Merge ../scsi-rc-fixes-2.6
[linux-drm-fsl-dcu.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         32
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         kmem_cache_t    *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static kmem_cache_t *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         if (!rq->bio)
267                 blk_rq_bio_prep(q, rq, bio);
268         else if (!q->back_merge_fn(q, rq, bio))
269                 return -EINVAL;
270         else {
271                 rq->biotail->bi_next = bio;
272                 rq->biotail = bio;
273                 rq->hard_nr_sectors += bio_sectors(bio);
274                 rq->nr_sectors = rq->hard_nr_sectors;
275         }
276
277         return 0;
278 }
279
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
281 {
282         if (bio->bi_size)
283                 return 1;
284
285         bio_put(bio);
286         return 0;
287 }
288
289 /**
290  * scsi_req_map_sg - map a scatterlist into a request
291  * @rq:         request to fill
292  * @sg:         scatterlist
293  * @nsegs:      number of elements
294  * @bufflen:    len of buffer
295  * @gfp:        memory allocation flags
296  *
297  * scsi_req_map_sg maps a scatterlist into a request so that the
298  * request can be sent to the block layer. We do not trust the scatterlist
299  * sent to use, as some ULDs use that struct to only organize the pages.
300  */
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302                            int nsegs, unsigned bufflen, gfp_t gfp)
303 {
304         struct request_queue *q = rq->q;
305         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306         unsigned int data_len = 0, len, bytes, off;
307         struct page *page;
308         struct bio *bio = NULL;
309         int i, err, nr_vecs = 0;
310
311         for (i = 0; i < nsegs; i++) {
312                 page = sgl[i].page;
313                 off = sgl[i].offset;
314                 len = sgl[i].length;
315                 data_len += len;
316
317                 while (len > 0) {
318                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
319
320                         if (!bio) {
321                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322                                 nr_pages -= nr_vecs;
323
324                                 bio = bio_alloc(gfp, nr_vecs);
325                                 if (!bio) {
326                                         err = -ENOMEM;
327                                         goto free_bios;
328                                 }
329                                 bio->bi_end_io = scsi_bi_endio;
330                         }
331
332                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
333                             bytes) {
334                                 bio_put(bio);
335                                 err = -EINVAL;
336                                 goto free_bios;
337                         }
338
339                         if (bio->bi_vcnt >= nr_vecs) {
340                                 err = scsi_merge_bio(rq, bio);
341                                 if (err) {
342                                         bio_endio(bio, bio->bi_size, 0);
343                                         goto free_bios;
344                                 }
345                                 bio = NULL;
346                         }
347
348                         page++;
349                         len -= bytes;
350                         off = 0;
351                 }
352         }
353
354         rq->buffer = rq->data = NULL;
355         rq->data_len = data_len;
356         return 0;
357
358 free_bios:
359         while ((bio = rq->bio) != NULL) {
360                 rq->bio = bio->bi_next;
361                 /*
362                  * call endio instead of bio_put incase it was bounced
363                  */
364                 bio_endio(bio, bio->bi_size, 0);
365         }
366
367         return err;
368 }
369
370 /**
371  * scsi_execute_async - insert request
372  * @sdev:       scsi device
373  * @cmd:        scsi command
374  * @cmd_len:    length of scsi cdb
375  * @data_direction: data direction
376  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
377  * @bufflen:    len of buffer
378  * @use_sg:     if buffer is a scatterlist this is the number of elements
379  * @timeout:    request timeout in seconds
380  * @retries:    number of times to retry request
381  * @flags:      or into request flags
382  **/
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385                        int use_sg, int timeout, int retries, void *privdata,
386                        void (*done)(void *, char *, int, int), gfp_t gfp)
387 {
388         struct request *req;
389         struct scsi_io_context *sioc;
390         int err = 0;
391         int write = (data_direction == DMA_TO_DEVICE);
392
393         sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394         if (!sioc)
395                 return DRIVER_ERROR << 24;
396         memset(sioc, 0, sizeof(*sioc));
397
398         req = blk_get_request(sdev->request_queue, write, gfp);
399         if (!req)
400                 goto free_sense;
401         req->cmd_type = REQ_TYPE_BLOCK_PC;
402         req->cmd_flags |= REQ_QUIET;
403
404         if (use_sg)
405                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406         else if (bufflen)
407                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
408
409         if (err)
410                 goto free_req;
411
412         req->cmd_len = cmd_len;
413         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
414         memcpy(req->cmd, cmd, req->cmd_len);
415         req->sense = sioc->sense;
416         req->sense_len = 0;
417         req->timeout = timeout;
418         req->retries = retries;
419         req->end_io_data = sioc;
420
421         sioc->data = privdata;
422         sioc->done = done;
423
424         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425         return 0;
426
427 free_req:
428         blk_put_request(req);
429 free_sense:
430         kmem_cache_free(scsi_io_context_cache, sioc);
431         return DRIVER_ERROR << 24;
432 }
433 EXPORT_SYMBOL_GPL(scsi_execute_async);
434
435 /*
436  * Function:    scsi_init_cmd_errh()
437  *
438  * Purpose:     Initialize cmd fields related to error handling.
439  *
440  * Arguments:   cmd     - command that is ready to be queued.
441  *
442  * Notes:       This function has the job of initializing a number of
443  *              fields related to error handling.   Typically this will
444  *              be called once for each command, as required.
445  */
446 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447 {
448         cmd->serial_number = 0;
449         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450         if (cmd->cmd_len == 0)
451                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
452 }
453
454 void scsi_device_unbusy(struct scsi_device *sdev)
455 {
456         struct Scsi_Host *shost = sdev->host;
457         unsigned long flags;
458
459         spin_lock_irqsave(shost->host_lock, flags);
460         shost->host_busy--;
461         if (unlikely(scsi_host_in_recovery(shost) &&
462                      (shost->host_failed || shost->host_eh_scheduled)))
463                 scsi_eh_wakeup(shost);
464         spin_unlock(shost->host_lock);
465         spin_lock(sdev->request_queue->queue_lock);
466         sdev->device_busy--;
467         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
468 }
469
470 /*
471  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
472  * and call blk_run_queue for all the scsi_devices on the target -
473  * including current_sdev first.
474  *
475  * Called with *no* scsi locks held.
476  */
477 static void scsi_single_lun_run(struct scsi_device *current_sdev)
478 {
479         struct Scsi_Host *shost = current_sdev->host;
480         struct scsi_device *sdev, *tmp;
481         struct scsi_target *starget = scsi_target(current_sdev);
482         unsigned long flags;
483
484         spin_lock_irqsave(shost->host_lock, flags);
485         starget->starget_sdev_user = NULL;
486         spin_unlock_irqrestore(shost->host_lock, flags);
487
488         /*
489          * Call blk_run_queue for all LUNs on the target, starting with
490          * current_sdev. We race with others (to set starget_sdev_user),
491          * but in most cases, we will be first. Ideally, each LU on the
492          * target would get some limited time or requests on the target.
493          */
494         blk_run_queue(current_sdev->request_queue);
495
496         spin_lock_irqsave(shost->host_lock, flags);
497         if (starget->starget_sdev_user)
498                 goto out;
499         list_for_each_entry_safe(sdev, tmp, &starget->devices,
500                         same_target_siblings) {
501                 if (sdev == current_sdev)
502                         continue;
503                 if (scsi_device_get(sdev))
504                         continue;
505
506                 spin_unlock_irqrestore(shost->host_lock, flags);
507                 blk_run_queue(sdev->request_queue);
508                 spin_lock_irqsave(shost->host_lock, flags);
509         
510                 scsi_device_put(sdev);
511         }
512  out:
513         spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517  * Function:    scsi_run_queue()
518  *
519  * Purpose:     Select a proper request queue to serve next
520  *
521  * Arguments:   q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:       The previous command was completely finished, start
526  *              a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530         struct scsi_device *sdev = q->queuedata;
531         struct Scsi_Host *shost = sdev->host;
532         unsigned long flags;
533
534         if (sdev->single_lun)
535                 scsi_single_lun_run(sdev);
536
537         spin_lock_irqsave(shost->host_lock, flags);
538         while (!list_empty(&shost->starved_list) &&
539                !shost->host_blocked && !shost->host_self_blocked &&
540                 !((shost->can_queue > 0) &&
541                   (shost->host_busy >= shost->can_queue))) {
542                 /*
543                  * As long as shost is accepting commands and we have
544                  * starved queues, call blk_run_queue. scsi_request_fn
545                  * drops the queue_lock and can add us back to the
546                  * starved_list.
