raid5: update analysis state for failed stripe
[linux-drm-fsl-dcu.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 static void release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760                 is_full_stripe_write(sh);
761 }
762
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766         struct stripe_head *head;
767         sector_t head_sector, tmp_sec;
768         int hash;
769         int dd_idx;
770
771         if (!stripe_can_batch(sh))
772                 return;
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         list_del_init(&head->lru);
790                         if (head->group) {
791                                 head->group->stripes_cnt--;
792                                 head->group = NULL;
793                         }
794                 }
795                 atomic_inc(&head->count);
796                 spin_unlock(&conf->device_lock);
797         }
798         spin_unlock_irq(conf->hash_locks + hash);
799
800         if (!head)
801                 return;
802         if (!stripe_can_batch(head))
803                 goto out;
804
805         lock_two_stripes(head, sh);
806         /* clear_batch_ready clear the flag */
807         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808                 goto unlock_out;
809
810         if (sh->batch_head)
811                 goto unlock_out;
812
813         dd_idx = 0;
814         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815                 dd_idx++;
816         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817                 goto unlock_out;
818
819         if (head->batch_head) {
820                 spin_lock(&head->batch_head->batch_lock);
821                 /* This batch list is already running */
822                 if (!stripe_can_batch(head)) {
823                         spin_unlock(&head->batch_head->batch_lock);
824                         goto unlock_out;
825                 }
826
827                 /*
828                  * at this point, head's BATCH_READY could be cleared, but we
829                  * can still add the stripe to batch list
830                  */
831                 list_add(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_head->batch_lock);
833
834                 sh->batch_head = head->batch_head;
835         } else {
836                 head->batch_head = head;
837                 sh->batch_head = head->batch_head;
838                 spin_lock(&head->batch_lock);
839                 list_add_tail(&sh->batch_list, &head->batch_list);
840                 spin_unlock(&head->batch_lock);
841         }
842
843         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844                 if (atomic_dec_return(&conf->preread_active_stripes)
845                     < IO_THRESHOLD)
846                         md_wakeup_thread(conf->mddev->thread);
847
848         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849                 int seq = sh->bm_seq;
850                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851                     sh->batch_head->bm_seq > seq)
852                         seq = sh->batch_head->bm_seq;
853                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854                 sh->batch_head->bm_seq = seq;
855         }
856
857         atomic_inc(&sh->count);
858 unlock_out:
859         unlock_two_stripes(head, sh);
860 out:
861         release_stripe(head);
862 }
863
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869         sector_t progress = conf->reshape_progress;
870         /* Need a memory barrier to make sure we see the value
871          * of conf->generation, or ->data_offset that was set before
872          * reshape_progress was updated.
873          */
874         smp_rmb();
875         if (progress == MaxSector)
876                 return 0;
877         if (sh->generation == conf->generation - 1)
878                 return 0;
879         /* We are in a reshape, and this is a new-generation stripe,
880          * so use new_data_offset.
881          */
882         return 1;
883 }
884
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892         struct r5conf *conf = sh->raid_conf;
893         int i, disks = sh->disks;
894         struct stripe_head *head_sh = sh;
895
896         might_sleep();
897
898         for (i = disks; i--; ) {
899                 int rw;
900                 int replace_only = 0;
901                 struct bio *bi, *rbi;
902                 struct md_rdev *rdev, *rrdev = NULL;
903
904                 sh = head_sh;
905                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907                                 rw = WRITE_FUA;
908                         else
909                                 rw = WRITE;
910                         if (test_bit(R5_Discard, &sh->dev[i].flags))
911                                 rw |= REQ_DISCARD;
912                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913                         rw = READ;
914                 else if (test_and_clear_bit(R5_WantReplace,
915                                             &sh->dev[i].flags)) {
916                         rw = WRITE;
917                         replace_only = 1;
918                 } else
919                         continue;
920                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921                         rw |= REQ_SYNC;
922
923 again:
924                 bi = &sh->dev[i].req;
925                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
926
927                 rcu_read_lock();
928                 rrdev = rcu_dereference(conf->disks[i].replacement);
929                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930                 rdev = rcu_dereference(conf->disks[i].rdev);
931                 if (!rdev) {
932                         rdev = rrdev;
933                         rrdev = NULL;
934                 }
935                 if (rw & WRITE) {
936                         if (replace_only)
937                                 rdev = NULL;
938                         if (rdev == rrdev)
939                                 /* We raced and saw duplicates */
940                                 rrdev = NULL;
941                 } else {
942                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943                                 rdev = rrdev;
944                         rrdev = NULL;
945                 }
946
947                 if (rdev && test_bit(Faulty, &rdev->flags))
948                         rdev = NULL;
949                 if (rdev)
950                         atomic_inc(&rdev->nr_pending);
951                 if (rrdev && test_bit(Faulty, &rrdev->flags))
952                         rrdev = NULL;
953                 if (rrdev)
954                         atomic_inc(&rrdev->nr_pending);
955                 rcu_read_unlock();
956
957                 /* We have already checked bad blocks for reads.  Now
958                  * need to check for writes.  We never accept write errors
959                  * on the replacement, so we don't to check rrdev.
960                  */
961                 while ((rw & WRITE) && rdev &&
962                        test_bit(WriteErrorSeen, &rdev->flags)) {
963                         sector_t first_bad;
964                         int bad_sectors;
965                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966                                               &first_bad, &bad_sectors);
967                         if (!bad)
968                                 break;
969
970                         if (bad < 0) {
971                                 set_bit(BlockedBadBlocks, &rdev->flags);
972                                 if (!conf->mddev->external &&
973                                     conf->mddev->flags) {
974                                         /* It is very unlikely, but we might
975                                          * still need to write out the
976                                          * bad block log - better give it
977                                          * a chance*/
978                                         md_check_recovery(conf->mddev);
979                                 }
980                                 /*
981                                  * Because md_wait_for_blocked_rdev
982                                  * will dec nr_pending, we must
983                                  * increment it first.
