527 }
1528
1529 /*
1530  * cows a single block, see __btrfs_cow_block for the real work.
1531  * This version of it has extra checks so that a block isn't cow'd more than
1532  * once per transaction, as long as it hasn't been written yet
1533  */
1534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1535                     struct btrfs_root *root, struct extent_buffer *buf,
1536                     struct extent_buffer *parent, int parent_slot,
1537                     struct extent_buffer **cow_ret)
1538 {
1539         u64 search_start;
1540         int ret;
1541
1542         if (trans->transaction != root->fs_info->running_transaction)
1543                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1544                        trans->transid,
1545                        root->fs_info->running_transaction->transid);
1546
1547         if (trans->transid != root->fs_info->generation)
1548                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549                        trans->transid, root->fs_info->generation);
1550
1551         if (!should_cow_block(trans, root, buf)) {
1552                 *cow_ret = buf;
1553                 return 0;
1554         }
1555
1556         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1557
1558         if (parent)
1559                 btrfs_set_lock_blocking(parent);
1560         btrfs_set_lock_blocking(buf);
1561
1562         ret = __btrfs_cow_block(trans, root, buf, parent,
1563                                  parent_slot, cow_ret, search_start, 0);
1564
1565         trace_btrfs_cow_block(root, buf, *cow_ret);
1566
1567         return ret;
1568 }
1569
1570 /*
1571  * helper function for defrag to decide if two blocks pointed to by a
1572  * node are actually close by
1573  */
1574 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1575 {
1576         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1577                 return 1;
1578         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1579                 return 1;
1580         return 0;
1581 }
1582
1583 /*
1584  * compare two keys in a memcmp fashion
1585  */
1586 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1587 {
1588         struct btrfs_key k1;
1589
1590         btrfs_disk_key_to_cpu(&k1, disk);
1591
1592         return btrfs_comp_cpu_keys(&k1, k2);
1593 }
1594
1595 /*
1596  * same as comp_keys only with two btrfs_key's
1597  */
1598 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1599 {
1600         if (k1->objectid > k2->objectid)
1601                 return 1;
1602         if (k1->objectid < k2->objectid)
1603                 return -1;
1604         if (k1->type > k2->type)
1605                 return 1;
1606         if (k1->type < k2->type)
1607                 return -1;
1608         if (k1->offset > k2->offset)
1609                 return 1;
1610         if (k1->offset < k2->offset)
1611                 return -1;
1612         return 0;
1613 }
1614
1615 /*
1616  * this is used by the defrag code to go through all the
1617  * leaves pointed to by a node and reallocate them so that
1618  * disk order is close to key order
1619  */
1620 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1621                        struct btrfs_root *root, struct extent_buffer *parent,
1622                        int start_slot, u64 *last_ret,
1623                        struct btrfs_key *progress)
1624 {
1625         struct extent_buffer *cur;
1626         u64 blocknr;
1627         u64 gen;
1628         u64 search_start = *last_ret;
1629         u64 last_block = 0;
1630         u64 other;
1631         u32 parent_nritems;
1632         int end_slot;
1633         int i;
1634         int err = 0;
1635         int parent_level;
1636         int uptodate;
1637         u32 blocksize;
1638         int progress_passed = 0;
1639         struct btrfs_disk_key disk_key;
1640
1641         parent_level = btrfs_header_level(parent);
1642
1643         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1644         WARN_ON(trans->transid != root->fs_info->generation);
1645
1646         parent_nritems = btrfs_header_nritems(parent);
1647         blocksize = root->nodesize;
1648         end_slot = parent_nritems - 1;
1649
1650         if (parent_nritems <= 1)
1651                 return 0;
1652
1653         btrfs_set_lock_blocking(parent);
1654
1655         for (i = start_slot; i <= end_slot; i++) {
1656                 int close = 1;
1657
1658                 btrfs_node_key(parent, &disk_key, i);
1659                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1660                         continue;
1661
1662                 progress_passed = 1;
1663                 blocknr = btrfs_node_blockptr(parent, i);
1664                 gen = btrfs_node_ptr_generation(parent, i);
1665                 if (last_block == 0)
1666                         last_block = blocknr;
1667
1668                 if (i > 0) {
1669                         other = btrfs_node_blockptr(parent, i - 1);
1670                         close = close_blocks(blocknr, other, blocksize);
1671                 }
1672                 if (!close && i < end_slot) {
1673                         other = btrfs_node_blockptr(parent, i + 1);
1674                         close = close_blocks(blocknr, other, blocksize);
1675                 }
1676                 if (close) {
1677                         last_block = blocknr;
1678                         continue;
1679                 }
1680
1681                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1682                 if (cur)
1683                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1684                 else
1685                         uptodate = 0;
1686                 if (!cur || !uptodate) {
1687                         if (!cur) {
1688                                 cur = read_tree_block(root, blocknr, gen);
1689                                 if (IS_ERR(cur)) {
1690                                         return PTR_ERR(cur);
1691                                 } else if (!extent_buffer_uptodate(cur)) {
1692                                         free_extent_buffer(cur);
1693                                         return -EIO;
1694                                 }
1695                         } else if (!uptodate) {
1696                                 err = btrfs_read_buffer(cur, gen);
1697                                 if (err) {
1698                                         free_extent_buffer(cur);
1699                                         return err;
1700                                 }
1701                         }
1702                 }
1703                 if (search_start == 0)
1704                         search_start = last_block;
1705
1706                 btrfs_tree_lock(cur);
1707                 btrfs_set_lock_blocking(cur);
1708                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1709                                         &cur, search_start,
1710                                         min(16 * blocksize,
1711                                             (end_slot - i) * blocksize));
1712                 if (err) {
1713                         btrfs_tree_unlock(cur);
1714                         free_extent_buffer(cur);
1715                         break;
1716                 }
1717                 search_start = cur->start;
1718                 last_block = cur->start;
1719                 *last_ret = search_start;
1720                 btrfs_tree_unlock(cur);
1721                 free_extent_buffer(cur);
1722         }
1723         return err;
1724 }
1725
1726 /*
1727  * The leaf data grows from end-to-front in the node.
1728  * this returns the address of the start of the last item,
1729  * which is the stop of the leaf data stack
1730  */
1731 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1732                                          struct extent_buffer *leaf)
1733 {
1734         u32 nr = btrfs_header_nritems(leaf);
1735         if (nr == 0)
1736                 return BTRFS_LEAF_DATA_SIZE(root);
1737         return btrfs_item_offset_nr(leaf, nr - 1);
1738 }
1739
1740
1741 /*
1742  * search for key in the extent_buffer.  The items start at offset p,
1743  * and they are item_size apart.  There are 'max' items in p.
1744  *
1745  * the slot in the array is returned via slot, and it points to
1746  * the place where you would insert key if it is not found in
1747  * the array.
1748  *
1749  * slot may point to max if the key is bigger than all of the keys
1750  */
1751 static noinline int generic_bin_search(struct extent_buffer *eb,
1752                                        unsigned long p,
1753                                        int item_size, struct btrfs_key *key,
1754                                        int max, int *slot)
1755 {
1756         int low = 0;
1757         int high = max;
1758         int mid;
1759         int ret;
1760         struct btrfs_disk_key *tmp = NULL;
1761         struct btrfs_disk_key unaligned;
1762         unsigned long offset;
1763         char *kaddr = NULL;
1764         unsigned long map_start = 0;
1765         unsigned long map_len = 0;
1766         int err;
1767
1768         while (low < high) {
1769                 mid = (low + high) / 2;
1770                 offset = p + mid * item_size;
1771
1772                 if (!kaddr || offset < map_start ||
1773                     (offset + sizeof(struct btrfs_disk_key)) >
1774                     map_start + map_len) {
1775
1776                         err = map_private_extent_buffer(eb, offset,
1777                                                 sizeof(struct btrfs_disk_key),
1778                                                 &kaddr, &map_start, &map_len);
1779
1780                         if (!err) {
1781                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1782                                                         map_start);
1783                         } else {
1784                                 read_extent_buffer(eb, &unaligned,
1785                                                    offset, sizeof(unaligned));
1786                                 tmp = &unaligned;
1787                         }
1788
1789                 } else {
1790                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1791                                                         map_start);
1792                 }
1793                 ret = comp_keys(tmp, key);
1794
1795                 if (ret < 0)
1796                         low = mid + 1;
1797                 else if (ret > 0)
1798                         high = mid;
1799                 else {
1800                         *slot = mid;
1801                         return 0;
1802                 }
1803         }
1804         *slot = low;
1805         return 1;
1806 }
1807
1808 /*
1809  * simple bin_search frontend that does the right thing for
1810  * leaves vs nodes
1811  */
1812 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1813                       int level, int *slot)
1814 {
1815         if (level == 0)
1816                 return generic_bin_search(eb,
1817                                           offsetof(struct btrfs_leaf, items),
1818                                           sizeof(struct btrfs_item),
1819                                           key, btrfs_header_nritems(eb),
1820                                           slot);
1821         else
1822                 return generic_bin_search(eb,
1823                                           offsetof(struct btrfs_node, ptrs),
1824                                           sizeof(struct btrfs_key_ptr),
1825                                           key, btrfs_header_nritems(eb),
1826                                           slot);
1827 }
1828
1829 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1830                      int level, int *slot)
1831 {
1832         return bin_search(eb, key, level, slot);
1833 }
1834
1835 static void root_add_used(struct btrfs_root *root, u32 size)
1836 {
1837         spin_lock(&root->accounting_lock);
1838         btrfs_set_root_used(&root->root_item,
1839                             btrfs_root_used(&root->root_item) + size);
1840         spin_unlock(&root->accounting_lock);
1841 }
1842
1843 static void root_sub_used(struct btrfs_root *root, u32 size)
1844 {
1845         spin_lock(&root->accounting_lock);
1846         btrfs_set_root_used(&root->root_item,
1847                             btrfs_root_used(&root->root_item) - size);
1848         spin_unlock(&root->accounting_lock);
1849 }
1850
1851 /* given a node and slot number, this reads the blocks it points to.  The
1852  * extent buffer is returned with a reference taken (but unlocked).
1853  * NULL is returned on error.
1854  */
1855 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1856                                    struct extent_buffer *parent, int slot)
1857 {
1858         int level = btrfs_header_level(parent);
1859         struct extent_buffer *eb;
1860
1861         if (slot < 0)
1862                 return NULL;
1863         if (slot >= btrfs_header_nritems(parent))
1864                 return NULL;
1865
1866         BUG_ON(level == 0);
1867
1868         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1869                              btrfs_node_ptr_generation(parent, slot));
1870         if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1871                 if (!IS_ERR(eb))
1872                         free_extent_buffer(eb);
1873                 eb = NULL;
1874         }
1875
1876         return eb;
1877 }
1878
1879 /*
1880  * node level balancing, used to make sure nodes are in proper order for
1881  * item deletion.  We balance from the top down, so we have to make sure
1882  * that a deletion won't leave an node completely empty later on.
1883  */
1884 static noinline int balance_level(struct btrfs_trans_handle *trans,
1885                          struct btrfs_root *root,
1886                          struct btrfs_path *path, int level)
1887 {
1888         struct extent_buffer *right = NULL;
1889         struct extent_buffer *mid;
1890         struct extent_buffer *left = NULL;
1891         struct extent_buffer *parent = NULL;
1892         int ret = 0;
1893         int wret;
1894         int pslot;
1895         int orig_slot = path->slots[level];
1896         u64 orig_ptr;
1897
1898         if (level == 0)
1899                 return 0;
1900
1901         mid = path->nodes[level];
1902
1903         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1904                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1905         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1906
1907         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1908
1909         if (level < BTRFS_MAX_LEVEL - 1) {
1910                 parent = path->nodes[level + 1];
1911                 pslot = path->slots[level + 1];
1912         }
1913
1914         /*
1915          * deal with the case where there is only one pointer in the root
1916          * by promoting the node below to a root
1917          */
1918         if (!parent) {
1919                 struct extent_buffer *child;
1920
1921                 if (btrfs_header_nritems(mid) != 1)
1922                         return 0;
1923
1924                 /* promote the child to a root */
1925                 child = read_node_slot(root, mid, 0);
1926                 if (!child) {
1927                         ret = -EROFS;
1928                         btrfs_std_error(root->fs_info, ret);
1929                         goto enospc;
1930                 }
1931
1932                 btrfs_tree_lock(child);
1933                 btrfs_set_lock_blocking(child);
1934                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1935                 if (ret) {
1936                         btrfs_tree_unlock(child);
1937                         free_extent_buffer(child);
1938                         goto enospc;
1939                 }
1940
1941                 tree_mod_log_set_root_pointer(root, child, 1);
1942                 rcu_assign_pointer(root->node, child);
1943
1944                 add_root_to_dirty_list(root);
1945                 btrfs_tree_unlock(child);
1946
1947                 path->locks[level] = 0;
1948                 path->nodes[level] = NULL;
1949                 clean_tree_block(trans, root->fs_info, mid);
1950                 btrfs_tree_unlock(mid);
1951                 /* once for the path */
1952                 free_extent_buffer(mid);
1953
1954                 root_sub_used(root, mid->len);
1955                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1956                 /* once for the root ptr */
1957                 free_extent_buffer_stale(mid);
1958                 return 0;
1959         }
1960         if (btrfs_header_nritems(mid) >
1961             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1962                 return 0;
1963
1964         left = read_node_slot(root, parent, pslot - 1);
1965         if (left) {
1966                 btrfs_tree_lock(left);
1967                 btrfs_set_lock_blocking(left);
1968                 wret = btrfs_cow_block(trans, root, left,
1969                                        parent, pslot - 1, &left);
1970                 if (wret) {
1971                         ret = wret;
1972                         goto enospc;
1973                 }
1974         }
1975         right = read_node_slot(root, parent, pslot + 1);
1976         if (right) {
1977                 btrfs_tree_lock(right);
1978                 btrfs_set_lock_blocking(right);
1979                 wret = btrfs_cow_block(trans, root, right,
1980                                        parent, pslot + 1, &right);
1981                 if (wret) {
1982                         ret = wret;
1983                         goto enospc;
1984                 }
1985         }
1986
1987         /* first, try to make some room in the middle buffer */
1988         if (left) {
1989                 orig_slot += btrfs_header_nritems(left);
1990                 wret = push_node_left(trans, root, left, mid, 1);
1991                 if (wret < 0)
1992                         ret = wret;
1993         }
1994
1995         /*
1996          * then try to empty the right most buffer into the middle
1997          */
1998         if (right) {
1999                 wret = push_node_left(trans, root, mid, right, 1);
2000                 if (wret < 0 && wret != -ENOSPC)
2001                         ret = wret;
2002                 if (btrfs_header_nritems(right) == 0) {
2003                         clean_tree_block(trans, root->fs_info, right);
2004                         btrfs_tree_unlock(right);
2005                         del_ptr(root, path, level + 1, pslot + 1);
2006                         root_sub_used(root, right->len);
2007                         btrfs_free_tree_block(trans, root, right, 0, 1);
2008                         free_extent_buffer_stale(right);
2009                         right = NULL;
2010                 } else {
2011                         struct btrfs_disk_key right_key;
2012                         btrfs_node_key(right, &right_key, 0);
2013                         tree_mod_log_set_node_key(root->fs_info, parent,
2014                                                   pslot + 1, 0);
2015                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2016                         btrfs_mark_buffer_dirty(parent);
2017                 }
2018         }
2019         if (btrfs_header_nritems(mid) == 1) {
2020                 /*
2021                  * we're not allowed to leave a node with one item in the
2022                  * tree during a delete.  A deletion from lower in the tree
2023                  * could try to delete the only pointer in this node.
2024                  * So, pull some keys from the left.
2025                  * There has to be a left pointer at this point because
2026                  * otherwise we would have pulled some pointers from the
2027                  * right
2028                  */
2029                 if (!left) {
2030                         ret = -EROFS;
2031                         btrfs_std_error(root->fs_info, ret);
2032                         goto enospc;
2033                 }
2034                 wret = balance_node_right(trans, root, mid, left);
2035                 if (wret < 0) {
2036                         ret = wret;
2037                         goto enospc;
2038                 }
2039                 if (wret == 1) {
2040                         wret = push_node_left(trans, root, left, mid, 1);
2041                         if (wret < 0)
2042                                 ret = wret;
2043                 }
2044                 BUG_ON(wret == 1);
2045         }
2046         if (btrfs_header_nritems(mid) == 0) {
2047                 clean_tree_block(trans, root->fs_info, mid);
2048                 btrfs_tree_unlock(mid);
2049                 del_ptr(root, path, level + 1, pslot);
2050                 root_sub_used(root, mid->len);
2051                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2052                 free_extent_buffer_stale(mid);
2053                 mid = NULL;
2054         } else {
2055                 /* update the parent key to reflect our changes */
2056                 struct btrfs_disk_key mid_key;
2057                 btrfs_node_key(mid, &mid_key, 0);
2058                 tree_mod_log_set_node_key(root->fs_info, parent,
2059                                           pslot, 0);
2060                 btrfs_set_node_key(parent, &mid_key, pslot);
2061                 btrfs_mark_buffer_dirty(parent);
2062         }
2063
2064         /* update the path */
2065         if (left) {
2066                 if (btrfs_header_nritems(left) > orig_slot) {
2067                         extent_buffer_get(left);
2068                         /* left was locked after cow */
2069                         path->nodes[level] = left;
2070                         path->slots[level + 1] -= 1;
2071                         path->slots[level] = orig_slot;
2072                         if (mid) {
2073                                 btrfs_tree_unlock(mid);
2074                                 free_extent_buffer(mid);
2075                         }
2076                 } else {
2077                         orig_slot -= btrfs_header_nritems(left);
2078                         path->slots[level] = orig_slot;
2079                 }
2080         }
2081         /* double check we haven't messed things up */
2082         if (orig_ptr !=
2083             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2084                 BUG();
2085 enospc:
2086         if (right) {
2087                 btrfs_tree_unlock(right);
2088                 free_extent_buffer(right);
2089         }
2090         if (left) {
2091                 if (path->nodes[level] != left)
2092                         btrfs_tree_unlock(left);
2093                 free_extent_buffer(left);
2094         }
2095         return ret;
2096 }
2097
2098 /* Node balancing for insertion.  Here we only split or push nodes around
2099  * when they are completely full.  This is also done top down, so we
2100  * have to be pessimistic.