547                  *
548                  * host_lock protects the starved_list and starved_entry.
549                  * scsi_request_fn must get the host_lock before checking
550                  * or modifying starved_list or starved_entry.
551                  */
552                 sdev = list_entry(shost->starved_list.next,
553                                           struct scsi_device, starved_entry);
554                 list_del_init(&sdev->starved_entry);
555                 spin_unlock_irqrestore(shost->host_lock, flags);
556
557
558                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559                     !test_and_set_bit(QUEUE_FLAG_REENTER,
560                                       &sdev->request_queue->queue_flags)) {
561                         blk_run_queue(sdev->request_queue);
562                         clear_bit(QUEUE_FLAG_REENTER,
563                                   &sdev->request_queue->queue_flags);
564                 } else
565                         blk_run_queue(sdev->request_queue);
566
567                 spin_lock_irqsave(shost->host_lock, flags);
568                 if (unlikely(!list_empty(&sdev->starved_entry)))
569                         /*
570                          * sdev lost a race, and was put back on the
571                          * starved list. This is unlikely but without this
572                          * in theory we could loop forever.
573                          */
574                         break;
575         }
576         spin_unlock_irqrestore(shost->host_lock, flags);
577
578         blk_run_queue(q);
579 }
580
581 /*
582  * Function:    scsi_requeue_command()
583  *
584  * Purpose:     Handle post-processing of completed commands.
585  *
586  * Arguments:   q       - queue to operate on
587  *              cmd     - command that may need to be requeued.
588  *
589  * Returns:     Nothing
590  *
591  * Notes:       After command completion, there may be blocks left
592  *              over which weren't finished by the previous command
593  *              this can be for a number of reasons - the main one is
594  *              I/O errors in the middle of the request, in which case
595  *              we need to request the blocks that come after the bad
596  *              sector.
597  * Notes:       Upon return, cmd is a stale pointer.
598  */
599 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
600 {
601         struct request *req = cmd->request;
602         unsigned long flags;
603
604         scsi_unprep_request(req);
605         spin_lock_irqsave(q->queue_lock, flags);
606         blk_requeue_request(q, req);
607         spin_unlock_irqrestore(q->queue_lock, flags);
608
609         scsi_run_queue(q);
610 }
611
612 void scsi_next_command(struct scsi_cmnd *cmd)
613 {
614         struct scsi_device *sdev = cmd->device;
615         struct request_queue *q = sdev->request_queue;
616
617         /* need to hold a reference on the device before we let go of the cmd */
618         get_device(&sdev->sdev_gendev);
619
620         scsi_put_command(cmd);
621         scsi_run_queue(q);
622
623         /* ok to remove device now */
624         put_device(&sdev->sdev_gendev);
625 }
626
627 void scsi_run_host_queues(struct Scsi_Host *shost)
628 {
629         struct scsi_device *sdev;
630
631         shost_for_each_device(sdev, shost)
632                 scsi_run_queue(sdev->request_queue);
633 }
634
635 /*
636  * Function:    scsi_end_request()
637  *
638  * Purpose:     Post-processing of completed commands (usually invoked at end
639  *              of upper level post-processing and scsi_io_completion).
640  *
641  * Arguments:   cmd      - command that is complete.
642  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
643  *              bytes    - number of bytes of completed I/O
644  *              requeue  - indicates whether we should requeue leftovers.
645  *
646  * Lock status: Assumed that lock is not held upon entry.
647  *
648  * Returns:     cmd if requeue required, NULL otherwise.
649  *
650  * Notes:       This is called for block device requests in order to
651  *              mark some number of sectors as complete.
652  * 
653  *              We are guaranteeing that the request queue will be goosed
654  *              at some point during this call.
655  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
656  */
657 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
658                                           int bytes, int requeue)
659 {
660         request_queue_t *q = cmd->device->request_queue;
661         struct request *req = cmd->request;
662         unsigned long flags;
663
664         /*
665          * If there are blocks left over at the end, set up the command
666          * to queue the remainder of them.
667          */
668         if (end_that_request_chunk(req, uptodate, bytes)) {
669                 int leftover = (req->hard_nr_sectors << 9);
670
671                 if (blk_pc_request(req))
672                         leftover = req->data_len;
673
674                 /* kill remainder if no retrys */
675                 if (!uptodate && blk_noretry_request(req))
676                         end_that_request_chunk(req, 0, leftover);
677                 else {
678                         if (requeue) {
679                                 /*
680                                  * Bleah.  Leftovers again.  Stick the
681                                  * leftovers in the front of the
682                                  * queue, and goose the queue again.
683                                  */
684                                 scsi_requeue_command(q, cmd);
685                                 cmd = NULL;
686                         }
687                         return cmd;
688                 }
689         }
690
691         add_disk_randomness(req->rq_disk);
692
693         spin_lock_irqsave(q->queue_lock, flags);
694         if (blk_rq_tagged(req))
695                 blk_queue_end_tag(q, req);
696         end_that_request_last(req, uptodate);
697         spin_unlock_irqrestore(q->queue_lock, flags);
698
699         /*
700          * This will goose the queue request function at the end, so we don't
701          * need to worry about launching another command.
702          */
703         scsi_next_command(cmd);
704         return NULL;
705 }
706
707 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
708 {
709         struct scsi_host_sg_pool *sgp;
710         struct scatterlist *sgl;
711
712         BUG_ON(!cmd->use_sg);
713
714         switch (cmd->use_sg) {
715         case 1 ... 8:
716                 cmd->sglist_len = 0;
717                 break;
718         case 9 ... 16:
719                 cmd->sglist_len = 1;
720                 break;
721         case 17 ... 32:
722                 cmd->sglist_len = 2;
723                 break;
724 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
725         case 33 ... 64:
726                 cmd->sglist_len = 3;
727                 break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
729         case 65 ... 128:
730                 cmd->sglist_len = 4;
731                 break;
732 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
733         case 129 ... 256:
734                 cmd->sglist_len = 5;
735                 break;
736 #endif
737 #endif
738 #endif
739         default:
740                 return NULL;
741         }
742
743         sgp = scsi_sg_pools + cmd->sglist_len;
744         sgl = mempool_alloc(sgp->pool, gfp_mask);
745         return sgl;
746 }
747
748 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
749 {
750         struct scsi_host_sg_pool *sgp;
751
752         BUG_ON(index >= SG_MEMPOOL_NR);
753
754         sgp = scsi_sg_pools + index;
755         mempool_free(sgl, sgp->pool);
756 }
757
758 /*
759  * Function:    scsi_release_buffers()
760  *
761  * Purpose:     Completion processing for block device I/O requests.
762  *
763  * Arguments:   cmd     - command that we are bailing.
764  *
765  * Lock status: Assumed that no lock is held upon entry.
766  *
767  * Returns:     Nothing
768  *
769  * Notes:       In the event that an upper level driver rejects a
770  *              command, we must release resources allocated during
771  *              the __init_io() function.  Primarily this would involve
772  *              the scatter-gather table, and potentially any bounce
773  *              buffers.
774  */
775 static void scsi_release_buffers(struct scsi_cmnd *cmd)
776 {
777         if (cmd->use_sg)
778                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
779
780         /*
781          * Zero these out.  They now point to freed memory, and it is
782          * dangerous to hang onto the pointers.