984                                  */
985                                 atomic_inc(&rdev->nr_pending);
986                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
987                         } else {
988                                 /* Acknowledged bad block - skip the write */
989                                 rdev_dec_pending(rdev, conf->mddev);
990                                 rdev = NULL;
991                         }
992                 }
993
994                 if (rdev) {
995                         if (s->syncing || s->expanding || s->expanded
996                             || s->replacing)
997                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
999                         set_bit(STRIPE_IO_STARTED, &sh->state);
1000
1001                         bio_reset(bi);
1002                         bi->bi_bdev = rdev->bdev;
1003                         bi->bi_rw = rw;
1004                         bi->bi_end_io = (rw & WRITE)
1005                                 ? raid5_end_write_request
1006                                 : raid5_end_read_request;
1007                         bi->bi_private = sh;
1008
1009                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010                                 __func__, (unsigned long long)sh->sector,
1011                                 bi->bi_rw, i);
1012                         atomic_inc(&sh->count);
1013                         if (sh != head_sh)
1014                                 atomic_inc(&head_sh->count);
1015                         if (use_new_offset(conf, sh))
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->new_data_offset);
1018                         else
1019                                 bi->bi_iter.bi_sector = (sh->sector
1020                                                  + rdev->data_offset);
1021                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022                                 bi->bi_rw |= REQ_NOMERGE;
1023
1024                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1027                         bi->bi_vcnt = 1;
1028                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029                         bi->bi_io_vec[0].bv_offset = 0;
1030                         bi->bi_iter.bi_size = STRIPE_SIZE;
1031                         /*
1032                          * If this is discard request, set bi_vcnt 0. We don't
1033                          * want to confuse SCSI because SCSI will replace payload
1034                          */
1035                         if (rw & REQ_DISCARD)
1036                                 bi->bi_vcnt = 0;
1037                         if (rrdev)
1038                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039
1040                         if (conf->mddev->gendisk)
1041                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042                                                       bi, disk_devt(conf->mddev->gendisk),
1043                                                       sh->dev[i].sector);
1044                         generic_make_request(bi);
1045                 }
1046                 if (rrdev) {
1047                         if (s->syncing || s->expanding || s->expanded
1048                             || s->replacing)
1049                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051                         set_bit(STRIPE_IO_STARTED, &sh->state);
1052
1053                         bio_reset(rbi);
1054                         rbi->bi_bdev = rrdev->bdev;
1055                         rbi->bi_rw = rw;
1056                         BUG_ON(!(rw & WRITE));
1057                         rbi->bi_end_io = raid5_end_write_request;
1058                         rbi->bi_private = sh;
1059
1060                         pr_debug("%s: for %llu schedule op %ld on "
1061                                  "replacement disc %d\n",
1062                                 __func__, (unsigned long long)sh->sector,
1063                                 rbi->bi_rw, i);
1064                         atomic_inc(&sh->count);
1065                         if (sh != head_sh)
1066                                 atomic_inc(&head_sh->count);
1067                         if (use_new_offset(conf, sh))
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->new_data_offset);
1070                         else
1071                                 rbi->bi_iter.bi_sector = (sh->sector
1072                                                   + rrdev->data_offset);
1073                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076                         rbi->bi_vcnt = 1;
1077                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078                         rbi->bi_io_vec[0].bv_offset = 0;
1079                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1080                         /*
1081                          * If this is discard request, set bi_vcnt 0. We don't
1082                          * want to confuse SCSI because SCSI will replace payload
1083                          */
1084                         if (rw & REQ_DISCARD)
1085                                 rbi->bi_vcnt = 0;
1086                         if (conf->mddev->gendisk)
1087                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088                                                       rbi, disk_devt(conf->mddev->gendisk),
1089                                                       sh->dev[i].sector);
1090                         generic_make_request(rbi);
1091                 }
1092                 if (!rdev && !rrdev) {
1093                         if (rw & WRITE)
1094                                 set_bit(STRIPE_DEGRADED, &sh->state);
1095                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1096                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1097                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098                         set_bit(STRIPE_HANDLE, &sh->state);
1099                 }
1100
1101                 if (!head_sh->batch_head)
1102                         continue;
1103                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104                                       batch_list);
1105                 if (sh != head_sh)
1106                         goto again;
1107         }
1108 }
1109
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112         sector_t sector, struct dma_async_tx_descriptor *tx,
1113         struct stripe_head *sh)
1114 {
1115         struct bio_vec bvl;
1116         struct bvec_iter iter;
1117         struct page *bio_page;
1118         int page_offset;
1119         struct async_submit_ctl submit;
1120         enum async_tx_flags flags = 0;
1121
1122         if (bio->bi_iter.bi_sector >= sector)
1123                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124         else
1125                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126
1127         if (frombio)
1128                 flags |= ASYNC_TX_FENCE;
1129         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
1131         bio_for_each_segment(bvl, bio, iter) {
1132                 int len = bvl.bv_len;
1133                 int clen;
1134                 int b_offset = 0;
1135
1136                 if (page_offset < 0) {
1137                         b_offset = -page_offset;
1138                         page_offset += b_offset;
1139                         len -= b_offset;
1140                 }
1141
1142                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143                         clen = STRIPE_SIZE - page_offset;
1144                 else
1145                         clen = len;
1146
1147                 if (clen > 0) {
1148                         b_offset += bvl.bv_offset;
1149                         bio_page = bvl.bv_page;
1150                         if (frombio) {
1151                                 if (sh->raid_conf->skip_copy &&
1152                                     b_offset == 0 && page_offset == 0 &&
1153                                     clen == STRIPE_SIZE)
1154                                         *page = bio_page;
1155                                 else
1156                                         tx = async_memcpy(*page, bio_page, page_offset,
1157                                                   b_offset, clen, &submit);
1158                         } else
1159                                 tx = async_memcpy(bio_page, *page, b_offset,
1160                                                   page_offset, clen, &submit);
1161                 }
1162                 /* chain the operations */
1163                 submit.depend_tx = tx;
1164
1165                 if (clen < len) /* hit end of page */
1166                         break;
1167                 page_offset +=  len;
1168         }
1169
1170         return tx;
1171 }
1172
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176         struct bio_list return_bi = BIO_EMPTY_LIST;
1177         int i;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         /* clear completed biofills */
1183         for (i = sh->disks; i--; ) {
1184                 struct r5dev *dev = &sh->dev[i];
1185
1186                 /* acknowledge completion of a biofill operation */
1187                 /* and check if we need to reply to a read request,
1188                  * new R5_Wantfill requests are held off until
1189                  * !STRIPE_BIOFILL_RUN
1190                  */
1191                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192                         struct bio *rbi, *rbi2;
1193
1194                         BUG_ON(!dev->read);
1195                         rbi = dev->read;
1196                         dev->read = NULL;
1197                         while (rbi && rbi->bi_iter.bi_sector <
1198                                 dev->sector + STRIPE_SECTORS) {
1199                                 rbi2 = r5_next_bio(rbi, dev->sector);
1200                                 if (!raid5_dec_bi_active_stripes(rbi))
1201                                         bio_list_add(&return_bi, rbi);
1202                                 rbi = rbi2;
1203                         }
1204                 }
1205         }
1206         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207
1208         return_io(&return_bi);
1209
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         struct async_submit_ctl submit;
1218         int i;
1219
1220         BUG_ON(sh->batch_head);
1221         pr_debug("%s: stripe %llu\n", __func__,
1222                 (unsigned long long)sh->sector);
1223
1224         for (i = sh->disks; i--; ) {
