Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         spin_lock_irqsave(q->queue_lock, flags);
141         blk_requeue_request(q, cmd->request);
142         kblockd_schedule_work(q, &device->requeue_work);
143         spin_unlock_irqrestore(q->queue_lock, flags);
144 }
145
146 /*
147  * Function:    scsi_queue_insert()
148  *
149  * Purpose:     Insert a command in the midlevel queue.
150  *
151  * Arguments:   cmd    - command that we are adding to queue.
152  *              reason - why we are inserting command to queue.
153  *
154  * Lock status: Assumed that lock is not held upon entry.
155  *
156  * Returns:     Nothing.
157  *
158  * Notes:       We do this for one of two cases.  Either the host is busy
159  *              and it cannot accept any more commands for the time being,
160  *              or the device returned QUEUE_FULL and can accept no more
161  *              commands.
162  * Notes:       This could be called either from an interrupt context or a
163  *              normal process context.
164  */
165 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
166 {
167         __scsi_queue_insert(cmd, reason, 1);
168 }
169 /**
170  * scsi_execute - insert request and wait for the result
171  * @sdev:       scsi device
172  * @cmd:        scsi command
173  * @data_direction: data direction
174  * @buffer:     data buffer
175  * @bufflen:    len of buffer
176  * @sense:      optional sense buffer
177  * @timeout:    request timeout in seconds
178  * @retries:    number of times to retry request
179  * @flags:      or into request flags;
180  * @resid:      optional residual length
181  *
182  * returns the req->errors value which is the scsi_cmnd result
183  * field.
184  */
185 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
186                  int data_direction, void *buffer, unsigned bufflen,
187                  unsigned char *sense, int timeout, int retries, u64 flags,
188                  int *resid)
189 {
190         struct request *req;
191         int write = (data_direction == DMA_TO_DEVICE);
192         int ret = DRIVER_ERROR << 24;
193
194         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
195         if (!req)
196                 return ret;
197
198         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
199                                         buffer, bufflen, __GFP_WAIT))
200                 goto out;
201
202         req->cmd_len = COMMAND_SIZE(cmd[0]);
203         memcpy(req->cmd, cmd, req->cmd_len);
204         req->sense = sense;
205         req->sense_len = 0;
206         req->retries = retries;
207         req->timeout = timeout;
208         req->cmd_type = REQ_TYPE_BLOCK_PC;
209         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
210
211         /*
212          * head injection *required* here otherwise quiesce won't work
213          */
214         blk_execute_rq(req->q, NULL, req, 1);
215
216         /*
217          * Some devices (USB mass-storage in particular) may transfer
218          * garbage data together with a residue indicating that the data
219          * is invalid.  Prevent the garbage from being misinterpreted
220          * and prevent security leaks by zeroing out the excess data.
221          */
222         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
223                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
224
225         if (resid)
226                 *resid = req->resid_len;
227         ret = req->errors;
228  out:
229         blk_put_request(req);
230
231         return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
236                      int data_direction, void *buffer, unsigned bufflen,
237                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
238                      int *resid, u64 flags)
239 {
240         char *sense = NULL;
241         int result;
242         
243         if (sshdr) {
244                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245                 if (!sense)
246                         return DRIVER_ERROR << 24;
247         }
248         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249                               sense, timeout, retries, flags, resid);
250         if (sshdr)
251                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253         kfree(sense);
254         return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req_flags);
257
258 /*
259  * Function:    scsi_init_cmd_errh()
260  *
261  * Purpose:     Initialize cmd fields related to error handling.
262  *
263  * Arguments:   cmd     - command that is ready to be queued.
264  *
265  * Notes:       This function has the job of initializing a number of
266  *              fields related to error handling.   Typically this will
267  *              be called once for each command, as required.
268  */
269 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
270 {
271         cmd->serial_number = 0;
272         scsi_set_resid(cmd, 0);
273         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
274         if (cmd->cmd_len == 0)
275                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
276 }
277
278 void scsi_device_unbusy(struct scsi_device *sdev)
279 {
280         struct Scsi_Host *shost = sdev->host;
281         struct scsi_target *starget = scsi_target(sdev);
282         unsigned long flags;
283
284         spin_lock_irqsave(shost->host_lock, flags);
285         shost->host_busy--;
286         starget->target_busy--;
287         if (unlikely(scsi_host_in_recovery(shost) &&
288                      (shost->host_failed || shost->host_eh_scheduled)))
289                 scsi_eh_wakeup(shost);
290         spin_unlock(shost->host_lock);
291         spin_lock(sdev->request_queue->queue_lock);
292         sdev->device_busy--;
293         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
294 }
295
296 /*
297  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
298  * and call blk_run_queue for all the scsi_devices on the target -
299  * including current_sdev first.
300  *
301  * Called with *no* scsi locks held.
302  */
303 static void scsi_single_lun_run(struct scsi_device *current_sdev)
304 {
305         struct Scsi_Host *shost = current_sdev->host;
306         struct scsi_device *sdev, *tmp;
307         struct scsi_target *starget = scsi_target(current_sdev);
308         unsigned long flags;
309
310         spin_lock_irqsave(shost->host_lock, flags);
311         starget->starget_sdev_user = NULL;
312         spin_unlock_irqrestore(shost->host_lock, flags);
313
314         /*
315          * Call blk_run_queue for all LUNs on the target, starting with
316          * current_sdev. We race with others (to set starget_sdev_user),
317          * but in most cases, we will be first. Ideally, each LU on the
318          * target would get some limited time or requests on the target.
319          */
320         blk_run_queue(current_sdev->request_queue);
321
322         spin_lock_irqsave(shost->host_lock, flags);
323         if (starget->starget_sdev_user)
324                 goto out;
325         list_for_each_entry_safe(sdev, tmp, &starget->devices,
326                         same_target_siblings) {
327                 if (sdev == current_sdev)
328                         continue;
329                 if (scsi_device_get(sdev))
330                         continue;
331
332                 spin_unlock_irqrestore(shost->host_lock, flags);
333                 blk_run_queue(sdev->request_queue);
334                 spin_lock_irqsave(shost->host_lock, flags);
335         
336                 scsi_device_put(sdev);
337         }
338  out:
339         spin_unlock_irqrestore(shost->host_lock, flags);
340 }
341
342 static inline int scsi_device_is_busy(struct scsi_device *sdev)
343 {
344         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
345                 return 1;
346
347         return 0;
348 }
349
350 static inline int scsi_target_is_busy(struct scsi_target *starget)
351 {
352         return ((starget->can_queue > 0 &&
353                  starget->target_busy >= starget->can_queue) ||
354                  starget->target_blocked);
355 }
356
357 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
358 {
359         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
360             shost->host_blocked || shost->host_self_blocked)
361                 return 1;
362
363         return 0;
364 }
365
366 static void scsi_starved_list_run(struct Scsi_Host *shost)
367 {
368         LIST_HEAD(starved_list);
369         struct scsi_device *sdev;
370         unsigned long flags;
371
372         spin_lock_irqsave(shost->host_lock, flags);
373         list_splice_init(&shost->starved_list, &starved_list);
374
375         while (!list_empty(&starved_list)) {
376                 struct request_queue *slq;
377
378                 /*
379                  * As long as shost is accepting commands and we have
380                  * starved queues, call blk_run_queue. scsi_request_fn
381                  * drops the queue_lock and can add us back to the
382                  * starved_list.
383                  *
384                  * host_lock protects the starved_list and starved_entry.
385                  * scsi_request_fn must get the host_lock before checking
386                  * or modifying starved_list or starved_entry.
387                  */
388                 if (scsi_host_is_busy(shost))
389                         break;
390
391                 sdev = list_entry(starved_list.next,
392                                   struct scsi_device, starved_entry);
393                 list_del_init(&sdev->starved_entry);
394                 if (scsi_target_is_busy(scsi_target(sdev))) {
395                         list_move_tail(&sdev->starved_entry,
396                                        &shost->starved_list);
397                         continue;
398                 }
399
400                 /*
401                  * Once we drop the host lock, a racing scsi_remove_device()
402                  * call may remove the sdev from the starved list and destroy
403                  * it and the queue.  Mitigate by taking a reference to the
404                  * queue and never touching the sdev again after we drop the
405                  * host lock.  Note: if __scsi_remove_device() invokes
406                  * blk_cleanup_queue() before the queue is run from this
407                  * function then blk_run_queue() will return immediately since
408                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
409                  */
410                 slq = sdev->request_queue;
411                 if (!blk_get_queue(slq))
412                         continue;
413                 spin_unlock_irqrestore(shost->host_lock, flags);
414
415                 blk_run_queue(slq);
416                 blk_put_queue(slq);
417
418                 spin_lock_irqsave(shost->host_lock, flags);
419         }
420         /* put any unprocessed entries back */
421         list_splice(&starved_list, &shost->starved_list);
422         spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 /*
426  * Function:   scsi_run_queue()
427  *
428  * Purpose:    Select a proper request queue to serve next
429  *
430  * Arguments:  q       - last request's queue
431  *
432  * Returns:     Nothing
433  *
434  * Notes:      The previous command was completely finished, start
435  *             a new one if possible.