783          */
784         cmd->request_buffer = NULL;
785         cmd->request_bufflen = 0;
786 }
787
788 /*
789  * Function:    scsi_io_completion()
790  *
791  * Purpose:     Completion processing for block device I/O requests.
792  *
793  * Arguments:   cmd   - command that is finished.
794  *
795  * Lock status: Assumed that no lock is held upon entry.
796  *
797  * Returns:     Nothing
798  *
799  * Notes:       This function is matched in terms of capabilities to
800  *              the function that created the scatter-gather list.
801  *              In other words, if there are no bounce buffers
802  *              (the normal case for most drivers), we don't need
803  *              the logic to deal with cleaning up afterwards.
804  *
805  *              We must do one of several things here:
806  *
807  *              a) Call scsi_end_request.  This will finish off the
808  *                 specified number of sectors.  If we are done, the
809  *                 command block will be released, and the queue
810  *                 function will be goosed.  If we are not done, then
811  *                 scsi_end_request will directly goose the queue.
812  *
813  *              b) We can just use scsi_requeue_command() here.  This would
814  *                 be used if we just wanted to retry, for example.
815  */
816 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
817 {
818         int result = cmd->result;
819         int this_count = cmd->request_bufflen;
820         request_queue_t *q = cmd->device->request_queue;
821         struct request *req = cmd->request;
822         int clear_errors = 1;
823         struct scsi_sense_hdr sshdr;
824         int sense_valid = 0;
825         int sense_deferred = 0;
826
827         scsi_release_buffers(cmd);
828
829         if (result) {
830                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
831                 if (sense_valid)
832                         sense_deferred = scsi_sense_is_deferred(&sshdr);
833         }
834
835         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
836                 req->errors = result;
837                 if (result) {
838                         clear_errors = 0;
839                         if (sense_valid && req->sense) {
840                                 /*
841                                  * SG_IO wants current and deferred errors
842                                  */
843                                 int len = 8 + cmd->sense_buffer[7];
844
845                                 if (len > SCSI_SENSE_BUFFERSIZE)
846                                         len = SCSI_SENSE_BUFFERSIZE;
847                                 memcpy(req->sense, cmd->sense_buffer,  len);
848                                 req->sense_len = len;
849                         }
850                 } else
851                         req->data_len = cmd->resid;
852         }
853
854         /*
855          * Next deal with any sectors which we were able to correctly
856          * handle.
857          */
858         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
859                                       "%d bytes done.\n",
860                                       req->nr_sectors, good_bytes));
861         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
862
863         if (clear_errors)
864                 req->errors = 0;
865
866         /* A number of bytes were successfully read.  If there
867          * are leftovers and there is some kind of error
868          * (result != 0), retry the rest.
869          */
870         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
871                 return;
872
873         /* good_bytes = 0, or (inclusive) there were leftovers and
874          * result = 0, so scsi_end_request couldn't retry.
875          */
876         if (sense_valid && !sense_deferred) {
877                 switch (sshdr.sense_key) {
878                 case UNIT_ATTENTION:
879                         if (cmd->device->removable) {
880                                 /* Detected disc change.  Set a bit
881                                  * and quietly refuse further access.
882                                  */
883                                 cmd->device->changed = 1;
884                                 scsi_end_request(cmd, 0, this_count, 1);
885                                 return;
886                         } else {
887                                 /* Must have been a power glitch, or a
888                                  * bus reset.  Could not have been a
889                                  * media change, so we just retry the
890                                  * request and see what happens.
891                                  */
892                                 scsi_requeue_command(q, cmd);
893                                 return;
894                         }
895                         break;
896                 case ILLEGAL_REQUEST:
897                         /* If we had an ILLEGAL REQUEST returned, then
898                          * we may have performed an unsupported
899                          * command.  The only thing this should be
900                          * would be a ten byte read where only a six
901                          * byte read was supported.  Also, on a system
902                          * where READ CAPACITY failed, we may have
903                          * read past the end of the disk.
904                          */
905                         if ((cmd->device->use_10_for_rw &&
906                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
907                             (cmd->cmnd[0] == READ_10 ||
908                              cmd->cmnd[0] == WRITE_10)) {
909                                 cmd->device->use_10_for_rw = 0;
910                                 /* This will cause a retry with a
911                                  * 6-byte command.
912                                  */
913                                 scsi_requeue_command(q, cmd);
914                                 return;
915                         } else {
916                                 scsi_end_request(cmd, 0, this_count, 1);
917                                 return;
918                         }
919                         break;
920                 case NOT_READY:
921                         /* If the device is in the process of becoming
922                          * ready, or has a temporary blockage, retry.
923                          */
924                         if (sshdr.asc == 0x04) {
925                                 switch (sshdr.ascq) {
926                                 case 0x01: /* becoming ready */
927                                 case 0x04: /* format in progress */
928                                 case 0x05: /* rebuild in progress */
929                                 case 0x06: /* recalculation in progress */
930                                 case 0x07: /* operation in progress */
931                                 case 0x08: /* Long write in progress */
932                                 case 0x09: /* self test in progress */
933                                         scsi_requeue_command(q, cmd);
934                                         return;
935                                 default:
936                                         break;
937                                 }
938                         }
939                         if (!(req->cmd_flags & REQ_QUIET)) {
940                                 scmd_printk(KERN_INFO, cmd,
941                                             "Device not ready: ");
942                                 scsi_print_sense_hdr("", &sshdr);
943                         }
944                         scsi_end_request(cmd, 0, this_count, 1);
945                         return;
946                 case VOLUME_OVERFLOW:
947                         if (!(req->cmd_flags & REQ_QUIET)) {
948                                 scmd_printk(KERN_INFO, cmd,
949                                             "Volume overflow, CDB: ");
950                                 __scsi_print_command(cmd->cmnd);
951                                 scsi_print_sense("", cmd);
952                         }
953                         /* See SSC3rXX or current. */
954                         scsi_end_request(cmd, 0, this_count, 1);
955                         return;
956                 default:
957                         break;
958                 }
959         }
960         if (host_byte(result) == DID_RESET) {
961                 /* Third party bus reset or reset for error recovery
962                  * reasons.  Just retry the request and see what
963                  * happens.
964                  */
965                 scsi_requeue_command(q, cmd);
966                 return;
967         }
968         if (result) {
969                 if (!(req->cmd_flags & REQ_QUIET)) {
970                         scmd_printk(KERN_INFO, cmd,
971                                     "SCSI error: return code = 0x%08x\n",
972                                     result);
973                         if (driver_byte(result) & DRIVER_SENSE)
974                                 scsi_print_sense("", cmd);
975                 }
976         }
977         scsi_end_request(cmd, 0, this_count, !result);
978 }
979 EXPORT_SYMBOL(scsi_io_completion);
980
981 /*
982  * Function:    scsi_init_io()
983  *
984  * Purpose:     SCSI I/O initialize function.
985  *
986  * Arguments:   cmd   - Command descriptor we wish to initialize
987  *
988  * Returns:     0 on success
989  *              BLKPREP_DEFER if the failure is retryable
990  *              BLKPREP_KILL if the failure is fatal
991  */
992 static int scsi_init_io(struct scsi_cmnd *cmd)
993 {
994         struct request     *req = cmd->request;
995         struct scatterlist *sgpnt;
996         int                count;
997
998         /*
999          * We used to not use scatter-gather for single segment request,
1000          * but now we do (it makes highmem I/O easier to support without
1001          * kmapping pages)
1002          */
1003         cmd->use_sg = req->nr_phys_segments;
1004
1005         /*
1006          * If sg table allocation fails, requeue request later.
1007          */
1008         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1009         if (unlikely(!sgpnt)) {
1010                 scsi_unprep_request(req);
1011                 return BLKPREP_DEFER;
1012         }
1013
1014         req->buffer = NULL;
1015         cmd->request_buffer = (char *) sgpnt;
1016         if (blk_pc_request(req))
1017                 cmd->request_bufflen = req->data_len;
1018         else
1019                 cmd->request_bufflen = req->nr_sectors << 9;
1020
1021         /* 
1022          * Next, walk the list, and fill in the addresses and sizes of
1023          * each segment.
