NTB: Remove References of non-B2B BWD HW
[linux-drm-fsl-dcu.git] / drivers / ntb / ntb_hw.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *
9  *   This program is free software; you can redistribute it and/or modify
10  *   it under the terms of version 2 of the GNU General Public License as
11  *   published by the Free Software Foundation.
12  *
13  *   BSD LICENSE
14  *
15  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
16  *
17  *   Redistribution and use in source and binary forms, with or without
18  *   modification, are permitted provided that the following conditions
19  *   are met:
20  *
21  *     * Redistributions of source code must retain the above copyright
22  *       notice, this list of conditions and the following disclaimer.
23  *     * Redistributions in binary form must reproduce the above copy
24  *       notice, this list of conditions and the following disclaimer in
25  *       the documentation and/or other materials provided with the
26  *       distribution.
27  *     * Neither the name of Intel Corporation nor the names of its
28  *       contributors may be used to endorse or promote products derived
29  *       from this software without specific prior written permission.
30  *
31  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  *
43  * Intel PCIe NTB Linux driver
44  *
45  * Contact Information:
46  * Jon Mason <jon.mason@intel.com>
47  */
48 #include <linux/debugfs.h>
49 #include <linux/delay.h>
50 #include <linux/init.h>
51 #include <linux/interrupt.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/random.h>
55 #include <linux/slab.h>
56 #include "ntb_hw.h"
57 #include "ntb_regs.h"
58
59 #define NTB_NAME        "Intel(R) PCI-E Non-Transparent Bridge Driver"
60 #define NTB_VER         "0.25"
61
62 MODULE_DESCRIPTION(NTB_NAME);
63 MODULE_VERSION(NTB_VER);
64 MODULE_LICENSE("Dual BSD/GPL");
65 MODULE_AUTHOR("Intel Corporation");
66
67 static bool xeon_errata_workaround = true;
68 module_param(xeon_errata_workaround, bool, 0644);
69 MODULE_PARM_DESC(xeon_errata_workaround, "Workaround for the Xeon Errata");
70
71 enum {
72         NTB_CONN_TRANSPARENT = 0,
73         NTB_CONN_B2B,
74         NTB_CONN_RP,
75 };
76
77 enum {
78         NTB_DEV_USD = 0,
79         NTB_DEV_DSD,
80 };
81
82 enum {
83         SNB_HW = 0,
84         BWD_HW,
85 };
86
87 static struct dentry *debugfs_dir;
88
89 #define BWD_LINK_RECOVERY_TIME  500
90
91 /* Translate memory window 0,1 to BAR 2,4 */
92 #define MW_TO_BAR(mw)   (mw * NTB_MAX_NUM_MW + 2)
93
94 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = {
95         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
96         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
97         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
98         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)},
99         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)},
100         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)},
101         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)},
102         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)},
103         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)},
104         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)},
105         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)},
106         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)},
107         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)},
108         {0}
109 };
110 MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
111
112 /**
113  * ntb_register_event_callback() - register event callback
114  * @ndev: pointer to ntb_device instance
115  * @func: callback function to register
116  *
117  * This function registers a callback for any HW driver events such as link
118  * up/down, power management notices and etc.
119  *
120  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
121  */
122 int ntb_register_event_callback(struct ntb_device *ndev,
123                             void (*func)(void *handle, enum ntb_hw_event event))
124 {
125         if (ndev->event_cb)
126                 return -EINVAL;
127
128         ndev->event_cb = func;
129
130         return 0;
131 }
132
133 /**
134  * ntb_unregister_event_callback() - unregisters the event callback
135  * @ndev: pointer to ntb_device instance
136  *
137  * This function unregisters the existing callback from transport
138  */
139 void ntb_unregister_event_callback(struct ntb_device *ndev)
140 {
141         ndev->event_cb = NULL;
142 }
143
144 /**
145  * ntb_register_db_callback() - register a callback for doorbell interrupt
146  * @ndev: pointer to ntb_device instance
147  * @idx: doorbell index to register callback, zero based
148  * @func: callback function to register
149  *
150  * This function registers a callback function for the doorbell interrupt
151  * on the primary side. The function will unmask the doorbell as well to
152  * allow interrupt.
153  *
154  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
155  */
156 int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
157                              void *data, void (*func)(void *data, int db_num))
158 {
159         unsigned long mask;
160
161         if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
162                 dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
163                 return -EINVAL;
164         }
165
166         ndev->db_cb[idx].callback = func;
167         ndev->db_cb[idx].data = data;
168
169         /* unmask interrupt */
170         mask = readw(ndev->reg_ofs.ldb_mask);
171         clear_bit(idx * ndev->bits_per_vector, &mask);
172         writew(mask, ndev->reg_ofs.ldb_mask);
173
174         return 0;
175 }
176
177 /**
178  * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
179  * @ndev: pointer to ntb_device instance
180  * @idx: doorbell index to register callback, zero based
181  *
182  * This function unregisters a callback function for the doorbell interrupt
183  * on the primary side. The function will also mask the said doorbell.
184  */
185 void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
186 {
187         unsigned long mask;
188
189         if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
190                 return;
191
192         mask = readw(ndev->reg_ofs.ldb_mask);
193         set_bit(idx * ndev->bits_per_vector, &mask);
194         writew(mask, ndev->reg_ofs.ldb_mask);
195
196         ndev->db_cb[idx].callback = NULL;
197 }
198
199 /**
200  * ntb_find_transport() - find the transport pointer
201  * @transport: pointer to pci device
202  *
203  * Given the pci device pointer, return the transport pointer passed in when
204  * the transport attached when it was inited.
205  *
206  * RETURNS: pointer to transport.