1225                 struct r5dev *dev = &sh->dev[i];
1226                 if (test_bit(R5_Wantfill, &dev->flags)) {
1227                         struct bio *rbi;
1228                         spin_lock_irq(&sh->stripe_lock);
1229                         dev->read = rbi = dev->toread;
1230                         dev->toread = NULL;
1231                         spin_unlock_irq(&sh->stripe_lock);
1232                         while (rbi && rbi->bi_iter.bi_sector <
1233                                 dev->sector + STRIPE_SECTORS) {
1234                                 tx = async_copy_data(0, rbi, &dev->page,
1235                                         dev->sector, tx, sh);
1236                                 rbi = r5_next_bio(rbi, dev->sector);
1237                         }
1238                 }
1239         }
1240
1241         atomic_inc(&sh->count);
1242         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243         async_trigger_callback(&submit);
1244 }
1245
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248         struct r5dev *tgt;
1249
1250         if (target < 0)
1251                 return;
1252
1253         tgt = &sh->dev[target];
1254         set_bit(R5_UPTODATE, &tgt->flags);
1255         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256         clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261         struct stripe_head *sh = stripe_head_ref;
1262
1263         pr_debug("%s: stripe %llu\n", __func__,
1264                 (unsigned long long)sh->sector);
1265
1266         /* mark the computed target(s) as uptodate */
1267         mark_target_uptodate(sh, sh->ops.target);
1268         mark_target_uptodate(sh, sh->ops.target2);
1269
1270         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271         if (sh->check_state == check_state_compute_run)
1272                 sh->check_state = check_state_compute_result;
1273         set_bit(STRIPE_HANDLE, &sh->state);
1274         release_stripe(sh);
1275 }
1276
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279                                  struct raid5_percpu *percpu, int i)
1280 {
1281         void *addr;
1282
1283         addr = flex_array_get(percpu->scribble, i);
1284         return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290         void *addr;
1291
1292         addr = flex_array_get(percpu->scribble, i);
1293         return addr;
1294 }
1295
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299         int disks = sh->disks;
1300         struct page **xor_srcs = to_addr_page(percpu, 0);
1301         int target = sh->ops.target;
1302         struct r5dev *tgt = &sh->dev[target];
1303         struct page *xor_dest = tgt->page;
1304         int count = 0;
1305         struct dma_async_tx_descriptor *tx;
1306         struct async_submit_ctl submit;
1307         int i;
1308
1309         BUG_ON(sh->batch_head);
1310
1311         pr_debug("%s: stripe %llu block: %d\n",
1312                 __func__, (unsigned long long)sh->sector, target);
1313         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315         for (i = disks; i--; )
1316                 if (i != target)
1317                         xor_srcs[count++] = sh->dev[i].page;
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327
1328         return tx;
1329 }
1330
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341                                 struct stripe_head *sh,
1342                                 int srctype)
1343 {
1344         int disks = sh->disks;
1345         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346         int d0_idx = raid6_d0(sh);
1347         int count;
1348         int i;
1349
1350         for (i = 0; i < disks; i++)
1351                 srcs[i] = NULL;
1352
1353         count = 0;
1354         i = d0_idx;
1355         do {
1356                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357                 struct r5dev *dev = &sh->dev[i];
1358
1359                 if (i == sh->qd_idx || i == sh->pd_idx ||
1360                     (srctype == SYNDROME_SRC_ALL) ||
1361                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362                      test_bit(R5_Wantdrain, &dev->flags)) ||
1363                     (srctype == SYNDROME_SRC_WRITTEN &&
1364                      dev->written))
1365                         srcs[slot] = sh->dev[i].page;
1366                 i = raid6_next_disk(i, disks);
1367         } while (i != d0_idx);
1368
1369         return syndrome_disks;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375         int disks = sh->disks;
1376         struct page **blocks = to_addr_page(percpu, 0);
1377         int target;
1378         int qd_idx = sh->qd_idx;
1379         struct dma_async_tx_descriptor *tx;
1380         struct async_submit_ctl submit;
1381         struct r5dev *tgt;
1382         struct page *dest;
1383         int i;
1384         int count;
1385
1386         BUG_ON(sh->batch_head);
1387         if (sh->ops.target < 0)
1388                 target = sh->ops.target2;
1389         else if (sh->ops.target2 < 0)
1390                 target = sh->ops.target;
1391         else
1392                 /* we should only have one valid target */
1393                 BUG();
1394         BUG_ON(target < 0);
1395         pr_debug("%s: stripe %llu block: %d\n",
1396                 __func__, (unsigned long long)sh->sector, target);
1397
1398         tgt = &sh->dev[target];
1399         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400         dest = tgt->page;
1401
1402         atomic_inc(&sh->count);
1403
1404         if (target == qd_idx) {
1405                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406                 blocks[count] = NULL; /* regenerating p is not necessary */
1407                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409                                   ops_complete_compute, sh,
1410                                   to_addr_conv(sh, percpu, 0));
1411                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412         } else {
1413                 /* Compute any data- or p-drive using XOR */
1414                 count = 0;
1415                 for (i = disks; i-- ; ) {
1416                         if (i == target || i == qd_idx)
1417                                 continue;
1418                         blocks[count++] = sh->dev[i].page;
1419                 }
1420
1421                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422                                   NULL, ops_complete_compute, sh,
1423                                   to_addr_conv(sh, percpu, 0));
1424                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425         }
1426
1427         return tx;
1428 }
1429
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433         int i, count, disks = sh->disks;
1434         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435         int d0_idx = raid6_d0(sh);
1436         int faila = -1, failb = -1;
1437         int target = sh->ops.target;
1438         int target2 = sh->ops.target2;
1439         struct r5dev *tgt = &sh->dev[target];
1440         struct r5dev *tgt2 = &sh->dev[target2];
1441         struct dma_async_tx_descriptor *tx;
1442         struct page **blocks = to_addr_page(percpu, 0);
1443         struct async_submit_ctl submit;
1444
1445         BUG_ON(sh->batch_head);
1446         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447                  __func__, (unsigned long long)sh->sector, target, target2);
1448         BUG_ON(target < 0 || target2 < 0);
1449         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
1452         /* we need to open-code set_syndrome_sources to handle the
1453          * slot number conversion for 'faila' and 'failb'
1454          */
1455         for (i = 0; i < disks ; i++)
1456                 blocks[i] = NULL;
1457         count = 0;
1458         i = d0_idx;
1459         do {
1460                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462                 blocks[slot] = sh->dev[i].page;
1463
1464                 if (i == target)
1465                         faila = slot;
1466                 if (i == target2)
1467                         failb = slot;
1468                 i = raid6_next_disk(i, disks);
1469         } while (i != d0_idx);
1470
1471         BUG_ON(faila == failb);
1472         if (failb < faila)
1473                 swap(faila, failb);
1474         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475                  __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477         atomic_inc(&sh->count);
1478
1479         if (failb == syndrome_disks+1) {
1480                 /* Q disk is one of the missing disks */
1481                 if (faila == syndrome_disks) {
1482                         /* Missing P+Q, just recompute */
1483                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484                                           ops_complete_compute, sh,
1485                                           to_addr_conv(sh, percpu, 0));
1486                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487                                                   STRIPE_SIZE, &submit);
1488                 } else {
1489                         struct page *dest;
1490                         int data_target;
1491                         int qd_idx = sh->qd_idx;
1492
1493                         /* Missing D+Q: recompute D from P, then recompute Q */
1494                         if (target == qd_idx)
1495                                 data_target = target2;
1496                         else
1497                                 data_target = target;
1498
1499                         count = 0;
1500                         for (i = disks; i-- ; ) {
1501                                 if (i == data_target || i == qd_idx)
1502                                         continue;
1503                                 blocks[count++] = sh->dev[i].page;
1504                         }
1505                         dest = sh->dev[data_target].page;
1506                         init_async_submit(&submit,
1507                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508                                           NULL, NULL, NULL,
1509                                           to_addr_conv(sh, percpu, 0));
1510                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511                                        &submit);
1512
1513                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515                                           ops_complete_compute, sh,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         return async_gen_syndrome(blocks, 0, count+2,