1024          */
1025         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1026         if (likely(count <= cmd->use_sg)) {
1027                 cmd->use_sg = count;
1028                 return BLKPREP_OK;
1029         }
1030
1031         printk(KERN_ERR "Incorrect number of segments after building list\n");
1032         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1033         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1034                         req->current_nr_sectors);
1035
1036         /* release the command and kill it */
1037         scsi_release_buffers(cmd);
1038         scsi_put_command(cmd);
1039         return BLKPREP_KILL;
1040 }
1041
1042 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1043                                sector_t *error_sector)
1044 {
1045         struct scsi_device *sdev = q->queuedata;
1046         struct scsi_driver *drv;
1047
1048         if (sdev->sdev_state != SDEV_RUNNING)
1049                 return -ENXIO;
1050
1051         drv = *(struct scsi_driver **) disk->private_data;
1052         if (drv->issue_flush)
1053                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1054
1055         return -EOPNOTSUPP;
1056 }
1057
1058 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1059                 struct request *req)
1060 {
1061         struct scsi_cmnd *cmd;
1062
1063         if (!req->special) {
1064                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1065                 if (unlikely(!cmd))
1066                         return NULL;
1067                 req->special = cmd;
1068         } else {
1069                 cmd = req->special;
1070         }
1071
1072         /* pull a tag out of the request if we have one */
1073         cmd->tag = req->tag;
1074         cmd->request = req;
1075
1076         return cmd;
1077 }
1078
1079 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1080 {
1081         BUG_ON(!blk_pc_request(cmd->request));
1082         /*
1083          * This will complete the whole command with uptodate=1 so
1084          * as far as the block layer is concerned the command completed
1085          * successfully. Since this is a REQ_BLOCK_PC command the
1086          * caller should check the request's errors value
1087          */
1088         scsi_io_completion(cmd, cmd->request_bufflen);
1089 }
1090
1091 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1092 {
1093         struct scsi_cmnd *cmd;
1094
1095         cmd = scsi_get_cmd_from_req(sdev, req);
1096         if (unlikely(!cmd))
1097                 return BLKPREP_DEFER;
1098
1099         /*
1100          * BLOCK_PC requests may transfer data, in which case they must
1101          * a bio attached to them.  Or they might contain a SCSI command
1102          * that does not transfer data, in which case they may optionally
1103          * submit a request without an attached bio.
1104          */
1105         if (req->bio) {
1106                 int ret;
1107
1108                 BUG_ON(!req->nr_phys_segments);
1109
1110                 ret = scsi_init_io(cmd);
1111                 if (unlikely(ret))
1112                         return ret;
1113         } else {
1114                 BUG_ON(req->data_len);
1115                 BUG_ON(req->data);
1116
1117                 cmd->request_bufflen = 0;
1118                 cmd->request_buffer = NULL;
1119                 cmd->use_sg = 0;
1120                 req->buffer = NULL;
1121         }
1122
1123         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1124         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1125         cmd->cmd_len = req->cmd_len;
1126         if (!req->data_len)
1127                 cmd->sc_data_direction = DMA_NONE;
1128         else if (rq_data_dir(req) == WRITE)
1129                 cmd->sc_data_direction = DMA_TO_DEVICE;
1130         else
1131                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1132         
1133         cmd->transfersize = req->data_len;
1134         cmd->allowed = req->retries;
1135         cmd->timeout_per_command = req->timeout;
1136         cmd->done = scsi_blk_pc_done;
1137         return BLKPREP_OK;
1138 }
1139
1140 /*
1141  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1142  * from filesystems that still need to be translated to SCSI CDBs from
1143  * the ULD.
1144  */
1145 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1146 {
1147         struct scsi_cmnd *cmd;
1148         struct scsi_driver *drv;
1149         int ret;
1150
1151         /*
1152          * Filesystem requests must transfer data.
1153          */
1154         BUG_ON(!req->nr_phys_segments);
1155
1156         cmd = scsi_get_cmd_from_req(sdev, req);
1157         if (unlikely(!cmd))
1158                 return BLKPREP_DEFER;
1159
1160         ret = scsi_init_io(cmd);
1161         if (unlikely(ret))
1162                 return ret;
1163
1164         /*
1165          * Initialize the actual SCSI command for this request.
1166          */
1167         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1168         if (unlikely(!drv->init_command(cmd))) {
1169                 scsi_release_buffers(cmd);
1170                 scsi_put_command(cmd);
1171                 return BLKPREP_KILL;
1172         }
1173
1174         return BLKPREP_OK;
1175 }
1176
1177 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1178 {
1179         struct scsi_device *sdev = q->queuedata;
1180         int ret = BLKPREP_OK;
1181
1182         /*
1183          * If the device is not in running state we will reject some
1184          * or all commands.
1185          */
1186         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1187                 switch (sdev->sdev_state) {
1188                 case SDEV_OFFLINE:
1189                         /*
1190                          * If the device is offline we refuse to process any
1191                          * commands.  The device must be brought online
1192                          * before trying any recovery commands.
1193                          */
1194                         sdev_printk(KERN_ERR, sdev,
1195                                     "rejecting I/O to offline device\n");
1196                         ret = BLKPREP_KILL;
1197                         break;
1198                 case SDEV_DEL:
1199                         /*
1200                          * If the device is fully deleted, we refuse to
1201                          * process any commands as well.
1202                          */
1203                         sdev_printk(KERN_ERR, sdev,
1204                                     "rejecting I/O to dead device\n");
1205                         ret = BLKPREP_KILL;
1206                         break;
1207                 case SDEV_QUIESCE:
1208                 case SDEV_BLOCK:
1209                         /*
1210                          * If the devices is blocked we defer normal commands.
1211                          */
1212                         if (!(req->cmd_flags & REQ_PREEMPT))
1213                                 ret = BLKPREP_DEFER;
1214                         break;
1215                 default:
1216                         /*
1217                          * For any other not fully online state we only allow
1218                          * special commands.  In particular any user initiated
1219                          * command is not allowed.
1220                          */
1221                         if (!(req->cmd_flags & REQ_PREEMPT))
1222                                 ret = BLKPREP_KILL;
1223                         break;
1224                 }
1225
1226                 if (ret != BLKPREP_OK)
1227                         goto out;
1228         }
1229
1230         switch (req->cmd_type) {
1231         case REQ_TYPE_BLOCK_PC:
1232                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1233                 break;
1234         case REQ_TYPE_FS:
1235                 ret = scsi_setup_fs_cmnd(sdev, req);
1236                 break;
1237         default:
1238                 /*
1239                  * All other command types are not supported.
1240                  *
1241                  * Note that these days the SCSI subsystem does not use
1242                  * REQ_TYPE_SPECIAL requests anymore.  These are only used
1243                  * (directly or via blk_insert_request) by non-SCSI drivers.
1244                  */
1245                 blk_dump_rq_flags(req, "SCSI bad req");
1246                 ret = BLKPREP_KILL;
1247                 break;
1248         }
1249
1250  out:
1251         switch (ret) {
1252         case BLKPREP_KILL:
1253                 req->errors = DID_NO_CONNECT << 16;
1254                 break;
1255         case BLKPREP_DEFER:
1256                 /*
1257                  * If we defer, the elv_next_request() returns NULL, but the
1258                  * queue must be restarted, so we plug here if no returning
1259                  * command will automatically do that.
1260                  */
1261                 if (sdev->device_busy == 0)
1262                         blk_plug_device(q);
1263                 break;
1264         default:
1265                 req->cmd_flags |= REQ_DONTPREP;
1266         }
1267
1268         return ret;
1269 }
1270
1271 /*
1272  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1273  * return 0.
1274  *
1275  * Called with the queue_lock held.