207  */
208 void *ntb_find_transport(struct pci_dev *pdev)
209 {
210         struct ntb_device *ndev = pci_get_drvdata(pdev);
211         return ndev->ntb_transport;
212 }
213
214 /**
215  * ntb_register_transport() - Register NTB transport with NTB HW driver
216  * @transport: transport identifier
217  *
218  * This function allows a transport to reserve the hardware driver for
219  * NTB usage.
220  *
221  * RETURNS: pointer to ntb_device, NULL on error.
222  */
223 struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
224 {
225         struct ntb_device *ndev = pci_get_drvdata(pdev);
226
227         if (ndev->ntb_transport)
228                 return NULL;
229
230         ndev->ntb_transport = transport;
231         return ndev;
232 }
233
234 /**
235  * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
236  * @ndev - ntb_device of the transport to be freed
237  *
238  * This function unregisters the transport from the HW driver and performs any
239  * necessary cleanups.
240  */
241 void ntb_unregister_transport(struct ntb_device *ndev)
242 {
243         int i;
244
245         if (!ndev->ntb_transport)
246                 return;
247
248         for (i = 0; i < ndev->max_cbs; i++)
249                 ntb_unregister_db_callback(ndev, i);
250
251         ntb_unregister_event_callback(ndev);
252         ndev->ntb_transport = NULL;
253 }
254
255 /**
256  * ntb_write_local_spad() - write to the secondary scratchpad register
257  * @ndev: pointer to ntb_device instance
258  * @idx: index to the scratchpad register, 0 based
259  * @val: the data value to put into the register
260  *
261  * This function allows writing of a 32bit value to the indexed scratchpad
262  * register. This writes over the data mirrored to the local scratchpad register
263  * by the remote system.
264  *
265  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
266  */
267 int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
268 {
269         if (idx >= ndev->limits.max_spads)
270                 return -EINVAL;
271
272         dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
273                 val, idx);
274         writel(val, ndev->reg_ofs.spad_read + idx * 4);
275
276         return 0;
277 }
278
279 /**
280  * ntb_read_local_spad() - read from the primary scratchpad register
281  * @ndev: pointer to ntb_device instance
282  * @idx: index to scratchpad register, 0 based
283  * @val: pointer to 32bit integer for storing the register value
284  *
285  * This function allows reading of the 32bit scratchpad register on
286  * the primary (internal) side.  This allows the local system to read data
287  * written and mirrored to the scratchpad register by the remote system.
288  *
289  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
290  */
291 int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
292 {
293         if (idx >= ndev->limits.max_spads)
294                 return -EINVAL;
295
296         *val = readl(ndev->reg_ofs.spad_write + idx * 4);
297         dev_dbg(&ndev->pdev->dev,
298                 "Reading %x from local scratch pad index %d\n", *val, idx);
299
300         return 0;
301 }
302
303 /**
304  * ntb_write_remote_spad() - write to the secondary scratchpad register
305  * @ndev: pointer to ntb_device instance
306  * @idx: index to the scratchpad register, 0 based
307  * @val: the data value to put into the register
308  *
309  * This function allows writing of a 32bit value to the indexed scratchpad
310  * register. The register resides on the secondary (external) side.  This allows
311  * the local system to write data to be mirrored to the remote systems
312  * scratchpad register.
313  *
314  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
315  */
316 int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
317 {
318         if (idx >= ndev->limits.max_spads)
319                 return -EINVAL;
320
321         dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
322                 val, idx);
323         writel(val, ndev->reg_ofs.spad_write + idx * 4);
324
325         return 0;
326 }
327
328 /**
329  * ntb_read_remote_spad() - read from the primary scratchpad register
330  * @ndev: pointer to ntb_device instance
331  * @idx: index to scratchpad register, 0 based
332  * @val: pointer to 32bit integer for storing the register value
333  *
334  * This function allows reading of the 32bit scratchpad register on
335  * the primary (internal) side.  This alloows the local system to read the data
336  * it wrote to be mirrored on the remote system.
337  *
338  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
339  */
340 int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
341 {
342         if (idx >= ndev->limits.max_spads)
343                 return -EINVAL;
344
345         *val = readl(ndev->reg_ofs.spad_read + idx * 4);
346         dev_dbg(&ndev->pdev->dev,
347                 "Reading %x from remote scratch pad index %d\n", *val, idx);
348
349         return 0;
350 }
351
352 /**
353  * ntb_get_mw_base() - get addr for the NTB memory window
354  * @ndev: pointer to ntb_device instance
355  * @mw: memory window number
356  *
357  * This function provides the base address of the memory window specified.
358  *
359  * RETURNS: address, or NULL on error.
360  */
361 resource_size_t ntb_get_mw_base(struct ntb_device *ndev, unsigned int mw)
362 {
363         if (mw >= ntb_max_mw(ndev))
364                 return 0;
365
366         return pci_resource_start(ndev->pdev, MW_TO_BAR(mw));
367 }
368
369 /**
370  * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
371  * @ndev: pointer to ntb_device instance
372  * @mw: memory window number
373  *
374  * This function provides the base virtual address of the memory window
375  * specified.
376  *
377  * RETURNS: pointer to virtual address, or NULL on error.