436  */
437 static void scsi_run_queue(struct request_queue *q)
438 {
439         struct scsi_device *sdev = q->queuedata;
440
441         if (scsi_target(sdev)->single_lun)
442                 scsi_single_lun_run(sdev);
443         if (!list_empty(&sdev->host->starved_list))
444                 scsi_starved_list_run(sdev->host);
445
446         blk_run_queue(q);
447 }
448
449 void scsi_requeue_run_queue(struct work_struct *work)
450 {
451         struct scsi_device *sdev;
452         struct request_queue *q;
453
454         sdev = container_of(work, struct scsi_device, requeue_work);
455         q = sdev->request_queue;
456         scsi_run_queue(q);
457 }
458
459 /*
460  * Function:    scsi_requeue_command()
461  *
462  * Purpose:     Handle post-processing of completed commands.
463  *
464  * Arguments:   q       - queue to operate on
465  *              cmd     - command that may need to be requeued.
466  *
467  * Returns:     Nothing
468  *
469  * Notes:       After command completion, there may be blocks left
470  *              over which weren't finished by the previous command
471  *              this can be for a number of reasons - the main one is
472  *              I/O errors in the middle of the request, in which case
473  *              we need to request the blocks that come after the bad
474  *              sector.
475  * Notes:       Upon return, cmd is a stale pointer.
476  */
477 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
478 {
479         struct scsi_device *sdev = cmd->device;
480         struct request *req = cmd->request;
481         unsigned long flags;
482
483         spin_lock_irqsave(q->queue_lock, flags);
484         blk_unprep_request(req);
485         req->special = NULL;
486         scsi_put_command(cmd);
487         blk_requeue_request(q, req);
488         spin_unlock_irqrestore(q->queue_lock, flags);
489
490         scsi_run_queue(q);
491
492         put_device(&sdev->sdev_gendev);
493 }
494
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497         struct scsi_device *sdev = cmd->device;
498         struct request_queue *q = sdev->request_queue;
499
500         scsi_put_command(cmd);
501         scsi_run_queue(q);
502
503         put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508         struct scsi_device *sdev;
509
510         shost_for_each_device(sdev, shost)
511                 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *              of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd      - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *              requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  * 
534  *              We are guaranteeing that the request queue will be goosed
535  *              at some point during this call.
536  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539                                           int bytes, int requeue)
540 {
541         struct request_queue *q = cmd->device->request_queue;
542         struct request *req = cmd->request;
543
544         /*
545          * If there are blocks left over at the end, set up the command
546          * to queue the remainder of them.
547          */
548         if (blk_end_request(req, error, bytes)) {
549                 /* kill remainder if no retrys */
550                 if (error && scsi_noretry_cmd(cmd))
551                         blk_end_request_all(req, error);
552                 else {
553                         if (requeue) {
554                                 /*
555                                  * Bleah.  Leftovers again.  Stick the
556                                  * leftovers in the front of the
557                                  * queue, and goose the queue again.
558                                  */
559                                 scsi_release_buffers(cmd);
560                                 scsi_requeue_command(q, cmd);
561                                 cmd = NULL;
562                         }
563                         return cmd;
564                 }
565         }
566
567         /*
568          * This will goose the queue request function at the end, so we don't
569          * need to worry about launching another command.
570          */
571         __scsi_release_buffers(cmd, 0);
572         scsi_next_command(cmd);
573         return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578         unsigned int index;
579
580         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582         if (nents <= 8)
583                 index = 0;
584         else
585                 index = get_count_order(nents) - 3;
586
587         return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592         struct scsi_host_sg_pool *sgp;
593
594         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595         mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600         struct scsi_host_sg_pool *sgp;
601
602         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603         return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607                               gfp_t gfp_mask)
608 {
609         int ret;
610
611         BUG_ON(!nents);
612
613         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614                                gfp_mask, scsi_sg_alloc);
615         if (unlikely(ret))
616                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617                                 scsi_sg_free);
618
619         return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630         if (cmd->sdb.table.nents)
631                 scsi_free_sgtable(&cmd->sdb);
632
633         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636                 struct scsi_data_buffer *bidi_sdb =
637                         cmd->request->next_rq->special;
638                 scsi_free_sgtable(bidi_sdb);
639                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640                 cmd->request->next_rq->special = NULL;
641         }
642
643         if (scsi_prot_sg_count(cmd))
644                 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd     - command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *              command, we must release resources allocated during
660  *              the __init_io() function.  Primarily this would involve
661  *              the scatter-gather table, and potentially any bounce
662  *              buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666         __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 /**
671  * __scsi_error_from_host_byte - translate SCSI error code into errno
672  * @cmd:        SCSI command (unused)
673  * @result:     scsi error code
674  *
675  * Translate SCSI error code into standard UNIX errno.
676  * Return values:
677  * -ENOLINK     temporary transport failure
678  * -EREMOTEIO   permanent target failure, do not retry
679  * -EBADE       permanent nexus failure, retry on other path
680  * -ENOSPC      No write space available
681  * -ENODATA     Medium error
682  * -EIO         unspecified I/O error
683  */
684 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
685 {
686         int error = 0;
687
688         switch(host_byte(result)) {
689         case DID_TRANSPORT_FAILFAST:
690                 error = -ENOLINK;
691                 break;
692         case DID_TARGET_FAILURE:
693                 set_host_byte(cmd, DID_OK);
694                 error = -EREMOTEIO;
695                 break;
696         case DID_NEXUS_FAILURE:
697                 set_host_byte(cmd, DID_OK);
698                 error = -EBADE;
699                 break;
700         case DID_ALLOC_FAILURE:
701                 set_host_byte(cmd, DID_OK);
702                 error = -ENOSPC;
703                 break;
704         case DID_MEDIUM_ERROR:
705                 set_host_byte(cmd, DID_OK);
706                 error = -ENODATA;
707                 break;
708         default:
709                 error = -EIO;
710                 break;
711         }
712
713         return error;
714 }
715
716 /*
717  * Function:    scsi_io_completion()
718  *
719  * Purpose:     Completion processing for block device I/O requests.
720  *
721  * Arguments:   cmd   - command that is finished.
722  *
723  * Lock status: Assumed that no lock is held upon entry.
724  *
725  * Returns:     Nothing
726  *
727  * Notes:       This function is matched in terms of capabilities to
728  *              the function that created the scatter-gather list.
729  *              In other words, if there are no bounce buffers
730  *              (the normal case for most drivers), we don't need
731  *              the logic to deal with cleaning up afterwards.
732  *
733  *              We must call scsi_end_request().  This will finish off
734  *              the specified number of sectors.  If we are done, the
735  *              command block will be released and the queue function
736  *              will be goosed.  If we are not done then we have to
737  *              figure out what to do next:
738  *
739  *              a) We can call scsi_requeue_command().  The request
740  *                 will be unprepared and put back on the queue.  Then
741  *                 a new command will be created for it.  This should
742  *                 be used if we made forward progress, or if we want
743  *                 to switch from READ(10) to READ(6) for example.
744  *
745  *              b) We can call scsi_queue_insert().  The request will
746  *                 be put back on the queue and retried using the same
747  *                 command as before, possibly after a delay.
748  *
749  *              c) We can call blk_end_request() with -EIO to fail
750  *                 the remainder of the request.
751  */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754         int result = cmd->result;
755         struct request_queue *q = cmd->device->request_queue;
756         struct request *req = cmd->request;
757         int error = 0;
758         struct scsi_sense_hdr sshdr;
759         int sense_valid = 0;
760         int sense_deferred = 0;
761         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762               ACTION_DELAYED_RETRY} action;
763         char *description = NULL;
764         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
765
766         if (result) {
767                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
768                 if (sense_valid)
769                         sense_deferred = scsi_sense_is_deferred(&sshdr);
770         }
771
772         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
773                 if (result) {
774                         if (sense_valid && req->sense) {
775                                 /*
776                                  * SG_IO wants current and deferred errors
777                                  */
778                                 int len = 8 + cmd->sense_buffer[7];
779
780                                 if (len > SCSI_SENSE_BUFFERSIZE)
781                                         len = SCSI_SENSE_BUFFERSIZE;
782                                 memcpy(req->sense, cmd->sense_buffer,  len);
783                                 req->sense_len = len;
784                         }
785                         if (!sense_deferred)
786                                 error = __scsi_error_from_host_byte(cmd, result);
787                 }
788                 /*
789                  * __scsi_error_from_host_byte may have reset the host_byte
790                  */
791                 req->errors = cmd->result;
792
793                 req->resid_len = scsi_get_resid(cmd);
794
795                 if (scsi_bidi_cmnd(cmd)) {
796                         /*
797                          * Bidi commands Must be complete as a whole,
798                          * both sides at once.
799                          */
800                         req->next_rq->resid_len = scsi_in(cmd)->resid;
801
802                         scsi_release_buffers(cmd);
803                         blk_end_request_all(req, 0);
804
805                         scsi_next_command(cmd);
806                         return;
807                 }
808         }
809
810         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
811         BUG_ON(blk_bidi_rq(req));
812
813         /*
814          * Next deal with any sectors which we were able to correctly
815          * handle.
816          */
817         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
818                                       "%d bytes done.\n",
819                                       blk_rq_sectors(req), good_bytes));
820
821         /*
822          * Recovered errors need reporting, but they're always treated
823          * as success, so fiddle the result code here.  For BLOCK_PC
824          * we already took a copy of the original into rq->errors which
825          * is what gets returned to the user
826          */
827         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829                  * print since caller wants ATA registers. Only occurs on
830                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
831                  */
832                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833                         ;
834                 else if (!(req->cmd_flags & REQ_QUIET))
835                         scsi_print_sense("", cmd);
836                 result = 0;
837                 /* BLOCK_PC may have set error */
838                 error = 0;
839         }
840
841         /*
842          * A number of bytes were successfully read.  If there
843          * are leftovers and there is some kind of error
844          * (result != 0), retry the rest.