2101  */
2102 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2103                                           struct btrfs_root *root,
2104                                           struct btrfs_path *path, int level)
2105 {
2106         struct extent_buffer *right = NULL;
2107         struct extent_buffer *mid;
2108         struct extent_buffer *left = NULL;
2109         struct extent_buffer *parent = NULL;
2110         int ret = 0;
2111         int wret;
2112         int pslot;
2113         int orig_slot = path->slots[level];
2114
2115         if (level == 0)
2116                 return 1;
2117
2118         mid = path->nodes[level];
2119         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2120
2121         if (level < BTRFS_MAX_LEVEL - 1) {
2122                 parent = path->nodes[level + 1];
2123                 pslot = path->slots[level + 1];
2124         }
2125
2126         if (!parent)
2127                 return 1;
2128
2129         left = read_node_slot(root, parent, pslot - 1);
2130
2131         /* first, try to make some room in the middle buffer */
2132         if (left) {
2133                 u32 left_nr;
2134
2135                 btrfs_tree_lock(left);
2136                 btrfs_set_lock_blocking(left);
2137
2138                 left_nr = btrfs_header_nritems(left);
2139                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2140                         wret = 1;
2141                 } else {
2142                         ret = btrfs_cow_block(trans, root, left, parent,
2143                                               pslot - 1, &left);
2144                         if (ret)
2145                                 wret = 1;
2146                         else {
2147                                 wret = push_node_left(trans, root,
2148                                                       left, mid, 0);
2149                         }
2150                 }
2151                 if (wret < 0)
2152                         ret = wret;
2153                 if (wret == 0) {
2154                         struct btrfs_disk_key disk_key;
2155                         orig_slot += left_nr;
2156                         btrfs_node_key(mid, &disk_key, 0);
2157                         tree_mod_log_set_node_key(root->fs_info, parent,
2158                                                   pslot, 0);
2159                         btrfs_set_node_key(parent, &disk_key, pslot);
2160                         btrfs_mark_buffer_dirty(parent);
2161                         if (btrfs_header_nritems(left) > orig_slot) {
2162                                 path->nodes[level] = left;
2163                                 path->slots[level + 1] -= 1;
2164                                 path->slots[level] = orig_slot;
2165                                 btrfs_tree_unlock(mid);
2166                                 free_extent_buffer(mid);
2167                         } else {
2168                                 orig_slot -=
2169                                         btrfs_header_nritems(left);
2170                                 path->slots[level] = orig_slot;
2171                                 btrfs_tree_unlock(left);
2172                                 free_extent_buffer(left);
2173                         }
2174                         return 0;
2175                 }
2176                 btrfs_tree_unlock(left);
2177                 free_extent_buffer(left);
2178         }
2179         right = read_node_slot(root, parent, pslot + 1);
2180
2181         /*
2182          * then try to empty the right most buffer into the middle
2183          */
2184         if (right) {
2185                 u32 right_nr;
2186
2187                 btrfs_tree_lock(right);
2188                 btrfs_set_lock_blocking(right);
2189
2190                 right_nr = btrfs_header_nritems(right);
2191                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2192                         wret = 1;
2193                 } else {
2194                         ret = btrfs_cow_block(trans, root, right,
2195                                               parent, pslot + 1,
2196                                               &right);
2197                         if (ret)
2198                                 wret = 1;
2199                         else {
2200                                 wret = balance_node_right(trans, root,
2201                                                           right, mid);
2202                         }
2203                 }
2204                 if (wret < 0)
2205                         ret = wret;
2206                 if (wret == 0) {
2207                         struct btrfs_disk_key disk_key;
2208
2209                         btrfs_node_key(right, &disk_key, 0);
2210                         tree_mod_log_set_node_key(root->fs_info, parent,
2211                                                   pslot + 1, 0);
2212                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213                         btrfs_mark_buffer_dirty(parent);
2214
2215                         if (btrfs_header_nritems(mid) <= orig_slot) {
2216                                 path->nodes[level] = right;
2217                                 path->slots[level + 1] += 1;
2218                                 path->slots[level] = orig_slot -
2219                                         btrfs_header_nritems(mid);
2220                                 btrfs_tree_unlock(mid);
2221                                 free_extent_buffer(mid);
2222                         } else {
2223                                 btrfs_tree_unlock(right);
2224                                 free_extent_buffer(right);
2225                         }
2226                         return 0;
2227                 }
2228                 btrfs_tree_unlock(right);
2229                 free_extent_buffer(right);
2230         }
2231         return 1;
2232 }
2233
2234 /*
2235  * readahead one full node of leaves, finding things that are close
2236  * to the block in 'slot', and triggering ra on them.
2237  */
2238 static void reada_for_search(struct btrfs_root *root,
2239                              struct btrfs_path *path,
2240                              int level, int slot, u64 objectid)
2241 {
2242         struct extent_buffer *node;
2243         struct btrfs_disk_key disk_key;
2244         u32 nritems;
2245         u64 search;
2246         u64 target;
2247         u64 nread = 0;
2248         u64 gen;
2249         int direction = path->reada;
2250         struct extent_buffer *eb;
2251         u32 nr;
2252         u32 blocksize;
2253         u32 nscan = 0;
2254
2255         if (level != 1)
2256                 return;
2257
2258         if (!path->nodes[level])
2259                 return;
2260
2261         node = path->nodes[level];
2262
2263         search = btrfs_node_blockptr(node, slot);
2264         blocksize = root->nodesize;
2265         eb = btrfs_find_tree_block(root->fs_info, search);
2266         if (eb) {
2267                 free_extent_buffer(eb);
2268                 return;
2269         }
2270
2271         target = search;
2272
2273         nritems = btrfs_header_nritems(node);
2274         nr = slot;
2275
2276         while (1) {
2277                 if (direction < 0) {
2278                         if (nr == 0)
2279                                 break;
2280                         nr--;
2281                 } else if (direction > 0) {
2282                         nr++;
2283                         if (nr >= nritems)
2284                                 break;
2285                 }
2286                 if (path->reada < 0 && objectid) {
2287                         btrfs_node_key(node, &disk_key, nr);
2288                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289                                 break;
2290                 }
2291                 search = btrfs_node_blockptr(node, nr);
2292                 if ((search <= target && target - search <= 65536) ||
2293                     (search > target && search - target <= 65536)) {
2294                         gen = btrfs_node_ptr_generation(node, nr);
2295                         readahead_tree_block(root, search);
2296                         nread += blocksize;
2297                 }
2298                 nscan++;
2299                 if ((nread > 65536 || nscan > 32))
2300                         break;
2301         }
2302 }
2303
2304 static noinline void reada_for_balance(struct btrfs_root *root,
2305                                        struct btrfs_path *path, int level)
2306 {
2307         int slot;
2308         int nritems;
2309         struct extent_buffer *parent;
2310         struct extent_buffer *eb;
2311         u64 gen;
2312         u64 block1 = 0;
2313         u64 block2 = 0;
2314
2315         parent = path->nodes[level + 1];
2316         if (!parent)
2317                 return;
2318
2319         nritems = btrfs_header_nritems(parent);
2320         slot = path->slots[level + 1];
2321
2322         if (slot > 0) {
2323                 block1 = btrfs_node_blockptr(parent, slot - 1);
2324                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2325                 eb = btrfs_find_tree_block(root->fs_info, block1);
2326                 /*
2327                  * if we get -eagain from btrfs_buffer_uptodate, we
2328                  * don't want to return eagain here.  That will loop
2329                  * forever
2330                  */
2331                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2332                         block1 = 0;
2333                 free_extent_buffer(eb);
2334         }
2335         if (slot + 1 < nritems) {
2336                 block2 = btrfs_node_blockptr(parent, slot + 1);
2337                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2338                 eb = btrfs_find_tree_block(root->fs_info, block2);
2339                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340                         block2 = 0;
2341                 free_extent_buffer(eb);
2342         }
2343
2344         if (block1)
2345                 readahead_tree_block(root, block1);
2346         if (block2)
2347                 readahead_tree_block(root, block2);
2348 }
2349
2350
2351 /*
2352  * when we walk down the tree, it is usually safe to unlock the higher layers
2353  * in the tree.  The exceptions are when our path goes through slot 0, because
2354  * operations on the tree might require changing key pointers higher up in the
2355  * tree.
2356  *
2357  * callers might also have set path->keep_locks, which tells this code to keep
2358  * the lock if the path points to the last slot in the block.  This is part of
2359  * walking through the tree, and selecting the next slot in the higher block.
2360  *
2361  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2362  * if lowest_unlock is 1, level 0 won't be unlocked
2363  */
2364 static noinline void unlock_up(struct btrfs_path *path, int level,
2365                                int lowest_unlock, int min_write_lock_level,
2366                                int *write_lock_level)
2367 {
2368         int i;
2369         int skip_level = level;
2370         int no_skips = 0;
2371         struct extent_buffer *t;
2372
2373         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374                 if (!path->nodes[i])
2375                         break;
2376                 if (!path->locks[i])
2377                         break;
2378                 if (!no_skips && path->slots[i] == 0) {
2379                         skip_level = i + 1;
2380                         continue;
2381                 }
2382                 if (!no_skips && path->keep_locks) {
2383                         u32 nritems;
2384                         t = path->nodes[i];
2385                         nritems = btrfs_header_nritems(t);
2386                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2387                                 skip_level = i + 1;
2388                                 continue;
2389                         }
2390                 }
2391                 if (skip_level < i && i >= lowest_unlock)
2392                         no_skips = 1;
2393
2394                 t = path->nodes[i];
2395                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2396                         btrfs_tree_unlock_rw(t, path->locks[i]);
2397                         path->locks[i] = 0;
2398                         if (write_lock_level &&
2399                             i > min_write_lock_level &&
2400                             i <= *write_lock_level) {
2401                                 *write_lock_level = i - 1;
2402                         }
2403                 }
2404         }
2405 }
2406
2407 /*
2408  * This releases any locks held in the path starting at level and
2409  * going all the way up to the root.
2410  *
2411  * btrfs_search_slot will keep the lock held on higher nodes in a few
2412  * corner cases, such as COW of the block at slot zero in the node.  This
2413  * ignores those rules, and it should only be called when there are no
2414  * more updates to be done higher up in the tree.
2415  */
2416 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2417 {
2418         int i;
2419
2420         if (path->keep_locks)
2421                 return;
2422
2423         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2424                 if (!path->nodes[i])
2425                         continue;
2426                 if (!path->locks[i])
2427                         continue;
2428                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2429                 path->locks[i] = 0;
2430         }
2431 }
2432
2433 /*
2434  * helper function for btrfs_search_slot.  The goal is to find a block
2435  * in cache without setting the path to blocking.  If we find the block
2436  * we return zero and the path is unchanged.
2437  *
2438  * If we can't find the block, we set the path blocking and do some
2439  * reada.  -EAGAIN is returned and the search must be repeated.
2440  */
2441 static int
2442 read_block_for_search(struct btrfs_trans_handle *trans,
2443                        struct btrfs_root *root, struct btrfs_path *p,
2444                        struct extent_buffer **eb_ret, int level, int slot,
2445                        struct btrfs_key *key, u64 time_seq)
2446 {
2447         u64 blocknr;
2448         u64 gen;
2449         struct extent_buffer *b = *eb_ret;
2450         struct extent_buffer *tmp;
2451         int ret;
2452
2453         blocknr = btrfs_node_blockptr(b, slot);
2454         gen = btrfs_node_ptr_generation(b, slot);
2455
2456         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2457         if (tmp) {
2458                 /* first we do an atomic uptodate check */
2459                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2460                         *eb_ret = tmp;
2461                         return 0;
2462                 }
2463
2464                 /* the pages were up to date, but we failed
2465                  * the generation number check.  Do a full
2466                  * read for the generation number that is correct.
2467                  * We must do this without dropping locks so
2468                  * we can trust our generation number
2469                  */
2470                 btrfs_set_path_blocking(p);
2471
2472                 /* now we're allowed to do a blocking uptodate check */
2473                 ret = btrfs_read_buffer(tmp, gen);
2474                 if (!ret) {
2475                         *eb_ret = tmp;
2476                         return 0;
2477                 }
2478                 free_extent_buffer(tmp);
2479                 btrfs_release_path(p);
2480                 return -EIO;
2481         }
2482
2483         /*
2484          * reduce lock contention at high levels
2485          * of the btree by dropping locks before
2486          * we read.  Don't release the lock on the current
2487          * level because we need to walk this node to figure
2488          * out which blocks to read.
2489          */
2490         btrfs_unlock_up_safe(p, level + 1);
2491         btrfs_set_path_blocking(p);
2492
2493         free_extent_buffer(tmp);
2494         if (p->reada)
2495                 reada_for_search(root, p, level, slot, key->objectid);
2496
2497         btrfs_release_path(p);
2498
2499         ret = -EAGAIN;
2500         tmp = read_tree_block(root, blocknr, 0);
2501         if (!IS_ERR(tmp)) {
2502                 /*
2503                  * If the read above didn't mark this buffer up to date,
2504                  * it will never end up being up to date.  Set ret to EIO now
2505                  * and give up so that our caller doesn't loop forever
2506                  * on our EAGAINs.
2507                  */
2508                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2509                         ret = -EIO;
2510                 free_extent_buffer(tmp);
2511         }
2512         return ret;
2513 }
2514
2515 /*
2516  * helper function for btrfs_search_slot.  This does all of the checks
2517  * for node-level blocks and does any balancing required based on
2518  * the ins_len.
2519  *
2520  * If no extra work was required, zero is returned.  If we had to
2521  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2522  * start over
2523  */
2524 static int
2525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2526                        struct btrfs_root *root, struct btrfs_path *p,
2527                        struct extent_buffer *b, int level, int ins_len,
2528                        int *write_lock_level)
2529 {
2530         int ret;
2531         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2532             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2533                 int sret;
2534
2535                 if (*write_lock_level < level + 1) {
2536                         *write_lock_level = level + 1;
2537                         btrfs_release_path(p);
2538                         goto again;
2539                 }
2540
2541                 btrfs_set_path_blocking(p);
2542                 reada_for_balance(root, p, level);
2543                 sret = split_node(trans, root, p, level);
2544                 btrfs_clear_path_blocking(p, NULL, 0);
2545
2546                 BUG_ON(sret > 0);
2547                 if (sret) {
2548                         ret = sret;
2549                         goto done;
2550                 }
2551                 b = p->nodes[level];
2552         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2553                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2554                 int sret;
2555
2556                 if (*write_lock_level < level + 1) {
2557                         *write_lock_level = level + 1;
2558                         btrfs_release_path(p);
2559                         goto again;
2560                 }
2561
2562                 btrfs_set_path_blocking(p);
2563                 reada_for_balance(root, p, level);
2564                 sret = balance_level(trans, root, p, level);
2565                 btrfs_clear_path_blocking(p, NULL, 0);
2566
2567                 if (sret) {
2568                         ret = sret;
2569                         goto done;
2570                 }
2571                 b = p->nodes[level];
2572                 if (!b) {
2573                         btrfs_release_path(p);
2574                         goto again;
2575                 }
2576                 BUG_ON(btrfs_header_nritems(b) == 1);
2577         }
2578         return 0;
2579
2580 again:
2581         ret = -EAGAIN;
2582 done:
2583         return ret;
2584 }
2585
2586 static void key_search_validate(struct extent_buffer *b,
2587                                 struct btrfs_key *key,
2588                                 int level)
2589 {
2590 #ifdef CONFIG_BTRFS_ASSERT
2591         struct btrfs_disk_key disk_key;
2592
2593         btrfs_cpu_key_to_disk(&disk_key, key);
2594
2595         if (level == 0)
2596                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597                     offsetof(struct btrfs_leaf, items[0].key),
2598                     sizeof(disk_key)));
2599         else
2600                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2601                     offsetof(struct btrfs_node, ptrs[0].key),
2602                     sizeof(disk_key)));
2603 #endif
2604 }
2605
2606 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2607                       int level, int *prev_cmp, int *slot)
2608 {
2609         if (*prev_cmp != 0) {
2610                 *prev_cmp = bin_search(b, key, level, slot);
2611                 return *prev_cmp;
2612         }
2613
2614         key_search_validate(b, key, level);
2615         *slot = 0;
2616
2617         return 0;
2618 }
2619
2620 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2621                 u64 iobjectid, u64 ioff, u8 key_type,
2622                 struct btrfs_key *found_key)
2623 {
2624         int ret;
2625         struct btrfs_key key;
2626         struct extent_buffer *eb;
2627
2628         ASSERT(path);
2629         ASSERT(found_key);
2630
2631         key.type = key_type;
2632         key.objectid = iobjectid;
2633         key.offset = ioff;
2634
2635         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2636         if (ret < 0)
2637                 return ret;
2638
2639         eb = path->nodes[0];
2640         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2641                 ret = btrfs_next_leaf(fs_root, path);
2642                 if (ret)
2643                         return ret;
2644                 eb = path->nodes[0];
2645         }
2646
2647         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2648         if (found_key->type != key.type ||
2649                         found_key->objectid != key.objectid)
2650                 return 1;
2651
2652         return 0;
2653 }
2654
2655 /*
2656  * look for key in the tree.  path is filled in with nodes along the way
2657  * if key is found, we return zero and you can find the item in the leaf
2658  * level of the path (level 0)
2659  *
2660  * If the key isn't found, the path points to the slot where it should
2661  * be inserted, and 1 is returned.  If there are other errors during the
2662  * search a negative error number is returned.