378  */
379 void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
380 {
381         if (mw >= ntb_max_mw(ndev))
382                 return NULL;
383
384         return ndev->mw[mw].vbase;
385 }
386
387 /**
388  * ntb_get_mw_size() - return size of NTB memory window
389  * @ndev: pointer to ntb_device instance
390  * @mw: memory window number
391  *
392  * This function provides the physical size of the memory window specified
393  *
394  * RETURNS: the size of the memory window or zero on error
395  */
396 u64 ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
397 {
398         if (mw >= ntb_max_mw(ndev))
399                 return 0;
400
401         return ndev->mw[mw].bar_sz;
402 }
403
404 /**
405  * ntb_set_mw_addr - set the memory window address
406  * @ndev: pointer to ntb_device instance
407  * @mw: memory window number
408  * @addr: base address for data
409  *
410  * This function sets the base physical address of the memory window.  This
411  * memory address is where data from the remote system will be transfered into
412  * or out of depending on how the transport is configured.
413  */
414 void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
415 {
416         if (mw >= ntb_max_mw(ndev))
417                 return;
418
419         dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
420                 MW_TO_BAR(mw));
421
422         ndev->mw[mw].phys_addr = addr;
423
424         switch (MW_TO_BAR(mw)) {
425         case NTB_BAR_23:
426                 writeq(addr, ndev->reg_ofs.bar2_xlat);
427                 break;
428         case NTB_BAR_45:
429                 writeq(addr, ndev->reg_ofs.bar4_xlat);
430                 break;
431         }
432 }
433
434 /**
435  * ntb_ring_doorbell() - Set the doorbell on the secondary/external side
436  * @ndev: pointer to ntb_device instance
437  * @db: doorbell to ring
438  *
439  * This function allows triggering of a doorbell on the secondary/external
440  * side that will initiate an interrupt on the remote host
441  *
442  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
443  */
444 void ntb_ring_doorbell(struct ntb_device *ndev, unsigned int db)
445 {
446         dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
447
448         if (ndev->hw_type == BWD_HW)
449                 writeq((u64) 1 << db, ndev->reg_ofs.rdb);
450         else
451                 writew(((1 << ndev->bits_per_vector) - 1) <<
452                        (db * ndev->bits_per_vector), ndev->reg_ofs.rdb);
453 }
454
455 static void bwd_recover_link(struct ntb_device *ndev)
456 {
457         u32 status;
458
459         /* Driver resets the NTB ModPhy lanes - magic! */
460         writeb(0xe0, ndev->reg_base + BWD_MODPHY_PCSREG6);
461         writeb(0x40, ndev->reg_base + BWD_MODPHY_PCSREG4);
462         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG4);
463         writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG6);
464
465         /* Driver waits 100ms to allow the NTB ModPhy to settle */
466         msleep(100);
467
468         /* Clear AER Errors, write to clear */
469         status = readl(ndev->reg_base + BWD_ERRCORSTS_OFFSET);
470         dev_dbg(&ndev->pdev->dev, "ERRCORSTS = %x\n", status);
471         status &= PCI_ERR_COR_REP_ROLL;
472         writel(status, ndev->reg_base + BWD_ERRCORSTS_OFFSET);
473
474         /* Clear unexpected electrical idle event in LTSSM, write to clear */
475         status = readl(ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
476         dev_dbg(&ndev->pdev->dev, "LTSSMERRSTS0 = %x\n", status);
477         status |= BWD_LTSSMERRSTS0_UNEXPECTEDEI;
478         writel(status, ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
479
480         /* Clear DeSkew Buffer error, write to clear */
481         status = readl(ndev->reg_base + BWD_DESKEWSTS_OFFSET);
482         dev_dbg(&ndev->pdev->dev, "DESKEWSTS = %x\n", status);
483         status |= BWD_DESKEWSTS_DBERR;
484         writel(status, ndev->reg_base + BWD_DESKEWSTS_OFFSET);
485
486         status = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
487         dev_dbg(&ndev->pdev->dev, "IBSTERRRCRVSTS0 = %x\n", status);
488         status &= BWD_IBIST_ERR_OFLOW;
489         writel(status, ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
490
491         /* Releases the NTB state machine to allow the link to retrain */
492         status = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
493         dev_dbg(&ndev->pdev->dev, "LTSSMSTATEJMP = %x\n", status);
494         status &= ~BWD_LTSSMSTATEJMP_FORCEDETECT;
495         writel(status, ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
496 }
497
498 static void ntb_link_event(struct ntb_device *ndev, int link_state)
499 {
500         unsigned int event;
501
502         if (ndev->link_status == link_state)
503                 return;
504
505         if (link_state == NTB_LINK_UP) {
506                 u16 status;
507
508                 dev_info(&ndev->pdev->dev, "Link Up\n");
509                 ndev->link_status = NTB_LINK_UP;
510                 event = NTB_EVENT_HW_LINK_UP;
511
512                 if (ndev->hw_type == BWD_HW ||
513                     ndev->conn_type == NTB_CONN_TRANSPARENT)
514                         status = readw(ndev->reg_ofs.lnk_stat);
515                 else {
516                         int rc = pci_read_config_word(ndev->pdev,
517                                                       SNB_LINK_STATUS_OFFSET,
518                                                       &status);
519                         if (rc)
520                                 return;
521                 }
522
523                 ndev->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
524                 ndev->link_speed = (status & NTB_LINK_SPEED_MASK);
525                 dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
526                          ndev->link_width, ndev->link_speed);
527         } else {
528                 dev_info(&ndev->pdev->dev, "Link Down\n");
529                 ndev->link_status = NTB_LINK_DOWN;
530                 event = NTB_EVENT_HW_LINK_DOWN;
531                 /* Don't modify link width/speed, we need it in link recovery */
532         }
533
534         /* notify the upper layer if we have an event change */
535         if (ndev->event_cb)
536                 ndev->event_cb(ndev->ntb_transport, event);
537 }
538
539 static int ntb_link_status(struct ntb_device *ndev)
540 {
541         int link_state;
542
543         if (ndev->hw_type == BWD_HW) {
544                 u32 ntb_cntl;
545
546                 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
547                 if (ntb_cntl & BWD_CNTL_LINK_DOWN)
548                         link_state = NTB_LINK_DOWN;
549                 else
550                         link_state = NTB_LINK_UP;
551         } else {
552                 u16 status;
553                 int rc;
554
555                 rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
556                                           &status);
557                 if (rc)
558                         return rc;
559
560                 if (status & NTB_LINK_STATUS_ACTIVE)
561                         link_state = NTB_LINK_UP;
562                 else
563                         link_state = NTB_LINK_DOWN;
564         }
565
566         ntb_link_event(ndev, link_state);
567
568         return 0;
569 }
570
571 static void bwd_link_recovery(struct work_struct *work)
572 {
573         struct ntb_device *ndev = container_of(work, struct ntb_device,
574                                                lr_timer.work);
575         u32 status32;
576
577         bwd_recover_link(ndev);
578         /* There is a potential race between the 2 NTB devices recovering at the
579          * same time.  If the times are the same, the link will not recover and
580          * the driver will be stuck in this loop forever.  Add a random interval
581          * to the recovery time to prevent this race.