845          */
846         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
847                 return;
848
849         error = __scsi_error_from_host_byte(cmd, result);
850
851         if (host_byte(result) == DID_RESET) {
852                 /* Third party bus reset or reset for error recovery
853                  * reasons.  Just retry the command and see what
854                  * happens.
855                  */
856                 action = ACTION_RETRY;
857         } else if (sense_valid && !sense_deferred) {
858                 switch (sshdr.sense_key) {
859                 case UNIT_ATTENTION:
860                         if (cmd->device->removable) {
861                                 /* Detected disc change.  Set a bit
862                                  * and quietly refuse further access.
863                                  */
864                                 cmd->device->changed = 1;
865                                 description = "Media Changed";
866                                 action = ACTION_FAIL;
867                         } else {
868                                 /* Must have been a power glitch, or a
869                                  * bus reset.  Could not have been a
870                                  * media change, so we just retry the
871                                  * command and see what happens.
872                                  */
873                                 action = ACTION_RETRY;
874                         }
875                         break;
876                 case ILLEGAL_REQUEST:
877                         /* If we had an ILLEGAL REQUEST returned, then
878                          * we may have performed an unsupported
879                          * command.  The only thing this should be
880                          * would be a ten byte read where only a six
881                          * byte read was supported.  Also, on a system
882                          * where READ CAPACITY failed, we may have
883                          * read past the end of the disk.
884                          */
885                         if ((cmd->device->use_10_for_rw &&
886                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
887                             (cmd->cmnd[0] == READ_10 ||
888                              cmd->cmnd[0] == WRITE_10)) {
889                                 /* This will issue a new 6-byte command. */
890                                 cmd->device->use_10_for_rw = 0;
891                                 action = ACTION_REPREP;
892                         } else if (sshdr.asc == 0x10) /* DIX */ {
893                                 description = "Host Data Integrity Failure";
894                                 action = ACTION_FAIL;
895                                 error = -EILSEQ;
896                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
897                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
898                                 switch (cmd->cmnd[0]) {
899                                 case UNMAP:
900                                         description = "Discard failure";
901                                         break;
902                                 case WRITE_SAME:
903                                 case WRITE_SAME_16:
904                                         if (cmd->cmnd[1] & 0x8)
905                                                 description = "Discard failure";
906                                         else
907                                                 description =
908                                                         "Write same failure";
909                                         break;
910                                 default:
911                                         description = "Invalid command failure";
912                                         break;
913                                 }
914                                 action = ACTION_FAIL;
915                                 error = -EREMOTEIO;
916                         } else
917                                 action = ACTION_FAIL;
918                         break;
919                 case ABORTED_COMMAND:
920                         action = ACTION_FAIL;
921                         if (sshdr.asc == 0x10) { /* DIF */
922                                 description = "Target Data Integrity Failure";
923                                 error = -EILSEQ;
924                         }
925                         break;
926                 case NOT_READY:
927                         /* If the device is in the process of becoming
928                          * ready, or has a temporary blockage, retry.
929                          */
930                         if (sshdr.asc == 0x04) {
931                                 switch (sshdr.ascq) {
932                                 case 0x01: /* becoming ready */
933                                 case 0x04: /* format in progress */
934                                 case 0x05: /* rebuild in progress */
935                                 case 0x06: /* recalculation in progress */
936                                 case 0x07: /* operation in progress */
937                                 case 0x08: /* Long write in progress */
938                                 case 0x09: /* self test in progress */
939                                 case 0x14: /* space allocation in progress */
940                                         action = ACTION_DELAYED_RETRY;
941                                         break;
942                                 default:
943                                         description = "Device not ready";
944                                         action = ACTION_FAIL;
945                                         break;
946                                 }
947                         } else {
948                                 description = "Device not ready";
949                                 action = ACTION_FAIL;
950                         }
951                         break;
952                 case VOLUME_OVERFLOW:
953                         /* See SSC3rXX or current. */
954                         action = ACTION_FAIL;
955                         break;
956                 default:
957                         description = "Unhandled sense code";
958                         action = ACTION_FAIL;
959                         break;
960                 }
961         } else {
962                 description = "Unhandled error code";
963                 action = ACTION_FAIL;
964         }
965
966         if (action != ACTION_FAIL &&
967             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
968                 action = ACTION_FAIL;
969                 description = "Command timed out";
970         }
971
972         switch (action) {
973         case ACTION_FAIL:
974                 /* Give up and fail the remainder of the request */
975                 scsi_release_buffers(cmd);
976                 if (!(req->cmd_flags & REQ_QUIET)) {
977                         if (description)
978                                 scmd_printk(KERN_INFO, cmd, "%s\n",
979                                             description);
980                         scsi_print_result(cmd);
981                         if (driver_byte(result) & DRIVER_SENSE)
982                                 scsi_print_sense("", cmd);
983                         scsi_print_command(cmd);
984                 }
985                 if (blk_end_request_err(req, error))
986                         scsi_requeue_command(q, cmd);
987                 else
988                         scsi_next_command(cmd);
989                 break;
990         case ACTION_REPREP:
991                 /* Unprep the request and put it back at the head of the queue.
992                  * A new command will be prepared and issued.
993                  */
994                 scsi_release_buffers(cmd);
995                 scsi_requeue_command(q, cmd);
996                 break;
997         case ACTION_RETRY:
998                 /* Retry the same command immediately */
999                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000                 break;
1001         case ACTION_DELAYED_RETRY:
1002                 /* Retry the same command after a delay */
1003                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004                 break;
1005         }
1006 }
1007
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009                              gfp_t gfp_mask)
1010 {
1011         int count;
1012
1013         /*
1014          * If sg table allocation fails, requeue request later.
1015          */
1016         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017                                         gfp_mask))) {
1018                 return BLKPREP_DEFER;
1019         }
1020
1021         req->buffer = NULL;
1022
1023         /* 
1024          * Next, walk the list, and fill in the addresses and sizes of
1025          * each segment.
1026          */
1027         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028         BUG_ON(count > sdb->table.nents);
1029         sdb->table.nents = count;
1030         sdb->length = blk_rq_bytes(req);
1031         return BLKPREP_OK;
1032 }
1033
1034 /*
1035  * Function:    scsi_init_io()
1036  *
1037  * Purpose:     SCSI I/O initialize function.
1038  *
1039  * Arguments:   cmd   - Command descriptor we wish to initialize
1040  *
1041  * Returns:     0 on success
1042  *              BLKPREP_DEFER if the failure is retryable
1043  *              BLKPREP_KILL if the failure is fatal
1044  */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047         struct request *rq = cmd->request;
1048
1049         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050         if (error)
1051                 goto err_exit;
1052
1053         if (blk_bidi_rq(rq)) {
1054                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055                         scsi_sdb_cache, GFP_ATOMIC);
1056                 if (!bidi_sdb) {
1057                         error = BLKPREP_DEFER;
1058                         goto err_exit;
1059                 }
1060
1061                 rq->next_rq->special = bidi_sdb;
1062                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063                 if (error)
1064                         goto err_exit;
1065         }
1066
1067         if (blk_integrity_rq(rq)) {
1068                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069                 int ivecs, count;
1070
1071                 BUG_ON(prot_sdb == NULL);
1072                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073
1074                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075                         error = BLKPREP_DEFER;
1076                         goto err_exit;
1077                 }
1078
1079                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080                                                 prot_sdb->table.sgl);
1081                 BUG_ON(unlikely(count > ivecs));
1082                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083
1084                 cmd->prot_sdb = prot_sdb;
1085                 cmd->prot_sdb->table.nents = count;
1086         }
1087
1088         return BLKPREP_OK ;
1089
1090 err_exit:
1091         scsi_release_buffers(cmd);
1092         cmd->request->special = NULL;
1093         scsi_put_command(cmd);
1094         put_device(&cmd->device->sdev_gendev);
1095         return error;
1096 }
1097 EXPORT_SYMBOL(scsi_init_io);
1098
1099 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1100                 struct request *req)
1101 {
1102         struct scsi_cmnd *cmd;
1103
1104         if (!req->special) {
1105                 /* Bail if we can't get a reference to the device */
1106                 if (!get_device(&sdev->sdev_gendev))
1107                         return NULL;
1108
1109                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110                 if (unlikely(!cmd)) {
1111                         put_device(&sdev->sdev_gendev);
1112                         return NULL;
1113                 }
1114                 req->special = cmd;
1115         } else {
1116                 cmd = req->special;
1117         }
1118
1119         /* pull a tag out of the request if we have one */
1120         cmd->tag = req->tag;
1121         cmd->request = req;
1122
1123         cmd->cmnd = req->cmd;
1124         cmd->prot_op = SCSI_PROT_NORMAL;
1125
1126         return cmd;
1127 }
1128
1129 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1130 {
1131         struct scsi_cmnd *cmd;
1132         int ret = scsi_prep_state_check(sdev, req);
1133
1134         if (ret != BLKPREP_OK)
1135                 return ret;
1136
1137         cmd = scsi_get_cmd_from_req(sdev, req);
1138         if (unlikely(!cmd))
1139                 return BLKPREP_DEFER;
1140
1141         /*
1142          * BLOCK_PC requests may transfer data, in which case they must
1143          * a bio attached to them.  Or they might contain a SCSI command
1144          * that does not transfer data, in which case they may optionally
1145          * submit a request without an attached bio.