2663  *
2664  * if ins_len > 0, nodes and leaves will be split as we walk down the
2665  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2666  * possible)
2667  */
2668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2669                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2670                       ins_len, int cow)
2671 {
2672         struct extent_buffer *b;
2673         int slot;
2674         int ret;
2675         int err;
2676         int level;
2677         int lowest_unlock = 1;
2678         int root_lock;
2679         /* everything at write_lock_level or lower must be write locked */
2680         int write_lock_level = 0;
2681         u8 lowest_level = 0;
2682         int min_write_lock_level;
2683         int prev_cmp;
2684
2685         lowest_level = p->lowest_level;
2686         WARN_ON(lowest_level && ins_len > 0);
2687         WARN_ON(p->nodes[0] != NULL);
2688         BUG_ON(!cow && ins_len);
2689
2690         if (ins_len < 0) {
2691                 lowest_unlock = 2;
2692
2693                 /* when we are removing items, we might have to go up to level
2694                  * two as we update tree pointers  Make sure we keep write
2695                  * for those levels as well
2696                  */
2697                 write_lock_level = 2;
2698         } else if (ins_len > 0) {
2699                 /*
2700                  * for inserting items, make sure we have a write lock on
2701                  * level 1 so we can update keys
2702                  */
2703                 write_lock_level = 1;
2704         }
2705
2706         if (!cow)
2707                 write_lock_level = -1;
2708
2709         if (cow && (p->keep_locks || p->lowest_level))
2710                 write_lock_level = BTRFS_MAX_LEVEL;
2711
2712         min_write_lock_level = write_lock_level;
2713
2714 again:
2715         prev_cmp = -1;
2716         /*
2717          * we try very hard to do read locks on the root
2718          */
2719         root_lock = BTRFS_READ_LOCK;
2720         level = 0;
2721         if (p->search_commit_root) {
2722                 /*
2723                  * the commit roots are read only
2724                  * so we always do read locks
2725                  */
2726                 if (p->need_commit_sem)
2727                         down_read(&root->fs_info->commit_root_sem);
2728                 b = root->commit_root;
2729                 extent_buffer_get(b);
2730                 level = btrfs_header_level(b);
2731                 if (p->need_commit_sem)
2732                         up_read(&root->fs_info->commit_root_sem);
2733                 if (!p->skip_locking)
2734                         btrfs_tree_read_lock(b);
2735         } else {
2736                 if (p->skip_locking) {
2737                         b = btrfs_root_node(root);
2738                         level = btrfs_header_level(b);
2739                 } else {
2740                         /* we don't know the level of the root node
2741                          * until we actually have it read locked
2742                          */
2743                         b = btrfs_read_lock_root_node(root);
2744                         level = btrfs_header_level(b);
2745                         if (level <= write_lock_level) {
2746                                 /* whoops, must trade for write lock */
2747                                 btrfs_tree_read_unlock(b);
2748                                 free_extent_buffer(b);
2749                                 b = btrfs_lock_root_node(root);
2750                                 root_lock = BTRFS_WRITE_LOCK;
2751
2752                                 /* the level might have changed, check again */
2753                                 level = btrfs_header_level(b);
2754                         }
2755                 }
2756         }
2757         p->nodes[level] = b;
2758         if (!p->skip_locking)
2759                 p->locks[level] = root_lock;
2760
2761         while (b) {
2762                 level = btrfs_header_level(b);
2763
2764                 /*
2765                  * setup the path here so we can release it under lock
2766                  * contention with the cow code
2767                  */
2768                 if (cow) {
2769                         /*
2770                          * if we don't really need to cow this block
2771                          * then we don't want to set the path blocking,
2772                          * so we test it here
2773                          */
2774                         if (!should_cow_block(trans, root, b))
2775                                 goto cow_done;
2776
2777                         /*
2778                          * must have write locks on this node and the
2779                          * parent
2780                          */
2781                         if (level > write_lock_level ||
2782                             (level + 1 > write_lock_level &&
2783                             level + 1 < BTRFS_MAX_LEVEL &&
2784                             p->nodes[level + 1])) {
2785                                 write_lock_level = level + 1;
2786                                 btrfs_release_path(p);
2787                                 goto again;
2788                         }
2789
2790                         btrfs_set_path_blocking(p);
2791                         err = btrfs_cow_block(trans, root, b,
2792                                               p->nodes[level + 1],
2793                                               p->slots[level + 1], &b);
2794                         if (err) {
2795                                 ret = err;
2796                                 goto done;
2797                         }
2798                 }
2799 cow_done:
2800                 p->nodes[level] = b;
2801                 btrfs_clear_path_blocking(p, NULL, 0);
2802
2803                 /*
2804                  * we have a lock on b and as long as we aren't changing
2805                  * the tree, there is no way to for the items in b to change.
2806                  * It is safe to drop the lock on our parent before we
2807                  * go through the expensive btree search on b.
2808                  *
2809                  * If we're inserting or deleting (ins_len != 0), then we might
2810                  * be changing slot zero, which may require changing the parent.
2811                  * So, we can't drop the lock until after we know which slot
2812                  * we're operating on.
2813                  */
2814                 if (!ins_len && !p->keep_locks) {
2815                         int u = level + 1;
2816
2817                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2818                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2819                                 p->locks[u] = 0;
2820                         }
2821                 }
2822
2823                 ret = key_search(b, key, level, &prev_cmp, &slot);
2824
2825                 if (level != 0) {
2826                         int dec = 0;
2827                         if (ret && slot > 0) {
2828                                 dec = 1;
2829                                 slot -= 1;
2830                         }
2831                         p->slots[level] = slot;
2832                         err = setup_nodes_for_search(trans, root, p, b, level,
2833                                              ins_len, &write_lock_level);
2834                         if (err == -EAGAIN)
2835                                 goto again;
2836                         if (err) {
2837                                 ret = err;
2838                                 goto done;
2839                         }
2840                         b = p->nodes[level];
2841                         slot = p->slots[level];
2842
2843                         /*
2844                          * slot 0 is special, if we change the key
2845                          * we have to update the parent pointer
2846                          * which means we must have a write lock
2847                          * on the parent
2848                          */
2849                         if (slot == 0 && ins_len &&
2850                             write_lock_level < level + 1) {
2851                                 write_lock_level = level + 1;
2852                                 btrfs_release_path(p);
2853                                 goto again;
2854                         }
2855
2856                         unlock_up(p, level, lowest_unlock,
2857                                   min_write_lock_level, &write_lock_level);
2858
2859                         if (level == lowest_level) {
2860                                 if (dec)
2861                                         p->slots[level]++;
2862                                 goto done;
2863                         }
2864
2865                         err = read_block_for_search(trans, root, p,
2866                                                     &b, level, slot, key, 0);
2867                         if (err == -EAGAIN)
2868                                 goto again;
2869                         if (err) {
2870                                 ret = err;
2871                                 goto done;
2872                         }
2873
2874                         if (!p->skip_locking) {
2875                                 level = btrfs_header_level(b);
2876                                 if (level <= write_lock_level) {
2877                                         err = btrfs_try_tree_write_lock(b);
2878                                         if (!err) {
2879                                                 btrfs_set_path_blocking(p);
2880                                                 btrfs_tree_lock(b);
2881                                                 btrfs_clear_path_blocking(p, b,
2882                                                                   BTRFS_WRITE_LOCK);
2883                                         }
2884                                         p->locks[level] = BTRFS_WRITE_LOCK;
2885                                 } else {
2886                                         err = btrfs_tree_read_lock_atomic(b);
2887                                         if (!err) {
2888                                                 btrfs_set_path_blocking(p);
2889                                                 btrfs_tree_read_lock(b);
2890                                                 btrfs_clear_path_blocking(p, b,
2891                                                                   BTRFS_READ_LOCK);
2892                                         }
2893                                         p->locks[level] = BTRFS_READ_LOCK;
2894                                 }
2895                                 p->nodes[level] = b;
2896                         }
2897                 } else {
2898                         p->slots[level] = slot;
2899                         if (ins_len > 0 &&
2900                             btrfs_leaf_free_space(root, b) < ins_len) {
2901                                 if (write_lock_level < 1) {
2902                                         write_lock_level = 1;
2903                                         btrfs_release_path(p);
2904                                         goto again;
2905                                 }
2906
2907                                 btrfs_set_path_blocking(p);
2908                                 err = split_leaf(trans, root, key,
2909                                                  p, ins_len, ret == 0);
2910                                 btrfs_clear_path_blocking(p, NULL, 0);
2911
2912                                 BUG_ON(err > 0);
2913                                 if (err) {
2914                                         ret = err;
2915                                         goto done;
2916                                 }
2917                         }
2918                         if (!p->search_for_split)
2919                                 unlock_up(p, level, lowest_unlock,
2920                                           min_write_lock_level, &write_lock_level);
2921                         goto done;
2922                 }
2923         }
2924         ret = 1;
2925 done:
2926         /*
2927          * we don't really know what they plan on doing with the path
2928          * from here on, so for now just mark it as blocking
2929          */
2930         if (!p->leave_spinning)
2931                 btrfs_set_path_blocking(p);
2932         if (ret < 0 && !p->skip_release_on_error)
2933                 btrfs_release_path(p);
2934         return ret;
2935 }
2936
2937 /*
2938  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2939  * current state of the tree together with the operations recorded in the tree
2940  * modification log to search for the key in a previous version of this tree, as
2941  * denoted by the time_seq parameter.
2942  *
2943  * Naturally, there is no support for insert, delete or cow operations.
2944  *
2945  * The resulting path and return value will be set up as if we called
2946  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2947  */
2948 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2949                           struct btrfs_path *p, u64 time_seq)
2950 {
2951         struct extent_buffer *b;
2952         int slot;
2953         int ret;
2954         int err;
2955         int level;
2956         int lowest_unlock = 1;
2957         u8 lowest_level = 0;
2958         int prev_cmp = -1;
2959
2960         lowest_level = p->lowest_level;
2961         WARN_ON(p->nodes[0] != NULL);
2962
2963         if (p->search_commit_root) {
2964                 BUG_ON(time_seq);
2965                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2966         }
2967
2968 again:
2969         b = get_old_root(root, time_seq);
2970         level = btrfs_header_level(b);
2971         p->locks[level] = BTRFS_READ_LOCK;
2972
2973         while (b) {
2974                 level = btrfs_header_level(b);
2975                 p->nodes[level] = b;
2976                 btrfs_clear_path_blocking(p, NULL, 0);
2977
2978                 /*
2979                  * we have a lock on b and as long as we aren't changing
2980                  * the tree, there is no way to for the items in b to change.
2981                  * It is safe to drop the lock on our parent before we
2982                  * go through the expensive btree search on b.
2983                  */
2984                 btrfs_unlock_up_safe(p, level + 1);
2985
2986                 /*
2987                  * Since we can unwind eb's we want to do a real search every
2988                  * time.
2989                  */
2990                 prev_cmp = -1;
2991                 ret = key_search(b, key, level, &prev_cmp, &slot);
2992
2993                 if (level != 0) {
2994                         int dec = 0;
2995                         if (ret && slot > 0) {
2996                                 dec = 1;
2997                                 slot -= 1;
2998                         }
2999                         p->slots[level] = slot;
3000                         unlock_up(p, level, lowest_unlock, 0, NULL);
3001
3002                         if (level == lowest_level) {
3003                                 if (dec)
3004                                         p->slots[level]++;
3005                                 goto done;
3006                         }
3007
3008                         err = read_block_for_search(NULL, root, p, &b, level,
3009                                                     slot, key, time_seq);
3010                         if (err == -EAGAIN)
3011                                 goto again;
3012                         if (err) {
3013                                 ret = err;
3014                                 goto done;
3015                         }
3016
3017                         level = btrfs_header_level(b);
3018                         err = btrfs_tree_read_lock_atomic(b);
3019                         if (!err) {
3020                                 btrfs_set_path_blocking(p);
3021                                 btrfs_tree_read_lock(b);
3022                                 btrfs_clear_path_blocking(p, b,
3023                                                           BTRFS_READ_LOCK);
3024                         }
3025                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3026                         if (!b) {
3027                                 ret = -ENOMEM;
3028                                 goto done;
3029                         }
3030                         p->locks[level] = BTRFS_READ_LOCK;
3031                         p->nodes[level] = b;
3032                 } else {
3033                         p->slots[level] = slot;
3034                         unlock_up(p, level, lowest_unlock, 0, NULL);
3035                         goto done;
3036                 }
3037         }
3038         ret = 1;
3039 done:
3040         if (!p->leave_spinning)
3041                 btrfs_set_path_blocking(p);
3042         if (ret < 0)
3043                 btrfs_release_path(p);
3044
3045         return ret;
3046 }
3047
3048 /*
3049  * helper to use instead of search slot if no exact match is needed but
3050  * instead the next or previous item should be returned.
3051  * When find_higher is true, the next higher item is returned, the next lower
3052  * otherwise.
3053  * When return_any and find_higher are both true, and no higher item is found,
3054  * return the next lower instead.
3055  * When return_any is true and find_higher is false, and no lower item is found,
3056  * return the next higher instead.
3057  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3058  * < 0 on error
3059  */
3060 int btrfs_search_slot_for_read(struct btrfs_root *root,
3061                                struct btrfs_key *key, struct btrfs_path *p,
3062                                int find_higher, int return_any)
3063 {
3064         int ret;
3065         struct extent_buffer *leaf;
3066
3067 again:
3068         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3069         if (ret <= 0)
3070                 return ret;
3071         /*
3072          * a return value of 1 means the path is at the position where the
3073          * item should be inserted. Normally this is the next bigger item,
3074          * but in case the previous item is the last in a leaf, path points
3075          * to the first free slot in the previous leaf, i.e. at an invalid
3076          * item.
3077          */
3078         leaf = p->nodes[0];
3079
3080         if (find_higher) {
3081                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3082                         ret = btrfs_next_leaf(root, p);
3083                         if (ret <= 0)
3084                                 return ret;
3085                         if (!return_any)
3086                                 return 1;
3087                         /*
3088                          * no higher item found, return the next
3089                          * lower instead
3090                          */
3091                         return_any = 0;
3092                         find_higher = 0;
3093                         btrfs_release_path(p);
3094                         goto again;
3095                 }
3096         } else {
3097                 if (p->slots[0] == 0) {
3098                         ret = btrfs_prev_leaf(root, p);
3099                         if (ret < 0)
3100                                 return ret;
3101                         if (!ret) {
3102                                 leaf = p->nodes[0];
3103                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3104                                         p->slots[0]--;
3105                                 return 0;
3106                         }
3107                         if (!return_any)
3108                                 return 1;
3109                         /*
3110                          * no lower item found, return the next
3111                          * higher instead
3112                          */
3113                         return_any = 0;
3114                         find_higher = 1;
3115                         btrfs_release_path(p);
3116                         goto again;
3117                 } else {
3118                         --p->slots[0];
3119                 }
3120         }
3121         return 0;
3122 }
3123
3124 /*
3125  * adjust the pointers going up the tree, starting at level
3126  * making sure the right key of each node is points to 'key'.
3127  * This is used after shifting pointers to the left, so it stops
3128  * fixing up pointers when a given leaf/node is not in slot 0 of the
3129  * higher levels
3130  *
3131  */
3132 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3133                            struct btrfs_path *path,
3134                            struct btrfs_disk_key *key, int level)
3135 {
3136         int i;
3137         struct extent_buffer *t;
3138
3139         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3140                 int tslot = path->slots[i];
3141                 if (!path->nodes[i])
3142                         break;
3143                 t = path->nodes[i];
3144                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3145                 btrfs_set_node_key(t, key, tslot);
3146                 btrfs_mark_buffer_dirty(path->nodes[i]);
3147                 if (tslot != 0)
3148                         break;
3149         }
3150 }
3151
3152 /*
3153  * update item key.
3154  *
3155  * This function isn't completely safe. It's the caller's responsibility
3156  * that the new key won't break the order
3157  */
3158 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3159                              struct btrfs_path *path,
3160                              struct btrfs_key *new_key)
3161 {
3162         struct btrfs_disk_key disk_key;
3163         struct extent_buffer *eb;
3164         int slot;
3165
3166         eb = path->nodes[0];
3167         slot = path->slots[0];
3168         if (slot > 0) {
3169                 btrfs_item_key(eb, &disk_key, slot - 1);
3170                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3171         }
3172         if (slot < btrfs_header_nritems(eb) - 1) {
3173                 btrfs_item_key(eb, &disk_key, slot + 1);
3174                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3175         }
3176
3177         btrfs_cpu_key_to_disk(&disk_key, new_key);
3178         btrfs_set_item_key(eb, &disk_key, slot);
3179         btrfs_mark_buffer_dirty(eb);
3180         if (slot == 0)
3181                 fixup_low_keys(fs_info, path, &disk_key, 1);
3182 }
3183
3184 /*
3185  * try to push data from one node into the next node left in the
3186  * tree.