1276  */
1277 static inline int scsi_dev_queue_ready(struct request_queue *q,
1278                                   struct scsi_device *sdev)
1279 {
1280         if (sdev->device_busy >= sdev->queue_depth)
1281                 return 0;
1282         if (sdev->device_busy == 0 && sdev->device_blocked) {
1283                 /*
1284                  * unblock after device_blocked iterates to zero
1285                  */
1286                 if (--sdev->device_blocked == 0) {
1287                         SCSI_LOG_MLQUEUE(3,
1288                                    sdev_printk(KERN_INFO, sdev,
1289                                    "unblocking device at zero depth\n"));
1290                 } else {
1291                         blk_plug_device(q);
1292                         return 0;
1293                 }
1294         }
1295         if (sdev->device_blocked)
1296                 return 0;
1297
1298         return 1;
1299 }
1300
1301 /*
1302  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1303  * return 0. We must end up running the queue again whenever 0 is
1304  * returned, else IO can hang.
1305  *
1306  * Called with host_lock held.
1307  */
1308 static inline int scsi_host_queue_ready(struct request_queue *q,
1309                                    struct Scsi_Host *shost,
1310                                    struct scsi_device *sdev)
1311 {
1312         if (scsi_host_in_recovery(shost))
1313                 return 0;
1314         if (shost->host_busy == 0 && shost->host_blocked) {
1315                 /*
1316                  * unblock after host_blocked iterates to zero
1317                  */
1318                 if (--shost->host_blocked == 0) {
1319                         SCSI_LOG_MLQUEUE(3,
1320                                 printk("scsi%d unblocking host at zero depth\n",
1321                                         shost->host_no));
1322                 } else {
1323                         blk_plug_device(q);
1324                         return 0;
1325                 }
1326         }
1327         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1328             shost->host_blocked || shost->host_self_blocked) {
1329                 if (list_empty(&sdev->starved_entry))
1330                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1331                 return 0;
1332         }
1333
1334         /* We're OK to process the command, so we can't be starved */
1335         if (!list_empty(&sdev->starved_entry))
1336                 list_del_init(&sdev->starved_entry);
1337
1338         return 1;
1339 }
1340
1341 /*
1342  * Kill a request for a dead device
1343  */
1344 static void scsi_kill_request(struct request *req, request_queue_t *q)
1345 {
1346         struct scsi_cmnd *cmd = req->special;
1347         struct scsi_device *sdev = cmd->device;
1348         struct Scsi_Host *shost = sdev->host;
1349
1350         blkdev_dequeue_request(req);
1351
1352         if (unlikely(cmd == NULL)) {
1353                 printk(KERN_CRIT "impossible request in %s.\n",
1354                                  __FUNCTION__);
1355                 BUG();
1356         }
1357
1358         scsi_init_cmd_errh(cmd);
1359         cmd->result = DID_NO_CONNECT << 16;
1360         atomic_inc(&cmd->device->iorequest_cnt);
1361
1362         /*
1363          * SCSI request completion path will do scsi_device_unbusy(),
1364          * bump busy counts.  To bump the counters, we need to dance
1365          * with the locks as normal issue path does.
1366          */
1367         sdev->device_busy++;
1368         spin_unlock(sdev->request_queue->queue_lock);
1369         spin_lock(shost->host_lock);
1370         shost->host_busy++;
1371         spin_unlock(shost->host_lock);
1372         spin_lock(sdev->request_queue->queue_lock);
1373
1374         __scsi_done(cmd);
1375 }
1376
1377 static void scsi_softirq_done(struct request *rq)
1378 {
1379         struct scsi_cmnd *cmd = rq->completion_data;
1380         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1381         int disposition;
1382
1383         INIT_LIST_HEAD(&cmd->eh_entry);
1384
1385         disposition = scsi_decide_disposition(cmd);
1386         if (disposition != SUCCESS &&
1387             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1388                 sdev_printk(KERN_ERR, cmd->device,
1389                             "timing out command, waited %lus\n",
1390                             wait_for/HZ);
1391                 disposition = SUCCESS;
1392         }
1393                         
1394         scsi_log_completion(cmd, disposition);
1395
1396         switch (disposition) {
1397                 case SUCCESS:
1398                         scsi_finish_command(cmd);
1399                         break;
1400                 case NEEDS_RETRY:
1401                         scsi_retry_command(cmd);
1402                         break;
1403                 case ADD_TO_MLQUEUE:
1404                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1405                         break;
1406                 default:
1407                         if (!scsi_eh_scmd_add(cmd, 0))
1408                                 scsi_finish_command(cmd);
1409         }
1410 }
1411
1412 /*
1413  * Function:    scsi_request_fn()
1414  *
1415  * Purpose:     Main strategy routine for SCSI.
1416  *
1417  * Arguments:   q       - Pointer to actual queue.
1418  *
1419  * Returns:     Nothing
1420  *
1421  * Lock status: IO request lock assumed to be held when called.
1422  */
1423 static void scsi_request_fn(struct request_queue *q)
1424 {
1425         struct scsi_device *sdev = q->queuedata;
1426         struct Scsi_Host *shost;
1427         struct scsi_cmnd *cmd;
1428         struct request *req;
1429
1430         if (!sdev) {
1431                 printk("scsi: killing requests for dead queue\n");
1432                 while ((req = elv_next_request(q)) != NULL)
1433                         scsi_kill_request(req, q);
1434                 return;
1435         }
1436
1437         if(!get_device(&sdev->sdev_gendev))
1438                 /* We must be tearing the block queue down already */
1439                 return;
1440
1441         /*
1442          * To start with, we keep looping until the queue is empty, or until
1443          * the host is no longer able to accept any more requests.
1444          */
1445         shost = sdev->host;
1446         while (!blk_queue_plugged(q)) {
1447                 int rtn;
1448                 /*
1449                  * get next queueable request.  We do this early to make sure
1450                  * that the request is fully prepared even if we cannot 
1451                  * accept it.
1452                  */
1453                 req = elv_next_request(q);
1454                 if (!req || !scsi_dev_queue_ready(q, sdev))
1455                         break;
1456
1457                 if (unlikely(!scsi_device_online(sdev))) {
1458                         sdev_printk(KERN_ERR, sdev,
1459                                     "rejecting I/O to offline device\n");
1460                         scsi_kill_request(req, q);
1461                         continue;
1462                 }
1463
1464
1465                 /*
1466                  * Remove the request from the request list.
1467                  */
1468                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1469                         blkdev_dequeue_request(req);
1470                 sdev->device_busy++;
1471
1472                 spin_unlock(q->queue_lock);
1473                 cmd = req->special;
1474                 if (unlikely(cmd == NULL)) {
1475                         printk(KERN_CRIT "impossible request in %s.\n"
1476                                          "please mail a stack trace to "
1477                                          "linux-scsi@vger.kernel.org\n",
1478                                          __FUNCTION__);
1479                         blk_dump_rq_flags(req, "foo");
1480                         BUG();
1481                 }
1482                 spin_lock(shost->host_lock);
1483
1484                 if (!scsi_host_queue_ready(q, shost, sdev))
1485                         goto not_ready;
1486                 if (sdev->single_lun) {
1487                         if (scsi_target(sdev)->starget_sdev_user &&
1488                             scsi_target(sdev)->starget_sdev_user != sdev)
1489                                 goto not_ready;
1490                         scsi_target(sdev)->starget_sdev_user = sdev;
1491                 }
1492                 shost->host_busy++;
1493
1494                 /*
1495                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1496                  *              take the lock again.
1497                  */
1498                 spin_unlock_irq(shost->host_lock);
1499
1500                 /*
1501                  * Finally, initialize any error handling parameters, and set up
1502                  * the timers for timeouts.
1503                  */
1504                 scsi_init_cmd_errh(cmd);
1505
1506                 /*
1507                  * Dispatch the command to the low-level driver.