1146          */
1147         if (req->bio) {
1148                 int ret;
1149
1150                 BUG_ON(!req->nr_phys_segments);
1151
1152                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1153                 if (unlikely(ret))
1154                         return ret;
1155         } else {
1156                 BUG_ON(blk_rq_bytes(req));
1157
1158                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1159                 req->buffer = NULL;
1160         }
1161
1162         cmd->cmd_len = req->cmd_len;
1163         if (!blk_rq_bytes(req))
1164                 cmd->sc_data_direction = DMA_NONE;
1165         else if (rq_data_dir(req) == WRITE)
1166                 cmd->sc_data_direction = DMA_TO_DEVICE;
1167         else
1168                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1169         
1170         cmd->transfersize = blk_rq_bytes(req);
1171         cmd->allowed = req->retries;
1172         return BLKPREP_OK;
1173 }
1174 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1175
1176 /*
1177  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1178  * from filesystems that still need to be translated to SCSI CDBs from
1179  * the ULD.
1180  */
1181 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1182 {
1183         struct scsi_cmnd *cmd;
1184         int ret = scsi_prep_state_check(sdev, req);
1185
1186         if (ret != BLKPREP_OK)
1187                 return ret;
1188
1189         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1190                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1191                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1192                 if (ret != BLKPREP_OK)
1193                         return ret;
1194         }
1195
1196         /*
1197          * Filesystem requests must transfer data.
1198          */
1199         BUG_ON(!req->nr_phys_segments);
1200
1201         cmd = scsi_get_cmd_from_req(sdev, req);
1202         if (unlikely(!cmd))
1203                 return BLKPREP_DEFER;
1204
1205         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1206         return scsi_init_io(cmd, GFP_ATOMIC);
1207 }
1208 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1209
1210 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1211 {
1212         int ret = BLKPREP_OK;
1213
1214         /*
1215          * If the device is not in running state we will reject some
1216          * or all commands.
1217          */
1218         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1219                 switch (sdev->sdev_state) {
1220                 case SDEV_OFFLINE:
1221                 case SDEV_TRANSPORT_OFFLINE:
1222                         /*
1223                          * If the device is offline we refuse to process any
1224                          * commands.  The device must be brought online
1225                          * before trying any recovery commands.
1226                          */
1227                         sdev_printk(KERN_ERR, sdev,
1228                                     "rejecting I/O to offline device\n");
1229                         ret = BLKPREP_KILL;
1230                         break;
1231                 case SDEV_DEL:
1232                         /*
1233                          * If the device is fully deleted, we refuse to
1234                          * process any commands as well.
1235                          */
1236                         sdev_printk(KERN_ERR, sdev,
1237                                     "rejecting I/O to dead device\n");
1238                         ret = BLKPREP_KILL;
1239                         break;
1240                 case SDEV_QUIESCE:
1241                 case SDEV_BLOCK:
1242                 case SDEV_CREATED_BLOCK:
1243                         /*
1244                          * If the devices is blocked we defer normal commands.
1245                          */
1246                         if (!(req->cmd_flags & REQ_PREEMPT))
1247                                 ret = BLKPREP_DEFER;
1248                         break;
1249                 default:
1250                         /*
1251                          * For any other not fully online state we only allow
1252                          * special commands.  In particular any user initiated
1253                          * command is not allowed.
1254                          */
1255                         if (!(req->cmd_flags & REQ_PREEMPT))
1256                                 ret = BLKPREP_KILL;
1257                         break;
1258                 }
1259         }
1260         return ret;
1261 }
1262 EXPORT_SYMBOL(scsi_prep_state_check);
1263
1264 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1265 {
1266         struct scsi_device *sdev = q->queuedata;
1267
1268         switch (ret) {
1269         case BLKPREP_KILL:
1270                 req->errors = DID_NO_CONNECT << 16;
1271                 /* release the command and kill it */
1272                 if (req->special) {
1273                         struct scsi_cmnd *cmd = req->special;
1274                         scsi_release_buffers(cmd);
1275                         scsi_put_command(cmd);
1276                         put_device(&cmd->device->sdev_gendev);
1277                         req->special = NULL;
1278                 }
1279                 break;
1280         case BLKPREP_DEFER:
1281                 /*
1282                  * If we defer, the blk_peek_request() returns NULL, but the
1283                  * queue must be restarted, so we schedule a callback to happen
1284                  * shortly.
1285                  */
1286                 if (sdev->device_busy == 0)
1287                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1288                 break;
1289         default:
1290                 req->cmd_flags |= REQ_DONTPREP;
1291         }
1292
1293         return ret;
1294 }
1295 EXPORT_SYMBOL(scsi_prep_return);
1296
1297 int scsi_prep_fn(struct request_queue *q, struct request *req)
1298 {
1299         struct scsi_device *sdev = q->queuedata;
1300         int ret = BLKPREP_KILL;
1301
1302         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1303                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1304         return scsi_prep_return(q, req, ret);
1305 }
1306 EXPORT_SYMBOL(scsi_prep_fn);
1307
1308 /*
1309  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1310  * return 0.
1311  *
1312  * Called with the queue_lock held.
1313  */
1314 static inline int scsi_dev_queue_ready(struct request_queue *q,
1315                                   struct scsi_device *sdev)
1316 {
1317         if (sdev->device_busy == 0 && sdev->device_blocked) {
1318                 /*
1319                  * unblock after device_blocked iterates to zero
1320                  */
1321                 if (--sdev->device_blocked == 0) {
1322                         SCSI_LOG_MLQUEUE(3,
1323                                    sdev_printk(KERN_INFO, sdev,
1324                                    "unblocking device at zero depth\n"));
1325                 } else {
1326                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1327                         return 0;
1328                 }
1329         }
1330         if (scsi_device_is_busy(sdev))
1331                 return 0;
1332
1333         return 1;
1334 }
1335
1336
1337 /*
1338  * scsi_target_queue_ready: checks if there we can send commands to target
1339  * @sdev: scsi device on starget to check.
1340  *
1341  * Called with the host lock held.
1342  */
1343 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1344                                            struct scsi_device *sdev)
1345 {
1346         struct scsi_target *starget = scsi_target(sdev);
1347
1348         if (starget->single_lun) {
1349                 if (starget->starget_sdev_user &&
1350                     starget->starget_sdev_user != sdev)
1351                         return 0;
1352                 starget->starget_sdev_user = sdev;
1353         }
1354
1355         if (starget->target_busy == 0 && starget->target_blocked) {
1356                 /*
1357                  * unblock after target_blocked iterates to zero
1358                  */
1359                 if (--starget->target_blocked == 0) {
1360                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1361                                          "unblocking target at zero depth\n"));
1362                 } else
1363                         return 0;
1364         }
1365
1366         if (scsi_target_is_busy(starget)) {
1367                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1368                 return 0;
1369         }
1370
1371         return 1;
1372 }
1373
1374 /*
1375  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1376  * return 0. We must end up running the queue again whenever 0 is
1377  * returned, else IO can hang.
1378  *
1379  * Called with host_lock held.
1380  */
1381 static inline int scsi_host_queue_ready(struct request_queue *q,
1382                                    struct Scsi_Host *shost,
1383                                    struct scsi_device *sdev)
1384 {
1385         if (scsi_host_in_recovery(shost))
1386                 return 0;
1387         if (shost->host_busy == 0 && shost->host_blocked) {
1388                 /*
1389                  * unblock after host_blocked iterates to zero
1390                  */
1391                 if (--shost->host_blocked == 0) {
1392                         SCSI_LOG_MLQUEUE(3,
1393                                 printk("scsi%d unblocking host at zero depth\n",
1394                                         shost->host_no));
1395                 } else {
1396                         return 0;
1397                 }
1398         }
1399         if (scsi_host_is_busy(shost)) {
1400                 if (list_empty(&sdev->starved_entry))
1401                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1402                 return 0;
1403         }
1404
1405         /* We're OK to process the command, so we can't be starved */
1406         if (!list_empty(&sdev->starved_entry))
1407                 list_del_init(&sdev->starved_entry);
1408
1409         return 1;
1410 }
1411
1412 /*
1413  * Busy state exporting function for request stacking drivers.
1414  *
1415  * For efficiency, no lock is taken to check the busy state of
1416  * shost/starget/sdev, since the returned value is not guaranteed and
1417  * may be changed after request stacking drivers call the function,
1418  * regardless of taking lock or not.
1419  *
1420  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1421  * needs to return 'not busy'. Otherwise, request stacking drivers
1422  * may hold requests forever.
1423  */
1424 static int scsi_lld_busy(struct request_queue *q)
1425 {
1426         struct scsi_device *sdev = q->queuedata;
1427         struct Scsi_Host *shost;
1428
1429         if (blk_queue_dying(q))
1430                 return 0;
1431
1432         shost = sdev->host;
1433
1434         /*
1435          * Ignore host/starget busy state.
1436          * Since block layer does not have a concept of fairness across
1437          * multiple queues, congestion of host/starget needs to be handled
1438          * in SCSI layer.
