Merge remote-tracking branches 'asoc/topic/link-param', 'asoc/topic/max98090', 'asoc...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28
29 #include "i40evf.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44 /**
45  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46  * @ring:      the ring that owns the buffer
47  * @tx_buffer: the buffer to free
48  **/
49 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50                                             struct i40e_tx_buffer *tx_buffer)
51 {
52         if (tx_buffer->skb) {
53                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54                         kfree(tx_buffer->raw_buf);
55                 else
56                         dev_kfree_skb_any(tx_buffer->skb);
57
58                 if (dma_unmap_len(tx_buffer, len))
59                         dma_unmap_single(ring->dev,
60                                          dma_unmap_addr(tx_buffer, dma),
61                                          dma_unmap_len(tx_buffer, len),
62                                          DMA_TO_DEVICE);
63         } else if (dma_unmap_len(tx_buffer, len)) {
64                 dma_unmap_page(ring->dev,
65                                dma_unmap_addr(tx_buffer, dma),
66                                dma_unmap_len(tx_buffer, len),
67                                DMA_TO_DEVICE);
68         }
69         tx_buffer->next_to_watch = NULL;
70         tx_buffer->skb = NULL;
71         dma_unmap_len_set(tx_buffer, len, 0);
72         /* tx_buffer must be completely set up in the transmit path */
73 }
74
75 /**
76  * i40evf_clean_tx_ring - Free any empty Tx buffers
77  * @tx_ring: ring to be cleaned
78  **/
79 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80 {
81         unsigned long bi_size;
82         u16 i;
83
84         /* ring already cleared, nothing to do */
85         if (!tx_ring->tx_bi)
86                 return;
87
88         /* Free all the Tx ring sk_buffs */
89         for (i = 0; i < tx_ring->count; i++)
90                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93         memset(tx_ring->tx_bi, 0, bi_size);
94
95         /* Zero out the descriptor ring */
96         memset(tx_ring->desc, 0, tx_ring->size);
97
98         tx_ring->next_to_use = 0;
99         tx_ring->next_to_clean = 0;
100
101         if (!tx_ring->netdev)
102                 return;
103
104         /* cleanup Tx queue statistics */
105         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106                                                   tx_ring->queue_index));
107 }
108
109 /**
110  * i40evf_free_tx_resources - Free Tx resources per queue
111  * @tx_ring: Tx descriptor ring for a specific queue
112  *
113  * Free all transmit software resources
114  **/
115 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116 {
117         i40evf_clean_tx_ring(tx_ring);
118         kfree(tx_ring->tx_bi);
119         tx_ring->tx_bi = NULL;
120
121         if (tx_ring->desc) {
122                 dma_free_coherent(tx_ring->dev, tx_ring->size,
123                                   tx_ring->desc, tx_ring->dma);
124                 tx_ring->desc = NULL;
125         }
126 }
127
128 /**
129  * i40e_get_head - Retrieve head from head writeback
130  * @tx_ring:  tx ring to fetch head of
131  *
132  * Returns value of Tx ring head based on value stored
133  * in head write-back location
134  **/
135 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
136 {
137         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
138
139         return le32_to_cpu(*(volatile __le32 *)head);
140 }
141
142 /**
143  * i40e_get_tx_pending - how many tx descriptors not processed
144  * @tx_ring: the ring of descriptors
145  *
146  * Since there is no access to the ring head register
147  * in XL710, we need to use our local copies
148  **/
149 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
150 {
151         u32 head, tail;
152
153         head = i40e_get_head(ring);
154         tail = readl(ring->tail);
155
156         if (head != tail)
157                 return (head < tail) ?
158                         tail - head : (tail + ring->count - head);
159
160         return 0;
161 }
162
163 /**
164  * i40e_check_tx_hang - Is there a hang in the Tx queue
165  * @tx_ring: the ring of descriptors
166  **/
167 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
168 {
169         u32 tx_done = tx_ring->stats.packets;
170         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
171         u32 tx_pending = i40e_get_tx_pending(tx_ring);
172         bool ret = false;
173
174         clear_check_for_tx_hang(tx_ring);
175
176         /* Check for a hung queue, but be thorough. This verifies
177          * that a transmit has been completed since the previous
178          * check AND there is at least one packet pending. The
179          * ARMED bit is set to indicate a potential hang. The
180          * bit is cleared if a pause frame is received to remove
181          * false hang detection due to PFC or 802.3x frames. By
182          * requiring this to fail twice we avoid races with
183          * PFC clearing the ARMED bit and conditions where we
184          * run the check_tx_hang logic with a transmit completion
185          * pending but without time to complete it yet.
186          */
187         if ((tx_done_old == tx_done) && tx_pending) {
188                 /* make sure it is true for two checks in a row */
189                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
190                                        &tx_ring->state);
191         } else if (tx_done_old == tx_done &&
192                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
193                 /* update completed stats and disarm the hang check */
194                 tx_ring->tx_stats.tx_done_old = tx_done;
195                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
196         }
197
198         return ret;
199 }
200
201 #define WB_STRIDE 0x3
202
203 /**
204  * i40e_clean_tx_irq - Reclaim resources after transmit completes
205  * @tx_ring:  tx ring to clean
206  * @budget:   how many cleans we're allowed
207  *
208  * Returns true if there's any budget left (e.g. the clean is finished)
209  **/
210 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
211 {
212         u16 i = tx_ring->next_to_clean;
213         struct i40e_tx_buffer *tx_buf;
214         struct i40e_tx_desc *tx_head;
215         struct i40e_tx_desc *tx_desc;
216         unsigned int total_packets = 0;
217         unsigned int total_bytes = 0;
218
219         tx_buf = &tx_ring->tx_bi[i];
220         tx_desc = I40E_TX_DESC(tx_ring, i);
221         i -= tx_ring->count;
222
223         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
224
225         do {
226                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
227
228                 /* if next_to_watch is not set then there is no work pending */
229                 if (!eop_desc)
230                         break;
231
232                 /* prevent any other reads prior to eop_desc */
233                 read_barrier_depends();
234
235                 /* we have caught up to head, no work left to do */
236                 if (tx_head == tx_desc)
237                         break;
238
239                 /* clear next_to_watch to prevent false hangs */
240                 tx_buf->next_to_watch = NULL;
241
242                 /* update the statistics for this packet */
243                 total_bytes += tx_buf->bytecount;
244                 total_packets += tx_buf->gso_segs;
245
246                 /* free the skb */
247                 dev_kfree_skb_any(tx_buf->skb);
248
249                 /* unmap skb header data */
250                 dma_unmap_single(tx_ring->dev,
251                                  dma_unmap_addr(tx_buf, dma),
252                                  dma_unmap_len(tx_buf, len),
253                                  DMA_TO_DEVICE);
254
255                 /* clear tx_buffer data */
256                 tx_buf->skb = NULL;
257                 dma_unmap_len_set(tx_buf, len, 0);
258
259                 /* unmap remaining buffers */
260                 while (tx_desc != eop_desc) {
261
262                         tx_buf++;
263                         tx_desc++;
264                         i++;
265                         if (unlikely(!i)) {
266                                 i -= tx_ring->count;
267                                 tx_buf = tx_ring->tx_bi;
268                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
269                         }
270
271                         /* unmap any remaining paged data */
272                         if (dma_unmap_len(tx_buf, len)) {
273                                 dma_unmap_page(tx_ring->dev,
274                                                dma_unmap_addr(tx_buf, dma),