1508                  */
1509                 rtn = scsi_dispatch_cmd(cmd);
1510                 spin_lock_irq(q->queue_lock);
1511                 if(rtn) {
1512                         /* we're refusing the command; because of
1513                          * the way locks get dropped, we need to 
1514                          * check here if plugging is required */
1515                         if(sdev->device_busy == 0)
1516                                 blk_plug_device(q);
1517
1518                         break;
1519                 }
1520         }
1521
1522         goto out;
1523
1524  not_ready:
1525         spin_unlock_irq(shost->host_lock);
1526
1527         /*
1528          * lock q, handle tag, requeue req, and decrement device_busy. We
1529          * must return with queue_lock held.
1530          *
1531          * Decrementing device_busy without checking it is OK, as all such
1532          * cases (host limits or settings) should run the queue at some
1533          * later time.
1534          */
1535         spin_lock_irq(q->queue_lock);
1536         blk_requeue_request(q, req);
1537         sdev->device_busy--;
1538         if(sdev->device_busy == 0)
1539                 blk_plug_device(q);
1540  out:
1541         /* must be careful here...if we trigger the ->remove() function
1542          * we cannot be holding the q lock */
1543         spin_unlock_irq(q->queue_lock);
1544         put_device(&sdev->sdev_gendev);
1545         spin_lock_irq(q->queue_lock);
1546 }
1547
1548 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1549 {
1550         struct device *host_dev;
1551         u64 bounce_limit = 0xffffffff;
1552
1553         if (shost->unchecked_isa_dma)
1554                 return BLK_BOUNCE_ISA;
1555         /*
1556          * Platforms with virtual-DMA translation
1557          * hardware have no practical limit.
1558          */
1559         if (!PCI_DMA_BUS_IS_PHYS)
1560                 return BLK_BOUNCE_ANY;
1561
1562         host_dev = scsi_get_device(shost);
1563         if (host_dev && host_dev->dma_mask)
1564                 bounce_limit = *host_dev->dma_mask;
1565
1566         return bounce_limit;
1567 }
1568 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1569
1570 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1571 {
1572         struct Scsi_Host *shost = sdev->host;
1573         struct request_queue *q;
1574
1575         q = blk_init_queue(scsi_request_fn, NULL);
1576         if (!q)
1577                 return NULL;
1578
1579         blk_queue_prep_rq(q, scsi_prep_fn);
1580
1581         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1582         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1583         blk_queue_max_sectors(q, shost->max_sectors);
1584         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1585         blk_queue_segment_boundary(q, shost->dma_boundary);
1586         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1587         blk_queue_softirq_done(q, scsi_softirq_done);
1588
1589         if (!shost->use_clustering)
1590                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1591         return q;
1592 }
1593
1594 void scsi_free_queue(struct request_queue *q)
1595 {
1596         blk_cleanup_queue(q);
1597 }
1598
1599 /*
1600  * Function:    scsi_block_requests()
1601  *
1602  * Purpose:     Utility function used by low-level drivers to prevent further
1603  *              commands from being queued to the device.
1604  *
1605  * Arguments:   shost       - Host in question
1606  *
1607  * Returns:     Nothing
1608  *
1609  * Lock status: No locks are assumed held.
1610  *
1611  * Notes:       There is no timer nor any other means by which the requests
1612  *              get unblocked other than the low-level driver calling
1613  *              scsi_unblock_requests().
1614  */
1615 void scsi_block_requests(struct Scsi_Host *shost)
1616 {
1617         shost->host_self_blocked = 1;
1618 }
1619 EXPORT_SYMBOL(scsi_block_requests);
1620
1621 /*
1622  * Function:    scsi_unblock_requests()
1623  *
1624  * Purpose:     Utility function used by low-level drivers to allow further
1625  *              commands from being queued to the device.
1626  *
1627  * Arguments:   shost       - Host in question
1628  *
1629  * Returns:     Nothing
1630  *
1631  * Lock status: No locks are assumed held.
1632  *
1633  * Notes:       There is no timer nor any other means by which the requests
1634  *              get unblocked other than the low-level driver calling
1635  *              scsi_unblock_requests().
1636  *
1637  *              This is done as an API function so that changes to the
1638  *              internals of the scsi mid-layer won't require wholesale
1639  *              changes to drivers that use this feature.
1640  */
1641 void scsi_unblock_requests(struct Scsi_Host *shost)
1642 {
1643         shost->host_self_blocked = 0;
1644         scsi_run_host_queues(shost);
1645 }
1646 EXPORT_SYMBOL(scsi_unblock_requests);
1647
1648 int __init scsi_init_queue(void)
1649 {
1650         int i;
1651
1652         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1653                                         sizeof(struct scsi_io_context),
1654                                         0, 0, NULL, NULL);
1655         if (!scsi_io_context_cache) {
1656                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1657                 return -ENOMEM;
1658         }
1659
1660         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1661                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1662                 int size = sgp->size * sizeof(struct scatterlist);
1663
1664                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1665                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1666                 if (!sgp->slab) {
1667                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1668                                         sgp->name);
1669                 }
1670
1671                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1672                                                      sgp->slab);
1673                 if (!sgp->pool) {
1674                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1675                                         sgp->name);
1676                 }
1677         }
1678
1679         return 0;
1680 }
1681
1682 void scsi_exit_queue(void)
1683 {
1684         int i;
1685
1686         kmem_cache_destroy(scsi_io_context_cache);
1687
1688         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1689                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1690                 mempool_destroy(sgp->pool);
1691                 kmem_cache_destroy(sgp->slab);
1692         }
1693 }
1694
1695 /**
1696  *      scsi_mode_select - issue a mode select
1697  *      @sdev:  SCSI device to be queried
1698  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1699  *      @sp:    Save page bit (0 == don't save, 1 == save)
1700  *      @modepage: mode page being requested
1701  *      @buffer: request buffer (may not be smaller than eight bytes)
1702  *      @len:   length of request buffer.
1703  *      @timeout: command timeout
1704  *      @retries: number of retries before failing
1705  *      @data: returns a structure abstracting the mode header data
1706  *      @sense: place to put sense data (or NULL if no sense to be collected).
1707  *              must be SCSI_SENSE_BUFFERSIZE big.
1708  *
1709  *      Returns zero if successful; negative error number or scsi
1710  *      status on error
1711  *
1712  */
1713 int
1714 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1715                  unsigned char *buffer, int len, int timeout, int retries,
1716                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1717 {
1718         unsigned char cmd[10];
1719         unsigned char *real_buffer;
1720         int ret;
1721
1722         memset(cmd, 0, sizeof(cmd));
1723         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1724
1725         if (sdev->use_10_for_ms) {
1726                 if (len > 65535)
1727                         return -EINVAL;
1728                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1729                 if (!real_buffer)
1730                         return -ENOMEM;
1731                 memcpy(real_buffer + 8, buffer, len);
1732                 len += 8;
1733                 real_buffer[0] = 0;
1734                 real_buffer[1] = 0;
1735                 real_buffer[2] = data->medium_type;
1736                 real_buffer[3] = data->device_specific;
1737                 real_buffer[4] = data->longlba ? 0x01 : 0;
1738                 real_buffer[5] = 0;
1739                 real_buffer[6] = data->block_descriptor_length >> 8;
1740                 real_buffer[7] = data->block_descriptor_length;
1741
1742                 cmd[0] = MODE_SELECT_10;
1743                 cmd[7] = len >> 8;
1744                 cmd[8] = len;
1745         } else {
1746                 if (len > 255 || data->block_descriptor_length > 255 ||
1747                     data->longlba)
1748                         return -EINVAL;
1749
1750                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1751                 if (!real_buffer)
1752                         return -ENOMEM;
1753                 memcpy(real_buffer + 4, buffer, len);
1754                 len += 4;
1755                 real_buffer[0] = 0;
1756                 real_buffer[1] = data->medium_type;
1757                 real_buffer[2] = data->device_specific;
1758                 real_buffer[3] = data->block_descriptor_length;
1759                 
1760
1761                 cmd[0] = MODE_SELECT;
1762                 cmd[4] = len;
1763         }
1764
1765         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1766                                sshdr, timeout, retries);
1767         kfree(real_buffer);
1768         return ret;
1769 }
1770 EXPORT_SYMBOL_GPL(scsi_mode_select);
1771
1772 /**
1773  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1774  *              six bytes if necessary.