3187  *
3188  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3189  * error, and > 0 if there was no room in the left hand block.
3190  */
3191 static int push_node_left(struct btrfs_trans_handle *trans,
3192                           struct btrfs_root *root, struct extent_buffer *dst,
3193                           struct extent_buffer *src, int empty)
3194 {
3195         int push_items = 0;
3196         int src_nritems;
3197         int dst_nritems;
3198         int ret = 0;
3199
3200         src_nritems = btrfs_header_nritems(src);
3201         dst_nritems = btrfs_header_nritems(dst);
3202         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3203         WARN_ON(btrfs_header_generation(src) != trans->transid);
3204         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3205
3206         if (!empty && src_nritems <= 8)
3207                 return 1;
3208
3209         if (push_items <= 0)
3210                 return 1;
3211
3212         if (empty) {
3213                 push_items = min(src_nritems, push_items);
3214                 if (push_items < src_nritems) {
3215                         /* leave at least 8 pointers in the node if
3216                          * we aren't going to empty it
3217                          */
3218                         if (src_nritems - push_items < 8) {
3219                                 if (push_items <= 8)
3220                                         return 1;
3221                                 push_items -= 8;
3222                         }
3223                 }
3224         } else
3225                 push_items = min(src_nritems - 8, push_items);
3226
3227         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3228                                    push_items);
3229         if (ret) {
3230                 btrfs_abort_transaction(trans, root, ret);
3231                 return ret;
3232         }
3233         copy_extent_buffer(dst, src,
3234                            btrfs_node_key_ptr_offset(dst_nritems),
3235                            btrfs_node_key_ptr_offset(0),
3236                            push_items * sizeof(struct btrfs_key_ptr));
3237
3238         if (push_items < src_nritems) {
3239                 /*
3240                  * don't call tree_mod_log_eb_move here, key removal was already
3241                  * fully logged by tree_mod_log_eb_copy above.
3242                  */
3243                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3244                                       btrfs_node_key_ptr_offset(push_items),
3245                                       (src_nritems - push_items) *
3246                                       sizeof(struct btrfs_key_ptr));
3247         }
3248         btrfs_set_header_nritems(src, src_nritems - push_items);
3249         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3250         btrfs_mark_buffer_dirty(src);
3251         btrfs_mark_buffer_dirty(dst);
3252
3253         return ret;
3254 }
3255
3256 /*
3257  * try to push data from one node into the next node right in the
3258  * tree.
3259  *
3260  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3261  * error, and > 0 if there was no room in the right hand block.
3262  *
3263  * this will  only push up to 1/2 the contents of the left node over
3264  */
3265 static int balance_node_right(struct btrfs_trans_handle *trans,
3266                               struct btrfs_root *root,
3267                               struct extent_buffer *dst,
3268                               struct extent_buffer *src)
3269 {
3270         int push_items = 0;
3271         int max_push;
3272         int src_nritems;
3273         int dst_nritems;
3274         int ret = 0;
3275
3276         WARN_ON(btrfs_header_generation(src) != trans->transid);
3277         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3278
3279         src_nritems = btrfs_header_nritems(src);
3280         dst_nritems = btrfs_header_nritems(dst);
3281         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3282         if (push_items <= 0)
3283                 return 1;
3284
3285         if (src_nritems < 4)
3286                 return 1;
3287
3288         max_push = src_nritems / 2 + 1;
3289         /* don't try to empty the node */
3290         if (max_push >= src_nritems)
3291                 return 1;
3292
3293         if (max_push < push_items)
3294                 push_items = max_push;
3295
3296         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3297         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3298                                       btrfs_node_key_ptr_offset(0),
3299                                       (dst_nritems) *
3300                                       sizeof(struct btrfs_key_ptr));
3301
3302         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3303                                    src_nritems - push_items, push_items);
3304         if (ret) {
3305                 btrfs_abort_transaction(trans, root, ret);
3306                 return ret;
3307         }
3308         copy_extent_buffer(dst, src,
3309                            btrfs_node_key_ptr_offset(0),
3310                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3311                            push_items * sizeof(struct btrfs_key_ptr));
3312
3313         btrfs_set_header_nritems(src, src_nritems - push_items);
3314         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315
3316         btrfs_mark_buffer_dirty(src);
3317         btrfs_mark_buffer_dirty(dst);
3318
3319         return ret;
3320 }
3321
3322 /*
3323  * helper function to insert a new root level in the tree.
3324  * A new node is allocated, and a single item is inserted to
3325  * point to the existing root
3326  *
3327  * returns zero on success or < 0 on failure.
3328  */
3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3330                            struct btrfs_root *root,
3331                            struct btrfs_path *path, int level)
3332 {
3333         u64 lower_gen;
3334         struct extent_buffer *lower;
3335         struct extent_buffer *c;
3336         struct extent_buffer *old;
3337         struct btrfs_disk_key lower_key;
3338
3339         BUG_ON(path->nodes[level]);
3340         BUG_ON(path->nodes[level-1] != root->node);
3341
3342         lower = path->nodes[level-1];
3343         if (level == 1)
3344                 btrfs_item_key(lower, &lower_key, 0);
3345         else
3346                 btrfs_node_key(lower, &lower_key, 0);
3347
3348         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3349                                    &lower_key, level, root->node->start, 0);
3350         if (IS_ERR(c))
3351                 return PTR_ERR(c);
3352
3353         root_add_used(root, root->nodesize);
3354
3355         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3356         btrfs_set_header_nritems(c, 1);
3357         btrfs_set_header_level(c, level);
3358         btrfs_set_header_bytenr(c, c->start);
3359         btrfs_set_header_generation(c, trans->transid);
3360         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3361         btrfs_set_header_owner(c, root->root_key.objectid);
3362
3363         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3364                             BTRFS_FSID_SIZE);
3365
3366         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3367                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3368
3369         btrfs_set_node_key(c, &lower_key, 0);
3370         btrfs_set_node_blockptr(c, 0, lower->start);
3371         lower_gen = btrfs_header_generation(lower);
3372         WARN_ON(lower_gen != trans->transid);
3373
3374         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3375
3376         btrfs_mark_buffer_dirty(c);
3377
3378         old = root->node;
3379         tree_mod_log_set_root_pointer(root, c, 0);
3380         rcu_assign_pointer(root->node, c);
3381
3382         /* the super has an extra ref to root->node */
3383         free_extent_buffer(old);
3384
3385         add_root_to_dirty_list(root);
3386         extent_buffer_get(c);
3387         path->nodes[level] = c;
3388         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3389         path->slots[level] = 0;
3390         return 0;
3391 }
3392
3393 /*
3394  * worker function to insert a single pointer in a node.
3395  * the node should have enough room for the pointer already
3396  *
3397  * slot and level indicate where you want the key to go, and
3398  * blocknr is the block the key points to.
3399  */
3400 static void insert_ptr(struct btrfs_trans_handle *trans,
3401                        struct btrfs_root *root, struct btrfs_path *path,
3402                        struct btrfs_disk_key *key, u64 bytenr,
3403                        int slot, int level)
3404 {
3405         struct extent_buffer *lower;
3406         int nritems;
3407         int ret;
3408
3409         BUG_ON(!path->nodes[level]);
3410         btrfs_assert_tree_locked(path->nodes[level]);
3411         lower = path->nodes[level];
3412         nritems = btrfs_header_nritems(lower);
3413         BUG_ON(slot > nritems);
3414         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3415         if (slot != nritems) {
3416                 if (level)
3417                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3418                                              slot, nritems - slot);
3419                 memmove_extent_buffer(lower,
3420                               btrfs_node_key_ptr_offset(slot + 1),
3421                               btrfs_node_key_ptr_offset(slot),
3422                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3423         }
3424         if (level) {
3425                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3426                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3427                 BUG_ON(ret < 0);
3428         }
3429         btrfs_set_node_key(lower, key, slot);
3430         btrfs_set_node_blockptr(lower, slot, bytenr);
3431         WARN_ON(trans->transid == 0);
3432         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3433         btrfs_set_header_nritems(lower, nritems + 1);
3434         btrfs_mark_buffer_dirty(lower);
3435 }
3436
3437 /*
3438  * split the node at the specified level in path in two.
3439  * The path is corrected to point to the appropriate node after the split
3440  *
3441  * Before splitting this tries to make some room in the node by pushing
3442  * left and right, if either one works, it returns right away.
3443  *
3444  * returns 0 on success and < 0 on failure
3445  */
3446 static noinline int split_node(struct btrfs_trans_handle *trans,
3447                                struct btrfs_root *root,
3448                                struct btrfs_path *path, int level)
3449 {
3450         struct extent_buffer *c;
3451         struct extent_buffer *split;
3452         struct btrfs_disk_key disk_key;
3453         int mid;
3454         int ret;
3455         u32 c_nritems;
3456
3457         c = path->nodes[level];
3458         WARN_ON(btrfs_header_generation(c) != trans->transid);
3459         if (c == root->node) {
3460                 /*
3461                  * trying to split the root, lets make a new one
3462                  *
3463                  * tree mod log: We don't log_removal old root in
3464                  * insert_new_root, because that root buffer will be kept as a
3465                  * normal node. We are going to log removal of half of the
3466                  * elements below with tree_mod_log_eb_copy. We're holding a
3467                  * tree lock on the buffer, which is why we cannot race with
3468                  * other tree_mod_log users.
3469                  */
3470                 ret = insert_new_root(trans, root, path, level + 1);
3471                 if (ret)
3472                         return ret;
3473         } else {
3474                 ret = push_nodes_for_insert(trans, root, path, level);
3475                 c = path->nodes[level];
3476                 if (!ret && btrfs_header_nritems(c) <
3477                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3478                         return 0;
3479                 if (ret < 0)
3480                         return ret;
3481         }
3482
3483         c_nritems = btrfs_header_nritems(c);
3484         mid = (c_nritems + 1) / 2;
3485         btrfs_node_key(c, &disk_key, mid);
3486
3487         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3488                         &disk_key, level, c->start, 0);
3489         if (IS_ERR(split))
3490                 return PTR_ERR(split);
3491
3492         root_add_used(root, root->nodesize);
3493
3494         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3495         btrfs_set_header_level(split, btrfs_header_level(c));
3496         btrfs_set_header_bytenr(split, split->start);
3497         btrfs_set_header_generation(split, trans->transid);
3498         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3499         btrfs_set_header_owner(split, root->root_key.objectid);
3500         write_extent_buffer(split, root->fs_info->fsid,
3501                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3502         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3503                             btrfs_header_chunk_tree_uuid(split),
3504                             BTRFS_UUID_SIZE);
3505
3506         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3507                                    mid, c_nritems - mid);
3508         if (ret) {
3509                 btrfs_abort_transaction(trans, root, ret);
3510                 return ret;
3511         }
3512         copy_extent_buffer(split, c,
3513                            btrfs_node_key_ptr_offset(0),
3514                            btrfs_node_key_ptr_offset(mid),
3515                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3516         btrfs_set_header_nritems(split, c_nritems - mid);
3517         btrfs_set_header_nritems(c, mid);
3518         ret = 0;
3519
3520         btrfs_mark_buffer_dirty(c);
3521         btrfs_mark_buffer_dirty(split);
3522
3523         insert_ptr(trans, root, path, &disk_key, split->start,
3524                    path->slots[level + 1] + 1, level + 1);
3525
3526         if (path->slots[level] >= mid) {
3527                 path->slots[level] -= mid;
3528                 btrfs_tree_unlock(c);
3529                 free_extent_buffer(c);
3530                 path->nodes[level] = split;
3531                 path->slots[level + 1] += 1;
3532         } else {
3533                 btrfs_tree_unlock(split);
3534                 free_extent_buffer(split);
3535         }
3536         return ret;
3537 }
3538
3539 /*
3540  * how many bytes are required to store the items in a leaf.  start
3541  * and nr indicate which items in the leaf to check.  This totals up the
3542  * space used both by the item structs and the item data
3543  */
3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545 {
3546         struct btrfs_item *start_item;
3547         struct btrfs_item *end_item;
3548         struct btrfs_map_token token;
3549         int data_len;
3550         int nritems = btrfs_header_nritems(l);
3551         int end = min(nritems, start + nr) - 1;
3552
3553         if (!nr)
3554                 return 0;
3555         btrfs_init_map_token(&token);
3556         start_item = btrfs_item_nr(start);
3557         end_item = btrfs_item_nr(end);
3558         data_len = btrfs_token_item_offset(l, start_item, &token) +
3559                 btrfs_token_item_size(l, start_item, &token);
3560         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3561         data_len += sizeof(struct btrfs_item) * nr;
3562         WARN_ON(data_len < 0);
3563         return data_len;
3564 }
3565
3566 /*
3567  * The space between the end of the leaf items and
3568  * the start of the leaf data.  IOW, how much room
3569  * the leaf has left for both items and data
3570  */
3571 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3572                                    struct extent_buffer *leaf)
3573 {
3574         int nritems = btrfs_header_nritems(leaf);
3575         int ret;
3576         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3577         if (ret < 0) {
3578                 btrfs_crit(root->fs_info,
3579                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3580                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3581                        leaf_space_used(leaf, 0, nritems), nritems);
3582         }
3583         return ret;
3584 }
3585
3586 /*
3587  * min slot controls the lowest index we're willing to push to the
3588  * right.  We'll push up to and including min_slot, but no lower
3589  */
3590 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3591                                       struct btrfs_root *root,
3592                                       struct btrfs_path *path,
3593                                       int data_size, int empty,
3594                                       struct extent_buffer *right,
3595                                       int free_space, u32 left_nritems,
3596                                       u32 min_slot)
3597 {
3598         struct extent_buffer *left = path->nodes[0];
3599         struct extent_buffer *upper = path->nodes[1];
3600         struct btrfs_map_token token;
3601         struct btrfs_disk_key disk_key;
3602         int slot;
3603         u32 i;
3604         int push_space = 0;
3605         int push_items = 0;
3606         struct btrfs_item *item;
3607         u32 nr;
3608         u32 right_nritems;
3609         u32 data_end;
3610         u32 this_item_size;
3611
3612         btrfs_init_map_token(&token);
3613
3614         if (empty)
3615                 nr = 0;
3616         else
3617                 nr = max_t(u32, 1, min_slot);
3618
3619         if (path->slots[0] >= left_nritems)
3620                 push_space += data_size;
3621
3622         slot = path->slots[1];
3623         i = left_nritems - 1;
3624         while (i >= nr) {
3625                 item = btrfs_item_nr(i);
3626
3627                 if (!empty && push_items > 0) {
3628                         if (path->slots[0] > i)
3629                                 break;
3630                         if (path->slots[0] == i) {
3631                                 int space = btrfs_leaf_free_space(root, left);
3632                                 if (space + push_space * 2 > free_space)
3633                                         break;
3634                         }
3635                 }
3636
3637                 if (path->slots[0] == i)
3638                         push_space += data_size;
3639
3640                 this_item_size = btrfs_item_size(left, item);
3641                 if (this_item_size + sizeof(*item) + push_space > free_space)
3642                         break;
3643
3644                 push_items++;
3645                 push_space += this_item_size + sizeof(*item);
3646                 if (i == 0)
3647                         break;
3648                 i--;
3649         }
3650
3651         if (push_items == 0)
3652                 goto out_unlock;
3653
3654         WARN_ON(!empty && push_items == left_nritems);
3655
3656         /* push left to right */
3657         right_nritems = btrfs_header_nritems(right);
3658
3659         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3660         push_space -= leaf_data_end(root, left);
3661
3662         /* make room in the right data area */
3663         data_end = leaf_data_end(root, right);
3664         memmove_extent_buffer(right,
3665                               btrfs_leaf_data(right) + data_end - push_space,
3666                               btrfs_leaf_data(right) + data_end,
3667                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3668
3669         /* copy from the left data area */
3670         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3671                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3672                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3673                      push_space);
3674
3675         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3676                               btrfs_item_nr_offset(0),
3677                               right_nritems * sizeof(struct btrfs_item));
3678
3679         /* copy the items from left to right */
3680         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3681                    btrfs_item_nr_offset(left_nritems - push_items),
3682                    push_items * sizeof(struct btrfs_item));
3683
3684         /* update the item pointers */
3685         right_nritems += push_items;
3686         btrfs_set_header_nritems(right, right_nritems);
3687         push_space = BTRFS_LEAF_DATA_SIZE(root);
3688         for (i = 0; i < right_nritems; i++) {
3689                 item = btrfs_item_nr(i);
3690                 push_space -= btrfs_token_item_size(right, item, &token);
3691                 btrfs_set_token_item_offset(right, item, push_space, &token);
3692         }
3693
3694         left_nritems -= push_items;
3695         btrfs_set_header_nritems(left, left_nritems);
3696
3697         if (left_nritems)
3698                 btrfs_mark_buffer_dirty(left);
3699         else
3700                 clean_tree_block(trans, root->fs_info, left);
3701
3702         btrfs_mark_buffer_dirty(right);
3703
3704         btrfs_item_key(right, &disk_key, 0);
3705         btrfs_set_node_key(upper, &disk_key, slot + 1);
3706         btrfs_mark_buffer_dirty(upper);
3707
3708         /* then fixup the leaf pointer in the path */
3709         if (path->slots[0] >= left_nritems) {
3710                 path->slots[0] -= left_nritems;
3711                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3712                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3713                 btrfs_tree_unlock(path->nodes[0]);
3714                 free_extent_buffer(path->nodes[0]);
3715                 path->nodes[0] = right;
3716                 path->slots[1] += 1;
3717         } else {
3718                 btrfs_tree_unlock(right);
3719                 free_extent_buffer(right);
3720         }
3721         return 0;
3722
3723 out_unlock:
3724         btrfs_tree_unlock(right);
3725         free_extent_buffer(right);
3726         return 1;
3727 }
3728
3729 /*
3730  * push some data in the path leaf to the right, trying to free up at
3731  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3732  *
3733  * returns 1 if the push failed because the other node didn't have enough
3734  * room, 0 if everything worked out and < 0 if there were major errors.