275                                                dma_unmap_len(tx_buf, len),
276                                                DMA_TO_DEVICE);
277                                 dma_unmap_len_set(tx_buf, len, 0);
278                         }
279                 }
280
281                 /* move us one more past the eop_desc for start of next pkt */
282                 tx_buf++;
283                 tx_desc++;
284                 i++;
285                 if (unlikely(!i)) {
286                         i -= tx_ring->count;
287                         tx_buf = tx_ring->tx_bi;
288                         tx_desc = I40E_TX_DESC(tx_ring, 0);
289                 }
290
291                 /* update budget accounting */
292                 budget--;
293         } while (likely(budget));
294
295         i += tx_ring->count;
296         tx_ring->next_to_clean = i;
297         u64_stats_update_begin(&tx_ring->syncp);
298         tx_ring->stats.bytes += total_bytes;
299         tx_ring->stats.packets += total_packets;
300         u64_stats_update_end(&tx_ring->syncp);
301         tx_ring->q_vector->tx.total_bytes += total_bytes;
302         tx_ring->q_vector->tx.total_packets += total_packets;
303
304         if (budget &&
305             !((i & WB_STRIDE) == WB_STRIDE) &&
306             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
307             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
308                 tx_ring->arm_wb = true;
309         else
310                 tx_ring->arm_wb = false;
311
312         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
313                 /* schedule immediate reset if we believe we hung */
314                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
315                          "  VSI                  <%d>\n"
316                          "  Tx Queue             <%d>\n"
317                          "  next_to_use          <%x>\n"
318                          "  next_to_clean        <%x>\n",
319                          tx_ring->vsi->seid,
320                          tx_ring->queue_index,
321                          tx_ring->next_to_use, i);
322                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
323                          "  time_stamp           <%lx>\n"
324                          "  jiffies              <%lx>\n",
325                          tx_ring->tx_bi[i].time_stamp, jiffies);
326
327                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
328
329                 dev_info(tx_ring->dev,
330                          "tx hang detected on queue %d, resetting adapter\n",
331                          tx_ring->queue_index);
332
333                 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
334
335                 /* the adapter is about to reset, no point in enabling stuff */
336                 return true;
337         }
338
339         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
340                                                       tx_ring->queue_index),
341                                   total_packets, total_bytes);
342
343 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
344         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
345                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
346                 /* Make sure that anybody stopping the queue after this
347                  * sees the new next_to_clean.
348                  */
349                 smp_mb();
350                 if (__netif_subqueue_stopped(tx_ring->netdev,
351                                              tx_ring->queue_index) &&
352                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
353                         netif_wake_subqueue(tx_ring->netdev,
354                                             tx_ring->queue_index);
355                         ++tx_ring->tx_stats.restart_queue;
356                 }
357         }
358
359         return budget > 0;
360 }
361
362 /**
363  * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
364  * @vsi: the VSI we care about
365  * @q_vector: the vector  on which to force writeback
366  *
367  **/
368 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
369 {
370         u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
371                   I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
372                   I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
373                   /* allow 00 to be written to the index */
374
375         wr32(&vsi->back->hw,
376              I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
377              val);
378 }
379
380 /**
381  * i40e_set_new_dynamic_itr - Find new ITR level
382  * @rc: structure containing ring performance data
383  *
384  * Stores a new ITR value based on packets and byte counts during
385  * the last interrupt.  The advantage of per interrupt computation
386  * is faster updates and more accurate ITR for the current traffic
387  * pattern.  Constants in this function were computed based on
388  * theoretical maximum wire speed and thresholds were set based on
389  * testing data as well as attempting to minimize response time
390  * while increasing bulk throughput.
391  **/
392 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
393 {
394         enum i40e_latency_range new_latency_range = rc->latency_range;
395         u32 new_itr = rc->itr;
396         int bytes_per_int;
397
398         if (rc->total_packets == 0 || !rc->itr)
399                 return;
400
401         /* simple throttlerate management
402          *   0-10MB/s   lowest (100000 ints/s)
403          *  10-20MB/s   low    (20000 ints/s)
404          *  20-1249MB/s bulk   (8000 ints/s)
405          */
406         bytes_per_int = rc->total_bytes / rc->itr;
407         switch (rc->itr) {
408         case I40E_LOWEST_LATENCY:
409                 if (bytes_per_int > 10)
410                         new_latency_range = I40E_LOW_LATENCY;
411                 break;
412         case I40E_LOW_LATENCY:
413                 if (bytes_per_int > 20)
414                         new_latency_range = I40E_BULK_LATENCY;
415                 else if (bytes_per_int <= 10)
416                         new_latency_range = I40E_LOWEST_LATENCY;
417                 break;
418         case I40E_BULK_LATENCY:
419                 if (bytes_per_int <= 20)
420                         rc->latency_range = I40E_LOW_LATENCY;
421                 break;
422         }
423
424         switch (new_latency_range) {
425         case I40E_LOWEST_LATENCY:
426                 new_itr = I40E_ITR_100K;
427                 break;
428         case I40E_LOW_LATENCY:
429                 new_itr = I40E_ITR_20K;
430                 break;
431         case I40E_BULK_LATENCY:
432                 new_itr = I40E_ITR_8K;
433                 break;
434         default:
435                 break;
436         }
437
438         if (new_itr != rc->itr) {
439                 /* do an exponential smoothing */
440                 new_itr = (10 * new_itr * rc->itr) /
441                           ((9 * new_itr) + rc->itr);
442                 rc->itr = new_itr & I40E_MAX_ITR;
443         }
444
445         rc->total_bytes = 0;
446         rc->total_packets = 0;
447 }
448
449 /**
450  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
451  * @q_vector: the vector to adjust
452  **/
453 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
454 {
455         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
456         struct i40e_hw *hw = &q_vector->vsi->back->hw;
457         u32 reg_addr;
458         u16 old_itr;
459
460         reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
461         old_itr = q_vector->rx.itr;
462         i40e_set_new_dynamic_itr(&q_vector->rx);
463         if (old_itr != q_vector->rx.itr)
464                 wr32(hw, reg_addr, q_vector->rx.itr);
465
466         reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
467         old_itr = q_vector->tx.itr;
468         i40e_set_new_dynamic_itr(&q_vector->tx);
469         if (old_itr != q_vector->tx.itr)
470                 wr32(hw, reg_addr, q_vector->tx.itr);
471 }
472
473 /**
474  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
475  * @tx_ring: the tx ring to set up
476  *
477  * Return 0 on success, negative on error
478  **/
479 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
480 {
481         struct device *dev = tx_ring->dev;
482         int bi_size;
483
484         if (!dev)
485                 return -ENOMEM;
486
487         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
488         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
489         if (!tx_ring->tx_bi)
490                 goto err;
491
492         /* round up to nearest 4K */
493         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
494         /* add u32 for head writeback, align after this takes care of