582          */
583         msleep(BWD_LINK_RECOVERY_TIME + prandom_u32() % BWD_LINK_RECOVERY_TIME);
584
585         status32 = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
586         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT)
587                 goto retry;
588
589         status32 = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
590         if (status32 & BWD_IBIST_ERR_OFLOW)
591                 goto retry;
592
593         status32 = readl(ndev->reg_ofs.lnk_cntl);
594         if (!(status32 & BWD_CNTL_LINK_DOWN)) {
595                 unsigned char speed, width;
596                 u16 status16;
597
598                 status16 = readw(ndev->reg_ofs.lnk_stat);
599                 width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
600                 speed = (status16 & NTB_LINK_SPEED_MASK);
601                 if (ndev->link_width != width || ndev->link_speed != speed)
602                         goto retry;
603         }
604
605         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
606         return;
607
608 retry:
609         schedule_delayed_work(&ndev->lr_timer, NTB_HB_TIMEOUT);
610 }
611
612 /* BWD doesn't have link status interrupt, poll on that platform */
613 static void bwd_link_poll(struct work_struct *work)
614 {
615         struct ntb_device *ndev = container_of(work, struct ntb_device,
616                                                hb_timer.work);
617         unsigned long ts = jiffies;
618
619         /* If we haven't gotten an interrupt in a while, check the BWD link
620          * status bit
621          */
622         if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
623                 int rc = ntb_link_status(ndev);
624                 if (rc)
625                         dev_err(&ndev->pdev->dev,
626                                 "Error determining link status\n");
627
628                 /* Check to see if a link error is the cause of the link down */
629                 if (ndev->link_status == NTB_LINK_DOWN) {
630                         u32 status32 = readl(ndev->reg_base +
631                                              BWD_LTSSMSTATEJMP_OFFSET);
632                         if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT) {
633                                 schedule_delayed_work(&ndev->lr_timer, 0);
634                                 return;
635                         }
636                 }
637         }
638
639         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
640 }
641
642 static int ntb_xeon_setup(struct ntb_device *ndev)
643 {
644         int rc;
645         u8 val;
646
647         ndev->hw_type = SNB_HW;
648
649         rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
650         if (rc)
651                 return rc;
652
653         if (val & SNB_PPD_DEV_TYPE)
654                 ndev->dev_type = NTB_DEV_USD;
655         else
656                 ndev->dev_type = NTB_DEV_DSD;
657
658         switch (val & SNB_PPD_CONN_TYPE) {
659         case NTB_CONN_B2B:
660                 dev_info(&ndev->pdev->dev, "Conn Type = B2B\n");
661                 ndev->conn_type = NTB_CONN_B2B;
662                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
663                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
664                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
665                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
666                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
667                 ndev->limits.max_spads = SNB_MAX_B2B_SPADS;
668
669                 /* There is a Xeon hardware errata related to writes to
670                  * SDOORBELL or B2BDOORBELL in conjunction with inbound access
671                  * to NTB MMIO Space, which may hang the system.  To workaround
672                  * this use the second memory window to access the interrupt and
673                  * scratch pad registers on the remote system.
674                  */
675                 if (xeon_errata_workaround) {
676                         if (!ndev->mw[1].bar_sz)
677                                 return -EINVAL;
678
679                         ndev->limits.max_mw = SNB_ERRATA_MAX_MW;
680                         ndev->reg_ofs.spad_write = ndev->mw[1].vbase +
681                                                    SNB_SPAD_OFFSET;
682                         ndev->reg_ofs.rdb = ndev->mw[1].vbase +
683                                             SNB_PDOORBELL_OFFSET;
684
685                         /* Set the Limit register to 4k, the minimum size, to
686                          * prevent an illegal access
687                          */
688                         writeq(ndev->mw[1].bar_sz + 0x1000, ndev->reg_base +
689                                SNB_PBAR4LMT_OFFSET);
690                 } else {
691                         ndev->limits.max_mw = SNB_MAX_MW;
692                         ndev->reg_ofs.spad_write = ndev->reg_base +
693                                                    SNB_B2B_SPAD_OFFSET;
694                         ndev->reg_ofs.rdb = ndev->reg_base +
695                                             SNB_B2B_DOORBELL_OFFSET;
696
697                         /* Disable the Limit register, just incase it is set to
698                          * something silly
699                          */
700                         writeq(0, ndev->reg_base + SNB_PBAR4LMT_OFFSET);
701                 }
702
703                 /* The Xeon errata workaround requires setting SBAR Base
704                  * addresses to known values, so that the PBAR XLAT can be
705                  * pointed at SBAR0 of the remote system.