3735  *
3736  * this will push starting from min_slot to the end of the leaf.  It won't
3737  * push any slot lower than min_slot
3738  */
3739 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3740                            *root, struct btrfs_path *path,
3741                            int min_data_size, int data_size,
3742                            int empty, u32 min_slot)
3743 {
3744         struct extent_buffer *left = path->nodes[0];
3745         struct extent_buffer *right;
3746         struct extent_buffer *upper;
3747         int slot;
3748         int free_space;
3749         u32 left_nritems;
3750         int ret;
3751
3752         if (!path->nodes[1])
3753                 return 1;
3754
3755         slot = path->slots[1];
3756         upper = path->nodes[1];
3757         if (slot >= btrfs_header_nritems(upper) - 1)
3758                 return 1;
3759
3760         btrfs_assert_tree_locked(path->nodes[1]);
3761
3762         right = read_node_slot(root, upper, slot + 1);
3763         if (right == NULL)
3764                 return 1;
3765
3766         btrfs_tree_lock(right);
3767         btrfs_set_lock_blocking(right);
3768
3769         free_space = btrfs_leaf_free_space(root, right);
3770         if (free_space < data_size)
3771                 goto out_unlock;
3772
3773         /* cow and double check */
3774         ret = btrfs_cow_block(trans, root, right, upper,
3775                               slot + 1, &right);
3776         if (ret)
3777                 goto out_unlock;
3778
3779         free_space = btrfs_leaf_free_space(root, right);
3780         if (free_space < data_size)
3781                 goto out_unlock;
3782
3783         left_nritems = btrfs_header_nritems(left);
3784         if (left_nritems == 0)
3785                 goto out_unlock;
3786
3787         if (path->slots[0] == left_nritems && !empty) {
3788                 /* Key greater than all keys in the leaf, right neighbor has
3789                  * enough room for it and we're not emptying our leaf to delete
3790                  * it, therefore use right neighbor to insert the new item and
3791                  * no need to touch/dirty our left leaft. */
3792                 btrfs_tree_unlock(left);
3793                 free_extent_buffer(left);
3794                 path->nodes[0] = right;
3795                 path->slots[0] = 0;
3796                 path->slots[1]++;
3797                 return 0;
3798         }
3799
3800         return __push_leaf_right(trans, root, path, min_data_size, empty,
3801                                 right, free_space, left_nritems, min_slot);
3802 out_unlock:
3803         btrfs_tree_unlock(right);
3804         free_extent_buffer(right);
3805         return 1;
3806 }
3807
3808 /*
3809  * push some data in the path leaf to the left, trying to free up at
3810  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3811  *
3812  * max_slot can put a limit on how far into the leaf we'll push items.  The
3813  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3814  * items
3815  */
3816 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3817                                      struct btrfs_root *root,
3818                                      struct btrfs_path *path, int data_size,
3819                                      int empty, struct extent_buffer *left,
3820                                      int free_space, u32 right_nritems,
3821                                      u32 max_slot)
3822 {
3823         struct btrfs_disk_key disk_key;
3824         struct extent_buffer *right = path->nodes[0];
3825         int i;
3826         int push_space = 0;
3827         int push_items = 0;
3828         struct btrfs_item *item;
3829         u32 old_left_nritems;
3830         u32 nr;
3831         int ret = 0;
3832         u32 this_item_size;
3833         u32 old_left_item_size;
3834         struct btrfs_map_token token;
3835
3836         btrfs_init_map_token(&token);
3837
3838         if (empty)
3839                 nr = min(right_nritems, max_slot);
3840         else
3841                 nr = min(right_nritems - 1, max_slot);
3842
3843         for (i = 0; i < nr; i++) {
3844                 item = btrfs_item_nr(i);
3845
3846                 if (!empty && push_items > 0) {
3847                         if (path->slots[0] < i)
3848                                 break;
3849                         if (path->slots[0] == i) {
3850                                 int space = btrfs_leaf_free_space(root, right);
3851                                 if (space + push_space * 2 > free_space)
3852                                         break;
3853                         }
3854                 }
3855
3856                 if (path->slots[0] == i)
3857                         push_space += data_size;
3858
3859                 this_item_size = btrfs_item_size(right, item);
3860                 if (this_item_size + sizeof(*item) + push_space > free_space)
3861                         break;
3862
3863                 push_items++;
3864                 push_space += this_item_size + sizeof(*item);
3865         }
3866
3867         if (push_items == 0) {
3868                 ret = 1;
3869                 goto out;
3870         }
3871         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3872
3873         /* push data from right to left */
3874         copy_extent_buffer(left, right,
3875                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3876                            btrfs_item_nr_offset(0),
3877                            push_items * sizeof(struct btrfs_item));
3878
3879         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3880                      btrfs_item_offset_nr(right, push_items - 1);
3881
3882         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3883                      leaf_data_end(root, left) - push_space,
3884                      btrfs_leaf_data(right) +
3885                      btrfs_item_offset_nr(right, push_items - 1),
3886                      push_space);
3887         old_left_nritems = btrfs_header_nritems(left);
3888         BUG_ON(old_left_nritems <= 0);
3889
3890         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3891         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3892                 u32 ioff;
3893
3894                 item = btrfs_item_nr(i);
3895
3896                 ioff = btrfs_token_item_offset(left, item, &token);
3897                 btrfs_set_token_item_offset(left, item,
3898                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3899                       &token);
3900         }
3901         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3902
3903         /* fixup right node */
3904         if (push_items > right_nritems)
3905                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3906                        right_nritems);
3907
3908         if (push_items < right_nritems) {
3909                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3910                                                   leaf_data_end(root, right);
3911                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3912                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3913                                       btrfs_leaf_data(right) +
3914                                       leaf_data_end(root, right), push_space);
3915
3916                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3917                               btrfs_item_nr_offset(push_items),
3918                              (btrfs_header_nritems(right) - push_items) *
3919                              sizeof(struct btrfs_item));
3920         }
3921         right_nritems -= push_items;
3922         btrfs_set_header_nritems(right, right_nritems);
3923         push_space = BTRFS_LEAF_DATA_SIZE(root);
3924         for (i = 0; i < right_nritems; i++) {
3925                 item = btrfs_item_nr(i);
3926
3927                 push_space = push_space - btrfs_token_item_size(right,
3928                                                                 item, &token);
3929                 btrfs_set_token_item_offset(right, item, push_space, &token);
3930         }
3931
3932         btrfs_mark_buffer_dirty(left);
3933         if (right_nritems)
3934                 btrfs_mark_buffer_dirty(right);
3935         else
3936                 clean_tree_block(trans, root->fs_info, right);
3937
3938         btrfs_item_key(right, &disk_key, 0);
3939         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3940
3941         /* then fixup the leaf pointer in the path */
3942         if (path->slots[0] < push_items) {
3943                 path->slots[0] += old_left_nritems;
3944                 btrfs_tree_unlock(path->nodes[0]);
3945                 free_extent_buffer(path->nodes[0]);
3946                 path->nodes[0] = left;
3947                 path->slots[1] -= 1;
3948         } else {
3949                 btrfs_tree_unlock(left);
3950                 free_extent_buffer(left);
3951                 path->slots[0] -= push_items;
3952         }
3953         BUG_ON(path->slots[0] < 0);
3954         return ret;
3955 out:
3956         btrfs_tree_unlock(left);
3957         free_extent_buffer(left);
3958         return ret;
3959 }
3960
3961 /*
3962  * push some data in the path leaf to the left, trying to free up at
3963  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3964  *
3965  * max_slot can put a limit on how far into the leaf we'll push items.  The
3966  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3967  * items
3968  */
3969 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3970                           *root, struct btrfs_path *path, int min_data_size,
3971                           int data_size, int empty, u32 max_slot)
3972 {
3973         struct extent_buffer *right = path->nodes[0];
3974         struct extent_buffer *left;
3975         int slot;
3976         int free_space;
3977         u32 right_nritems;
3978         int ret = 0;
3979
3980         slot = path->slots[1];
3981         if (slot == 0)
3982                 return 1;
3983         if (!path->nodes[1])
3984                 return 1;
3985
3986         right_nritems = btrfs_header_nritems(right);
3987         if (right_nritems == 0)
3988                 return 1;
3989
3990         btrfs_assert_tree_locked(path->nodes[1]);
3991
3992         left = read_node_slot(root, path->nodes[1], slot - 1);
3993         if (left == NULL)
3994                 return 1;
3995
3996         btrfs_tree_lock(left);
3997         btrfs_set_lock_blocking(left);
3998
3999         free_space = btrfs_leaf_free_space(root, left);
4000         if (free_space < data_size) {
4001                 ret = 1;
4002                 goto out;
4003         }
4004
4005         /* cow and double check */
4006         ret = btrfs_cow_block(trans, root, left,
4007                               path->nodes[1], slot - 1, &left);
4008         if (ret) {
4009                 /* we hit -ENOSPC, but it isn't fatal here */
4010                 if (ret == -ENOSPC)
4011                         ret = 1;
4012                 goto out;
4013         }
4014
4015         free_space = btrfs_leaf_free_space(root, left);
4016         if (free_space < data_size) {
4017                 ret = 1;
4018                 goto out;
4019         }
4020
4021         return __push_leaf_left(trans, root, path, min_data_size,
4022                                empty, left, free_space, right_nritems,
4023                                max_slot);
4024 out:
4025         btrfs_tree_unlock(left);
4026         free_extent_buffer(left);
4027         return ret;
4028 }
4029
4030 /*
4031  * split the path's leaf in two, making sure there is at least data_size
4032  * available for the resulting leaf level of the path.
4033  */
4034 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4035                                     struct btrfs_root *root,
4036                                     struct btrfs_path *path,
4037                                     struct extent_buffer *l,
4038                                     struct extent_buffer *right,
4039                                     int slot, int mid, int nritems)
4040 {
4041         int data_copy_size;
4042         int rt_data_off;
4043         int i;
4044         struct btrfs_disk_key disk_key;
4045         struct btrfs_map_token token;
4046
4047         btrfs_init_map_token(&token);
4048
4049         nritems = nritems - mid;
4050         btrfs_set_header_nritems(right, nritems);
4051         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4052
4053         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4054                            btrfs_item_nr_offset(mid),
4055                            nritems * sizeof(struct btrfs_item));
4056
4057         copy_extent_buffer(right, l,
4058                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4059                      data_copy_size, btrfs_leaf_data(l) +
4060                      leaf_data_end(root, l), data_copy_size);
4061
4062         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4063                       btrfs_item_end_nr(l, mid);
4064
4065         for (i = 0; i < nritems; i++) {
4066                 struct btrfs_item *item = btrfs_item_nr(i);
4067                 u32 ioff;
4068
4069                 ioff = btrfs_token_item_offset(right, item, &token);
4070                 btrfs_set_token_item_offset(right, item,
4071                                             ioff + rt_data_off, &token);
4072         }
4073
4074         btrfs_set_header_nritems(l, mid);
4075         btrfs_item_key(right, &disk_key, 0);
4076         insert_ptr(trans, root, path, &disk_key, right->start,
4077                    path->slots[1] + 1, 1);
4078
4079         btrfs_mark_buffer_dirty(right);
4080         btrfs_mark_buffer_dirty(l);
4081         BUG_ON(path->slots[0] != slot);
4082
4083         if (mid <= slot) {
4084                 btrfs_tree_unlock(path->nodes[0]);
4085                 free_extent_buffer(path->nodes[0]);
4086                 path->nodes[0] = right;
4087                 path->slots[0] -= mid;
4088                 path->slots[1] += 1;
4089         } else {
4090                 btrfs_tree_unlock(right);
4091                 free_extent_buffer(right);
4092         }
4093
4094         BUG_ON(path->slots[0] < 0);
4095 }
4096
4097 /*
4098  * double splits happen when we need to insert a big item in the middle
4099  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4100  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4101  *          A                 B                 C
4102  *
4103  * We avoid this by trying to push the items on either side of our target
4104  * into the adjacent leaves.  If all goes well we can avoid the double split
4105  * completely.
4106  */
4107 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4108                                           struct btrfs_root *root,
4109                                           struct btrfs_path *path,
4110                                           int data_size)
4111 {
4112         int ret;
4113         int progress = 0;
4114         int slot;
4115         u32 nritems;
4116         int space_needed = data_size;
4117
4118         slot = path->slots[0];
4119         if (slot < btrfs_header_nritems(path->nodes[0]))
4120                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4121
4122         /*
4123          * try to push all the items after our slot into the
4124          * right leaf
4125          */
4126         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4127         if (ret < 0)
4128                 return ret;
4129
4130         if (ret == 0)
4131                 progress++;
4132
4133         nritems = btrfs_header_nritems(path->nodes[0]);
4134         /*
4135          * our goal is to get our slot at the start or end of a leaf.  If
4136          * we've done so we're done
4137          */
4138         if (path->slots[0] == 0 || path->slots[0] == nritems)
4139                 return 0;
4140
4141         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4142                 return 0;
4143
4144         /* try to push all the items before our slot into the next leaf */
4145         slot = path->slots[0];
4146         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4147         if (ret < 0)
4148                 return ret;
4149
4150         if (ret == 0)
4151                 progress++;
4152
4153         if (progress)
4154                 return 0;
4155         return 1;
4156 }
4157
4158 /*
4159  * split the path's leaf in two, making sure there is at least data_size
4160  * available for the resulting leaf level of the path.
4161  *
4162  * returns 0 if all went well and < 0 on failure.