495          * guaranteeing this is at least one cache line in size
496          */
497         tx_ring->size += sizeof(u32);
498         tx_ring->size = ALIGN(tx_ring->size, 4096);
499         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
500                                            &tx_ring->dma, GFP_KERNEL);
501         if (!tx_ring->desc) {
502                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
503                          tx_ring->size);
504                 goto err;
505         }
506
507         tx_ring->next_to_use = 0;
508         tx_ring->next_to_clean = 0;
509         return 0;
510
511 err:
512         kfree(tx_ring->tx_bi);
513         tx_ring->tx_bi = NULL;
514         return -ENOMEM;
515 }
516
517 /**
518  * i40evf_clean_rx_ring - Free Rx buffers
519  * @rx_ring: ring to be cleaned
520  **/
521 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
522 {
523         struct device *dev = rx_ring->dev;
524         struct i40e_rx_buffer *rx_bi;
525         unsigned long bi_size;
526         u16 i;
527
528         /* ring already cleared, nothing to do */
529         if (!rx_ring->rx_bi)
530                 return;
531
532         /* Free all the Rx ring sk_buffs */
533         for (i = 0; i < rx_ring->count; i++) {
534                 rx_bi = &rx_ring->rx_bi[i];
535                 if (rx_bi->dma) {
536                         dma_unmap_single(dev,
537                                          rx_bi->dma,
538                                          rx_ring->rx_buf_len,
539                                          DMA_FROM_DEVICE);
540                         rx_bi->dma = 0;
541                 }
542                 if (rx_bi->skb) {
543                         dev_kfree_skb(rx_bi->skb);
544                         rx_bi->skb = NULL;
545                 }
546                 if (rx_bi->page) {
547                         if (rx_bi->page_dma) {
548                                 dma_unmap_page(dev,
549                                                rx_bi->page_dma,
550                                                PAGE_SIZE / 2,
551                                                DMA_FROM_DEVICE);
552                                 rx_bi->page_dma = 0;
553                         }
554                         __free_page(rx_bi->page);
555                         rx_bi->page = NULL;
556                         rx_bi->page_offset = 0;
557                 }
558         }
559
560         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
561         memset(rx_ring->rx_bi, 0, bi_size);
562
563         /* Zero out the descriptor ring */
564         memset(rx_ring->desc, 0, rx_ring->size);
565
566         rx_ring->next_to_clean = 0;
567         rx_ring->next_to_use = 0;
568 }
569
570 /**
571  * i40evf_free_rx_resources - Free Rx resources
572  * @rx_ring: ring to clean the resources from
573  *
574  * Free all receive software resources
575  **/
576 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
577 {
578         i40evf_clean_rx_ring(rx_ring);
579         kfree(rx_ring->rx_bi);
580         rx_ring->rx_bi = NULL;
581
582         if (rx_ring->desc) {
583                 dma_free_coherent(rx_ring->dev, rx_ring->size,
584                                   rx_ring->desc, rx_ring->dma);
585                 rx_ring->desc = NULL;
586         }
587 }
588
589 /**
590  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
591  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
592  *
593  * Returns 0 on success, negative on failure
594  **/
595 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
596 {
597         struct device *dev = rx_ring->dev;
598         int bi_size;
599
600         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
601         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
602         if (!rx_ring->rx_bi)
603                 goto err;
604
605         u64_stats_init(&rx_ring->syncp);
606
607         /* Round up to nearest 4K */
608         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
609                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
610                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
611         rx_ring->size = ALIGN(rx_ring->size, 4096);
612         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
613                                            &rx_ring->dma, GFP_KERNEL);
614
615         if (!rx_ring->desc) {
616                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
617                          rx_ring->size);
618                 goto err;
619         }
620
621         rx_ring->next_to_clean = 0;
622         rx_ring->next_to_use = 0;
623
624         return 0;
625 err:
626         kfree(rx_ring->rx_bi);
627         rx_ring->rx_bi = NULL;
628         return -ENOMEM;
629 }
630
631 /**
632  * i40e_release_rx_desc - Store the new tail and head values
633  * @rx_ring: ring to bump
634  * @val: new head index
635  **/
636 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
637 {
638         rx_ring->next_to_use = val;
639         /* Force memory writes to complete before letting h/w
640          * know there are new descriptors to fetch.  (Only
641          * applicable for weak-ordered memory model archs,
642          * such as IA-64).
643          */
644         wmb();
645         writel(val, rx_ring->tail);
646 }
647
648 /**
649  * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
650  * @rx_ring: ring to place buffers on
651  * @cleaned_count: number of buffers to replace
652  **/
653 void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
654 {
655         u16 i = rx_ring->next_to_use;
656         union i40e_rx_desc *rx_desc;
657         struct i40e_rx_buffer *bi;
658         struct sk_buff *skb;
659
660         /* do nothing if no valid netdev defined */
661         if (!rx_ring->netdev || !cleaned_count)
662                 return;
663
664         while (cleaned_count--) {
665                 rx_desc = I40E_RX_DESC(rx_ring, i);
666                 bi = &rx_ring->rx_bi[i];
667                 skb = bi->skb;
668
669                 if (!skb) {
670                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
671                                                         rx_ring->rx_buf_len);
672                         if (!skb) {
673                                 rx_ring->rx_stats.alloc_buff_failed++;
674                                 goto no_buffers;
675                         }
676                         /* initialize queue mapping */
677                         skb_record_rx_queue(skb, rx_ring->queue_index);
678                         bi->skb = skb;
679                 }
680
681                 if (!bi->dma) {
682                         bi->dma = dma_map_single(rx_ring->dev,
683                                                  skb->data,
684                                                  rx_ring->rx_buf_len,
685                                                  DMA_FROM_DEVICE);
686                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
687                                 rx_ring->rx_stats.alloc_buff_failed++;
688                                 bi->dma = 0;
689                                 goto no_buffers;
690                         }
691                 }
692
693                 if (ring_is_ps_enabled(rx_ring)) {
694                         if (!bi->page) {
695                                 bi->page = alloc_page(GFP_ATOMIC);
696                                 if (!bi->page) {
697                                         rx_ring->rx_stats.alloc_page_failed++;
698                                         goto no_buffers;
699                                 }
700                         }
701
702                         if (!bi->page_dma) {
703                                 /* use a half page if we're re-using */
704                                 bi->page_offset ^= PAGE_SIZE / 2;
705                                 bi->page_dma = dma_map_page(rx_ring->dev,
706                                                             bi->page,
707                                                             bi->page_offset,
708                                                             PAGE_SIZE / 2,
709                                                             DMA_FROM_DEVICE);
710                                 if (dma_mapping_error(rx_ring->dev,
711                                                       bi->page_dma)) {
712                                         rx_ring->rx_stats.alloc_page_failed++;
713                                         bi->page_dma = 0;
714                                         goto no_buffers;
715                                 }
716                         }
717
718                         /* Refresh the desc even if buffer_addrs didn't change
719                          * because each write-back erases this info.