706                  */
707                 if (ndev->dev_type == NTB_DEV_USD) {
708                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
709                                SNB_PBAR2XLAT_OFFSET);
710                         if (xeon_errata_workaround)
711                                 writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
712                                        SNB_PBAR4XLAT_OFFSET);
713                         else {
714                                 writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
715                                        SNB_PBAR4XLAT_OFFSET);
716                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
717                                  * only take 32bit writes
718                                  */
719                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
720                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
721                                 writel(SNB_MBAR01_DSD_ADDR >> 32,
722                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
723                         }
724
725                         writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
726                                SNB_SBAR0BASE_OFFSET);
727                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
728                                SNB_SBAR2BASE_OFFSET);
729                         writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
730                                SNB_SBAR4BASE_OFFSET);
731                 } else {
732                         writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
733                                SNB_PBAR2XLAT_OFFSET);
734                         if (xeon_errata_workaround)
735                                 writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
736                                        SNB_PBAR4XLAT_OFFSET);
737                         else {
738                                 writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
739                                        SNB_PBAR4XLAT_OFFSET);
740                                 /* B2B_XLAT_OFFSET is a 64bit register, but can
741                                  * only take 32bit writes
742                                  */
743                                 writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
744                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
745                                 writel(SNB_MBAR01_USD_ADDR >> 32,
746                                        ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
747                         }
748                         writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
749                                SNB_SBAR0BASE_OFFSET);
750                         writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
751                                SNB_SBAR2BASE_OFFSET);
752                         writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
753                                SNB_SBAR4BASE_OFFSET);
754                 }
755                 break;
756         case NTB_CONN_RP:
757                 dev_info(&ndev->pdev->dev, "Conn Type = RP\n");
758                 ndev->conn_type = NTB_CONN_RP;
759
760                 if (xeon_errata_workaround) {
761                         dev_err(&ndev->pdev->dev, 
762                                 "NTB-RP disabled due to hardware errata.  To disregard this warning and potentially lock-up the system, add the parameter 'xeon_errata_workaround=0'.\n");
763                         return -EINVAL;
764                 }
765
766                 /* Scratch pads need to have exclusive access from the primary
767                  * or secondary side.  Halve the num spads so that each side can
768                  * have an equal amount.
769                  */
770                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
771                 /* Note: The SDOORBELL is the cause of the errata.  You REALLY
772                  * don't want to touch it.
773                  */
774                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
775                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
776                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
777                 /* Offset the start of the spads to correspond to whether it is
778                  * primary or secondary
779                  */
780                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET +
781                                            ndev->limits.max_spads * 4;
782                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
783                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
784                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
785                 ndev->limits.max_mw = SNB_MAX_MW;
786                 break;
787         case NTB_CONN_TRANSPARENT:
788                 dev_info(&ndev->pdev->dev, "Conn Type = TRANSPARENT\n");
789                 ndev->conn_type = NTB_CONN_TRANSPARENT;
790                 /* Scratch pads need to have exclusive access from the primary
791                  * or secondary side.  Halve the num spads so that each side can
792                  * have an equal amount.
793                  */
794                 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
795                 ndev->reg_ofs.rdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
796                 ndev->reg_ofs.ldb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
797                 ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_SDBMSK_OFFSET;
798                 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
799                 /* Offset the start of the spads to correspond to whether it is
800                  * primary or secondary
801                  */
802                 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET +
803                                           ndev->limits.max_spads * 4;
804                 ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_PBAR2XLAT_OFFSET;
805                 ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_PBAR4XLAT_OFFSET;
806
807                 ndev->limits.max_mw = SNB_MAX_MW;
808                 break;
809         default:
810                 /* Most likely caused by the remote NTB-RP device not being
811                  * configured
812                  */
813                 dev_err(&ndev->pdev->dev, "Unknown PPD %x\n", val);
814                 return -EINVAL;
815         }
816
817         ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
818         ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_SLINK_STATUS_OFFSET;
819         ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
820
821         ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
822         ndev->limits.msix_cnt = SNB_MSIX_CNT;
823         ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
824
825         return 0;
826 }
827
828 static int ntb_bwd_setup(struct ntb_device *ndev)
829 {
830         int rc;
831         u32 val;
832
833         ndev->hw_type = BWD_HW;
834
835         rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
836         if (rc)
837                 return rc;
838
839         switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
840         case NTB_CONN_B2B:
841                 ndev->conn_type = NTB_CONN_B2B;
842                 break;
843         case NTB_CONN_RP:
844         default:
845                 dev_err(&ndev->pdev->dev, "Unsupported NTB configuration\n");
846                 return -EINVAL;
847         }
848
849         if (val & BWD_PPD_DEV_TYPE)
850                 ndev->dev_type = NTB_DEV_DSD;
851         else
852                 ndev->dev_type = NTB_DEV_USD;
853
854         /* Initiate PCI-E link training */
855         rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
856                                     val | BWD_PPD_INIT_LINK);
857         if (rc)