1518                                                   STRIPE_SIZE, &submit);
1519                 }
1520         } else {
1521                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522                                   ops_complete_compute, sh,
1523                                   to_addr_conv(sh, percpu, 0));
1524                 if (failb == syndrome_disks) {
1525                         /* We're missing D+P. */
1526                         return async_raid6_datap_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila,
1528                                                        blocks, &submit);
1529                 } else {
1530                         /* We're missing D+D. */
1531                         return async_raid6_2data_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila, failb,
1533                                                        blocks, &submit);
1534                 }
1535         }
1536 }
1537
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540         struct stripe_head *sh = stripe_head_ref;
1541
1542         pr_debug("%s: stripe %llu\n", __func__,
1543                 (unsigned long long)sh->sector);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548                 struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         struct page **xor_srcs = to_addr_page(percpu, 0);
1552         int count = 0, pd_idx = sh->pd_idx, i;
1553         struct async_submit_ctl submit;
1554
1555         /* existing parity data subtracted */
1556         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558         BUG_ON(sh->batch_head);
1559         pr_debug("%s: stripe %llu\n", __func__,
1560                 (unsigned long long)sh->sector);
1561
1562         for (i = disks; i--; ) {
1563                 struct r5dev *dev = &sh->dev[i];
1564                 /* Only process blocks that are known to be uptodate */
1565                 if (test_bit(R5_Wantdrain, &dev->flags))
1566                         xor_srcs[count++] = dev->page;
1567         }
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578                 struct dma_async_tx_descriptor *tx)
1579 {
1580         struct page **blocks = to_addr_page(percpu, 0);
1581         int count;
1582         struct async_submit_ctl submit;
1583
1584         pr_debug("%s: stripe %llu\n", __func__,
1585                 (unsigned long long)sh->sector);
1586
1587         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592
1593         return tx;
1594 }
1595
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599         int disks = sh->disks;
1600         int i;
1601         struct stripe_head *head_sh = sh;
1602
1603         pr_debug("%s: stripe %llu\n", __func__,
1604                 (unsigned long long)sh->sector);
1605
1606         for (i = disks; i--; ) {
1607                 struct r5dev *dev;
1608                 struct bio *chosen;
1609
1610                 sh = head_sh;
1611                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612                         struct bio *wbi;
1613
1614 again:
1615                         dev = &sh->dev[i];
1616                         spin_lock_irq(&sh->stripe_lock);
1617                         chosen = dev->towrite;
1618                         dev->towrite = NULL;
1619                         sh->overwrite_disks = 0;
1620                         BUG_ON(dev->written);
1621                         wbi = dev->written = chosen;
1622                         spin_unlock_irq(&sh->stripe_lock);
1623                         WARN_ON(dev->page != dev->orig_page);
1624
1625                         while (wbi && wbi->bi_iter.bi_sector <
1626                                 dev->sector + STRIPE_SECTORS) {
1627                                 if (wbi->bi_rw & REQ_FUA)
1628                                         set_bit(R5_WantFUA, &dev->flags);
1629                                 if (wbi->bi_rw & REQ_SYNC)
1630                                         set_bit(R5_SyncIO, &dev->flags);
1631                                 if (wbi->bi_rw & REQ_DISCARD)
1632                                         set_bit(R5_Discard, &dev->flags);
1633                                 else {
1634                                         tx = async_copy_data(1, wbi, &dev->page,
1635                                                 dev->sector, tx, sh);
1636                                         if (dev->page != dev->orig_page) {
1637                                                 set_bit(R5_SkipCopy, &dev->flags);
1638                                                 clear_bit(R5_UPTODATE, &dev->flags);
1639                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1640                                         }
1641                                 }
1642                                 wbi = r5_next_bio(wbi, dev->sector);
1643                         }
1644
1645                         if (head_sh->batch_head) {
1646                                 sh = list_first_entry(&sh->batch_list,
1647                                                       struct stripe_head,
1648                                                       batch_list);
1649                                 if (sh == head_sh)
1650                                         continue;
1651                                 goto again;
1652                         }
1653                 }
1654         }
1655
1656         return tx;
1657 }
1658
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661         struct stripe_head *sh = stripe_head_ref;
1662         int disks = sh->disks;
1663         int pd_idx = sh->pd_idx;
1664         int qd_idx = sh->qd_idx;
1665         int i;
1666         bool fua = false, sync = false, discard = false;
1667
1668         pr_debug("%s: stripe %llu\n", __func__,
1669                 (unsigned long long)sh->sector);
1670
1671         for (i = disks; i--; ) {
1672                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675         }
1676
1677         for (i = disks; i--; ) {
1678                 struct r5dev *dev = &sh->dev[i];
1679
1680                 if (dev->written || i == pd_idx || i == qd_idx) {
1681                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682                                 set_bit(R5_UPTODATE, &dev->flags);
1683                         if (fua)
1684                                 set_bit(R5_WantFUA, &dev->flags);
1685                         if (sync)
1686                                 set_bit(R5_SyncIO, &dev->flags);
1687                 }
1688         }
1689
1690         if (sh->reconstruct_state == reconstruct_state_drain_run)
1691                 sh->reconstruct_state = reconstruct_state_drain_result;
1692         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694         else {
1695                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696                 sh->reconstruct_state = reconstruct_state_result;
1697         }
1698
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                      struct dma_async_tx_descriptor *tx)
1706 {
1707         int disks = sh->disks;
1708         struct page **xor_srcs;
1709         struct async_submit_ctl submit;
1710         int count, pd_idx = sh->pd_idx, i;
1711         struct page *xor_dest;
1712         int prexor = 0;
1713         unsigned long flags;
1714         int j = 0;
1715         struct stripe_head *head_sh = sh;
1716         int last_stripe;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         for (i = 0; i < sh->disks; i++) {
1722                 if (pd_idx == i)
1723                         continue;
1724                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725                         break;
1726         }
1727         if (i >= sh->disks) {
1728                 atomic_inc(&sh->count);
1729                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730                 ops_complete_reconstruct(sh);
1731                 return;
1732         }
1733 again:
1734         count = 0;
1735         xor_srcs = to_addr_page(percpu, j);
1736         /* check if prexor is active which means only process blocks
1737          * that are part of a read-modify-write (written)
1738          */
1739         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740                 prexor = 1;
1741                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742                 for (i = disks; i--; ) {
1743                         struct r5dev *dev = &sh->dev[i];
1744                         if (head_sh->dev[i].written)
1745                                 xor_srcs[count++] = dev->page;
1746                 }
1747         } else {
1748                 xor_dest = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (i != pd_idx)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         }
1755
1756         /* 1/ if we prexor'd then the dest is reused as a source
1757          * 2/ if we did not prexor then we are redoing the parity
1758          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759          * for the synchronous xor case
1760          */
1761         last_stripe = !head_sh->batch_head ||
1762                 list_first_entry(&sh->batch_list,
1763                                  struct stripe_head, batch_list) == head_sh;
1764         if (last_stripe) {
1765                 flags = ASYNC_TX_ACK |
1766                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768                 atomic_inc(&head_sh->count);
1769                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770                                   to_addr_conv(sh, percpu, j));
1771         } else {
1772                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773                 init_async_submit(&submit, flags, tx, NULL, NULL,
1774                                   to_addr_conv(sh, percpu, j));
1775         }
1776
1777         if (unlikely(count == 1))
1778                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779         else
1780                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791                      struct dma_async_tx_descriptor *tx)
1792 {
1793         struct async_submit_ctl submit;
1794         struct page **blocks;
1795         int count, i, j = 0;
1796         struct stripe_head *head_sh = sh;
1797         int last_stripe;
1798         int synflags;
1799         unsigned long txflags;
1800
1801         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
1803         for (i = 0; i < sh->disks; i++) {
1804                 if (sh->pd_idx == i || sh->qd_idx == i)
1805                         continue;