720                          */
721                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
722                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
723                 } else {
724                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
725                         rx_desc->read.hdr_addr = 0;
726                 }
727                 i++;
728                 if (i == rx_ring->count)
729                         i = 0;
730         }
731
732 no_buffers:
733         if (rx_ring->next_to_use != i)
734                 i40e_release_rx_desc(rx_ring, i);
735 }
736
737 /**
738  * i40e_receive_skb - Send a completed packet up the stack
739  * @rx_ring:  rx ring in play
740  * @skb: packet to send up
741  * @vlan_tag: vlan tag for packet
742  **/
743 static void i40e_receive_skb(struct i40e_ring *rx_ring,
744                              struct sk_buff *skb, u16 vlan_tag)
745 {
746         struct i40e_q_vector *q_vector = rx_ring->q_vector;
747         struct i40e_vsi *vsi = rx_ring->vsi;
748         u64 flags = vsi->back->flags;
749
750         if (vlan_tag & VLAN_VID_MASK)
751                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
752
753         if (flags & I40E_FLAG_IN_NETPOLL)
754                 netif_rx(skb);
755         else
756                 napi_gro_receive(&q_vector->napi, skb);
757 }
758
759 /**
760  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
761  * @vsi: the VSI we care about
762  * @skb: skb currently being received and modified
763  * @rx_status: status value of last descriptor in packet
764  * @rx_error: error value of last descriptor in packet
765  * @rx_ptype: ptype value of last descriptor in packet
766  **/
767 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
768                                     struct sk_buff *skb,
769                                     u32 rx_status,
770                                     u32 rx_error,
771                                     u16 rx_ptype)
772 {
773         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
774         bool ipv4 = false, ipv6 = false;
775         bool ipv4_tunnel, ipv6_tunnel;
776         __wsum rx_udp_csum;
777         struct iphdr *iph;
778         __sum16 csum;
779
780         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
781                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
782         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
783                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
784
785         skb->ip_summed = CHECKSUM_NONE;
786
787         /* Rx csum enabled and ip headers found? */
788         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
789                 return;
790
791         /* did the hardware decode the packet and checksum? */
792         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
793                 return;
794
795         /* both known and outer_ip must be set for the below code to work */
796         if (!(decoded.known && decoded.outer_ip))
797                 return;
798
799         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
800             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
801                 ipv4 = true;
802         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
803                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
804                 ipv6 = true;
805
806         if (ipv4 &&
807             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
808                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
809                 goto checksum_fail;
810
811         /* likely incorrect csum if alternate IP extension headers found */
812         if (ipv6 &&
813             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
814                 /* don't increment checksum err here, non-fatal err */
815                 return;
816
817         /* there was some L4 error, count error and punt packet to the stack */
818         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
819                 goto checksum_fail;
820
821         /* handle packets that were not able to be checksummed due
822          * to arrival speed, in this case the stack can compute
823          * the csum.
824          */
825         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
826                 return;
827
828         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
829          * it in the driver, hardware does not do it for us.
830          * Since L3L4P bit was set we assume a valid IHL value (>=5)
831          * so the total length of IPv4 header is IHL*4 bytes
832          * The UDP_0 bit *may* bet set if the *inner* header is UDP
833          */
834         if (ipv4_tunnel &&
835             (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
836             !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
837                 skb->transport_header = skb->mac_header +
838                                         sizeof(struct ethhdr) +
839                                         (ip_hdr(skb)->ihl * 4);
840
841                 /* Add 4 bytes for VLAN tagged packets */
842                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
843                                           skb->protocol == htons(ETH_P_8021AD))
844                                           ? VLAN_HLEN : 0;
845
846                 rx_udp_csum = udp_csum(skb);
847                 iph = ip_hdr(skb);
848                 csum = csum_tcpudp_magic(
849                                 iph->saddr, iph->daddr,
850                                 (skb->len - skb_transport_offset(skb)),
851                                 IPPROTO_UDP, rx_udp_csum);
852
853                 if (udp_hdr(skb)->check != csum)
854                         goto checksum_fail;
855         }
856
857         skb->ip_summed = CHECKSUM_UNNECESSARY;
858         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
859
860         return;
861
862 checksum_fail:
863         vsi->back->hw_csum_rx_error++;
864 }
865
866 /**
867  * i40e_rx_hash - returns the hash value from the Rx descriptor
868  * @ring: descriptor ring
869  * @rx_desc: specific descriptor
870  **/
871 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
872                                union i40e_rx_desc *rx_desc)
873 {
874         const __le64 rss_mask =
875                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
876                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
877
878         if ((ring->netdev->features & NETIF_F_RXHASH) &&
879             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
880                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
881         else
882                 return 0;
883 }
884
885 /**
886  * i40e_ptype_to_hash - get a hash type
887  * @ptype: the ptype value from the descriptor
888  *
889  * Returns a hash type to be used by skb_set_hash
890  **/
891 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
892 {
893         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
894
895         if (!decoded.known)
896                 return PKT_HASH_TYPE_NONE;
897
898         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
899             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
900                 return PKT_HASH_TYPE_L4;
901         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
902                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
903                 return PKT_HASH_TYPE_L3;
904         else
905                 return PKT_HASH_TYPE_L2;
906 }
907
908 /**
909  * i40e_clean_rx_irq - Reclaim resources after receive completes
910  * @rx_ring:  rx ring to clean
911  * @budget:   how many cleans we're allowed
912  *
913  * Returns true if there's any budget left (e.g. the clean is finished)
914  **/
915 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
916 {
917         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
918         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
919         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
920         const int current_node = numa_node_id();
921         struct i40e_vsi *vsi = rx_ring->vsi;
922         u16 i = rx_ring->next_to_clean;
923         union i40e_rx_desc *rx_desc;
924         u32 rx_error, rx_status;
925         u8 rx_ptype;
926         u64 qword;
927
928         rx_desc = I40E_RX_DESC(rx_ring, i);
929         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
930         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
931                     I40E_RXD_QW1_STATUS_SHIFT;
932