858                 return rc;
859
860         ndev->reg_ofs.ldb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
861         ndev->reg_ofs.ldb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
862         ndev->reg_ofs.rdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
863         ndev->reg_ofs.bar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
864         ndev->reg_ofs.bar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
865         ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
866         ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
867         ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
868         ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
869         ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
870         ndev->limits.max_mw = BWD_MAX_MW;
871         ndev->limits.max_spads = BWD_MAX_SPADS;
872         ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
873         ndev->limits.msix_cnt = BWD_MSIX_CNT;
874         ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
875
876         /* Since bwd doesn't have a link interrupt, setup a poll timer */
877         INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
878         INIT_DELAYED_WORK(&ndev->lr_timer, bwd_link_recovery);
879         schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
880
881         return 0;
882 }
883
884 static int ntb_device_setup(struct ntb_device *ndev)
885 {
886         int rc;
887
888         switch (ndev->pdev->device) {
889         case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
890         case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
891         case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
892         case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
893         case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
894         case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
895         case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
896         case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
897         case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
898         case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
899         case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
900         case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
901                 rc = ntb_xeon_setup(ndev);
902                 break;
903         case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
904                 rc = ntb_bwd_setup(ndev);
905                 break;
906         default:
907                 rc = -ENODEV;
908         }
909
910         if (rc)
911                 return rc;
912
913         dev_info(&ndev->pdev->dev, "Device Type = %s\n",
914                  ndev->dev_type == NTB_DEV_USD ? "USD/DSP" : "DSD/USP");
915
916         if (ndev->conn_type == NTB_CONN_B2B)
917                 /* Enable Bus Master and Memory Space on the secondary side */
918                 writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
919                        ndev->reg_ofs.spci_cmd);
920
921         return 0;
922 }
923
924 static void ntb_device_free(struct ntb_device *ndev)
925 {
926         if (ndev->hw_type == BWD_HW) {
927                 cancel_delayed_work_sync(&ndev->hb_timer);
928                 cancel_delayed_work_sync(&ndev->lr_timer);
929         }
930 }
931
932 static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
933 {
934         struct ntb_db_cb *db_cb = data;
935         struct ntb_device *ndev = db_cb->ndev;
936
937         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
938                 db_cb->db_num);
939
940         if (db_cb->callback)
941                 db_cb->callback(db_cb->data, db_cb->db_num);
942
943         /* No need to check for the specific HB irq, any interrupt means
944          * we're connected.
945          */
946         ndev->last_ts = jiffies;
947
948         writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.ldb);
949
950         return IRQ_HANDLED;
951 }
952
953 static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
954 {
955         struct ntb_db_cb *db_cb = data;
956         struct ntb_device *ndev = db_cb->ndev;
957
958         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
959                 db_cb->db_num);
960
961         if (db_cb->callback)
962                 db_cb->callback(db_cb->data, db_cb->db_num);
963
964         /* On Sandybridge, there are 16 bits in the interrupt register
965          * but only 4 vectors.  So, 5 bits are assigned to the first 3
966          * vectors, with the 4th having a single bit for link
967          * interrupts.
968          */
969         writew(((1 << ndev->bits_per_vector) - 1) <<
970                (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.ldb);
971
972         return IRQ_HANDLED;
973 }
974
975 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
976 static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
977 {
978         struct ntb_device *ndev = dev;
979         int rc;
980
981         dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
982
983         rc = ntb_link_status(ndev);
984         if (rc)
985                 dev_err(&ndev->pdev->dev, "Error determining link status\n");
986
987         /* bit 15 is always the link bit */
988         writew(1 << ndev->limits.max_db_bits, ndev->reg_ofs.ldb);
989
990         return IRQ_HANDLED;
991 }
992
993 static irqreturn_t ntb_interrupt(int irq, void *dev)
994 {
995         struct ntb_device *ndev = dev;
996         unsigned int i = 0;
997
998         if (ndev->hw_type == BWD_HW) {
999                 u64 ldb = readq(ndev->reg_ofs.ldb);
1000
1001                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %Lx\n", irq, ldb);
1002
1003                 while (ldb) {
1004                         i = __ffs(ldb);
1005                         ldb &= ldb - 1;
1006                         bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
1007                 }
1008         } else {
1009                 u16 ldb = readw(ndev->reg_ofs.ldb);
1010
1011                 dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %x\n", irq, ldb);
1012
1013                 if (ldb & SNB_DB_HW_LINK) {
1014                         xeon_event_msix_irq(irq, dev);
1015                         ldb &= ~SNB_DB_HW_LINK;
1016                 }
1017
1018                 while (ldb) {
1019                         i = __ffs(ldb);
1020                         ldb &= ldb - 1;
1021                         xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
1022                 }
1023         }
1024
1025         return IRQ_HANDLED;
1026 }
1027
1028 static int ntb_setup_msix(struct ntb_device *ndev)
1029 {
1030         struct pci_dev *pdev = ndev->pdev;
1031         struct msix_entry *msix;
1032         int msix_entries;
1033         int rc, i, pos;
1034         u16 val;
1035
1036         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1037         if (!pos) {
1038                 rc = -EIO;
1039                 goto err;
1040         }
1041
1042         rc = pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &val);
1043         if (rc)
1044                 goto err;
1045
1046         msix_entries = msix_table_size(val);
1047         if (msix_entries > ndev->limits.msix_cnt) {
1048                 rc = -EINVAL;
1049                 goto err;
1050         }
1051
1052         ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
1053                                      GFP_KERNEL);
1054         if (!ndev->msix_entries) {
1055                 rc = -ENOMEM;
1056                 goto err;
1057         }
1058
1059         for (i = 0; i < msix_entries; i++)
1060                 ndev->msix_entries[i].entry = i;
1061
1062         rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
1063         if (rc < 0)
1064                 goto err1;
1065         if (rc > 0) {
1066                 /* On SNB, the link interrupt is always tied to 4th vector.  If
1067                  * we can't get all 4, then we can't use MSI-X.