1806                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807                         break;
1808         }
1809         if (i >= sh->disks) {
1810                 atomic_inc(&sh->count);
1811                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813                 ops_complete_reconstruct(sh);
1814                 return;
1815         }
1816
1817 again:
1818         blocks = to_addr_page(percpu, j);
1819
1820         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821                 synflags = SYNDROME_SRC_WRITTEN;
1822                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823         } else {
1824                 synflags = SYNDROME_SRC_ALL;
1825                 txflags = ASYNC_TX_ACK;
1826         }
1827
1828         count = set_syndrome_sources(blocks, sh, synflags);
1829         last_stripe = !head_sh->batch_head ||
1830                 list_first_entry(&sh->batch_list,
1831                                  struct stripe_head, batch_list) == head_sh;
1832
1833         if (last_stripe) {
1834                 atomic_inc(&head_sh->count);
1835                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836                                   head_sh, to_addr_conv(sh, percpu, j));
1837         } else
1838                 init_async_submit(&submit, 0, tx, NULL, NULL,
1839                                   to_addr_conv(sh, percpu, j));
1840         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841         if (!last_stripe) {
1842                 j++;
1843                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844                                       batch_list);
1845                 goto again;
1846         }
1847 }
1848
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851         struct stripe_head *sh = stripe_head_ref;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         sh->check_state = check_state_check_result;
1857         set_bit(STRIPE_HANDLE, &sh->state);
1858         release_stripe(sh);
1859 }
1860
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863         int disks = sh->disks;
1864         int pd_idx = sh->pd_idx;
1865         int qd_idx = sh->qd_idx;
1866         struct page *xor_dest;
1867         struct page **xor_srcs = to_addr_page(percpu, 0);
1868         struct dma_async_tx_descriptor *tx;
1869         struct async_submit_ctl submit;
1870         int count;
1871         int i;
1872
1873         pr_debug("%s: stripe %llu\n", __func__,
1874                 (unsigned long long)sh->sector);
1875
1876         BUG_ON(sh->batch_head);
1877         count = 0;
1878         xor_dest = sh->dev[pd_idx].page;
1879         xor_srcs[count++] = xor_dest;
1880         for (i = disks; i--; ) {
1881                 if (i == pd_idx || i == qd_idx)
1882                         continue;
1883                 xor_srcs[count++] = sh->dev[i].page;
1884         }
1885
1886         init_async_submit(&submit, 0, NULL, NULL, NULL,
1887                           to_addr_conv(sh, percpu, 0));
1888         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889                            &sh->ops.zero_sum_result, &submit);
1890
1891         atomic_inc(&sh->count);
1892         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893         tx = async_trigger_callback(&submit);
1894 }
1895
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898         struct page **srcs = to_addr_page(percpu, 0);
1899         struct async_submit_ctl submit;
1900         int count;
1901
1902         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903                 (unsigned long long)sh->sector, checkp);
1904
1905         BUG_ON(sh->batch_head);
1906         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907         if (!checkp)
1908                 srcs[count] = NULL;
1909
1910         atomic_inc(&sh->count);
1911         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912                           sh, to_addr_conv(sh, percpu, 0));
1913         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919         int overlap_clear = 0, i, disks = sh->disks;
1920         struct dma_async_tx_descriptor *tx = NULL;
1921         struct r5conf *conf = sh->raid_conf;
1922         int level = conf->level;
1923         struct raid5_percpu *percpu;
1924         unsigned long cpu;
1925
1926         cpu = get_cpu();
1927         percpu = per_cpu_ptr(conf->percpu, cpu);
1928         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929                 ops_run_biofill(sh);
1930                 overlap_clear++;
1931         }
1932
1933         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934                 if (level < 6)
1935                         tx = ops_run_compute5(sh, percpu);
1936                 else {
1937                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938                                 tx = ops_run_compute6_1(sh, percpu);
1939                         else
1940                                 tx = ops_run_compute6_2(sh, percpu);
1941                 }
1942                 /* terminate the chain if reconstruct is not set to be run */
1943                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944                         async_tx_ack(tx);
1945         }
1946
1947         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948                 if (level < 6)
1949                         tx = ops_run_prexor5(sh, percpu, tx);
1950                 else
1951                         tx = ops_run_prexor6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955                 tx = ops_run_biodrain(sh, tx);
1956                 overlap_clear++;
1957         }
1958
1959         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960                 if (level < 6)
1961                         ops_run_reconstruct5(sh, percpu, tx);
1962                 else
1963                         ops_run_reconstruct6(sh, percpu, tx);
1964         }
1965
1966         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967                 if (sh->check_state == check_state_run)
1968                         ops_run_check_p(sh, percpu);
1969                 else if (sh->check_state == check_state_run_q)
1970                         ops_run_check_pq(sh, percpu, 0);
1971                 else if (sh->check_state == check_state_run_pq)
1972                         ops_run_check_pq(sh, percpu, 1);
1973                 else
1974                         BUG();
1975         }
1976
1977         if (overlap_clear && !sh->batch_head)
1978                 for (i = disks; i--; ) {
1979                         struct r5dev *dev = &sh->dev[i];
1980                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981                                 wake_up(&sh->raid_conf->wait_for_overlap);
1982                 }
1983         put_cpu();
1984 }
1985
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988         struct stripe_head *sh;
1989
1990         sh = kmem_cache_zalloc(sc, gfp);
1991         if (sh) {
1992                 spin_lock_init(&sh->stripe_lock);
1993                 spin_lock_init(&sh->batch_lock);
1994                 INIT_LIST_HEAD(&sh->batch_list);
1995                 INIT_LIST_HEAD(&sh->lru);
1996                 atomic_set(&sh->count, 1);
1997         }
1998         return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002         struct stripe_head *sh;
2003
2004         sh = alloc_stripe(conf->slab_cache, gfp);
2005         if (!sh)
2006                 return 0;
2007
2008         sh->raid_conf = conf;
2009
2010         if (grow_buffers(sh, gfp)) {
2011                 shrink_buffers(sh);
2012                 kmem_cache_free(conf->slab_cache, sh);
2013                 return 0;
2014         }
2015         sh->hash_lock_index =
2016                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017         /* we just created an active stripe so... */
2018         atomic_inc(&conf->active_stripes);
2019
2020         release_stripe(sh);
2021         conf->max_nr_stripes++;
2022         return 1;
2023 }
2024
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027         struct kmem_cache *sc;
2028         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029
2030         if (conf->mddev->gendisk)
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%s", conf->level, mdname(conf->mddev));
2033         else
2034                 sprintf(conf->cache_name[0],
2035                         "raid%d-%p", conf->level, conf->mddev);
2036         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
2038         conf->active_name = 0;
2039         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041                                0, 0, NULL);
2042         if (!sc)
2043                 return 1;
2044         conf->slab_cache = sc;
2045         conf->pool_size = devs;
2046         while (num--)
2047                 if (!grow_one_stripe(conf, GFP_KERNEL))
2048                         return 1;
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068         struct flex_array *ret;
2069         size_t len;
2070
2071         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072         ret = flex_array_alloc(len, cnt, flags);
2073         if (!ret)
2074                 return NULL;
2075         /* always prealloc all elements, so no locking is required */
2076         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077                 flex_array_free(ret);
2078                 return NULL;
2079         }
2080         return ret;
2081 }
2082
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085         unsigned long cpu;
2086         int err = 0;
2087
2088         mddev_suspend(conf->mddev);
2089         get_online_cpus();
2090         for_each_present_cpu(cpu) {
2091                 struct raid5_percpu *percpu;
2092                 struct flex_array *scribble;
2093
2094                 percpu = per_cpu_ptr(conf->percpu, cpu);
2095                 scribble = scribble_alloc(new_disks,
2096                                           new_sectors / STRIPE_SECTORS,
2097                                           GFP_NOIO);
2098
2099                 if (scribble) {
2100                         flex_array_free(percpu->scribble);
2101                         percpu->scribble = scribble;
2102                 } else {
2103                         err = -ENOMEM;
2104                         break;
2105                 }
2106         }
2107         put_online_cpus();
2108         mddev_resume(conf->mddev);
2109         return err;
2110 }
2111
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114         /* Make all the stripes able to hold 'newsize' devices.