1775  *      @sdev:  SCSI device to be queried
1776  *      @dbd:   set if mode sense will allow block descriptors to be returned
1777  *      @modepage: mode page being requested
1778  *      @buffer: request buffer (may not be smaller than eight bytes)
1779  *      @len:   length of request buffer.
1780  *      @timeout: command timeout
1781  *      @retries: number of retries before failing
1782  *      @data: returns a structure abstracting the mode header data
1783  *      @sense: place to put sense data (or NULL if no sense to be collected).
1784  *              must be SCSI_SENSE_BUFFERSIZE big.
1785  *
1786  *      Returns zero if unsuccessful, or the header offset (either 4
1787  *      or 8 depending on whether a six or ten byte command was
1788  *      issued) if successful.
1789  **/
1790 int
1791 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1792                   unsigned char *buffer, int len, int timeout, int retries,
1793                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1794 {
1795         unsigned char cmd[12];
1796         int use_10_for_ms;
1797         int header_length;
1798         int result;
1799         struct scsi_sense_hdr my_sshdr;
1800
1801         memset(data, 0, sizeof(*data));
1802         memset(&cmd[0], 0, 12);
1803         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1804         cmd[2] = modepage;
1805
1806         /* caller might not be interested in sense, but we need it */
1807         if (!sshdr)
1808                 sshdr = &my_sshdr;
1809
1810  retry:
1811         use_10_for_ms = sdev->use_10_for_ms;
1812
1813         if (use_10_for_ms) {
1814                 if (len < 8)
1815                         len = 8;
1816
1817                 cmd[0] = MODE_SENSE_10;
1818                 cmd[8] = len;
1819                 header_length = 8;
1820         } else {
1821                 if (len < 4)
1822                         len = 4;
1823
1824                 cmd[0] = MODE_SENSE;
1825                 cmd[4] = len;
1826                 header_length = 4;
1827         }
1828
1829         memset(buffer, 0, len);
1830
1831         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1832                                   sshdr, timeout, retries);
1833
1834         /* This code looks awful: what it's doing is making sure an
1835          * ILLEGAL REQUEST sense return identifies the actual command
1836          * byte as the problem.  MODE_SENSE commands can return
1837          * ILLEGAL REQUEST if the code page isn't supported */
1838
1839         if (use_10_for_ms && !scsi_status_is_good(result) &&
1840             (driver_byte(result) & DRIVER_SENSE)) {
1841                 if (scsi_sense_valid(sshdr)) {
1842                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1843                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1844                                 /* 
1845                                  * Invalid command operation code
1846                                  */
1847                                 sdev->use_10_for_ms = 0;
1848                                 goto retry;
1849                         }
1850                 }
1851         }
1852
1853         if(scsi_status_is_good(result)) {
1854                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1855                              (modepage == 6 || modepage == 8))) {
1856                         /* Initio breakage? */
1857                         header_length = 0;
1858                         data->length = 13;
1859                         data->medium_type = 0;
1860                         data->device_specific = 0;
1861                         data->longlba = 0;
1862                         data->block_descriptor_length = 0;
1863                 } else if(use_10_for_ms) {
1864                         data->length = buffer[0]*256 + buffer[1] + 2;
1865                         data->medium_type = buffer[2];
1866                         data->device_specific = buffer[3];
1867                         data->longlba = buffer[4] & 0x01;
1868                         data->block_descriptor_length = buffer[6]*256
1869                                 + buffer[7];
1870                 } else {
1871                         data->length = buffer[0] + 1;
1872                         data->medium_type = buffer[1];
1873                         data->device_specific = buffer[2];
1874                         data->block_descriptor_length = buffer[3];
1875                 }
1876                 data->header_length = header_length;
1877         }
1878
1879         return result;
1880 }
1881 EXPORT_SYMBOL(scsi_mode_sense);
1882
1883 int
1884 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1885 {
1886         char cmd[] = {
1887                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1888         };
1889         struct scsi_sense_hdr sshdr;
1890         int result;
1891         
1892         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1893                                   timeout, retries);
1894
1895         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1896
1897                 if ((scsi_sense_valid(&sshdr)) &&
1898                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1899                      (sshdr.sense_key == NOT_READY))) {
1900                         sdev->changed = 1;
1901                         result = 0;
1902                 }
1903         }
1904         return result;
1905 }
1906 EXPORT_SYMBOL(scsi_test_unit_ready);
1907
1908 /**
1909  *      scsi_device_set_state - Take the given device through the device
1910  *              state model.
1911  *      @sdev:  scsi device to change the state of.
1912  *      @state: state to change to.
1913  *
1914  *      Returns zero if unsuccessful or an error if the requested 
1915  *      transition is illegal.
1916  **/
1917 int
1918 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1919 {
1920         enum scsi_device_state oldstate = sdev->sdev_state;
1921
1922         if (state == oldstate)
1923                 return 0;
1924
1925         switch (state) {
1926         case SDEV_CREATED:
1927                 /* There are no legal states that come back to
1928                  * created.  This is the manually initialised start
1929                  * state */
1930                 goto illegal;
1931                         
1932         case SDEV_RUNNING:
1933                 switch (oldstate) {
1934                 case SDEV_CREATED:
1935                 case SDEV_OFFLINE:
1936                 case SDEV_QUIESCE:
1937                 case SDEV_BLOCK:
1938                         break;
1939                 default:
1940                         goto illegal;
1941                 }
1942                 break;
1943
1944         case SDEV_QUIESCE:
1945                 switch (oldstate) {
1946                 case SDEV_RUNNING:
1947                 case SDEV_OFFLINE:
1948                         break;
1949                 default:
1950                         goto illegal;
1951                 }
1952                 break;
1953
1954         case SDEV_OFFLINE:
1955                 switch (oldstate) {
1956                 case SDEV_CREATED:
1957                 case SDEV_RUNNING:
1958                 case SDEV_QUIESCE:
1959                 case SDEV_BLOCK:
1960                         break;
1961                 default:
1962                         goto illegal;
1963                 }
1964                 break;
1965
1966         case SDEV_BLOCK:
1967                 switch (oldstate) {
1968                 case SDEV_CREATED:
1969                 case SDEV_RUNNING:
1970                         break;
1971                 default:
1972                         goto illegal;
1973                 }
1974                 break;
1975
1976         case SDEV_CANCEL:
1977                 switch (oldstate) {
1978                 case SDEV_CREATED:
1979                 case SDEV_RUNNING:
1980                 case SDEV_QUIESCE:
1981                 case SDEV_OFFLINE:
1982                 case SDEV_BLOCK:
1983                         break;
1984                 default:
1985                         goto illegal;
1986                 }
1987                 break;
1988
1989         case SDEV_DEL:
1990                 switch (oldstate) {
1991                 case SDEV_CREATED:
1992                 case SDEV_RUNNING:
1993                 case SDEV_OFFLINE:
1994                 case SDEV_CANCEL:
1995                         break;
1996                 default:
1997                         goto illegal;
1998                 }
1999                 break;
2000
2001         }
2002         sdev->sdev_state = state;
2003         return 0;
2004
2005  illegal:
2006         SCSI_LOG_ERROR_RECOVERY(1, 
2007                                 sdev_printk(KERN_ERR, sdev,
2008                                             "Illegal state transition %s->%s\n",
2009                                             scsi_device_state_name(oldstate),
2010                                             scsi_device_state_name(state))
2011                                 );
2012         return -EINVAL;
2013 }
2014 EXPORT_SYMBOL(scsi_device_set_state);
2015
2016 /**
2017  *      scsi_device_quiesce - Block user issued commands.
2018  *      @sdev:  scsi device to quiesce.
2019  *
2020  *      This works by trying to transition to the SDEV_QUIESCE state
2021  *      (which must be a legal transition).  When the device is in this
2022  *      state, only special requests will be accepted, all others will
2023  *      be deferred.  Since special requests may also be requeued requests,
2024  *      a successful return doesn't guarantee the device will be 
2025  *      totally quiescent.