4163  */
4164 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4165                                struct btrfs_root *root,
4166                                struct btrfs_key *ins_key,
4167                                struct btrfs_path *path, int data_size,
4168                                int extend)
4169 {
4170         struct btrfs_disk_key disk_key;
4171         struct extent_buffer *l;
4172         u32 nritems;
4173         int mid;
4174         int slot;
4175         struct extent_buffer *right;
4176         struct btrfs_fs_info *fs_info = root->fs_info;
4177         int ret = 0;
4178         int wret;
4179         int split;
4180         int num_doubles = 0;
4181         int tried_avoid_double = 0;
4182
4183         l = path->nodes[0];
4184         slot = path->slots[0];
4185         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4186             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4187                 return -EOVERFLOW;
4188
4189         /* first try to make some room by pushing left and right */
4190         if (data_size && path->nodes[1]) {
4191                 int space_needed = data_size;
4192
4193                 if (slot < btrfs_header_nritems(l))
4194                         space_needed -= btrfs_leaf_free_space(root, l);
4195
4196                 wret = push_leaf_right(trans, root, path, space_needed,
4197                                        space_needed, 0, 0);
4198                 if (wret < 0)
4199                         return wret;
4200                 if (wret) {
4201                         wret = push_leaf_left(trans, root, path, space_needed,
4202                                               space_needed, 0, (u32)-1);
4203                         if (wret < 0)
4204                                 return wret;
4205                 }
4206                 l = path->nodes[0];
4207
4208                 /* did the pushes work? */
4209                 if (btrfs_leaf_free_space(root, l) >= data_size)
4210                         return 0;
4211         }
4212
4213         if (!path->nodes[1]) {
4214                 ret = insert_new_root(trans, root, path, 1);
4215                 if (ret)
4216                         return ret;
4217         }
4218 again:
4219         split = 1;
4220         l = path->nodes[0];
4221         slot = path->slots[0];
4222         nritems = btrfs_header_nritems(l);
4223         mid = (nritems + 1) / 2;
4224
4225         if (mid <= slot) {
4226                 if (nritems == 1 ||
4227                     leaf_space_used(l, mid, nritems - mid) + data_size >
4228                         BTRFS_LEAF_DATA_SIZE(root)) {
4229                         if (slot >= nritems) {
4230                                 split = 0;
4231                         } else {
4232                                 mid = slot;
4233                                 if (mid != nritems &&
4234                                     leaf_space_used(l, mid, nritems - mid) +
4235                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4236                                         if (data_size && !tried_avoid_double)
4237                                                 goto push_for_double;
4238                                         split = 2;
4239                                 }
4240                         }
4241                 }
4242         } else {
4243                 if (leaf_space_used(l, 0, mid) + data_size >
4244                         BTRFS_LEAF_DATA_SIZE(root)) {
4245                         if (!extend && data_size && slot == 0) {
4246                                 split = 0;
4247                         } else if ((extend || !data_size) && slot == 0) {
4248                                 mid = 1;
4249                         } else {
4250                                 mid = slot;
4251                                 if (mid != nritems &&
4252                                     leaf_space_used(l, mid, nritems - mid) +
4253                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4254                                         if (data_size && !tried_avoid_double)
4255                                                 goto push_for_double;
4256                                         split = 2;
4257                                 }
4258                         }
4259                 }
4260         }
4261
4262         if (split == 0)
4263                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4264         else
4265                 btrfs_item_key(l, &disk_key, mid);
4266
4267         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4268                         &disk_key, 0, l->start, 0);
4269         if (IS_ERR(right))
4270                 return PTR_ERR(right);
4271
4272         root_add_used(root, root->nodesize);
4273
4274         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4275         btrfs_set_header_bytenr(right, right->start);
4276         btrfs_set_header_generation(right, trans->transid);
4277         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4278         btrfs_set_header_owner(right, root->root_key.objectid);
4279         btrfs_set_header_level(right, 0);
4280         write_extent_buffer(right, fs_info->fsid,
4281                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4282
4283         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4284                             btrfs_header_chunk_tree_uuid(right),
4285                             BTRFS_UUID_SIZE);
4286
4287         if (split == 0) {
4288                 if (mid <= slot) {
4289                         btrfs_set_header_nritems(right, 0);
4290                         insert_ptr(trans, root, path, &disk_key, right->start,
4291                                    path->slots[1] + 1, 1);
4292                         btrfs_tree_unlock(path->nodes[0]);
4293                         free_extent_buffer(path->nodes[0]);
4294                         path->nodes[0] = right;
4295                         path->slots[0] = 0;
4296                         path->slots[1] += 1;
4297                 } else {
4298                         btrfs_set_header_nritems(right, 0);
4299                         insert_ptr(trans, root, path, &disk_key, right->start,
4300                                           path->slots[1], 1);
4301                         btrfs_tree_unlock(path->nodes[0]);
4302                         free_extent_buffer(path->nodes[0]);
4303                         path->nodes[0] = right;
4304                         path->slots[0] = 0;
4305                         if (path->slots[1] == 0)
4306                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4307                 }
4308                 btrfs_mark_buffer_dirty(right);
4309                 return ret;
4310         }
4311
4312         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4313
4314         if (split == 2) {
4315                 BUG_ON(num_doubles != 0);
4316                 num_doubles++;
4317                 goto again;
4318         }
4319
4320         return 0;
4321
4322 push_for_double:
4323         push_for_double_split(trans, root, path, data_size);
4324         tried_avoid_double = 1;
4325         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4326                 return 0;
4327         goto again;
4328 }
4329
4330 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4331                                          struct btrfs_root *root,
4332                                          struct btrfs_path *path, int ins_len)
4333 {
4334         struct btrfs_key key;
4335         struct extent_buffer *leaf;
4336         struct btrfs_file_extent_item *fi;
4337         u64 extent_len = 0;
4338         u32 item_size;
4339         int ret;
4340
4341         leaf = path->nodes[0];
4342         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4343
4344         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4345                key.type != BTRFS_EXTENT_CSUM_KEY);
4346
4347         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4348                 return 0;
4349
4350         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4351         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4352                 fi = btrfs_item_ptr(leaf, path->slots[0],
4353                                     struct btrfs_file_extent_item);
4354                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4355         }
4356         btrfs_release_path(path);
4357
4358         path->keep_locks = 1;
4359         path->search_for_split = 1;
4360         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4361         path->search_for_split = 0;
4362         if (ret > 0)
4363                 ret = -EAGAIN;
4364         if (ret < 0)
4365                 goto err;
4366
4367         ret = -EAGAIN;
4368         leaf = path->nodes[0];
4369         /* if our item isn't there, return now */
4370         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4371                 goto err;
4372
4373         /* the leaf has  changed, it now has room.  return now */
4374         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4375                 goto err;
4376
4377         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4378                 fi = btrfs_item_ptr(leaf, path->slots[0],
4379                                     struct btrfs_file_extent_item);
4380                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4381                         goto err;
4382         }
4383
4384         btrfs_set_path_blocking(path);
4385         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4386         if (ret)
4387                 goto err;
4388
4389         path->keep_locks = 0;
4390         btrfs_unlock_up_safe(path, 1);
4391         return 0;
4392 err:
4393         path->keep_locks = 0;
4394         return ret;
4395 }
4396
4397 static noinline int split_item(struct btrfs_trans_handle *trans,
4398                                struct btrfs_root *root,
4399                                struct btrfs_path *path,
4400                                struct btrfs_key *new_key,
4401                                unsigned long split_offset)
4402 {
4403         struct extent_buffer *leaf;
4404         struct btrfs_item *item;
4405         struct btrfs_item *new_item;
4406         int slot;
4407         char *buf;
4408         u32 nritems;
4409         u32 item_size;
4410         u32 orig_offset;
4411         struct btrfs_disk_key disk_key;
4412
4413         leaf = path->nodes[0];
4414         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4415
4416         btrfs_set_path_blocking(path);
4417
4418         item = btrfs_item_nr(path->slots[0]);
4419         orig_offset = btrfs_item_offset(leaf, item);
4420         item_size = btrfs_item_size(leaf, item);
4421
4422         buf = kmalloc(item_size, GFP_NOFS);
4423         if (!buf)
4424                 return -ENOMEM;
4425
4426         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4427                             path->slots[0]), item_size);
4428
4429         slot = path->slots[0] + 1;
4430         nritems = btrfs_header_nritems(leaf);
4431         if (slot != nritems) {
4432                 /* shift the items */
4433                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4434                                 btrfs_item_nr_offset(slot),
4435                                 (nritems - slot) * sizeof(struct btrfs_item));
4436         }
4437
4438         btrfs_cpu_key_to_disk(&disk_key, new_key);
4439         btrfs_set_item_key(leaf, &disk_key, slot);
4440
4441         new_item = btrfs_item_nr(slot);
4442
4443         btrfs_set_item_offset(leaf, new_item, orig_offset);
4444         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4445
4446         btrfs_set_item_offset(leaf, item,
4447                               orig_offset + item_size - split_offset);
4448         btrfs_set_item_size(leaf, item, split_offset);
4449
4450         btrfs_set_header_nritems(leaf, nritems + 1);
4451
4452         /* write the data for the start of the original item */
4453         write_extent_buffer(leaf, buf,
4454                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4455                             split_offset);
4456
4457         /* write the data for the new item */
4458         write_extent_buffer(leaf, buf + split_offset,
4459                             btrfs_item_ptr_offset(leaf, slot),
4460                             item_size - split_offset);
4461         btrfs_mark_buffer_dirty(leaf);
4462
4463         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4464         kfree(buf);
4465         return 0;
4466 }
4467
4468 /*
4469  * This function splits a single item into two items,
4470  * giving 'new_key' to the new item and splitting the
4471  * old one at split_offset (from the start of the item).
4472  *
4473  * The path may be released by this operation.  After
4474  * the split, the path is pointing to the old item.  The
4475  * new item is going to be in the same node as the old one.
4476  *
4477  * Note, the item being split must be smaller enough to live alone on
4478  * a tree block with room for one extra struct btrfs_item
4479  *
4480  * This allows us to split the item in place, keeping a lock on the
4481  * leaf the entire time.
4482  */
4483 int btrfs_split_item(struct btrfs_trans_handle *trans,
4484                      struct btrfs_root *root,
4485                      struct btrfs_path *path,
4486                      struct btrfs_key *new_key,
4487                      unsigned long split_offset)
4488 {
4489         int ret;
4490         ret = setup_leaf_for_split(trans, root, path,
4491                                    sizeof(struct btrfs_item));
4492         if (ret)
4493                 return ret;
4494
4495         ret = split_item(trans, root, path, new_key, split_offset);
4496         return ret;
4497 }
4498
4499 /*
4500  * This function duplicate a item, giving 'new_key' to the new item.
4501  * It guarantees both items live in the same tree leaf and the new item
4502  * is contiguous with the original item.
4503  *
4504  * This allows us to split file extent in place, keeping a lock on the
4505  * leaf the entire time.
4506  */
4507 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4508                          struct btrfs_root *root,
4509                          struct btrfs_path *path,
4510                          struct btrfs_key *new_key)
4511 {
4512         struct extent_buffer *leaf;
4513         int ret;
4514         u32 item_size;
4515
4516         leaf = path->nodes[0];
4517         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4518         ret = setup_leaf_for_split(trans, root, path,
4519                                    item_size + sizeof(struct btrfs_item));
4520         if (ret)
4521                 return ret;
4522
4523         path->slots[0]++;
4524         setup_items_for_insert(root, path, new_key, &item_size,
4525                                item_size, item_size +
4526                                sizeof(struct btrfs_item), 1);
4527         leaf = path->nodes[0];
4528         memcpy_extent_buffer(leaf,
4529                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4530                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4531                              item_size);
4532         return 0;
4533 }
4534
4535 /*
4536  * make the item pointed to by the path smaller.  new_size indicates
4537  * how small to make it, and from_end tells us if we just chop bytes
4538  * off the end of the item or if we shift the item to chop bytes off
4539  * the front.
4540  */
4541 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4542                          u32 new_size, int from_end)
4543 {
4544         int slot;
4545         struct extent_buffer *leaf;
4546         struct btrfs_item *item;
4547         u32 nritems;
4548         unsigned int data_end;
4549         unsigned int old_data_start;
4550         unsigned int old_size;
4551         unsigned int size_diff;
4552         int i;
4553         struct btrfs_map_token token;
4554
4555         btrfs_init_map_token(&token);
4556
4557         leaf = path->nodes[0];
4558         slot = path->slots[0];
4559
4560         old_size = btrfs_item_size_nr(leaf, slot);
4561         if (old_size == new_size)
4562                 return;
4563
4564         nritems = btrfs_header_nritems(leaf);
4565         data_end = leaf_data_end(root, leaf);
4566
4567         old_data_start = btrfs_item_offset_nr(leaf, slot);
4568
4569         size_diff = old_size - new_size;
4570
4571         BUG_ON(slot < 0);
4572         BUG_ON(slot >= nritems);
4573
4574         /*
4575          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4576          */
4577         /* first correct the data pointers */
4578         for (i = slot; i < nritems; i++) {
4579                 u32 ioff;
4580                 item = btrfs_item_nr(i);
4581
4582                 ioff = btrfs_token_item_offset(leaf, item, &token);
4583                 btrfs_set_token_item_offset(leaf, item,
4584                                             ioff + size_diff, &token);
4585         }
4586
4587         /* shift the data */
4588         if (from_end) {
4589                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4590                               data_end + size_diff, btrfs_leaf_data(leaf) +
4591                               data_end, old_data_start + new_size - data_end);
4592         } else {
4593                 struct btrfs_disk_key disk_key;
4594                 u64 offset;
4595
4596                 btrfs_item_key(leaf, &disk_key, slot);
4597
4598                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4599                         unsigned long ptr;
4600                         struct btrfs_file_extent_item *fi;
4601
4602                         fi = btrfs_item_ptr(leaf, slot,
4603                                             struct btrfs_file_extent_item);
4604                         fi = (struct btrfs_file_extent_item *)(
4605                              (unsigned long)fi - size_diff);
4606
4607                         if (btrfs_file_extent_type(leaf, fi) ==
4608                             BTRFS_FILE_EXTENT_INLINE) {
4609                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4610                                 memmove_extent_buffer(leaf, ptr,
4611                                       (unsigned long)fi,
4612                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4613                         }
4614                 }
4615
4616                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4617                               data_end + size_diff, btrfs_leaf_data(leaf) +
4618                               data_end, old_data_start - data_end);
4619
4620                 offset = btrfs_disk_key_offset(&disk_key);
4621                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4622                 btrfs_set_item_key(leaf, &disk_key, slot);
4623                 if (slot == 0)
4624                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4625         }
4626
4627         item = btrfs_item_nr(slot);
4628         btrfs_set_item_size(leaf, item, new_size);
4629         btrfs_mark_buffer_dirty(leaf);
4630
4631         if (btrfs_leaf_free_space(root, leaf) < 0) {
4632                 btrfs_print_leaf(root, leaf);
4633                 BUG();
4634         }
4635 }
4636
4637 /*
4638  * make the item pointed to by the path bigger, data_size is the added size.
4639  */
4640 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4641                        u32 data_size)
4642 {
4643         int slot;
4644         struct extent_buffer *leaf;
4645         struct btrfs_item *item;
4646         u32 nritems;
4647         unsigned int data_end;
4648         unsigned int old_data;
4649         unsigned int old_size;
4650         int i;
4651         struct btrfs_map_token token;
4652
4653         btrfs_init_map_token(&token);
4654
4655         leaf = path->nodes[0];
4656
4657         nritems = btrfs_header_nritems(leaf);
4658         data_end = leaf_data_end(root, leaf);
4659
4660         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4661                 btrfs_print_leaf(root, leaf);
4662                 BUG();
4663         }
4664         slot = path->slots[0];
4665         old_data = btrfs_item_end_nr(leaf, slot);
4666
4667         BUG_ON(slot < 0);
4668         if (slot >= nritems) {
4669                 btrfs_print_leaf(root, leaf);
4670                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4671                        slot, nritems);
4672                 BUG_ON(1);
4673         }
4674
4675         /*
4676          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4677          */
4678         /* first correct the data pointers */
4679         for (i = slot; i < nritems; i++) {
4680                 u32 ioff;
4681                 item = btrfs_item_nr(i);
4682
4683                 ioff = btrfs_token_item_offset(leaf, item, &token);
4684                 btrfs_set_token_item_offset(leaf, item,
4685                                             ioff - data_size, &token);
4686         }
4687
4688         /* shift the data */
4689         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4690                       data_end - data_size, btrfs_leaf_data(leaf) +
4691                       data_end, old_data - data_end);
4692
4693         data_end = old_data;
4694         old_size = btrfs_item_size_nr(leaf, slot);
4695         item = btrfs_item_nr(slot);
4696         btrfs_set_item_size(leaf, item, old_size + data_size);
4697         btrfs_mark_buffer_dirty(leaf);
4698
4699         if (btrfs_leaf_free_space(root, leaf) < 0) {
4700                 btrfs_print_leaf(root, leaf);
4701                 BUG();
4702         }
4703 }
4704
4705 /*
4706  * this is a helper for btrfs_insert_empty_items, the main goal here is
4707  * to save stack depth by doing the bulk of the work in a function
4708  * that doesn't call btrfs_search_slot
4709  */
4710 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4711                             struct btrfs_key *cpu_key, u32 *data_size,
4712                             u32 total_data, u32 total_size, int nr)
4713 {
4714         struct btrfs_item *item;
4715         int i;
4716         u32 nritems;
4717         unsigned int data_end;
4718         struct btrfs_disk_key disk_key;
4719         struct extent_buffer *leaf;
4720         int slot;
4721         struct btrfs_map_token token;
4722
4723         if (path->slots[0] == 0) {
4724                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4725                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4726         }
4727         btrfs_unlock_up_safe(path, 1);
4728
4729         btrfs_init_map_token(&token);
4730
4731         leaf = path->nodes[0];
4732         slot = path->slots[0];
4733
4734         nritems = btrfs_header_nritems(leaf);
4735         data_end = leaf_data_end(root, leaf);
4736
4737         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4738                 btrfs_print_leaf(root, leaf);
4739                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4740                        total_size, btrfs_leaf_free_space(root, leaf));
4741                 BUG();
4742         }
4743
4744         if (slot != nritems) {
4745                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4746
4747                 if (old_data < data_end) {
4748                         btrfs_print_leaf(root, leaf);
4749                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4750                                slot, old_data, data_end);
4751                         BUG_ON(1);
4752                 }
4753                 /*
4754                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4755                  */
4756                 /* first correct the data pointers */
4757                 for (i = slot; i < nritems; i++) {
4758                         u32 ioff;
4759
4760                         item = btrfs_item_nr( i);
4761                         ioff = btrfs_token_item_offset(leaf, item, &token);
4762                         btrfs_set_token_item_offset(leaf, item,
4763                                                     ioff - total_data, &token);
4764                 }
4765                 /* shift the items */
4766                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4767                               btrfs_item_nr_offset(slot),
4768                               (nritems - slot) * sizeof(struct btrfs_item));
4769
4770                 /* shift the data */
4771                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4772                               data_end - total_data, btrfs_leaf_data(leaf) +
4773                               data_end, old_data - data_end);
4774                 data_end = old_data;
4775         }
4776
4777         /* setup the item for the new data */
4778         for (i = 0; i < nr; i++) {
4779                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4780                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4781                 item = btrfs_item_nr(slot + i);
4782                 btrfs_set_token_item_offset(leaf, item,
4783                                             data_end - data_size[i], &token);
4784                 data_end -= data_size[i];
4785                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4786         }
4787
4788         btrfs_set_header_nritems(leaf, nritems + nr);
4789         btrfs_mark_buffer_dirty(leaf);
4790
4791         if (btrfs_leaf_free_space(root, leaf) < 0) {
4792                 btrfs_print_leaf(root, leaf);
4793                 BUG();
4794         }
4795 }
4796
4797 /*
4798  * Given a key and some data, insert items into the tree.
4799  * This does all the path init required, making room in the tree if needed.
4800  */
4801 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4802                             struct btrfs_root *root,
4803                             struct btrfs_path *path,
4804                             struct btrfs_key *cpu_key, u32 *data_size,
4805                             int nr)
4806 {
4807         int ret = 0;
4808         int slot;
4809         int i;
4810         u32 total_size = 0;
4811         u32 total_data = 0;
4812
4813         for (i = 0; i < nr; i++)
4814                 total_data += data_size[i];
4815
4816         total_size = total_data + (nr * sizeof(struct btrfs_item));
4817         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4818         if (ret == 0)
4819                 return -EEXIST;
4820         if (ret < 0)
4821                 return ret;
4822
4823         slot = path->slots[0];
4824         BUG_ON(slot < 0);
4825
4826         setup_items_for_insert(root, path, cpu_key, data_size,
4827                                total_data, total_size, nr);
4828         return 0;
4829 }
4830
4831 /*
4832  * Given a key and some data, insert an item into the tree.
4833  * This does all the path init required, making room in the tree if needed.