2115          * New slots in each stripe get 'page' set to a new page.
2116          *
2117          * This happens in stages:
2118          * 1/ create a new kmem_cache and allocate the required number of
2119          *    stripe_heads.
2120          * 2/ gather all the old stripe_heads and transfer the pages across
2121          *    to the new stripe_heads.  This will have the side effect of
2122          *    freezing the array as once all stripe_heads have been collected,
2123          *    no IO will be possible.  Old stripe heads are freed once their
2124          *    pages have been transferred over, and the old kmem_cache is
2125          *    freed when all stripes are done.
2126          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127          *    we simple return a failre status - no need to clean anything up.
2128          * 4/ allocate new pages for the new slots in the new stripe_heads.
2129          *    If this fails, we don't bother trying the shrink the
2130          *    stripe_heads down again, we just leave them as they are.
2131          *    As each stripe_head is processed the new one is released into
2132          *    active service.
2133          *
2134          * Once step2 is started, we cannot afford to wait for a write,
2135          * so we use GFP_NOIO allocations.
2136          */
2137         struct stripe_head *osh, *nsh;
2138         LIST_HEAD(newstripes);
2139         struct disk_info *ndisks;
2140         int err;
2141         struct kmem_cache *sc;
2142         int i;
2143         int hash, cnt;
2144
2145         if (newsize <= conf->pool_size)
2146                 return 0; /* never bother to shrink */
2147
2148         err = md_allow_write(conf->mddev);
2149         if (err)
2150                 return err;
2151
2152         /* Step 1 */
2153         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155                                0, 0, NULL);
2156         if (!sc)
2157                 return -ENOMEM;
2158
2159         /* Need to ensure auto-resizing doesn't interfere */
2160         mutex_lock(&conf->cache_size_mutex);
2161
2162         for (i = conf->max_nr_stripes; i; i--) {
2163                 nsh = alloc_stripe(sc, GFP_KERNEL);
2164                 if (!nsh)
2165                         break;
2166
2167                 nsh->raid_conf = conf;
2168                 list_add(&nsh->lru, &newstripes);
2169         }
2170         if (i) {
2171                 /* didn't get enough, give up */
2172                 while (!list_empty(&newstripes)) {
2173                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174                         list_del(&nsh->lru);
2175                         kmem_cache_free(sc, nsh);
2176                 }
2177                 kmem_cache_destroy(sc);
2178                 mutex_unlock(&conf->cache_size_mutex);
2179                 return -ENOMEM;
2180         }
2181         /* Step 2 - Must use GFP_NOIO now.
2182          * OK, we have enough stripes, start collecting inactive
2183          * stripes and copying them over
2184          */
2185         hash = 0;
2186         cnt = 0;
2187         list_for_each_entry(nsh, &newstripes, lru) {
2188                 lock_device_hash_lock(conf, hash);
2189                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190                                     !list_empty(conf->inactive_list + hash),
2191                                     unlock_device_hash_lock(conf, hash),
2192                                     lock_device_hash_lock(conf, hash));
2193                 osh = get_free_stripe(conf, hash);
2194                 unlock_device_hash_lock(conf, hash);
2195
2196                 for(i=0; i<conf->pool_size; i++) {
2197                         nsh->dev[i].page = osh->dev[i].page;
2198                         nsh->dev[i].orig_page = osh->dev[i].page;
2199                 }
2200                 nsh->hash_lock_index = hash;
2201                 kmem_cache_free(conf->slab_cache, osh);
2202                 cnt++;
2203                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205                         hash++;
2206                         cnt = 0;
2207                 }
2208         }
2209         kmem_cache_destroy(conf->slab_cache);
2210
2211         /* Step 3.
2212          * At this point, we are holding all the stripes so the array
2213          * is completely stalled, so now is a good time to resize
2214          * conf->disks and the scribble region
2215          */
2216         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217         if (ndisks) {
2218                 for (i=0; i<conf->raid_disks; i++)
2219                         ndisks[i] = conf->disks[i];
2220                 kfree(conf->disks);
2221                 conf->disks = ndisks;
2222         } else
2223                 err = -ENOMEM;
2224
2225         mutex_unlock(&conf->cache_size_mutex);
2226         /* Step 4, return new stripes to service */
2227         while(!list_empty(&newstripes)) {
2228                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229                 list_del_init(&nsh->lru);
2230
2231                 for (i=conf->raid_disks; i < newsize; i++)
2232                         if (nsh->dev[i].page == NULL) {
2233                                 struct page *p = alloc_page(GFP_NOIO);
2234                                 nsh->dev[i].page = p;
2235                                 nsh->dev[i].orig_page = p;
2236                                 if (!p)
2237                                         err = -ENOMEM;
2238                         }
2239                 release_stripe(nsh);
2240         }
2241         /* critical section pass, GFP_NOIO no longer needed */
2242
2243         conf->slab_cache = sc;
2244         conf->active_name = 1-conf->active_name;
2245         if (!err)
2246                 conf->pool_size = newsize;
2247         return err;
2248 }
2249
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252         struct stripe_head *sh;
2253         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254
2255         spin_lock_irq(conf->hash_locks + hash);
2256         sh = get_free_stripe(conf, hash);
2257         spin_unlock_irq(conf->hash_locks + hash);
2258         if (!sh)
2259                 return 0;
2260         BUG_ON(atomic_read(&sh->count));
2261         shrink_buffers(sh);
2262         kmem_cache_free(conf->slab_cache, sh);
2263         atomic_dec(&conf->active_stripes);
2264         conf->max_nr_stripes--;
2265         return 1;
2266 }
2267
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270         while (conf->max_nr_stripes &&
2271                drop_one_stripe(conf))
2272                 ;
2273
2274         if (conf->slab_cache)
2275                 kmem_cache_destroy(conf->slab_cache);
2276         conf->slab_cache = NULL;
2277 }
2278
2279 static void raid5_end_read_request(struct bio * bi)
2280 {
2281         struct stripe_head *sh = bi->bi_private;
2282         struct r5conf *conf = sh->raid_conf;
2283         int disks = sh->disks, i;
2284         char b[BDEVNAME_SIZE];
2285         struct md_rdev *rdev = NULL;
2286         sector_t s;
2287
2288         for (i=0 ; i<disks; i++)
2289                 if (bi == &sh->dev[i].req)
2290                         break;
2291
2292         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2293                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2294                 bi->bi_error);
2295         if (i == disks) {
2296                 BUG();
2297                 return;
2298         }
2299         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2300                 /* If replacement finished while this request was outstanding,
2301                  * 'replacement' might be NULL already.