1068                  */
1069                 if (ndev->hw_type != BWD_HW) {
1070                         rc = -EIO;
1071                         goto err1;
1072                 }
1073
1074                 dev_warn(&pdev->dev,
1075                          "Only %d MSI-X vectors.  Limiting the number of queues to that number.\n",
1076                          rc);
1077                 msix_entries = rc;
1078         }
1079
1080         for (i = 0; i < msix_entries; i++) {
1081                 msix = &ndev->msix_entries[i];
1082                 WARN_ON(!msix->vector);
1083
1084                 /* Use the last MSI-X vector for Link status */
1085                 if (ndev->hw_type == BWD_HW) {
1086                         rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
1087                                          "ntb-callback-msix", &ndev->db_cb[i]);
1088                         if (rc)
1089                                 goto err2;
1090                 } else {
1091                         if (i == msix_entries - 1) {
1092                                 rc = request_irq(msix->vector,
1093                                                  xeon_event_msix_irq, 0,
1094                                                  "ntb-event-msix", ndev);
1095                                 if (rc)
1096                                         goto err2;
1097                         } else {
1098                                 rc = request_irq(msix->vector,
1099                                                  xeon_callback_msix_irq, 0,
1100                                                  "ntb-callback-msix",
1101                                                  &ndev->db_cb[i]);
1102                                 if (rc)
1103                                         goto err2;
1104                         }
1105                 }
1106         }
1107
1108         ndev->num_msix = msix_entries;
1109         if (ndev->hw_type == BWD_HW)
1110                 ndev->max_cbs = msix_entries;
1111         else
1112                 ndev->max_cbs = msix_entries - 1;
1113
1114         return 0;
1115
1116 err2:
1117         while (--i >= 0) {
1118                 msix = &ndev->msix_entries[i];
1119                 if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1120                         free_irq(msix->vector, ndev);
1121                 else
1122                         free_irq(msix->vector, &ndev->db_cb[i]);
1123         }
1124         pci_disable_msix(pdev);
1125 err1:
1126         kfree(ndev->msix_entries);
1127         dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
1128 err:
1129         ndev->num_msix = 0;
1130         return rc;
1131 }
1132
1133 static int ntb_setup_msi(struct ntb_device *ndev)
1134 {
1135         struct pci_dev *pdev = ndev->pdev;
1136         int rc;
1137
1138         rc = pci_enable_msi(pdev);
1139         if (rc)
1140                 return rc;
1141
1142         rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
1143         if (rc) {
1144                 pci_disable_msi(pdev);
1145                 dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
1146                 return rc;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static int ntb_setup_intx(struct ntb_device *ndev)
1153 {
1154         struct pci_dev *pdev = ndev->pdev;
1155         int rc;
1156
1157         pci_msi_off(pdev);
1158
1159         /* Verify intx is enabled */
1160         pci_intx(pdev, 1);
1161
1162         rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
1163                          ndev);
1164         if (rc)
1165                 return rc;
1166
1167         return 0;
1168 }
1169
1170 static int ntb_setup_interrupts(struct ntb_device *ndev)
1171 {
1172         int rc;
1173
1174         /* On BWD, disable all interrupts.  On SNB, disable all but Link
1175          * Interrupt.  The rest will be unmasked as callbacks are registered.
1176          */
1177         if (ndev->hw_type == BWD_HW)
1178                 writeq(~0, ndev->reg_ofs.ldb_mask);
1179         else
1180                 writew(~(1 << ndev->limits.max_db_bits),
1181                        ndev->reg_ofs.ldb_mask);
1182
1183         rc = ntb_setup_msix(ndev);
1184         if (!rc)
1185                 goto done;
1186
1187         ndev->bits_per_vector = 1;
1188         ndev->max_cbs = ndev->limits.max_db_bits;
1189
1190         rc = ntb_setup_msi(ndev);
1191         if (!rc)
1192                 goto done;
1193
1194         rc = ntb_setup_intx(ndev);
1195         if (rc) {
1196                 dev_err(&ndev->pdev->dev, "no usable interrupts\n");
1197                 return rc;
1198         }
1199
1200 done:
1201         return 0;
1202 }
1203
1204 static void ntb_free_interrupts(struct ntb_device *ndev)
1205 {
1206         struct pci_dev *pdev = ndev->pdev;
1207
1208         /* mask interrupts */
1209         if (ndev->hw_type == BWD_HW)
1210                 writeq(~0, ndev->reg_ofs.ldb_mask);
1211         else
1212                 writew(~0, ndev->reg_ofs.ldb_mask);
1213
1214         if (ndev->num_msix) {
1215                 struct msix_entry *msix;
1216                 u32 i;
1217
1218                 for (i = 0; i < ndev->num_msix; i++) {
1219                         msix = &ndev->msix_entries[i];
1220                         if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1221                                 free_irq(msix->vector, ndev);
1222                         else
1223                                 free_irq(msix->vector, &ndev->db_cb[i]);
1224                 }
1225                 pci_disable_msix(pdev);
1226         } else {
1227                 free_irq(pdev->irq, ndev);
1228
1229                 if (pci_dev_msi_enabled(pdev))
1230                         pci_disable_msi(pdev);
1231         }
1232 }
1233
1234 static int ntb_create_callbacks(struct ntb_device *ndev)
1235 {
1236         int i;
1237
1238         /* Checken-egg issue.  We won't know how many callbacks are necessary
1239          * until we see how many MSI-X vectors we get, but these pointers need
1240          * to be passed into the MSI-X register fucntion.  So, we allocate the
1241          * max, knowing that they might not all be used, to work around this.