933         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
934                 union i40e_rx_desc *next_rxd;
935                 struct i40e_rx_buffer *rx_bi;
936                 struct sk_buff *skb;
937                 u16 vlan_tag;
938                 rx_bi = &rx_ring->rx_bi[i];
939                 skb = rx_bi->skb;
940                 prefetch(skb->data);
941
942                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
943                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
944                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
945                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
946                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
947                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
948
949                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
950                            I40E_RXD_QW1_ERROR_SHIFT;
951                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
952                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
953
954                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
955                            I40E_RXD_QW1_PTYPE_SHIFT;
956                 rx_bi->skb = NULL;
957
958                 /* This memory barrier is needed to keep us from reading
959                  * any other fields out of the rx_desc until we know the
960                  * STATUS_DD bit is set
961                  */
962                 rmb();
963
964                 /* Get the header and possibly the whole packet
965                  * If this is an skb from previous receive dma will be 0
966                  */
967                 if (rx_bi->dma) {
968                         u16 len;
969
970                         if (rx_hbo)
971                                 len = I40E_RX_HDR_SIZE;
972                         else if (rx_sph)
973                                 len = rx_header_len;
974                         else if (rx_packet_len)
975                                 len = rx_packet_len;   /* 1buf/no split found */
976                         else
977                                 len = rx_header_len;   /* split always mode */
978
979                         skb_put(skb, len);
980                         dma_unmap_single(rx_ring->dev,
981                                          rx_bi->dma,
982                                          rx_ring->rx_buf_len,
983                                          DMA_FROM_DEVICE);
984                         rx_bi->dma = 0;
985                 }
986
987                 /* Get the rest of the data if this was a header split */
988                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
989
990                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
991                                            rx_bi->page,
992                                            rx_bi->page_offset,
993                                            rx_packet_len);
994
995                         skb->len += rx_packet_len;
996                         skb->data_len += rx_packet_len;
997                         skb->truesize += rx_packet_len;
998
999                         if ((page_count(rx_bi->page) == 1) &&
1000                             (page_to_nid(rx_bi->page) == current_node))
1001                                 get_page(rx_bi->page);
1002                         else
1003                                 rx_bi->page = NULL;
1004
1005                         dma_unmap_page(rx_ring->dev,
1006                                        rx_bi->page_dma,
1007                                        PAGE_SIZE / 2,
1008                                        DMA_FROM_DEVICE);
1009                         rx_bi->page_dma = 0;
1010                 }
1011                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1012
1013                 if (unlikely(
1014                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1015                         struct i40e_rx_buffer *next_buffer;
1016
1017                         next_buffer = &rx_ring->rx_bi[i];
1018
1019                         if (ring_is_ps_enabled(rx_ring)) {
1020                                 rx_bi->skb = next_buffer->skb;
1021                                 rx_bi->dma = next_buffer->dma;
1022                                 next_buffer->skb = skb;
1023                                 next_buffer->dma = 0;
1024                         }
1025                         rx_ring->rx_stats.non_eop_descs++;
1026                         goto next_desc;
1027                 }
1028
1029                 /* ERR_MASK will only have valid bits if EOP set */
1030                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1031                         dev_kfree_skb_any(skb);
1032                         /* TODO: shouldn't we increment a counter indicating the
1033                          * drop?
1034                          */
1035                         goto next_desc;
1036                 }
1037
1038                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1039                              i40e_ptype_to_hash(rx_ptype));
1040                 /* probably a little skewed due to removing CRC */
1041                 total_rx_bytes += skb->len;
1042                 total_rx_packets++;
1043
1044                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1045
1046                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1047
1048                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1049                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1050                          : 0;
1051                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1052
1053                 rx_ring->netdev->last_rx = jiffies;
1054                 budget--;
1055 next_desc:
1056                 rx_desc->wb.qword1.status_error_len = 0;
1057                 if (!budget)
1058                         break;
1059
1060                 cleaned_count++;
1061                 /* return some buffers to hardware, one at a time is too slow */
1062                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1063                         i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1064                         cleaned_count = 0;
1065                 }
1066
1067                 /* use prefetched values */
1068                 rx_desc = next_rxd;
1069                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1070                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1071                             I40E_RXD_QW1_STATUS_SHIFT;
1072         }
1073
1074         rx_ring->next_to_clean = i;
1075         u64_stats_update_begin(&rx_ring->syncp);
1076         rx_ring->stats.packets += total_rx_packets;
1077         rx_ring->stats.bytes += total_rx_bytes;
1078         u64_stats_update_end(&rx_ring->syncp);
1079         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1080         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1081
1082         if (cleaned_count)
1083                 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1084
1085         return budget > 0;
1086 }
1087
1088 /**
1089  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1090  * @napi: napi struct with our devices info in it
1091  * @budget: amount of work driver is allowed to do this pass, in packets
1092  *
1093  * This function will clean all queues associated with a q_vector.
1094  *
1095  * Returns the amount of work done
1096  **/
1097 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1098 {
1099         struct i40e_q_vector *q_vector =
1100                                container_of(napi, struct i40e_q_vector, napi);
1101         struct i40e_vsi *vsi = q_vector->vsi;
1102         struct i40e_ring *ring;
1103         bool clean_complete = true;
1104         bool arm_wb = false;
1105         int budget_per_ring;
1106
1107         if (test_bit(__I40E_DOWN, &vsi->state)) {
1108                 napi_complete(napi);
1109                 return 0;
1110         }
1111
1112         /* Since the actual Tx work is minimal, we can give the Tx a larger
1113          * budget and be more aggressive about cleaning up the Tx descriptors.
1114          */
1115         i40e_for_each_ring(ring, q_vector->tx) {
1116                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1117                 arm_wb |= ring->arm_wb;
1118         }
1119
1120         /* We attempt to distribute budget to each Rx queue fairly, but don't
1121          * allow the budget to go below 1 because that would exit polling early.