2302                  * In that case it moved down to 'rdev'.
2303                  * rdev is not removed until all requests are finished.
2304                  */
2305                 rdev = conf->disks[i].replacement;
2306         if (!rdev)
2307                 rdev = conf->disks[i].rdev;
2308
2309         if (use_new_offset(conf, sh))
2310                 s = sh->sector + rdev->new_data_offset;
2311         else
2312                 s = sh->sector + rdev->data_offset;
2313         if (!bi->bi_error) {
2314                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2315                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2316                         /* Note that this cannot happen on a
2317                          * replacement device.  We just fail those on
2318                          * any error
2319                          */
2320                         printk_ratelimited(
2321                                 KERN_INFO
2322                                 "md/raid:%s: read error corrected"
2323                                 " (%lu sectors at %llu on %s)\n",
2324                                 mdname(conf->mddev), STRIPE_SECTORS,
2325                                 (unsigned long long)s,
2326                                 bdevname(rdev->bdev, b));
2327                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2328                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2329                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2330                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2331                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2332
2333                 if (atomic_read(&rdev->read_errors))
2334                         atomic_set(&rdev->read_errors, 0);
2335         } else {
2336                 const char *bdn = bdevname(rdev->bdev, b);
2337                 int retry = 0;
2338                 int set_bad = 0;
2339
2340                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2341                 atomic_inc(&rdev->read_errors);
2342                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2343                         printk_ratelimited(
2344                                 KERN_WARNING
2345                                 "md/raid:%s: read error on replacement device "
2346                                 "(sector %llu on %s).\n",
2347                                 mdname(conf->mddev),
2348                                 (unsigned long long)s,
2349                                 bdn);
2350                 else if (conf->mddev->degraded >= conf->max_degraded) {
2351                         set_bad = 1;
2352                         printk_ratelimited(
2353                                 KERN_WARNING
2354                                 "md/raid:%s: read error not correctable "
2355                                 "(sector %llu on %s).\n",
2356                                 mdname(conf->mddev),
2357                                 (unsigned long long)s,
2358                                 bdn);
2359                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2360                         /* Oh, no!!! */
2361                         set_bad = 1;
2362                         printk_ratelimited(
2363                                 KERN_WARNING
2364                                 "md/raid:%s: read error NOT corrected!! "
2365                                 "(sector %llu on %s).\n",
2366                                 mdname(conf->mddev),
2367                                 (unsigned long long)s,
2368                                 bdn);
2369                 } else if (atomic_read(&rdev->read_errors)
2370                          > conf->max_nr_stripes)
2371                         printk(KERN_WARNING
2372                                "md/raid:%s: Too many read errors, failing device %s.\n",
2373                                mdname(conf->mddev), bdn);
2374                 else
2375                         retry = 1;
2376                 if (set_bad && test_bit(In_sync, &rdev->flags)
2377                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2378                         retry = 1;
2379                 if (retry)
2380                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2381                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2382                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2383                         } else
2384                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385                 else {
2386                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2387                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2388                         if (!(set_bad
2389                               && test_bit(In_sync, &rdev->flags)
2390                               && rdev_set_badblocks(
2391                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2392                                 md_error(conf->mddev, rdev);
2393                 }
2394         }
2395         rdev_dec_pending(rdev, conf->mddev);
2396         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2397         set_bit(STRIPE_HANDLE, &sh->state);
2398         release_stripe(sh);
2399 }
2400
2401 static void raid5_end_write_request(struct bio *bi)
2402 {
2403         struct stripe_head *sh = bi->bi_private;
2404         struct r5conf *conf = sh->raid_conf;
2405         int disks = sh->disks, i;
2406         struct md_rdev *uninitialized_var(rdev);
2407         sector_t first_bad;
2408         int bad_sectors;
2409         int replacement = 0;
2410
2411         for (i = 0 ; i < disks; i++) {
2412                 if (bi == &sh->dev[i].req) {
2413                         rdev = conf->disks[i].rdev;
2414                         break;
2415                 }
2416                 if (bi == &sh->dev[i].rreq) {
2417                         rdev = conf->disks[i].replacement;
2418                         if (rdev)
2419                                 replacement = 1;
2420                         else
2421                                 /* rdev was removed and 'replacement'
2422                                  * replaced it.  rdev is not removed
2423                                  * until all requests are finished.
2424                                  */
2425                                 rdev = conf->disks[i].rdev;
2426                         break;
2427                 }
2428         }
2429         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2430                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2431                 bi->bi_error);
2432         if (i == disks) {
2433                 BUG();
2434                 return;
2435         }
2436
2437         if (replacement) {
2438                 if (bi->bi_error)
2439                         md_error(conf->mddev, rdev);
2440                 else if (is_badblock(rdev, sh->sector,
2441                                      STRIPE_SECTORS,
2442                                      &first_bad, &bad_sectors))
2443                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2444         } else {
2445                 if (bi->bi_error) {
2446                         set_bit(STRIPE_DEGRADED, &sh->state);
2447                         set_bit(WriteErrorSeen, &rdev->flags);
2448                         set_bit(R5_WriteError, &sh->dev[i].flags);
2449                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2450                                 set_bit(MD_RECOVERY_NEEDED,
2451                                         &rdev->mddev->recovery);
2452                 } else if (is_badblock(rdev, sh->sector,
2453                                        STRIPE_SECTORS,
2454                                        &first_bad, &bad_sectors)) {
2455                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2456                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2457                                 /* That was a successful write so make
2458                                  * sure it looks like we already did
2459                                  * a re-write.