1242          */
1243         ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
1244                               sizeof(struct ntb_db_cb),
1245                               GFP_KERNEL);
1246         if (!ndev->db_cb)
1247                 return -ENOMEM;
1248
1249         for (i = 0; i < ndev->limits.max_db_bits; i++) {
1250                 ndev->db_cb[i].db_num = i;
1251                 ndev->db_cb[i].ndev = ndev;
1252         }
1253
1254         return 0;
1255 }
1256
1257 static void ntb_free_callbacks(struct ntb_device *ndev)
1258 {
1259         int i;
1260
1261         for (i = 0; i < ndev->limits.max_db_bits; i++)
1262                 ntb_unregister_db_callback(ndev, i);
1263
1264         kfree(ndev->db_cb);
1265 }
1266
1267 static void ntb_setup_debugfs(struct ntb_device *ndev)
1268 {
1269         if (!debugfs_initialized())
1270                 return;
1271
1272         if (!debugfs_dir)
1273                 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1274
1275         ndev->debugfs_dir = debugfs_create_dir(pci_name(ndev->pdev),
1276                                                debugfs_dir);
1277 }
1278
1279 static void ntb_free_debugfs(struct ntb_device *ndev)
1280 {
1281         debugfs_remove_recursive(ndev->debugfs_dir);
1282
1283         if (debugfs_dir && simple_empty(debugfs_dir)) {
1284                 debugfs_remove_recursive(debugfs_dir);
1285                 debugfs_dir = NULL;
1286         }
1287 }
1288
1289 static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1290 {
1291         struct ntb_device *ndev;
1292         int rc, i;
1293
1294         ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1295         if (!ndev)
1296                 return -ENOMEM;
1297
1298         ndev->pdev = pdev;
1299         ndev->link_status = NTB_LINK_DOWN;
1300         pci_set_drvdata(pdev, ndev);
1301         ntb_setup_debugfs(ndev);
1302
1303         rc = pci_enable_device(pdev);
1304         if (rc)
1305                 goto err;
1306
1307         pci_set_master(ndev->pdev);
1308
1309         rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1310         if (rc)
1311                 goto err1;
1312
1313         ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1314         if (!ndev->reg_base) {
1315                 dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1316                 rc = -EIO;
1317                 goto err2;
1318         }
1319
1320         for (i = 0; i < NTB_MAX_NUM_MW; i++) {
1321                 ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1322                 ndev->mw[i].vbase =
1323                     ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1324                                ndev->mw[i].bar_sz);
1325                 dev_info(&pdev->dev, "MW %d size %llu\n", i,
1326                          (unsigned long long) ndev->mw[i].bar_sz);
1327                 if (!ndev->mw[i].vbase) {
1328                         dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1329                                  MW_TO_BAR(i));
1330                         rc = -EIO;
1331                         goto err3;
1332                 }
1333         }
1334
1335         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1336         if (rc) {
1337                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1338                 if (rc)
1339                         goto err3;
1340
1341                 dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1342         }
1343
1344         rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1345         if (rc) {
1346                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1347                 if (rc)
1348                         goto err3;
1349
1350                 dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1351         }
1352
1353         rc = ntb_device_setup(ndev);
1354         if (rc)
1355                 goto err3;
1356
1357         rc = ntb_create_callbacks(ndev);
1358         if (rc)
1359                 goto err4;
1360
1361         rc = ntb_setup_interrupts(ndev);
1362         if (rc)
1363                 goto err5;
1364
1365         /* The scratchpad registers keep the values between rmmod/insmod,
1366          * blast them now
1367          */
1368         for (i = 0; i < ndev->limits.max_spads; i++) {
1369                 ntb_write_local_spad(ndev, i, 0);
1370                 ntb_write_remote_spad(ndev, i, 0);
1371         }
1372
1373         rc = ntb_transport_init(pdev);
1374         if (rc)
1375                 goto err6;
1376
1377         /* Let's bring the NTB link up */
1378         writel(NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP,
1379                ndev->reg_ofs.lnk_cntl);
1380
1381         return 0;
1382
1383 err6:
1384         ntb_free_interrupts(ndev);
1385 err5:
1386         ntb_free_callbacks(ndev);
1387 err4:
1388         ntb_device_free(ndev);
1389 err3:
1390         for (i--; i >= 0; i--)
1391                 iounmap(ndev->mw[i].vbase);
1392         iounmap(ndev->reg_base);
1393 err2:
1394         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1395 err1:
1396         pci_disable_device(pdev);
1397 err:
1398         ntb_free_debugfs(ndev);
1399         kfree(ndev);
1400
1401         dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1402         return rc;
1403 }
1404
1405 static void ntb_pci_remove(struct pci_dev *pdev)
1406 {
1407         struct ntb_device *ndev = pci_get_drvdata(pdev);
1408         int i;
1409         u32 ntb_cntl;
1410
1411         /* Bring NTB link down */
1412         ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1413         ntb_cntl |= NTB_CNTL_LINK_DISABLE;
1414         writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1415
1416         ntb_transport_free(ndev->ntb_transport);
1417
1418         ntb_free_interrupts(ndev);
1419         ntb_free_callbacks(ndev);
1420         ntb_device_free(ndev);
1421
1422         for (i = 0; i < NTB_MAX_NUM_MW; i++)
1423                 iounmap(ndev->mw[i].vbase);
1424
1425         iounmap(ndev->reg_base);
1426         pci_release_selected_regions(pdev, NTB_BAR_MASK);
1427         pci_disable_device(pdev);
1428         ntb_free_debugfs(ndev);
1429         kfree(ndev);
1430 }
1431
1432 static struct pci_driver ntb_pci_driver = {
1433         .name = KBUILD_MODNAME,
1434         .id_table = ntb_pci_tbl,
1435         .probe = ntb_pci_probe,
1436         .remove = ntb_pci_remove,
1437 };
1438 module_pci_driver(ntb_pci_driver);