1122          */
1123         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1124
1125         i40e_for_each_ring(ring, q_vector->rx)
1126                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1127
1128         /* If work not completed, return budget and polling will return */
1129         if (!clean_complete) {
1130                 if (arm_wb)
1131                         i40e_force_wb(vsi, q_vector);
1132                 return budget;
1133         }
1134
1135         /* Work is done so exit the polling mode and re-enable the interrupt */
1136         napi_complete(napi);
1137         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1138             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1139                 i40e_update_dynamic_itr(q_vector);
1140
1141         if (!test_bit(__I40E_DOWN, &vsi->state))
1142                 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1143
1144         return 0;
1145 }
1146
1147 /**
1148  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1149  * @skb:     send buffer
1150  * @tx_ring: ring to send buffer on
1151  * @flags:   the tx flags to be set
1152  *
1153  * Checks the skb and set up correspondingly several generic transmit flags
1154  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1155  *
1156  * Returns error code indicate the frame should be dropped upon error and the
1157  * otherwise  returns 0 to indicate the flags has been set properly.
1158  **/
1159 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1160                                       struct i40e_ring *tx_ring,
1161                                       u32 *flags)
1162 {
1163         __be16 protocol = skb->protocol;
1164         u32  tx_flags = 0;
1165
1166         /* if we have a HW VLAN tag being added, default to the HW one */
1167         if (skb_vlan_tag_present(skb)) {
1168                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1169                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1170         /* else if it is a SW VLAN, check the next protocol and store the tag */
1171         } else if (protocol == htons(ETH_P_8021Q)) {
1172                 struct vlan_hdr *vhdr, _vhdr;
1173                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1174                 if (!vhdr)
1175                         return -EINVAL;
1176
1177                 protocol = vhdr->h_vlan_encapsulated_proto;
1178                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1179                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1180         }
1181
1182         *flags = tx_flags;
1183         return 0;
1184 }
1185
1186 /**
1187  * i40e_tso - set up the tso context descriptor
1188  * @tx_ring:  ptr to the ring to send
1189  * @skb:      ptr to the skb we're sending
1190  * @tx_flags: the collected send information
1191  * @protocol: the send protocol
1192  * @hdr_len:  ptr to the size of the packet header
1193  * @cd_tunneling: ptr to context descriptor bits
1194  *
1195  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1196  **/
1197 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1198                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1199                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1200 {
1201         u32 cd_cmd, cd_tso_len, cd_mss;
1202         struct ipv6hdr *ipv6h;
1203         struct tcphdr *tcph;
1204         struct iphdr *iph;
1205         u32 l4len;
1206         int err;
1207
1208         if (!skb_is_gso(skb))
1209                 return 0;
1210
1211         err = skb_cow_head(skb, 0);
1212         if (err < 0)
1213                 return err;
1214
1215         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1216         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1217
1218         if (iph->version == 4) {
1219                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1220                 iph->tot_len = 0;
1221                 iph->check = 0;
1222                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1223                                                  0, IPPROTO_TCP, 0);
1224         } else if (ipv6h->version == 6) {
1225                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1226                 ipv6h->payload_len = 0;
1227                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1228                                                0, IPPROTO_TCP, 0);
1229         }
1230
1231         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1232         *hdr_len = (skb->encapsulation
1233                     ? (skb_inner_transport_header(skb) - skb->data)
1234                     : skb_transport_offset(skb)) + l4len;
1235
1236         /* find the field values */
1237         cd_cmd = I40E_TX_CTX_DESC_TSO;
1238         cd_tso_len = skb->len - *hdr_len;
1239         cd_mss = skb_shinfo(skb)->gso_size;
1240         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1241                                 ((u64)cd_tso_len <<
1242                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1243                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1244         return 1;
1245 }
1246
1247 /**
1248  * i40e_tx_enable_csum - Enable Tx checksum offloads
1249  * @skb: send buffer
1250  * @tx_flags: Tx flags currently set
1251  * @td_cmd: Tx descriptor command bits to set
1252  * @td_offset: Tx descriptor header offsets to set
1253  * @cd_tunneling: ptr to context desc bits
1254  **/
1255 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1256                                 u32 *td_cmd, u32 *td_offset,
1257                                 struct i40e_ring *tx_ring,
1258                                 u32 *cd_tunneling)
1259 {
1260         struct ipv6hdr *this_ipv6_hdr;
1261         unsigned int this_tcp_hdrlen;
1262         struct iphdr *this_ip_hdr;
1263         u32 network_hdr_len;
1264         u8 l4_hdr = 0;
1265
1266         if (skb->encapsulation) {
1267                 network_hdr_len = skb_inner_network_header_len(skb);
1268                 this_ip_hdr = inner_ip_hdr(skb);
1269                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1270                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1271
1272                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1273
1274                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1275                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1276                                 ip_hdr(skb)->check = 0;
1277                         } else {
1278                                 *cd_tunneling |=
1279                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1280                         }
1281                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1282                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1283                         if (tx_flags & I40E_TX_FLAGS_TSO)
1284                                 ip_hdr(skb)->check = 0;
1285                 }
1286
1287                 /* Now set the ctx descriptor fields */
1288                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1289                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1290                                    I40E_TXD_CTX_UDP_TUNNELING            |
1291                                    ((skb_inner_network_offset(skb) -
1292                                         skb_transport_offset(skb)) >> 1) <<
1293                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1294                 if (this_ip_hdr->version == 6) {
1295                         tx_flags &= ~I40E_TX_FLAGS_IPV4;
1296                         tx_flags |= I40E_TX_FLAGS_IPV6;
1297                 }
1298
1299
1300         } else {
1301                 network_hdr_len = skb_network_header_len(skb);
1302                 this_ip_hdr = ip_hdr(skb);
1303                 this_ipv6_hdr = ipv6_hdr(skb);
1304                 this_tcp_hdrlen = tcp_hdrlen(skb);
1305         }
1306
1307         /* Enable IP checksum offloads */
1308         if (tx_flags & I40E_TX_FLAGS_IPV4) {
1309                 l4_hdr = this_ip_hdr->protocol;
1310                 /* the stack computes the IP header already, the only time we
1311                  * need the hardware to recompute it is in the case of TSO.