2026  *
2027  *      Must be called with user context, may sleep.
2028  *
2029  *      Returns zero if unsuccessful or an error if not.
2030  **/
2031 int
2032 scsi_device_quiesce(struct scsi_device *sdev)
2033 {
2034         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2035         if (err)
2036                 return err;
2037
2038         scsi_run_queue(sdev->request_queue);
2039         while (sdev->device_busy) {
2040                 msleep_interruptible(200);
2041                 scsi_run_queue(sdev->request_queue);
2042         }
2043         return 0;
2044 }
2045 EXPORT_SYMBOL(scsi_device_quiesce);
2046
2047 /**
2048  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2049  *      @sdev:  scsi device to resume.
2050  *
2051  *      Moves the device from quiesced back to running and restarts the
2052  *      queues.
2053  *
2054  *      Must be called with user context, may sleep.
2055  **/
2056 void
2057 scsi_device_resume(struct scsi_device *sdev)
2058 {
2059         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2060                 return;
2061         scsi_run_queue(sdev->request_queue);
2062 }
2063 EXPORT_SYMBOL(scsi_device_resume);
2064
2065 static void
2066 device_quiesce_fn(struct scsi_device *sdev, void *data)
2067 {
2068         scsi_device_quiesce(sdev);
2069 }
2070
2071 void
2072 scsi_target_quiesce(struct scsi_target *starget)
2073 {
2074         starget_for_each_device(starget, NULL, device_quiesce_fn);
2075 }
2076 EXPORT_SYMBOL(scsi_target_quiesce);
2077
2078 static void
2079 device_resume_fn(struct scsi_device *sdev, void *data)
2080 {
2081         scsi_device_resume(sdev);
2082 }
2083
2084 void
2085 scsi_target_resume(struct scsi_target *starget)
2086 {
2087         starget_for_each_device(starget, NULL, device_resume_fn);
2088 }
2089 EXPORT_SYMBOL(scsi_target_resume);
2090
2091 /**
2092  * scsi_internal_device_block - internal function to put a device
2093  *                              temporarily into the SDEV_BLOCK state
2094  * @sdev:       device to block
2095  *
2096  * Block request made by scsi lld's to temporarily stop all
2097  * scsi commands on the specified device.  Called from interrupt
2098  * or normal process context.
2099  *
2100  * Returns zero if successful or error if not
2101  *
2102  * Notes:       
2103  *      This routine transitions the device to the SDEV_BLOCK state
2104  *      (which must be a legal transition).  When the device is in this
2105  *      state, all commands are deferred until the scsi lld reenables
2106  *      the device with scsi_device_unblock or device_block_tmo fires.
2107  *      This routine assumes the host_lock is held on entry.
2108  **/
2109 int
2110 scsi_internal_device_block(struct scsi_device *sdev)
2111 {
2112         request_queue_t *q = sdev->request_queue;
2113         unsigned long flags;
2114         int err = 0;
2115
2116         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2117         if (err)
2118                 return err;
2119
2120         /* 
2121          * The device has transitioned to SDEV_BLOCK.  Stop the
2122          * block layer from calling the midlayer with this device's
2123          * request queue. 
2124          */
2125         spin_lock_irqsave(q->queue_lock, flags);
2126         blk_stop_queue(q);
2127         spin_unlock_irqrestore(q->queue_lock, flags);
2128
2129         return 0;
2130 }
2131 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2132  
2133 /**
2134  * scsi_internal_device_unblock - resume a device after a block request
2135  * @sdev:       device to resume
2136  *
2137  * Called by scsi lld's or the midlayer to restart the device queue
2138  * for the previously suspended scsi device.  Called from interrupt or
2139  * normal process context.
2140  *
2141  * Returns zero if successful or error if not.
2142  *
2143  * Notes:       
2144  *      This routine transitions the device to the SDEV_RUNNING state
2145  *      (which must be a legal transition) allowing the midlayer to
2146  *      goose the queue for this device.  This routine assumes the 
2147  *      host_lock is held upon entry.
2148  **/
2149 int
2150 scsi_internal_device_unblock(struct scsi_device *sdev)
2151 {
2152         request_queue_t *q = sdev->request_queue; 
2153         int err;
2154         unsigned long flags;
2155         
2156         /* 
2157          * Try to transition the scsi device to SDEV_RUNNING
2158          * and goose the device queue if successful.  
2159          */
2160         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2161         if (err)
2162                 return err;
2163
2164         spin_lock_irqsave(q->queue_lock, flags);
2165         blk_start_queue(q);
2166         spin_unlock_irqrestore(q->queue_lock, flags);
2167
2168         return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2171
2172 static void
2173 device_block(struct scsi_device *sdev, void *data)
2174 {
2175         scsi_internal_device_block(sdev);
2176 }
2177
2178 static int
2179 target_block(struct device *dev, void *data)
2180 {
2181         if (scsi_is_target_device(dev))
2182                 starget_for_each_device(to_scsi_target(dev), NULL,
2183                                         device_block);
2184         return 0;
2185 }
2186
2187 void
2188 scsi_target_block(struct device *dev)
2189 {
2190         if (scsi_is_target_device(dev))
2191                 starget_for_each_device(to_scsi_target(dev), NULL,
2192                                         device_block);
2193         else
2194                 device_for_each_child(dev, NULL, target_block);
2195 }
2196 EXPORT_SYMBOL_GPL(scsi_target_block);
2197
2198 static void
2199 device_unblock(struct scsi_device *sdev, void *data)
2200 {
2201         scsi_internal_device_unblock(sdev);
2202 }
2203
2204 static int
2205 target_unblock(struct device *dev, void *data)
2206 {
2207         if (scsi_is_target_device(dev))
2208                 starget_for_each_device(to_scsi_target(dev), NULL,
2209                                         device_unblock);
2210         return 0;
2211 }
2212
2213 void
2214 scsi_target_unblock(struct device *dev)
2215 {
2216         if (scsi_is_target_device(dev))
2217                 starget_for_each_device(to_scsi_target(dev), NULL,
2218                                         device_unblock);
2219         else
2220                 device_for_each_child(dev, NULL, target_unblock);
2221 }
2222 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2223
2224 /**
2225  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2226  * @sg:         scatter-gather list
2227  * @sg_count:   number of segments in sg
2228  * @offset:     offset in bytes into sg, on return offset into the mapped area
2229  * @len:        bytes to map, on return number of bytes mapped
2230  *
2231  * Returns virtual address of the start of the mapped page
2232  */
2233 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2234                           size_t *offset, size_t *len)
2235 {
2236         int i;
2237         size_t sg_len = 0, len_complete = 0;
2238         struct page *page;
2239
2240         for (i = 0; i < sg_count; i++) {
2241                 len_complete = sg_len; /* Complete sg-entries */
2242                 sg_len += sg[i].length;
2243                 if (sg_len > *offset)
2244                         break;
2245         }
2246
2247         if (unlikely(i == sg_count)) {
2248                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2249                         "elements %d\n",
2250                        __FUNCTION__, sg_len, *offset, sg_count);
2251                 WARN_ON(1);
2252                 return NULL;
2253         }
2254
2255         /* Offset starting from the beginning of first page in this sg-entry */
2256         *offset = *offset - len_complete + sg[i].offset;
2257
2258         /* Assumption: contiguous pages can be accessed as "page + i" */
2259         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2260         *offset &= ~PAGE_MASK;
2261
2262         /* Bytes in this sg-entry from *offset to the end of the page */
2263         sg_len = PAGE_SIZE - *offset;
2264         if (*len > sg_len)
2265                 *len = sg_len;
2266
2267         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2268 }
2269 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2270
2271 /**
2272  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2273  *                         mapped with scsi_kmap_atomic_sg
2274  * @virt:       virtual address to be unmapped
2275  */
2276 void scsi_kunmap_atomic_sg(void *virt)
2277 {
2278         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2279 }
2280 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);