1439          */
1440         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1441                 return 1;
1442
1443         return 0;
1444 }
1445
1446 /*
1447  * Kill a request for a dead device
1448  */
1449 static void scsi_kill_request(struct request *req, struct request_queue *q)
1450 {
1451         struct scsi_cmnd *cmd = req->special;
1452         struct scsi_device *sdev;
1453         struct scsi_target *starget;
1454         struct Scsi_Host *shost;
1455
1456         blk_start_request(req);
1457
1458         scmd_printk(KERN_INFO, cmd, "killing request\n");
1459
1460         sdev = cmd->device;
1461         starget = scsi_target(sdev);
1462         shost = sdev->host;
1463         scsi_init_cmd_errh(cmd);
1464         cmd->result = DID_NO_CONNECT << 16;
1465         atomic_inc(&cmd->device->iorequest_cnt);
1466
1467         /*
1468          * SCSI request completion path will do scsi_device_unbusy(),
1469          * bump busy counts.  To bump the counters, we need to dance
1470          * with the locks as normal issue path does.
1471          */
1472         sdev->device_busy++;
1473         spin_unlock(sdev->request_queue->queue_lock);
1474         spin_lock(shost->host_lock);
1475         shost->host_busy++;
1476         starget->target_busy++;
1477         spin_unlock(shost->host_lock);
1478         spin_lock(sdev->request_queue->queue_lock);
1479
1480         blk_complete_request(req);
1481 }
1482
1483 static void scsi_softirq_done(struct request *rq)
1484 {
1485         struct scsi_cmnd *cmd = rq->special;
1486         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1487         int disposition;
1488
1489         INIT_LIST_HEAD(&cmd->eh_entry);
1490
1491         atomic_inc(&cmd->device->iodone_cnt);
1492         if (cmd->result)
1493                 atomic_inc(&cmd->device->ioerr_cnt);
1494
1495         disposition = scsi_decide_disposition(cmd);
1496         if (disposition != SUCCESS &&
1497             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1498                 sdev_printk(KERN_ERR, cmd->device,
1499                             "timing out command, waited %lus\n",
1500                             wait_for/HZ);
1501                 disposition = SUCCESS;
1502         }
1503                         
1504         scsi_log_completion(cmd, disposition);
1505
1506         switch (disposition) {
1507                 case SUCCESS:
1508                         scsi_finish_command(cmd);
1509                         break;
1510                 case NEEDS_RETRY:
1511                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1512                         break;
1513                 case ADD_TO_MLQUEUE:
1514                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1515                         break;
1516                 default:
1517                         if (!scsi_eh_scmd_add(cmd, 0))
1518                                 scsi_finish_command(cmd);
1519         }
1520 }
1521
1522 /*
1523  * Function:    scsi_request_fn()
1524  *
1525  * Purpose:     Main strategy routine for SCSI.
1526  *
1527  * Arguments:   q       - Pointer to actual queue.
1528  *
1529  * Returns:     Nothing
1530  *
1531  * Lock status: IO request lock assumed to be held when called.
1532  */
1533 static void scsi_request_fn(struct request_queue *q)
1534         __releases(q->queue_lock)
1535         __acquires(q->queue_lock)
1536 {
1537         struct scsi_device *sdev = q->queuedata;
1538         struct Scsi_Host *shost;
1539         struct scsi_cmnd *cmd;
1540         struct request *req;
1541
1542         /*
1543          * To start with, we keep looping until the queue is empty, or until
1544          * the host is no longer able to accept any more requests.
1545          */
1546         shost = sdev->host;
1547         for (;;) {
1548                 int rtn;
1549                 /*
1550                  * get next queueable request.  We do this early to make sure
1551                  * that the request is fully prepared even if we cannot 
1552                  * accept it.
1553                  */
1554                 req = blk_peek_request(q);
1555                 if (!req || !scsi_dev_queue_ready(q, sdev))
1556                         break;
1557
1558                 if (unlikely(!scsi_device_online(sdev))) {
1559                         sdev_printk(KERN_ERR, sdev,
1560                                     "rejecting I/O to offline device\n");
1561                         scsi_kill_request(req, q);
1562                         continue;
1563                 }
1564
1565
1566                 /*
1567                  * Remove the request from the request list.
1568                  */
1569                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1570                         blk_start_request(req);
1571                 sdev->device_busy++;
1572
1573                 spin_unlock(q->queue_lock);
1574                 cmd = req->special;
1575                 if (unlikely(cmd == NULL)) {
1576                         printk(KERN_CRIT "impossible request in %s.\n"
1577                                          "please mail a stack trace to "
1578                                          "linux-scsi@vger.kernel.org\n",
1579                                          __func__);
1580                         blk_dump_rq_flags(req, "foo");
1581                         BUG();
1582                 }
1583                 spin_lock(shost->host_lock);
1584
1585                 /*
1586                  * We hit this when the driver is using a host wide
1587                  * tag map. For device level tag maps the queue_depth check
1588                  * in the device ready fn would prevent us from trying
1589                  * to allocate a tag. Since the map is a shared host resource
1590                  * we add the dev to the starved list so it eventually gets
1591                  * a run when a tag is freed.
1592                  */
1593                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1594                         if (list_empty(&sdev->starved_entry))
1595                                 list_add_tail(&sdev->starved_entry,
1596                                               &shost->starved_list);
1597                         goto not_ready;
1598                 }
1599
1600                 if (!scsi_target_queue_ready(shost, sdev))
1601                         goto not_ready;
1602
1603                 if (!scsi_host_queue_ready(q, shost, sdev))
1604                         goto not_ready;
1605
1606                 scsi_target(sdev)->target_busy++;
1607                 shost->host_busy++;
1608
1609                 /*
1610                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1611                  *              take the lock again.
1612                  */
1613                 spin_unlock_irq(shost->host_lock);
1614
1615                 /*
1616                  * Finally, initialize any error handling parameters, and set up
1617                  * the timers for timeouts.
1618                  */
1619                 scsi_init_cmd_errh(cmd);
1620
1621                 /*
1622                  * Dispatch the command to the low-level driver.
1623                  */
1624                 rtn = scsi_dispatch_cmd(cmd);
1625                 spin_lock_irq(q->queue_lock);
1626                 if (rtn)
1627                         goto out_delay;
1628         }
1629
1630         return;
1631
1632  not_ready:
1633         spin_unlock_irq(shost->host_lock);
1634
1635         /*
1636          * lock q, handle tag, requeue req, and decrement device_busy. We
1637          * must return with queue_lock held.
1638          *
1639          * Decrementing device_busy without checking it is OK, as all such
1640          * cases (host limits or settings) should run the queue at some
1641          * later time.
1642          */
1643         spin_lock_irq(q->queue_lock);
1644         blk_requeue_request(q, req);
1645         sdev->device_busy--;
1646 out_delay:
1647         if (sdev->device_busy == 0)
1648                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1649 }
1650
1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1652 {
1653         struct device *host_dev;
1654         u64 bounce_limit = 0xffffffff;
1655
1656         if (shost->unchecked_isa_dma)
1657                 return BLK_BOUNCE_ISA;
1658         /*
1659          * Platforms with virtual-DMA translation
1660          * hardware have no practical limit.
1661          */
1662         if (!PCI_DMA_BUS_IS_PHYS)
1663                 return BLK_BOUNCE_ANY;
1664
1665         host_dev = scsi_get_device(shost);
1666         if (host_dev && host_dev->dma_mask)
1667                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1668
1669         return bounce_limit;
1670 }
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1672
1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1674                                          request_fn_proc *request_fn)
1675 {
1676         struct request_queue *q;
1677         struct device *dev = shost->dma_dev;
1678
1679         q = blk_init_queue(request_fn, NULL);
1680         if (!q)
1681                 return NULL;
1682
1683         /*
1684          * this limit is imposed by hardware restrictions
1685          */
1686         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1687                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1688
1689         if (scsi_host_prot_dma(shost)) {
1690                 shost->sg_prot_tablesize =
1691                         min_not_zero(shost->sg_prot_tablesize,
1692                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1693                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1694                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1695         }
1696
1697         blk_queue_max_hw_sectors(q, shost->max_sectors);
1698         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1699         blk_queue_segment_boundary(q, shost->dma_boundary);
1700         dma_set_seg_boundary(dev, shost->dma_boundary);
1701
1702         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1703
1704         if (!shost->use_clustering)
1705                 q->limits.cluster = 0;
1706
1707         /*
1708          * set a reasonable default alignment on word boundaries: the
1709          * host and device may alter it using
1710          * blk_queue_update_dma_alignment() later.
1711          */
1712         blk_queue_dma_alignment(q, 0x03);
1713
1714         return q;
1715 }
1716 EXPORT_SYMBOL(__scsi_alloc_queue);
1717
1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1719 {
1720         struct request_queue *q;
1721
1722         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1723         if (!q)
1724                 return NULL;
1725
1726         blk_queue_prep_rq(q, scsi_prep_fn);
1727         blk_queue_softirq_done(q, scsi_softirq_done);
1728         blk_queue_rq_timed_out(q, scsi_times_out);
1729         blk_queue_lld_busy(q, scsi_lld_busy);
1730         return q;
1731 }
1732
1733 /*
1734  * Function:    scsi_block_requests()
1735  *
1736  * Purpose:     Utility function used by low-level drivers to prevent further
1737  *              commands from being queued to the device.