1312                  */
1313                 if (tx_flags & I40E_TX_FLAGS_TSO) {
1314                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1315                         this_ip_hdr->check = 0;
1316                 } else {
1317                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1318                 }
1319                 /* Now set the td_offset for IP header length */
1320                 *td_offset = (network_hdr_len >> 2) <<
1321                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1322         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1323                 l4_hdr = this_ipv6_hdr->nexthdr;
1324                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1325                 /* Now set the td_offset for IP header length */
1326                 *td_offset = (network_hdr_len >> 2) <<
1327                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1328         }
1329         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1330         *td_offset |= (skb_network_offset(skb) >> 1) <<
1331                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1332
1333         /* Enable L4 checksum offloads */
1334         switch (l4_hdr) {
1335         case IPPROTO_TCP:
1336                 /* enable checksum offloads */
1337                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1338                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1339                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1340                 break;
1341         case IPPROTO_SCTP:
1342                 /* enable SCTP checksum offload */
1343                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1344                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1345                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1346                 break;
1347         case IPPROTO_UDP:
1348                 /* enable UDP checksum offload */
1349                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1350                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1351                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1352                 break;
1353         default:
1354                 break;
1355         }
1356 }
1357
1358 /**
1359  * i40e_create_tx_ctx Build the Tx context descriptor
1360  * @tx_ring:  ring to create the descriptor on
1361  * @cd_type_cmd_tso_mss: Quad Word 1
1362  * @cd_tunneling: Quad Word 0 - bits 0-31
1363  * @cd_l2tag2: Quad Word 0 - bits 32-63
1364  **/
1365 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1366                                const u64 cd_type_cmd_tso_mss,
1367                                const u32 cd_tunneling, const u32 cd_l2tag2)
1368 {
1369         struct i40e_tx_context_desc *context_desc;
1370         int i = tx_ring->next_to_use;
1371
1372         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1373             !cd_tunneling && !cd_l2tag2)
1374                 return;
1375
1376         /* grab the next descriptor */
1377         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1378
1379         i++;
1380         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1381
1382         /* cpu_to_le32 and assign to struct fields */
1383         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1384         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1385         context_desc->rsvd = cpu_to_le16(0);
1386         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1387 }
1388
1389  /**
1390  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1391  * @skb:      send buffer
1392  * @tx_flags: collected send information
1393  * @hdr_len:  size of the packet header
1394  *
1395  * Note: Our HW can't scatter-gather more than 8 fragments to build
1396  * a packet on the wire and so we need to figure out the cases where we
1397  * need to linearize the skb.
1398  **/
1399 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
1400                                const u8 hdr_len)
1401 {
1402         struct skb_frag_struct *frag;
1403         bool linearize = false;
1404         unsigned int size = 0;
1405         u16 num_frags;
1406         u16 gso_segs;
1407
1408         num_frags = skb_shinfo(skb)->nr_frags;
1409         gso_segs = skb_shinfo(skb)->gso_segs;
1410
1411         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1412                 u16 j = 1;
1413
1414                 if (num_frags < (I40E_MAX_BUFFER_TXD))
1415                         goto linearize_chk_done;
1416                 /* try the simple math, if we have too many frags per segment */
1417                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1418                     I40E_MAX_BUFFER_TXD) {
1419                         linearize = true;
1420                         goto linearize_chk_done;
1421                 }
1422                 frag = &skb_shinfo(skb)->frags[0];
1423                 size = hdr_len;
1424                 /* we might still have more fragments per segment */
1425                 do {
1426                         size += skb_frag_size(frag);
1427                         frag++; j++;
1428                         if (j == I40E_MAX_BUFFER_TXD) {
1429                                 if (size < skb_shinfo(skb)->gso_size) {
1430                                         linearize = true;
1431                                         break;
1432                                 }
1433                                 j = 1;
1434                                 size -= skb_shinfo(skb)->gso_size;
1435                                 if (size)
1436                                         j++;
1437                                 size += hdr_len;
1438                         }
1439                         num_frags--;
1440                 } while (num_frags);
1441         } else {
1442                 if (num_frags >= I40E_MAX_BUFFER_TXD)
1443                         linearize = true;
1444         }
1445
1446 linearize_chk_done:
1447         return linearize;
1448 }
1449
1450 /**
1451  * i40e_tx_map - Build the Tx descriptor
1452  * @tx_ring:  ring to send buffer on
1453  * @skb:      send buffer
1454  * @first:    first buffer info buffer to use
1455  * @tx_flags: collected send information
1456  * @hdr_len:  size of the packet header
1457  * @td_cmd:   the command field in the descriptor
1458  * @td_offset: offset for checksum or crc
1459  **/
1460 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1461                         struct i40e_tx_buffer *first, u32 tx_flags,
1462                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
1463 {
1464         unsigned int data_len = skb->data_len;
1465         unsigned int size = skb_headlen(skb);
1466         struct skb_frag_struct *frag;
1467         struct i40e_tx_buffer *tx_bi;
1468         struct i40e_tx_desc *tx_desc;
1469         u16 i = tx_ring->next_to_use;
1470         u32 td_tag = 0;
1471         dma_addr_t dma;
1472         u16 gso_segs;
1473
1474         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1475                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1476                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1477                          I40E_TX_FLAGS_VLAN_SHIFT;
1478         }
1479
1480         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1481                 gso_segs = skb_shinfo(skb)->gso_segs;
1482         else
1483                 gso_segs = 1;
1484
1485         /* multiply data chunks by size of headers */
1486         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1487         first->gso_segs = gso_segs;
1488         first->skb = skb;
1489         first->tx_flags = tx_flags;
1490
1491         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1492
1493         tx_desc = I40E_TX_DESC(tx_ring, i);
1494         tx_bi = first;
1495
1496         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1497                 if (dma_mapping_error(tx_ring->dev, dma))
1498                         goto dma_error;
1499
1500                 /* record length, and DMA address */
1501                 dma_unmap_len_set(tx_bi, len, size);
1502                 dma_unmap_addr_set(tx_bi, dma, dma);
1503
1504                 tx_desc->buffer_addr = cpu_to_le64(dma);
1505
1506                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1507                         tx_desc->cmd_type_offset_bsz =
1508                                 build_ctob(td_cmd, td_offset,
1509                                            I40E_MAX_DATA_PER_TXD, td_tag);
1510
1511                         tx_desc++;
1512                         i++;
1513                         if (i == tx_ring->count) {
1514                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1515                                 i = 0;
1516                         }
1517
1518                         dma += I40E_MAX_DATA_PER_TXD;
1519                         size -= I40E_MAX_DATA_PER_TXD;
1520
1521                         tx_desc->buffer_addr = cpu_to_le64(dma);
1522                 }
1523
1524                 if (likely(!data_len))
1525                         break;
1526
1527                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1528                                                           size, td_tag);
1529
1530                 tx_desc++;
1531                 i++;
1532                 if (i == tx_ring->count) {
1533                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1534                         i = 0;
1535                 }
1536
1537                 size = skb_frag_size(frag);
1538                 data_len -= size;
1539
1540                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1541                                        DMA_TO_DEVICE);
1542
1543                 tx_bi = &tx_ring->tx_bi[i];
1544         }
1545
1546         /* Place RS bit on last descriptor of any packet that spans across the
1547          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1548          */
1549 #define WB_STRIDE 0x3
1550         if (((i & WB_STRIDE) != WB_STRIDE) &&
1551             (first <= &tx_ring->tx_bi[i]) &&
1552             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1553                 tx_desc->cmd_type_offset_bsz =
1554                         build_ctob(td_cmd, td_offset, size, td_tag) |
1555                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1556                                          I40E_TXD_QW1_CMD_SHIFT);
1557         } else {
1558                 tx_desc->cmd_type_offset_bsz =
1559                         build_ctob(td_cmd, td_offset, size, td_tag) |
1560                         cpu_to_le64((u64)I40E_TXD_CMD <<
1561                                          I40E_TXD_QW1_CMD_SHIFT);
1562         }
1563
1564         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1565                                                  tx_ring->queue_index),
1566                              first->bytecount);
1567
1568         /* set the timestamp */
1569         first->time_stamp = jiffies;
1570
1571         /* Force memory writes to complete before letting h/w
1572          * know there are new descriptors to fetch.  (Only
1573          * applicable for weak-ordered memory model archs,
1574          * such as IA-64).