4834  */
4835 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4836                       *root, struct btrfs_key *cpu_key, void *data, u32
4837                       data_size)
4838 {
4839         int ret = 0;
4840         struct btrfs_path *path;
4841         struct extent_buffer *leaf;
4842         unsigned long ptr;
4843
4844         path = btrfs_alloc_path();
4845         if (!path)
4846                 return -ENOMEM;
4847         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4848         if (!ret) {
4849                 leaf = path->nodes[0];
4850                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4851                 write_extent_buffer(leaf, data, ptr, data_size);
4852                 btrfs_mark_buffer_dirty(leaf);
4853         }
4854         btrfs_free_path(path);
4855         return ret;
4856 }
4857
4858 /*
4859  * delete the pointer from a given node.
4860  *
4861  * the tree should have been previously balanced so the deletion does not
4862  * empty a node.
4863  */
4864 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4865                     int level, int slot)
4866 {
4867         struct extent_buffer *parent = path->nodes[level];
4868         u32 nritems;
4869         int ret;
4870
4871         nritems = btrfs_header_nritems(parent);
4872         if (slot != nritems - 1) {
4873                 if (level)
4874                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4875                                              slot + 1, nritems - slot - 1);
4876                 memmove_extent_buffer(parent,
4877                               btrfs_node_key_ptr_offset(slot),
4878                               btrfs_node_key_ptr_offset(slot + 1),
4879                               sizeof(struct btrfs_key_ptr) *
4880                               (nritems - slot - 1));
4881         } else if (level) {
4882                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4883                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4884                 BUG_ON(ret < 0);
4885         }
4886
4887         nritems--;
4888         btrfs_set_header_nritems(parent, nritems);
4889         if (nritems == 0 && parent == root->node) {
4890                 BUG_ON(btrfs_header_level(root->node) != 1);
4891                 /* just turn the root into a leaf and break */
4892                 btrfs_set_header_level(root->node, 0);
4893         } else if (slot == 0) {
4894                 struct btrfs_disk_key disk_key;
4895
4896                 btrfs_node_key(parent, &disk_key, 0);
4897                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4898         }
4899         btrfs_mark_buffer_dirty(parent);
4900 }
4901
4902 /*
4903  * a helper function to delete the leaf pointed to by path->slots[1] and
4904  * path->nodes[1].
4905  *
4906  * This deletes the pointer in path->nodes[1] and frees the leaf
4907  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4908  *
4909  * The path must have already been setup for deleting the leaf, including
4910  * all the proper balancing.  path->nodes[1] must be locked.
4911  */
4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4913                                     struct btrfs_root *root,
4914                                     struct btrfs_path *path,
4915                                     struct extent_buffer *leaf)
4916 {
4917         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4918         del_ptr(root, path, 1, path->slots[1]);
4919
4920         /*
4921          * btrfs_free_extent is expensive, we want to make sure we
4922          * aren't holding any locks when we call it
4923          */
4924         btrfs_unlock_up_safe(path, 0);
4925
4926         root_sub_used(root, leaf->len);
4927
4928         extent_buffer_get(leaf);
4929         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4930         free_extent_buffer_stale(leaf);
4931 }
4932 /*
4933  * delete the item at the leaf level in path.  If that empties
4934  * the leaf, remove it from the tree
4935  */
4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4937                     struct btrfs_path *path, int slot, int nr)
4938 {
4939         struct extent_buffer *leaf;
4940         struct btrfs_item *item;
4941         int last_off;
4942         int dsize = 0;
4943         int ret = 0;
4944         int wret;
4945         int i;
4946         u32 nritems;
4947         struct btrfs_map_token token;
4948
4949         btrfs_init_map_token(&token);
4950
4951         leaf = path->nodes[0];
4952         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4953
4954         for (i = 0; i < nr; i++)
4955                 dsize += btrfs_item_size_nr(leaf, slot + i);
4956
4957         nritems = btrfs_header_nritems(leaf);
4958
4959         if (slot + nr != nritems) {
4960                 int data_end = leaf_data_end(root, leaf);
4961
4962                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4963                               data_end + dsize,
4964                               btrfs_leaf_data(leaf) + data_end,
4965                               last_off - data_end);
4966
4967                 for (i = slot + nr; i < nritems; i++) {
4968                         u32 ioff;
4969
4970                         item = btrfs_item_nr(i);
4971                         ioff = btrfs_token_item_offset(leaf, item, &token);
4972                         btrfs_set_token_item_offset(leaf, item,
4973                                                     ioff + dsize, &token);
4974                 }
4975
4976                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4977                               btrfs_item_nr_offset(slot + nr),
4978                               sizeof(struct btrfs_item) *
4979                               (nritems - slot - nr));
4980         }
4981         btrfs_set_header_nritems(leaf, nritems - nr);
4982         nritems -= nr;
4983
4984         /* delete the leaf if we've emptied it */
4985         if (nritems == 0) {
4986                 if (leaf == root->node) {
4987                         btrfs_set_header_level(leaf, 0);
4988                 } else {
4989                         btrfs_set_path_blocking(path);
4990                         clean_tree_block(trans, root->fs_info, leaf);
4991                         btrfs_del_leaf(trans, root, path, leaf);
4992                 }
4993         } else {
4994                 int used = leaf_space_used(leaf, 0, nritems);
4995                 if (slot == 0) {
4996                         struct btrfs_disk_key disk_key;
4997
4998                         btrfs_item_key(leaf, &disk_key, 0);
4999                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5000                 }
5001
5002                 /* delete the leaf if it is mostly empty */
5003                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5004                         /* push_leaf_left fixes the path.
5005                          * make sure the path still points to our leaf
5006                          * for possible call to del_ptr below
5007                          */
5008                         slot = path->slots[1];
5009                         extent_buffer_get(leaf);
5010
5011                         btrfs_set_path_blocking(path);
5012                         wret = push_leaf_left(trans, root, path, 1, 1,
5013                                               1, (u32)-1);
5014                         if (wret < 0 && wret != -ENOSPC)
5015                                 ret = wret;
5016
5017                         if (path->nodes[0] == leaf &&
5018                             btrfs_header_nritems(leaf)) {
5019                                 wret = push_leaf_right(trans, root, path, 1,
5020                                                        1, 1, 0);
5021                                 if (wret < 0 && wret != -ENOSPC)
5022                                         ret = wret;
5023                         }
5024
5025                         if (btrfs_header_nritems(leaf) == 0) {
5026                                 path->slots[1] = slot;
5027                                 btrfs_del_leaf(trans, root, path, leaf);
5028                                 free_extent_buffer(leaf);
5029                                 ret = 0;
5030                         } else {
5031                                 /* if we're still in the path, make sure
5032                                  * we're dirty.  Otherwise, one of the
5033                                  * push_leaf functions must have already
5034                                  * dirtied this buffer
5035                                  */
5036                                 if (path->nodes[0] == leaf)
5037                                         btrfs_mark_buffer_dirty(leaf);
5038                                 free_extent_buffer(leaf);
5039                         }
5040                 } else {
5041                         btrfs_mark_buffer_dirty(leaf);
5042                 }
5043         }
5044         return ret;
5045 }
5046
5047 /*
5048  * search the tree again to find a leaf with lesser keys
5049  * returns 0 if it found something or 1 if there are no lesser leaves.
5050  * returns < 0 on io errors.
5051  *
5052  * This may release the path, and so you may lose any locks held at the
5053  * time you call it.
5054  */
5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 {
5057         struct btrfs_key key;
5058         struct btrfs_disk_key found_key;
5059         int ret;
5060
5061         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062
5063         if (key.offset > 0) {
5064                 key.offset--;
5065         } else if (key.type > 0) {
5066                 key.type--;
5067                 key.offset = (u64)-1;
5068         } else if (key.objectid > 0) {
5069                 key.objectid--;
5070                 key.type = (u8)-1;
5071                 key.offset = (u64)-1;
5072         } else {
5073                 return 1;
5074         }
5075
5076         btrfs_release_path(path);
5077         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078         if (ret < 0)
5079                 return ret;
5080         btrfs_item_key(path->nodes[0], &found_key, 0);
5081         ret = comp_keys(&found_key, &key);
5082         /*
5083          * We might have had an item with the previous key in the tree right
5084          * before we released our path. And after we released our path, that
5085          * item might have been pushed to the first slot (0) of the leaf we
5086          * were holding due to a tree balance. Alternatively, an item with the
5087          * previous key can exist as the only element of a leaf (big fat item).
5088          * Therefore account for these 2 cases, so that our callers (like
5089          * btrfs_previous_item) don't miss an existing item with a key matching
5090          * the previous key we computed above.
5091          */
5092         if (ret <= 0)
5093                 return 0;
5094         return 1;
5095 }
5096
5097 /*
5098  * A helper function to walk down the tree starting at min_key, and looking
5099  * for nodes or leaves that are have a minimum transaction id.
5100  * This is used by the btree defrag code, and tree logging
5101  *
5102  * This does not cow, but it does stuff the starting key it finds back
5103  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5104  * key and get a writable path.
5105  *
5106  * This does lock as it descends, and path->keep_locks should be set
5107  * to 1 by the caller.
5108  *
5109  * This honors path->lowest_level to prevent descent past a given level
5110  * of the tree.
5111  *
5112  * min_trans indicates the oldest transaction that you are interested
5113  * in walking through.  Any nodes or leaves older than min_trans are
5114  * skipped over (without reading them).
5115  *
5116  * returns zero if something useful was found, < 0 on error and 1 if there
5117  * was nothing in the tree that matched the search criteria.
5118  */
5119 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5120                          struct btrfs_path *path,
5121                          u64 min_trans)
5122 {
5123         struct extent_buffer *cur;
5124         struct btrfs_key found_key;
5125         int slot;
5126         int sret;
5127         u32 nritems;
5128         int level;
5129         int ret = 1;
5130         int keep_locks = path->keep_locks;
5131
5132         path->keep_locks = 1;
5133 again:
5134         cur = btrfs_read_lock_root_node(root);
5135         level = btrfs_header_level(cur);
5136         WARN_ON(path->nodes[level]);
5137         path->nodes[level] = cur;
5138         path->locks[level] = BTRFS_READ_LOCK;
5139
5140         if (btrfs_header_generation(cur) < min_trans) {
5141                 ret = 1;
5142                 goto out;
5143         }
5144         while (1) {
5145                 nritems = btrfs_header_nritems(cur);
5146                 level = btrfs_header_level(cur);
5147                 sret = bin_search(cur, min_key, level, &slot);
5148
5149                 /* at the lowest level, we're done, setup the path and exit */
5150                 if (level == path->lowest_level) {
5151                         if (slot >= nritems)
5152                                 goto find_next_key;
5153                         ret = 0;
5154                         path->slots[level] = slot;
5155                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5156                         goto out;
5157                 }
5158                 if (sret && slot > 0)
5159                         slot--;
5160                 /*
5161                  * check this node pointer against the min_trans parameters.
5162                  * If it is too old, old, skip to the next one.
5163                  */
5164                 while (slot < nritems) {
5165                         u64 gen;
5166
5167                         gen = btrfs_node_ptr_generation(cur, slot);
5168                         if (gen < min_trans) {
5169                                 slot++;
5170                                 continue;
5171                         }
5172                         break;
5173                 }
5174 find_next_key:
5175                 /*
5176                  * we didn't find a candidate key in this node, walk forward
5177                  * and find another one
5178                  */
5179                 if (slot >= nritems) {
5180                         path->slots[level] = slot;
5181                         btrfs_set_path_blocking(path);
5182                         sret = btrfs_find_next_key(root, path, min_key, level,
5183                                                   min_trans);
5184                         if (sret == 0) {
5185                                 btrfs_release_path(path);
5186                                 goto again;
5187                         } else {
5188                                 goto out;
5189                         }
5190                 }
5191                 /* save our key for returning back */
5192                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5193                 path->slots[level] = slot;
5194                 if (level == path->lowest_level) {
5195                         ret = 0;
5196                         goto out;
5197                 }
5198                 btrfs_set_path_blocking(path);
5199                 cur = read_node_slot(root, cur, slot);
5200                 BUG_ON(!cur); /* -ENOMEM */
5201
5202                 btrfs_tree_read_lock(cur);
5203
5204                 path->locks[level - 1] = BTRFS_READ_LOCK;
5205                 path->nodes[level - 1] = cur;
5206                 unlock_up(path, level, 1, 0, NULL);
5207                 btrfs_clear_path_blocking(path, NULL, 0);
5208         }
5209 out:
5210         path->keep_locks = keep_locks;
5211         if (ret == 0) {
5212                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213                 btrfs_set_path_blocking(path);
5214                 memcpy(min_key, &found_key, sizeof(found_key));
5215         }
5216         return ret;
5217 }
5218
5219 static void tree_move_down(struct btrfs_root *root,
5220                            struct btrfs_path *path,
5221                            int *level, int root_level)
5222 {
5223         BUG_ON(*level == 0);
5224         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5225                                         path->slots[*level]);
5226         path->slots[*level - 1] = 0;
5227         (*level)--;
5228 }
5229
5230 static int tree_move_next_or_upnext(struct btrfs_root *root,
5231                                     struct btrfs_path *path,
5232                                     int *level, int root_level)
5233 {
5234         int ret = 0;
5235         int nritems;
5236         nritems = btrfs_header_nritems(path->nodes[*level]);
5237
5238         path->slots[*level]++;
5239
5240         while (path->slots[*level] >= nritems) {
5241                 if (*level == root_level)
5242                         return -1;
5243
5244                 /* move upnext */
5245                 path->slots[*level] = 0;
5246                 free_extent_buffer(path->nodes[*level]);
5247                 path->nodes[*level] = NULL;
5248                 (*level)++;
5249                 path->slots[*level]++;
5250
5251                 nritems = btrfs_header_nritems(path->nodes[*level]);
5252                 ret = 1;
5253         }
5254         return ret;
5255 }
5256
5257 /*
5258  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5259  * or down.
5260  */
5261 static int tree_advance(struct btrfs_root *root,
5262                         struct btrfs_path *path,
5263                         int *level, int root_level,
5264                         int allow_down,
5265                         struct btrfs_key *key)
5266 {
5267         int ret;
5268
5269         if (*level == 0 || !allow_down) {
5270                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5271         } else {
5272                 tree_move_down(root, path, level, root_level);
5273                 ret = 0;
5274         }
5275         if (ret >= 0) {
5276                 if (*level == 0)
5277                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5278                                         path->slots[*level]);
5279                 else
5280                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5281                                         path->slots[*level]);
5282         }
5283         return ret;
5284 }
5285
5286 static int tree_compare_item(struct btrfs_root *left_root,
5287                              struct btrfs_path *left_path,
5288                              struct btrfs_path *right_path,
5289                              char *tmp_buf)
5290 {
5291         int cmp;
5292         int len1, len2;
5293         unsigned long off1, off2;
5294
5295         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5296         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5297         if (len1 != len2)
5298                 return 1;
5299
5300         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5301         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5302                                 right_path->slots[0]);
5303
5304         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5305
5306         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5307         if (cmp)
5308                 return 1;
5309         return 0;
5310 }
5311
5312 #define ADVANCE 1
5313 #define ADVANCE_ONLY_NEXT -1
5314
5315 /*
5316  * This function compares two trees and calls the provided callback for
5317  * every changed/new/deleted item it finds.
5318  * If shared tree blocks are encountered, whole subtrees are skipped, making
5319  * the compare pretty fast on snapshotted subvolumes.
5320  *
5321  * This currently works on commit roots only. As commit roots are read only,
5322  * we don't do any locking. The commit roots are protected with transactions.
5323  * Transactions are ended and rejoined when a commit is tried in between.
5324  *
5325  * This function checks for modifications done to the trees while comparing.
5326  * If it detects a change, it aborts immediately.
5327  */
5328 int btrfs_compare_trees(struct btrfs_root *left_root,
5329                         struct btrfs_root *right_root,
5330                         btrfs_changed_cb_t changed_cb, void *ctx)
5331 {
5332         int ret;
5333         int cmp;
5334         struct btrfs_path *left_path = NULL;
5335         struct btrfs_path *right_path = NULL;
5336         struct btrfs_key left_key;
5337         struct btrfs_key right_key;
5338         char *tmp_buf = NULL;
5339         int left_root_level;
5340         int right_root_level;
5341         int left_level;
5342         int right_level;
5343         int left_end_reached;
5344         int right_end_reached;
5345         int advance_left;
5346         int advance_right;
5347         u64 left_blockptr;
5348         u64 right_blockptr;
5349         u64 left_gen;
5350         u64 right_gen;
5351
5352         left_path = btrfs_alloc_path();
5353         if (!left_path) {
5354                 ret = -ENOMEM;
5355                 goto out;
5356         }
5357         right_path = btrfs_alloc_path();
5358         if (!right_path) {
5359                 ret = -ENOMEM;
5360                 goto out;
5361         }
5362
5363         tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5364         if (!tmp_buf) {
5365                 ret = -ENOMEM;
5366                 goto out;
5367         }
5368
5369         left_path->search_commit_root = 1;
5370         left_path->skip_locking = 1;
5371         right_path->search_commit_root = 1;
5372         right_path->skip_locking = 1;
5373
5374         /*
5375          * Strategy: Go to the first items of both trees. Then do
5376          *
5377          * If both trees are at level 0
5378          *   Compare keys of current items
5379          *     If left < right treat left item as new, advance left tree
5380          *       and repeat
5381          *     If left > right treat right item as deleted, advance right tree
5382          *       and repeat
5383          *     If left == right do deep compare of items, treat as changed if
5384          *       needed, advance both trees and repeat
5385          * If both trees are at the same level but not at level 0
5386          *   Compare keys of current nodes/leafs
5387          *     If left < right advance left tree and repeat
5388          *     If left > right advance right tree and repeat
5389          *     If left == right compare blockptrs of the next nodes/leafs
5390          *       If they match advance both trees but stay at the same level
5391          *         and repeat
5392          *       If they don't match advance both trees while allowing to go
5393          *         deeper and repeat
5394          * If tree levels are different
5395          *   Advance the tree that needs it and repeat
5396          *
5397          * Advancing a tree means:
5398          *   If we are at level 0, try to go to the next slot. If that's not
5399          *   possible, go one level up and repeat. Stop when we found a level
5400          *   where we could go to the next slot. We may at this point be on a
5401          *   node or a leaf.