1738  *
1739  * Arguments:   shost       - Host in question
1740  *
1741  * Returns:     Nothing
1742  *
1743  * Lock status: No locks are assumed held.
1744  *
1745  * Notes:       There is no timer nor any other means by which the requests
1746  *              get unblocked other than the low-level driver calling
1747  *              scsi_unblock_requests().
1748  */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751         shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754
1755 /*
1756  * Function:    scsi_unblock_requests()
1757  *
1758  * Purpose:     Utility function used by low-level drivers to allow further
1759  *              commands from being queued to the device.
1760  *
1761  * Arguments:   shost       - Host in question
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: No locks are assumed held.
1766  *
1767  * Notes:       There is no timer nor any other means by which the requests
1768  *              get unblocked other than the low-level driver calling
1769  *              scsi_unblock_requests().
1770  *
1771  *              This is done as an API function so that changes to the
1772  *              internals of the scsi mid-layer won't require wholesale
1773  *              changes to drivers that use this feature.
1774  */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777         shost->host_self_blocked = 0;
1778         scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781
1782 int __init scsi_init_queue(void)
1783 {
1784         int i;
1785
1786         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1787                                            sizeof(struct scsi_data_buffer),
1788                                            0, 0, NULL);
1789         if (!scsi_sdb_cache) {
1790                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1791                 return -ENOMEM;
1792         }
1793
1794         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796                 int size = sgp->size * sizeof(struct scatterlist);
1797
1798                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799                                 SLAB_HWCACHE_ALIGN, NULL);
1800                 if (!sgp->slab) {
1801                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802                                         sgp->name);
1803                         goto cleanup_sdb;
1804                 }
1805
1806                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1807                                                      sgp->slab);
1808                 if (!sgp->pool) {
1809                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1810                                         sgp->name);
1811                         goto cleanup_sdb;
1812                 }
1813         }
1814
1815         return 0;
1816
1817 cleanup_sdb:
1818         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1819                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1820                 if (sgp->pool)
1821                         mempool_destroy(sgp->pool);
1822                 if (sgp->slab)
1823                         kmem_cache_destroy(sgp->slab);
1824         }
1825         kmem_cache_destroy(scsi_sdb_cache);
1826
1827         return -ENOMEM;
1828 }
1829
1830 void scsi_exit_queue(void)
1831 {
1832         int i;
1833
1834         kmem_cache_destroy(scsi_sdb_cache);
1835
1836         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838                 mempool_destroy(sgp->pool);
1839                 kmem_cache_destroy(sgp->slab);
1840         }
1841 }
1842
1843 /**
1844  *      scsi_mode_select - issue a mode select
1845  *      @sdev:  SCSI device to be queried
1846  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1847  *      @sp:    Save page bit (0 == don't save, 1 == save)
1848  *      @modepage: mode page being requested
1849  *      @buffer: request buffer (may not be smaller than eight bytes)
1850  *      @len:   length of request buffer.
1851  *      @timeout: command timeout
1852  *      @retries: number of retries before failing
1853  *      @data: returns a structure abstracting the mode header data
1854  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1855  *              must be SCSI_SENSE_BUFFERSIZE big.
1856  *
1857  *      Returns zero if successful; negative error number or scsi
1858  *      status on error
1859  *
1860  */
1861 int
1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1863                  unsigned char *buffer, int len, int timeout, int retries,
1864                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1865 {
1866         unsigned char cmd[10];
1867         unsigned char *real_buffer;
1868         int ret;
1869
1870         memset(cmd, 0, sizeof(cmd));
1871         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1872
1873         if (sdev->use_10_for_ms) {
1874                 if (len > 65535)
1875                         return -EINVAL;
1876                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1877                 if (!real_buffer)
1878                         return -ENOMEM;
1879                 memcpy(real_buffer + 8, buffer, len);
1880                 len += 8;
1881                 real_buffer[0] = 0;
1882                 real_buffer[1] = 0;
1883                 real_buffer[2] = data->medium_type;
1884                 real_buffer[3] = data->device_specific;
1885                 real_buffer[4] = data->longlba ? 0x01 : 0;
1886                 real_buffer[5] = 0;
1887                 real_buffer[6] = data->block_descriptor_length >> 8;
1888                 real_buffer[7] = data->block_descriptor_length;
1889
1890                 cmd[0] = MODE_SELECT_10;
1891                 cmd[7] = len >> 8;
1892                 cmd[8] = len;
1893         } else {
1894                 if (len > 255 || data->block_descriptor_length > 255 ||
1895                     data->longlba)
1896                         return -EINVAL;
1897
1898                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1899                 if (!real_buffer)
1900                         return -ENOMEM;
1901                 memcpy(real_buffer + 4, buffer, len);
1902                 len += 4;
1903                 real_buffer[0] = 0;
1904                 real_buffer[1] = data->medium_type;
1905                 real_buffer[2] = data->device_specific;
1906                 real_buffer[3] = data->block_descriptor_length;
1907                 
1908
1909                 cmd[0] = MODE_SELECT;
1910                 cmd[4] = len;
1911         }
1912
1913         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1914                                sshdr, timeout, retries, NULL);
1915         kfree(real_buffer);
1916         return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(scsi_mode_select);
1919
1920 /**
1921  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922  *      @sdev:  SCSI device to be queried
1923  *      @dbd:   set if mode sense will allow block descriptors to be returned
1924  *      @modepage: mode page being requested
1925  *      @buffer: request buffer (may not be smaller than eight bytes)
1926  *      @len:   length of request buffer.
1927  *      @timeout: command timeout
1928  *      @retries: number of retries before failing
1929  *      @data: returns a structure abstracting the mode header data
1930  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1931  *              must be SCSI_SENSE_BUFFERSIZE big.
1932  *
1933  *      Returns zero if unsuccessful, or the header offset (either 4
1934  *      or 8 depending on whether a six or ten byte command was
1935  *      issued) if successful.
1936  */
1937 int
1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1939                   unsigned char *buffer, int len, int timeout, int retries,
1940                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1941 {
1942         unsigned char cmd[12];
1943         int use_10_for_ms;
1944         int header_length;
1945         int result;
1946         struct scsi_sense_hdr my_sshdr;
1947
1948         memset(data, 0, sizeof(*data));
1949         memset(&cmd[0], 0, 12);
1950         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1951         cmd[2] = modepage;
1952
1953         /* caller might not be interested in sense, but we need it */
1954         if (!sshdr)
1955                 sshdr = &my_sshdr;
1956
1957  retry:
1958         use_10_for_ms = sdev->use_10_for_ms;
1959
1960         if (use_10_for_ms) {
1961                 if (len < 8)
1962                         len = 8;
1963
1964                 cmd[0] = MODE_SENSE_10;
1965                 cmd[8] = len;
1966                 header_length = 8;
1967         } else {
1968                 if (len < 4)
1969                         len = 4;
1970
1971                 cmd[0] = MODE_SENSE;
1972                 cmd[4] = len;
1973                 header_length = 4;
1974         }
1975
1976         memset(buffer, 0, len);
1977
1978         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1979                                   sshdr, timeout, retries, NULL);
1980
1981         /* This code looks awful: what it's doing is making sure an
1982          * ILLEGAL REQUEST sense return identifies the actual command
1983          * byte as the problem.  MODE_SENSE commands can return
1984          * ILLEGAL REQUEST if the code page isn't supported */
1985
1986         if (use_10_for_ms && !scsi_status_is_good(result) &&
1987             (driver_byte(result) & DRIVER_SENSE)) {
1988                 if (scsi_sense_valid(sshdr)) {
1989                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1990                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1991                                 /* 
1992                                  * Invalid command operation code
1993                                  */
1994                                 sdev->use_10_for_ms = 0;
1995                                 goto retry;
1996                         }
1997                 }
1998         }
1999
2000         if(scsi_status_is_good(result)) {
2001                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2002                              (modepage == 6 || modepage == 8))) {
2003                         /* Initio breakage? */
2004                         header_length = 0;
2005                         data->length = 13;
2006                         data->medium_type = 0;
2007                         data->device_specific = 0;
2008                         data->longlba = 0;
2009                         data->block_descriptor_length = 0;
2010                 } else if(use_10_for_ms) {
2011                         data->length = buffer[0]*256 + buffer[1] + 2;
2012                         data->medium_type = buffer[2];
2013                         data->device_specific = buffer[3];
2014                         data->longlba = buffer[4] & 0x01;
2015                         data->block_descriptor_length = buffer[6]*256
2016                                 + buffer[7];
2017                 } else {
2018                         data->length = buffer[0] + 1;
2019                         data->medium_type = buffer[1];
2020                         data->device_specific = buffer[2];
2021                         data->block_descriptor_length = buffer[3];
2022                 }
2023                 data->header_length = header_length;
2024         }
2025
2026         return result;
2027 }
2028 EXPORT_SYMBOL(scsi_mode_sense);
2029
2030 /**
2031  *      scsi_test_unit_ready - test if unit is ready
2032  *      @sdev:  scsi device to change the state of.
2033  *      @timeout: command timeout
2034  *      @retries: number of retries before failing
2035  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036  *              returning sense. Make sure that this is cleared before passing
2037  *              in.