1575          */
1576         wmb();
1577
1578         /* set next_to_watch value indicating a packet is present */
1579         first->next_to_watch = tx_desc;
1580
1581         i++;
1582         if (i == tx_ring->count)
1583                 i = 0;
1584
1585         tx_ring->next_to_use = i;
1586
1587         /* notify HW of packet */
1588         writel(i, tx_ring->tail);
1589
1590         return;
1591
1592 dma_error:
1593         dev_info(tx_ring->dev, "TX DMA map failed\n");
1594
1595         /* clear dma mappings for failed tx_bi map */
1596         for (;;) {
1597                 tx_bi = &tx_ring->tx_bi[i];
1598                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1599                 if (tx_bi == first)
1600                         break;
1601                 if (i == 0)
1602                         i = tx_ring->count;
1603                 i--;
1604         }
1605
1606         tx_ring->next_to_use = i;
1607 }
1608
1609 /**
1610  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1611  * @tx_ring: the ring to be checked
1612  * @size:    the size buffer we want to assure is available
1613  *
1614  * Returns -EBUSY if a stop is needed, else 0
1615  **/
1616 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1617 {
1618         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1619         /* Memory barrier before checking head and tail */
1620         smp_mb();
1621
1622         /* Check again in a case another CPU has just made room available. */
1623         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1624                 return -EBUSY;
1625
1626         /* A reprieve! - use start_queue because it doesn't call schedule */
1627         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1628         ++tx_ring->tx_stats.restart_queue;
1629         return 0;
1630 }
1631
1632 /**
1633  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1634  * @tx_ring: the ring to be checked
1635  * @size:    the size buffer we want to assure is available
1636  *
1637  * Returns 0 if stop is not needed
1638  **/
1639 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1640 {
1641         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1642                 return 0;
1643         return __i40e_maybe_stop_tx(tx_ring, size);
1644 }
1645
1646 /**
1647  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1648  * @skb:     send buffer
1649  * @tx_ring: ring to send buffer on
1650  *
1651  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1652  * there is not enough descriptors available in this ring since we need at least
1653  * one descriptor.
1654  **/
1655 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1656                                       struct i40e_ring *tx_ring)
1657 {
1658         unsigned int f;
1659         int count = 0;
1660
1661         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1662          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1663          *       + 4 desc gap to avoid the cache line where head is,
1664          *       + 1 desc for context descriptor,
1665          * otherwise try next time
1666          */
1667         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1668                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1669
1670         count += TXD_USE_COUNT(skb_headlen(skb));
1671         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1672                 tx_ring->tx_stats.tx_busy++;
1673                 return 0;
1674         }
1675         return count;
1676 }
1677
1678 /**
1679  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1680  * @skb:     send buffer
1681  * @tx_ring: ring to send buffer on
1682  *
1683  * Returns NETDEV_TX_OK if sent, else an error code
1684  **/
1685 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1686                                         struct i40e_ring *tx_ring)
1687 {
1688         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1689         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1690         struct i40e_tx_buffer *first;
1691         u32 td_offset = 0;
1692         u32 tx_flags = 0;
1693         __be16 protocol;
1694         u32 td_cmd = 0;
1695         u8 hdr_len = 0;
1696         int tso;
1697         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1698                 return NETDEV_TX_BUSY;
1699
1700         /* prepare the xmit flags */
1701         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1702                 goto out_drop;
1703
1704         /* obtain protocol of skb */
1705         protocol = vlan_get_protocol(skb);
1706
1707         /* record the location of the first descriptor for this packet */
1708         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1709
1710         /* setup IPv4/IPv6 offloads */
1711         if (protocol == htons(ETH_P_IP))
1712                 tx_flags |= I40E_TX_FLAGS_IPV4;
1713         else if (protocol == htons(ETH_P_IPV6))
1714                 tx_flags |= I40E_TX_FLAGS_IPV6;
1715
1716         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1717                        &cd_type_cmd_tso_mss, &cd_tunneling);
1718
1719         if (tso < 0)
1720                 goto out_drop;
1721         else if (tso)
1722                 tx_flags |= I40E_TX_FLAGS_TSO;
1723
1724         if (i40e_chk_linearize(skb, tx_flags, hdr_len))
1725                 if (skb_linearize(skb))
1726                         goto out_drop;
1727
1728         skb_tx_timestamp(skb);
1729
1730         /* always enable CRC insertion offload */
1731         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1732
1733         /* Always offload the checksum, since it's in the data descriptor */
1734         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1735                 tx_flags |= I40E_TX_FLAGS_CSUM;
1736
1737                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1738                                     tx_ring, &cd_tunneling);
1739         }
1740
1741         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1742                            cd_tunneling, cd_l2tag2);
1743
1744         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1745                     td_cmd, td_offset);
1746
1747         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1748
1749         return NETDEV_TX_OK;
1750
1751 out_drop:
1752         dev_kfree_skb_any(skb);
1753         return NETDEV_TX_OK;
1754 }
1755
1756 /**
1757  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1758  * @skb:    send buffer
1759  * @netdev: network interface device structure
1760  *
1761  * Returns NETDEV_TX_OK if sent, else an error code
1762  **/
1763 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1764 {
1765         struct i40evf_adapter *adapter = netdev_priv(netdev);
1766         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1767
1768         /* hardware can't handle really short frames, hardware padding works
1769          * beyond this point
1770          */
1771         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1772                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1773                         return NETDEV_TX_OK;
1774                 skb->len = I40E_MIN_TX_LEN;
1775                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1776         }
1777
1778         return i40e_xmit_frame_ring(skb, tx_ring);
1779 }