5402          *
5403          *   If we are not at level 0 and not on shared tree blocks, go one
5404          *   level deeper.
5405          *
5406          *   If we are not at level 0 and on shared tree blocks, go one slot to
5407          *   the right if possible or go up and right.
5408          */
5409
5410         down_read(&left_root->fs_info->commit_root_sem);
5411         left_level = btrfs_header_level(left_root->commit_root);
5412         left_root_level = left_level;
5413         left_path->nodes[left_level] = left_root->commit_root;
5414         extent_buffer_get(left_path->nodes[left_level]);
5415
5416         right_level = btrfs_header_level(right_root->commit_root);
5417         right_root_level = right_level;
5418         right_path->nodes[right_level] = right_root->commit_root;
5419         extent_buffer_get(right_path->nodes[right_level]);
5420         up_read(&left_root->fs_info->commit_root_sem);
5421
5422         if (left_level == 0)
5423                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5424                                 &left_key, left_path->slots[left_level]);
5425         else
5426                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5427                                 &left_key, left_path->slots[left_level]);
5428         if (right_level == 0)
5429                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5430                                 &right_key, right_path->slots[right_level]);
5431         else
5432                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5433                                 &right_key, right_path->slots[right_level]);
5434
5435         left_end_reached = right_end_reached = 0;
5436         advance_left = advance_right = 0;
5437
5438         while (1) {
5439                 if (advance_left && !left_end_reached) {
5440                         ret = tree_advance(left_root, left_path, &left_level,
5441                                         left_root_level,
5442                                         advance_left != ADVANCE_ONLY_NEXT,
5443                                         &left_key);
5444                         if (ret < 0)
5445                                 left_end_reached = ADVANCE;
5446                         advance_left = 0;
5447                 }
5448                 if (advance_right && !right_end_reached) {
5449                         ret = tree_advance(right_root, right_path, &right_level,
5450                                         right_root_level,
5451                                         advance_right != ADVANCE_ONLY_NEXT,
5452                                         &right_key);
5453                         if (ret < 0)
5454                                 right_end_reached = ADVANCE;
5455                         advance_right = 0;
5456                 }
5457
5458                 if (left_end_reached && right_end_reached) {
5459                         ret = 0;
5460                         goto out;
5461                 } else if (left_end_reached) {
5462                         if (right_level == 0) {
5463                                 ret = changed_cb(left_root, right_root,
5464                                                 left_path, right_path,
5465                                                 &right_key,
5466                                                 BTRFS_COMPARE_TREE_DELETED,
5467                                                 ctx);
5468                                 if (ret < 0)
5469                                         goto out;
5470                         }
5471                         advance_right = ADVANCE;
5472                         continue;
5473                 } else if (right_end_reached) {
5474                         if (left_level == 0) {
5475                                 ret = changed_cb(left_root, right_root,
5476                                                 left_path, right_path,
5477                                                 &left_key,
5478                                                 BTRFS_COMPARE_TREE_NEW,
5479                                                 ctx);
5480                                 if (ret < 0)
5481                                         goto out;
5482                         }
5483                         advance_left = ADVANCE;
5484                         continue;
5485                 }
5486
5487                 if (left_level == 0 && right_level == 0) {
5488                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5489                         if (cmp < 0) {
5490                                 ret = changed_cb(left_root, right_root,
5491                                                 left_path, right_path,
5492                                                 &left_key,
5493                                                 BTRFS_COMPARE_TREE_NEW,
5494                                                 ctx);
5495                                 if (ret < 0)
5496                                         goto out;
5497                                 advance_left = ADVANCE;
5498                         } else if (cmp > 0) {
5499                                 ret = changed_cb(left_root, right_root,
5500                                                 left_path, right_path,
5501                                                 &right_key,
5502                                                 BTRFS_COMPARE_TREE_DELETED,
5503                                                 ctx);
5504                                 if (ret < 0)
5505                                         goto out;
5506                                 advance_right = ADVANCE;
5507                         } else {
5508                                 enum btrfs_compare_tree_result result;
5509
5510                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5511                                 ret = tree_compare_item(left_root, left_path,
5512                                                 right_path, tmp_buf);
5513                                 if (ret)
5514                                         result = BTRFS_COMPARE_TREE_CHANGED;
5515                                 else
5516                                         result = BTRFS_COMPARE_TREE_SAME;
5517                                 ret = changed_cb(left_root, right_root,
5518                                                  left_path, right_path,
5519                                                  &left_key, result, ctx);
5520                                 if (ret < 0)
5521                                         goto out;
5522                                 advance_left = ADVANCE;
5523                                 advance_right = ADVANCE;
5524                         }
5525                 } else if (left_level == right_level) {
5526                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527                         if (cmp < 0) {
5528                                 advance_left = ADVANCE;
5529                         } else if (cmp > 0) {
5530                                 advance_right = ADVANCE;
5531                         } else {
5532                                 left_blockptr = btrfs_node_blockptr(
5533                                                 left_path->nodes[left_level],
5534                                                 left_path->slots[left_level]);
5535                                 right_blockptr = btrfs_node_blockptr(
5536                                                 right_path->nodes[right_level],
5537                                                 right_path->slots[right_level]);
5538                                 left_gen = btrfs_node_ptr_generation(
5539                                                 left_path->nodes[left_level],
5540                                                 left_path->slots[left_level]);
5541                                 right_gen = btrfs_node_ptr_generation(
5542                                                 right_path->nodes[right_level],
5543                                                 right_path->slots[right_level]);
5544                                 if (left_blockptr == right_blockptr &&
5545                                     left_gen == right_gen) {
5546                                         /*
5547                                          * As we're on a shared block, don't
5548                                          * allow to go deeper.
5549                                          */
5550                                         advance_left = ADVANCE_ONLY_NEXT;
5551                                         advance_right = ADVANCE_ONLY_NEXT;
5552                                 } else {
5553                                         advance_left = ADVANCE;
5554                                         advance_right = ADVANCE;
5555                                 }
5556                         }
5557                 } else if (left_level < right_level) {
5558                         advance_right = ADVANCE;
5559                 } else {
5560                         advance_left = ADVANCE;
5561                 }
5562         }
5563
5564 out:
5565         btrfs_free_path(left_path);
5566         btrfs_free_path(right_path);
5567         kfree(tmp_buf);
5568         return ret;
5569 }
5570
5571 /*
5572  * this is similar to btrfs_next_leaf, but does not try to preserve
5573  * and fixup the path.  It looks for and returns the next key in the
5574  * tree based on the current path and the min_trans parameters.
5575  *
5576  * 0 is returned if another key is found, < 0 if there are any errors
5577  * and 1 is returned if there are no higher keys in the tree
5578  *
5579  * path->keep_locks should be set to 1 on the search made before
5580  * calling this function.
5581  */
5582 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5583                         struct btrfs_key *key, int level, u64 min_trans)
5584 {
5585         int slot;
5586         struct extent_buffer *c;
5587
5588         WARN_ON(!path->keep_locks);
5589         while (level < BTRFS_MAX_LEVEL) {
5590                 if (!path->nodes[level])
5591                         return 1;
5592
5593                 slot = path->slots[level] + 1;
5594                 c = path->nodes[level];
5595 next:
5596                 if (slot >= btrfs_header_nritems(c)) {
5597                         int ret;
5598                         int orig_lowest;
5599                         struct btrfs_key cur_key;
5600                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5601                             !path->nodes[level + 1])
5602                                 return 1;
5603
5604                         if (path->locks[level + 1]) {
5605                                 level++;
5606                                 continue;
5607                         }
5608
5609                         slot = btrfs_header_nritems(c) - 1;
5610                         if (level == 0)
5611                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5612                         else
5613                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5614
5615                         orig_lowest = path->lowest_level;
5616                         btrfs_release_path(path);
5617                         path->lowest_level = level;
5618                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5619                                                 0, 0);
5620                         path->lowest_level = orig_lowest;
5621                         if (ret < 0)
5622                                 return ret;
5623
5624                         c = path->nodes[level];
5625                         slot = path->slots[level];
5626                         if (ret == 0)
5627                                 slot++;
5628                         goto next;
5629                 }
5630
5631                 if (level == 0)
5632                         btrfs_item_key_to_cpu(c, key, slot);
5633                 else {
5634                         u64 gen = btrfs_node_ptr_generation(c, slot);
5635
5636                         if (gen < min_trans) {
5637                                 slot++;
5638                                 goto next;
5639                         }
5640                         btrfs_node_key_to_cpu(c, key, slot);
5641                 }
5642                 return 0;
5643         }
5644         return 1;
5645 }
5646
5647 /*
5648  * search the tree again to find a leaf with greater keys
5649  * returns 0 if it found something or 1 if there are no greater leaves.
5650  * returns < 0 on io errors.
5651  */
5652 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5653 {
5654         return btrfs_next_old_leaf(root, path, 0);
5655 }
5656
5657 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5658                         u64 time_seq)
5659 {
5660         int slot;
5661         int level;
5662         struct extent_buffer *c;
5663         struct extent_buffer *next;
5664         struct btrfs_key key;
5665         u32 nritems;
5666         int ret;
5667         int old_spinning = path->leave_spinning;
5668         int next_rw_lock = 0;
5669
5670         nritems = btrfs_header_nritems(path->nodes[0]);
5671         if (nritems == 0)
5672                 return 1;
5673
5674         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5675 again:
5676         level = 1;
5677         next = NULL;
5678         next_rw_lock = 0;
5679         btrfs_release_path(path);
5680
5681         path->keep_locks = 1;
5682         path->leave_spinning = 1;
5683
5684         if (time_seq)
5685                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5686         else
5687                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5688         path->keep_locks = 0;
5689
5690         if (ret < 0)
5691                 return ret;
5692
5693         nritems = btrfs_header_nritems(path->nodes[0]);
5694         /*
5695          * by releasing the path above we dropped all our locks.  A balance
5696          * could have added more items next to the key that used to be
5697          * at the very end of the block.  So, check again here and
5698          * advance the path if there are now more items available.
5699          */
5700         if (nritems > 0 && path->slots[0] < nritems - 1) {
5701                 if (ret == 0)
5702                         path->slots[0]++;
5703                 ret = 0;
5704                 goto done;
5705         }
5706         /*
5707          * So the above check misses one case:
5708          * - after releasing the path above, someone has removed the item that
5709          *   used to be at the very end of the block, and balance between leafs
5710          *   gets another one with bigger key.offset to replace it.
5711          *
5712          * This one should be returned as well, or we can get leaf corruption
5713          * later(esp. in __btrfs_drop_extents()).
5714          *
5715          * And a bit more explanation about this check,
5716          * with ret > 0, the key isn't found, the path points to the slot
5717          * where it should be inserted, so the path->slots[0] item must be the
5718          * bigger one.
5719          */
5720         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5721                 ret = 0;
5722                 goto done;
5723         }
5724
5725         while (level < BTRFS_MAX_LEVEL) {
5726                 if (!path->nodes[level]) {
5727                         ret = 1;
5728                         goto done;
5729                 }
5730
5731                 slot = path->slots[level] + 1;
5732                 c = path->nodes[level];
5733                 if (slot >= btrfs_header_nritems(c)) {
5734                         level++;
5735                         if (level == BTRFS_MAX_LEVEL) {
5736                                 ret = 1;
5737                                 goto done;
5738                         }
5739                         continue;
5740                 }
5741
5742                 if (next) {
5743                         btrfs_tree_unlock_rw(next, next_rw_lock);
5744                         free_extent_buffer(next);
5745                 }
5746
5747                 next = c;
5748                 next_rw_lock = path->locks[level];
5749                 ret = read_block_for_search(NULL, root, path, &next, level,
5750                                             slot, &key, 0);
5751                 if (ret == -EAGAIN)
5752                         goto again;
5753
5754                 if (ret < 0) {
5755                         btrfs_release_path(path);
5756                         goto done;
5757                 }
5758
5759                 if (!path->skip_locking) {
5760                         ret = btrfs_try_tree_read_lock(next);
5761                         if (!ret && time_seq) {
5762                                 /*
5763                                  * If we don't get the lock, we may be racing
5764                                  * with push_leaf_left, holding that lock while
5765                                  * itself waiting for the leaf we've currently
5766                                  * locked. To solve this situation, we give up
5767                                  * on our lock and cycle.
5768                                  */
5769                                 free_extent_buffer(next);
5770                                 btrfs_release_path(path);
5771                                 cond_resched();
5772                                 goto again;
5773                         }
5774                         if (!ret) {
5775                                 btrfs_set_path_blocking(path);
5776                                 btrfs_tree_read_lock(next);
5777                                 btrfs_clear_path_blocking(path, next,
5778                                                           BTRFS_READ_LOCK);
5779                         }
5780                         next_rw_lock = BTRFS_READ_LOCK;
5781                 }
5782                 break;
5783         }
5784         path->slots[level] = slot;
5785         while (1) {
5786                 level--;
5787                 c = path->nodes[level];
5788                 if (path->locks[level])
5789                         btrfs_tree_unlock_rw(c, path->locks[level]);
5790
5791                 free_extent_buffer(c);
5792                 path->nodes[level] = next;
5793                 path->slots[level] = 0;
5794                 if (!path->skip_locking)
5795                         path->locks[level] = next_rw_lock;
5796                 if (!level)
5797                         break;
5798
5799                 ret = read_block_for_search(NULL, root, path, &next, level,
5800                                             0, &key, 0);
5801                 if (ret == -EAGAIN)
5802                         goto again;
5803
5804                 if (ret < 0) {
5805                         btrfs_release_path(path);
5806                         goto done;
5807                 }
5808
5809                 if (!path->skip_locking) {
5810                         ret = btrfs_try_tree_read_lock(next);
5811                         if (!ret) {
5812                                 btrfs_set_path_blocking(path);
5813                                 btrfs_tree_read_lock(next);
5814                                 btrfs_clear_path_blocking(path, next,
5815                                                           BTRFS_READ_LOCK);
5816                         }
5817                         next_rw_lock = BTRFS_READ_LOCK;
5818                 }
5819         }
5820         ret = 0;
5821 done:
5822         unlock_up(path, 0, 1, 0, NULL);
5823         path->leave_spinning = old_spinning;
5824         if (!old_spinning)
5825                 btrfs_set_path_blocking(path);
5826
5827         return ret;
5828 }
5829
5830 /*
5831  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5832  * searching until it gets past min_objectid or finds an item of 'type'
5833  *
5834  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5835  */
5836 int btrfs_previous_item(struct btrfs_root *root,
5837                         struct btrfs_path *path, u64 min_objectid,
5838                         int type)
5839 {
5840         struct btrfs_key found_key;
5841         struct extent_buffer *leaf;
5842         u32 nritems;
5843         int ret;
5844
5845         while (1) {
5846                 if (path->slots[0] == 0) {
5847                         btrfs_set_path_blocking(path);
5848                         ret = btrfs_prev_leaf(root, path);
5849                         if (ret != 0)
5850                                 return ret;
5851                 } else {
5852                         path->slots[0]--;
5853                 }
5854                 leaf = path->nodes[0];
5855                 nritems = btrfs_header_nritems(leaf);
5856                 if (nritems == 0)
5857                         return 1;
5858                 if (path->slots[0] == nritems)
5859                         path->slots[0]--;
5860
5861                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5862                 if (found_key.objectid < min_objectid)
5863                         break;
5864                 if (found_key.type == type)
5865                         return 0;
5866                 if (found_key.objectid == min_objectid &&
5867                     found_key.type < type)
5868                         break;
5869         }
5870         return 1;
5871 }
5872
5873 /*
5874  * search in extent tree to find a previous Metadata/Data extent item with
5875  * min objecitd.
5876  *
5877  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878  */
5879 int btrfs_previous_extent_item(struct btrfs_root *root,
5880                         struct btrfs_path *path, u64 min_objectid)
5881 {
5882         struct btrfs_key found_key;
5883         struct extent_buffer *leaf;
5884         u32 nritems;
5885         int ret;
5886
5887         while (1) {
5888                 if (path->slots[0] == 0) {
5889                         btrfs_set_path_blocking(path);
5890                         ret = btrfs_prev_leaf(root, path);
5891                         if (ret != 0)
5892                                 return ret;
5893                 } else {
5894                         path->slots[0]--;
5895                 }
5896                 leaf = path->nodes[0];
5897                 nritems = btrfs_header_nritems(leaf);
5898                 if (nritems == 0)
5899                         return 1;
5900                 if (path->slots[0] == nritems)
5901                         path->slots[0]--;
5902
5903                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904                 if (found_key.objectid < min_objectid)
5905                         break;
5906                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5907                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5908                         return 0;
5909                 if (found_key.objectid == min_objectid &&
5910                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5911                         break;
5912         }
5913         return 1;
5914 }