2038  *
2039  *      Returns zero if unsuccessful or an error if TUR failed.  For
2040  *      removable media, UNIT_ATTENTION sets ->changed flag.
2041  **/
2042 int
2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2044                      struct scsi_sense_hdr *sshdr_external)
2045 {
2046         char cmd[] = {
2047                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2048         };
2049         struct scsi_sense_hdr *sshdr;
2050         int result;
2051
2052         if (!sshdr_external)
2053                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2054         else
2055                 sshdr = sshdr_external;
2056
2057         /* try to eat the UNIT_ATTENTION if there are enough retries */
2058         do {
2059                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2060                                           timeout, retries, NULL);
2061                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2062                     sshdr->sense_key == UNIT_ATTENTION)
2063                         sdev->changed = 1;
2064         } while (scsi_sense_valid(sshdr) &&
2065                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2066
2067         if (!sshdr_external)
2068                 kfree(sshdr);
2069         return result;
2070 }
2071 EXPORT_SYMBOL(scsi_test_unit_ready);
2072
2073 /**
2074  *      scsi_device_set_state - Take the given device through the device state model.
2075  *      @sdev:  scsi device to change the state of.
2076  *      @state: state to change to.
2077  *
2078  *      Returns zero if unsuccessful or an error if the requested 
2079  *      transition is illegal.
2080  */
2081 int
2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2083 {
2084         enum scsi_device_state oldstate = sdev->sdev_state;
2085
2086         if (state == oldstate)
2087                 return 0;
2088
2089         switch (state) {
2090         case SDEV_CREATED:
2091                 switch (oldstate) {
2092                 case SDEV_CREATED_BLOCK:
2093                         break;
2094                 default:
2095                         goto illegal;
2096                 }
2097                 break;
2098                         
2099         case SDEV_RUNNING:
2100                 switch (oldstate) {
2101                 case SDEV_CREATED:
2102                 case SDEV_OFFLINE:
2103                 case SDEV_TRANSPORT_OFFLINE:
2104                 case SDEV_QUIESCE:
2105                 case SDEV_BLOCK:
2106                         break;
2107                 default:
2108                         goto illegal;
2109                 }
2110                 break;
2111
2112         case SDEV_QUIESCE:
2113                 switch (oldstate) {
2114                 case SDEV_RUNNING:
2115                 case SDEV_OFFLINE:
2116                 case SDEV_TRANSPORT_OFFLINE:
2117                         break;
2118                 default:
2119                         goto illegal;
2120                 }
2121                 break;
2122
2123         case SDEV_OFFLINE:
2124         case SDEV_TRANSPORT_OFFLINE:
2125                 switch (oldstate) {
2126                 case SDEV_CREATED:
2127                 case SDEV_RUNNING:
2128                 case SDEV_QUIESCE:
2129                 case SDEV_BLOCK:
2130                         break;
2131                 default:
2132                         goto illegal;
2133                 }
2134                 break;
2135
2136         case SDEV_BLOCK:
2137                 switch (oldstate) {
2138                 case SDEV_RUNNING:
2139                 case SDEV_CREATED_BLOCK:
2140                         break;
2141                 default:
2142                         goto illegal;
2143                 }
2144                 break;
2145
2146         case SDEV_CREATED_BLOCK:
2147                 switch (oldstate) {
2148                 case SDEV_CREATED:
2149                         break;
2150                 default:
2151                         goto illegal;
2152                 }
2153                 break;
2154
2155         case SDEV_CANCEL:
2156                 switch (oldstate) {
2157                 case SDEV_CREATED:
2158                 case SDEV_RUNNING:
2159                 case SDEV_QUIESCE:
2160                 case SDEV_OFFLINE:
2161                 case SDEV_TRANSPORT_OFFLINE:
2162                 case SDEV_BLOCK:
2163                         break;
2164                 default:
2165                         goto illegal;
2166                 }
2167                 break;
2168
2169         case SDEV_DEL:
2170                 switch (oldstate) {
2171                 case SDEV_CREATED:
2172                 case SDEV_RUNNING:
2173                 case SDEV_OFFLINE:
2174                 case SDEV_TRANSPORT_OFFLINE:
2175                 case SDEV_CANCEL:
2176                 case SDEV_CREATED_BLOCK:
2177                         break;
2178                 default:
2179                         goto illegal;
2180                 }
2181                 break;
2182
2183         }
2184         sdev->sdev_state = state;
2185         return 0;
2186
2187  illegal:
2188         SCSI_LOG_ERROR_RECOVERY(1, 
2189                                 sdev_printk(KERN_ERR, sdev,
2190                                             "Illegal state transition %s->%s\n",
2191                                             scsi_device_state_name(oldstate),
2192                                             scsi_device_state_name(state))
2193                                 );
2194         return -EINVAL;
2195 }
2196 EXPORT_SYMBOL(scsi_device_set_state);
2197
2198 /**
2199  *      sdev_evt_emit - emit a single SCSI device uevent
2200  *      @sdev: associated SCSI device
2201  *      @evt: event to emit
2202  *
2203  *      Send a single uevent (scsi_event) to the associated scsi_device.
2204  */
2205 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2206 {
2207         int idx = 0;
2208         char *envp[3];
2209
2210         switch (evt->evt_type) {
2211         case SDEV_EVT_MEDIA_CHANGE:
2212                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2213                 break;
2214         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2215                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2216                 break;
2217         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2218                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2219                 break;
2220         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2221                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2222                 break;
2223         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2224                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2225                 break;
2226         case SDEV_EVT_LUN_CHANGE_REPORTED:
2227                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2228                 break;
2229         default:
2230                 /* do nothing */
2231                 break;
2232         }
2233
2234         envp[idx++] = NULL;
2235
2236         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2237 }
2238
2239 /**
2240  *      sdev_evt_thread - send a uevent for each scsi event
2241  *      @work: work struct for scsi_device
2242  *
2243  *      Dispatch queued events to their associated scsi_device kobjects
2244  *      as uevents.
2245  */
2246 void scsi_evt_thread(struct work_struct *work)
2247 {
2248         struct scsi_device *sdev;
2249         enum scsi_device_event evt_type;
2250         LIST_HEAD(event_list);
2251
2252         sdev = container_of(work, struct scsi_device, event_work);
2253
2254         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2255                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2256                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2257
2258         while (1) {
2259                 struct scsi_event *evt;
2260                 struct list_head *this, *tmp;
2261                 unsigned long flags;
2262
2263                 spin_lock_irqsave(&sdev->list_lock, flags);
2264                 list_splice_init(&sdev->event_list, &event_list);
2265                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2266
2267                 if (list_empty(&event_list))
2268                         break;
2269
2270                 list_for_each_safe(this, tmp, &event_list) {
2271                         evt = list_entry(this, struct scsi_event, node);
2272                         list_del(&evt->node);
2273                         scsi_evt_emit(sdev, evt);
2274                         kfree(evt);
2275                 }
2276         }
2277 }
2278
2279 /**
2280  *      sdev_evt_send - send asserted event to uevent thread
2281  *      @sdev: scsi_device event occurred on
2282  *      @evt: event to send
2283  *
2284  *      Assert scsi device event asynchronously.
2285  */
2286 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2287 {
2288         unsigned long flags;
2289
2290 #if 0
2291         /* FIXME: currently this check eliminates all media change events
2292          * for polled devices.  Need to update to discriminate between AN
2293          * and polled events */
2294         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2295                 kfree(evt);
2296                 return;
2297         }
2298 #endif
2299
2300         spin_lock_irqsave(&sdev->list_lock, flags);
2301         list_add_tail(&evt->node, &sdev->event_list);
2302         schedule_work(&sdev->event_work);
2303         spin_unlock_irqrestore(&sdev->list_lock, flags);
2304 }
2305 EXPORT_SYMBOL_GPL(sdev_evt_send);
2306
2307 /**
2308  *      sdev_evt_alloc - allocate a new scsi event
2309  *      @evt_type: type of event to allocate
2310  *      @gfpflags: GFP flags for allocation
2311  *
2312  *      Allocates and returns a new scsi_event.
2313  */
2314 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2315                                   gfp_t gfpflags)
2316 {
2317         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2318         if (!evt)
2319                 return NULL;
2320
2321         evt->evt_type = evt_type;
2322         INIT_LIST_HEAD(&evt->node);
2323
2324         /* evt_type-specific initialization, if any */
2325         switch (evt_type) {
2326         case SDEV_EVT_MEDIA_CHANGE:
2327         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2328         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2329         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2330         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2331         case SDEV_EVT_LUN_CHANGE_REPORTED:
2332         default:
2333                 /* do nothing */
2334                 break;
2335         }
2336
2337         return evt;
2338 }
2339 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2340
2341 /**
2342  *      sdev_evt_send_simple - send asserted event to uevent thread
2343  *      @sdev: scsi_device event occurred on
2344  *      @evt_type: type of event to send
2345  *      @gfpflags: GFP flags for allocation
2346  *
2347  *      Assert scsi device event asynchronously, given an event type.
2348  */
2349 void sdev_evt_send_simple(struct scsi_device *sdev,
2350                           enum scsi_device_event evt_type, gfp_t gfpflags)
2351 {
2352         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2353         if (!evt) {
2354                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2355                             evt_type);
2356                 return;
2357         }
2358
2359         sdev_evt_send(sdev, evt);
2360 }
2361 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2362
2363 /**
2364  *      scsi_device_quiesce - Block user issued commands.
2365  *      @sdev:  scsi device to quiesce.
2366  *
2367  *      This works by trying to transition to the SDEV_QUIESCE state
2368  *      (which must be a legal transition).  When the device is in this
2369  *      state, only special requests will be accepted, all others will
2370  *      be deferred.  Since special requests may also be requeued requests,
2371  *      a successful return doesn't guarantee the device will be 
2372  *      totally quiescent.
2373  *
2374  *      Must be called with user context, may sleep.
2375  *
2376  *      Returns zero if unsuccessful or an error if not.
2377  */
2378 int
2379 scsi_device_quiesce(struct scsi_device *sdev)
2380 {
2381         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2382         if (err)
2383                 return err;
2384
2385         scsi_run_queue(sdev->request_queue);
2386         while (sdev->device_busy) {
2387                 msleep_interruptible(200);
2388                 scsi_run_queue(sdev->request_queue);
2389         }
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(scsi_device_quiesce);
2393
2394 /**
2395  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2396  *      @sdev:  scsi device to resume.
2397  *
2398  *      Moves the device from quiesced back to running and restarts the
2399  *      queues.
2400  *
2401  *      Must be called with user context, may sleep.
2402  */
2403 void scsi_device_resume(struct scsi_device *sdev)
2404 {
2405         /* check if the device state was mutated prior to resume, and if
2406          * so assume the state is being managed elsewhere (for example
2407          * device deleted during suspend)
2408          */
2409         if (sdev->sdev_state != SDEV_QUIESCE ||
2410             scsi_device_set_state(sdev, SDEV_RUNNING))
2411                 return;
2412         scsi_run_queue(sdev->request_queue);
2413 }
2414 EXPORT_SYMBOL(scsi_device_resume);
2415
2416 static void
2417 device_quiesce_fn(struct scsi_device *sdev, void *data)
2418 {
2419         scsi_device_quiesce(sdev);
2420 }
2421
2422 void
2423 scsi_target_quiesce(struct scsi_target *starget)
2424 {
2425         starget_for_each_device(starget, NULL, device_quiesce_fn);
2426 }
2427 EXPORT_SYMBOL(scsi_target_quiesce);
2428
2429 static void
2430 device_resume_fn(struct scsi_device *sdev, void *data)
2431 {
2432         scsi_device_resume(sdev);
2433 }
2434
2435 void
2436 scsi_target_resume(struct scsi_target *starget)
2437 {
2438         starget_for_each_device(starget, NULL, device_resume_fn);
2439 }
2440 EXPORT_SYMBOL(scsi_target_resume);
2441
2442 /**
2443  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2444  * @sdev:       device to block
2445  *
2446  * Block request made by scsi lld's to temporarily stop all
2447  * scsi commands on the specified device.  Called from interrupt
2448  * or normal process context.
2449  *
2450  * Returns zero if successful or error if not
2451  *
2452  * Notes:       
2453  *      This routine transitions the device to the SDEV_BLOCK state
2454  *      (which must be a legal transition).  When the device is in this
2455  *      state, all commands are deferred until the scsi lld reenables
2456  *      the device with scsi_device_unblock or device_block_tmo fires.
2457  */
2458 int
2459 scsi_internal_device_block(struct scsi_device *sdev)
2460 {
2461         struct request_queue *q = sdev->request_queue;
2462         unsigned long flags;
2463         int err = 0;
2464
2465         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2466         if (err) {
2467                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2468
2469                 if (err)
2470                         return err;
2471         }
2472
2473         /* 
2474          * The device has transitioned to SDEV_BLOCK.  Stop the
2475          * block layer from calling the midlayer with this device's
2476          * request queue. 
2477          */
2478         spin_lock_irqsave(q->queue_lock, flags);
2479         blk_stop_queue(q);
2480         spin_unlock_irqrestore(q->queue_lock, flags);
2481
2482         return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2485  
2486 /**
2487  * scsi_internal_device_unblock - resume a device after a block request
2488  * @sdev:       device to resume
2489  * @new_state:  state to set devices to after unblocking
2490  *
2491  * Called by scsi lld's or the midlayer to restart the device queue
2492  * for the previously suspended scsi device.  Called from interrupt or
2493  * normal process context.
2494  *
2495  * Returns zero if successful or error if not.
2496  *
2497  * Notes:       
2498  *      This routine transitions the device to the SDEV_RUNNING state
2499  *      or to one of the offline states (which must be a legal transition)
2500  *      allowing the midlayer to goose the queue for this device.
2501  */
2502 int
2503 scsi_internal_device_unblock(struct scsi_device *sdev,
2504                              enum scsi_device_state new_state)
2505 {
2506         struct request_queue *q = sdev->request_queue; 
2507         unsigned long flags;
2508
2509         /*
2510          * Try to transition the scsi device to SDEV_RUNNING or one of the
2511          * offlined states and goose the device queue if successful.
2512          */
2513         if ((sdev->sdev_state == SDEV_BLOCK) ||
2514             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2515                 sdev->sdev_state = new_state;
2516         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2517                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2518                     new_state == SDEV_OFFLINE)
2519                         sdev->sdev_state = new_state;
2520                 else
2521                         sdev->sdev_state = SDEV_CREATED;
2522         } else if (sdev->sdev_state != SDEV_CANCEL &&
2523                  sdev->sdev_state != SDEV_OFFLINE)
2524                 return -EINVAL;
2525
2526         spin_lock_irqsave(q->queue_lock, flags);
2527         blk_start_queue(q);
2528         spin_unlock_irqrestore(q->queue_lock, flags);
2529
2530         return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2533
2534 static void
2535 device_block(struct scsi_device *sdev, void *data)
2536 {
2537         scsi_internal_device_block(sdev);
2538 }
2539
2540 static int
2541 target_block(struct device *dev, void *data)
2542 {
2543         if (scsi_is_target_device(dev))
2544                 starget_for_each_device(to_scsi_target(dev), NULL,
2545                                         device_block);
2546         return 0;
2547 }
2548
2549 void
2550 scsi_target_block(struct device *dev)
2551 {
2552         if (scsi_is_target_device(dev))
2553                 starget_for_each_device(to_scsi_target(dev), NULL,
2554                                         device_block);
2555         else
2556                 device_for_each_child(dev, NULL, target_block);
2557 }
2558 EXPORT_SYMBOL_GPL(scsi_target_block);
2559
2560 static void
2561 device_unblock(struct scsi_device *sdev, void *data)
2562 {
2563         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2564 }
2565
2566 static int
2567 target_unblock(struct device *dev, void *data)
2568 {
2569         if (scsi_is_target_device(dev))
2570                 starget_for_each_device(to_scsi_target(dev), data,
2571                                         device_unblock);
2572         return 0;
2573 }
2574
2575 void
2576 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2577 {
2578         if (scsi_is_target_device(dev))
2579                 starget_for_each_device(to_scsi_target(dev), &new_state,
2580                                         device_unblock);
2581         else
2582                 device_for_each_child(dev, &new_state, target_unblock);
2583 }
2584 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2585
2586 /**
2587  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2588  * @sgl:        scatter-gather list
2589  * @sg_count:   number of segments in sg
2590  * @offset:     offset in bytes into sg, on return offset into the mapped area
2591  * @len:        bytes to map, on return number of bytes mapped
2592  *
2593  * Returns virtual address of the start of the mapped page
2594  */
2595 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2596                           size_t *offset, size_t *len)
2597 {
2598         int i;
2599         size_t sg_len = 0, len_complete = 0;
2600         struct scatterlist *sg;
2601         struct page *page;
2602
2603         WARN_ON(!irqs_disabled());
2604
2605         for_each_sg(sgl, sg, sg_count, i) {
2606                 len_complete = sg_len; /* Complete sg-entries */
2607                 sg_len += sg->length;
2608                 if (sg_len > *offset)
2609                         break;
2610         }
2611
2612         if (unlikely(i == sg_count)) {
2613                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2614                         "elements %d\n",
2615                        __func__, sg_len, *offset, sg_count);
2616                 WARN_ON(1);
2617                 return NULL;
2618         }
2619
2620         /* Offset starting from the beginning of first page in this sg-entry */
2621         *offset = *offset - len_complete + sg->offset;
2622
2623         /* Assumption: contiguous pages can be accessed as "page + i" */
2624         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2625         *offset &= ~PAGE_MASK;
2626
2627         /* Bytes in this sg-entry from *offset to the end of the page */
2628         sg_len = PAGE_SIZE - *offset;
2629         if (*len > sg_len)
2630                 *len = sg_len;
2631
2632         return kmap_atomic(page);
2633 }
2634 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2635
2636 /**
2637  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2638  * @virt:       virtual address to be unmapped
2639  */
2640 void scsi_kunmap_atomic_sg(void *virt)
2641 {
2642         kunmap_atomic(virt);
2643 }
2644 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2645
2646 void sdev_disable_disk_events(struct scsi_device *sdev)
2647 {
2648         atomic_inc(&sdev->disk_events_disable_depth);
2649 }
2650 EXPORT_SYMBOL(sdev_disable_disk_events);
2651
2652 void sdev_enable_disk_events(struct scsi_device *sdev)
2653 {
2654         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2655                 return;
2656         atomic_dec(&sdev->disk_events_disable_depth);
2657 }
2658 EXPORT_SYMBOL(sdev_enable_disk_events);