2460                                  */
2461                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2462                 }
2463         }
2464         rdev_dec_pending(rdev, conf->mddev);
2465
2466         if (sh->batch_head && bi->bi_error && !replacement)
2467                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2468
2469         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2470                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2471         set_bit(STRIPE_HANDLE, &sh->state);
2472         release_stripe(sh);
2473
2474         if (sh->batch_head && sh != sh->batch_head)
2475                 release_stripe(sh->batch_head);
2476 }
2477
2478 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2479
2480 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2481 {
2482         struct r5dev *dev = &sh->dev[i];
2483
2484         bio_init(&dev->req);
2485         dev->req.bi_io_vec = &dev->vec;
2486         dev->req.bi_max_vecs = 1;
2487         dev->req.bi_private = sh;
2488
2489         bio_init(&dev->rreq);
2490         dev->rreq.bi_io_vec = &dev->rvec;
2491         dev->rreq.bi_max_vecs = 1;
2492         dev->rreq.bi_private = sh;
2493
2494         dev->flags = 0;
2495         dev->sector = compute_blocknr(sh, i, previous);
2496 }
2497
2498 static void error(struct mddev *mddev, struct md_rdev *rdev)
2499 {
2500         char b[BDEVNAME_SIZE];
2501         struct r5conf *conf = mddev->private;
2502         unsigned long flags;
2503         pr_debug("raid456: error called\n");
2504
2505         spin_lock_irqsave(&conf->device_lock, flags);
2506         clear_bit(In_sync, &rdev->flags);
2507         mddev->degraded = calc_degraded(conf);
2508         spin_unlock_irqrestore(&conf->device_lock, flags);
2509         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2510
2511         set_bit(Blocked, &rdev->flags);
2512         set_bit(Faulty, &rdev->flags);
2513         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2514         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2515         printk(KERN_ALERT
2516                "md/raid:%s: Disk failure on %s, disabling device.\n"
2517                "md/raid:%s: Operation continuing on %d devices.\n",
2518                mdname(mddev),
2519                bdevname(rdev->bdev, b),
2520                mdname(mddev),
2521                conf->raid_disks - mddev->degraded);
2522 }
2523
2524 /*
2525  * Input: a 'big' sector number,
2526  * Output: index of the data and parity disk, and the sector # in them.
2527  */
2528 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2529                                      int previous, int *dd_idx,
2530                                      struct stripe_head *sh)
2531 {
2532         sector_t stripe, stripe2;
2533         sector_t chunk_number;
2534         unsigned int chunk_offset;
2535         int pd_idx, qd_idx;
2536         int ddf_layout = 0;
2537         sector_t new_sector;
2538         int algorithm = previous ? conf->prev_algo
2539                                  : conf->algorithm;
2540         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2541                                          : conf->chunk_sectors;
2542         int raid_disks = previous ? conf->previous_raid_disks
2543                                   : conf->raid_disks;
2544         int data_disks = raid_disks - conf->max_degraded;
2545
2546         /* First compute the information on this sector */
2547
2548         /*
2549          * Compute the chunk number and the sector offset inside the chunk
2550          */
2551         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2552         chunk_number = r_sector;
2553
2554         /*
2555          * Compute the stripe number
2556          */
2557         stripe = chunk_number;
2558         *dd_idx = sector_div(stripe, data_disks);
2559         stripe2 = stripe;
2560         /*
2561          * Select the parity disk based on the user selected algorithm.
2562          */
2563         pd_idx = qd_idx = -1;
2564         switch(conf->level) {
2565         case 4:
2566                 pd_idx = data_disks;
2567                 break;
2568         case 5:
2569                 switch (algorithm) {
2570                 case ALGORITHM_LEFT_ASYMMETRIC:
2571                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2572                         if (*dd_idx >= pd_idx)
2573                                 (*dd_idx)++;
2574                         break;
2575                 case ALGORITHM_RIGHT_ASYMMETRIC:
2576                         pd_idx = sector_div(stripe2, raid_disks);
2577                         if (*dd_idx >= pd_idx)
2578                                 (*dd_idx)++;
2579                         break;
2580                 case ALGORITHM_LEFT_SYMMETRIC:
2581                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2582                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2583                         break;
2584                 case ALGORITHM_RIGHT_SYMMETRIC:
2585                         pd_idx = sector_div(stripe2, raid_disks);
2586                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587                         break;
2588                 case ALGORITHM_PARITY_0:
2589                         pd_idx = 0;
2590                         (*dd_idx)++;
2591                         break;
2592                 case ALGORITHM_PARITY_N:
2593                         pd_idx = data_disks;
2594                         break;
2595                 default:
2596                         BUG();
2597                 }
2598                 break;
2599         case 6:
2600
2601                 switch (algorithm) {
2602                 case ALGORITHM_LEFT_ASYMMETRIC:
2603                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2604                         qd_idx = pd_idx + 1;
2605                         if (pd_idx == raid_disks-1) {
2606                                 (*dd_idx)++;    /* Q D D D P */
2607                                 qd_idx = 0;
2608                         } else if (*dd_idx >= pd_idx)
2609                                 (*dd_idx) += 2; /* D D P Q D */
2610                         break;
2611                 case ALGORITHM_RIGHT_ASYMMETRIC:
2612                         pd_idx = sector_div(stripe2, raid_disks);
2613                         qd_idx = pd_idx + 1;
2614                         if (pd_idx == raid_disks-1) {
2615                                 (*dd_idx)++;    /* Q D D D P */
2616                                 qd_idx = 0;
2617                         } else if (*dd_idx >= pd_idx)
2618                                 (*dd_idx) += 2; /* D D P Q D */
2619                         break;
2620                 case ALGORITHM_LEFT_SYMMETRIC:
2621                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2622                         qd_idx = (pd_idx + 1) % raid_disks;
2623                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2624                         break;
2625                 case ALGORITHM_RIGHT_SYMMETRIC:
2626                         pd_idx = sector_div(stripe2, raid_disks);
2627                         qd_idx = (pd_idx + 1) % raid_disks;
2628                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2629                         break;
2630
2631                 case ALGORITHM_PARITY_0:
2632                         pd_idx = 0;
2633                         qd_idx = 1;
2634                         (*dd_idx) += 2;
2635                         break;
2636                 case ALGORITHM_PARITY_N:
2637                         pd_idx = data_disks;
2638                         qd_idx = data_disks + 1;
2639                         break;
2640
2641                 case ALGORITHM_ROTATING_ZERO_RESTART:
2642                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2643                          * of blocks for computing Q is different.
2644                          */
2645                         pd_idx = sector_div(stripe2, raid_disks);
2646                         qd_idx = pd_idx + 1;
2647                         if (pd_idx == raid_disks-1) {
2648                                 (*dd_idx)++;    /* Q D D D P */
2649                                 qd_idx = 0;
2650                         } else if (*dd_idx >= pd_idx)
2651                                 (*dd_idx) += 2; /* D D P Q D */
2652                         ddf_layout = 1;
2653                         break;
2654
2655                 case ALGORITHM_ROTATING_N_RESTART:
2656                         /* Same a left_asymmetric, by first stripe is
2657                          * D D D P Q  rather than
2658                          * Q D D D P
2659                          */
2660                         stripe2 += 1;
2661                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2662                         qd_idx = pd_idx + 1;
2663                         if (pd_idx == raid_disks-1) {
2664                                 (*dd_idx)++;    /* Q D D D P */
2665                                 qd_idx = 0;
2666                         } else if (*dd_idx >= pd_idx)
2667                                 (*dd_idx) += 2; /* D D P Q D */
2668                         ddf_layout = 1;
2669                         break;
2670
2671                 case ALGORITHM_ROTATING_N_CONTINUE:
2672                         /* Same as left_symmetric but Q is before P */
2673                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2674                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2675                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676                         ddf_layout = 1;
2677                         break;
2678
2679                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2680                         /* RAID5 left_asymmetric, with Q on last device */
2681                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2682                         if (*dd_idx >= pd_idx)
2683                                 (*dd_idx)++;
2684                         qd_idx = raid_disks - 1;
2685                         break;
2686
2687                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2688                         pd_idx = sector_div(stripe2, raid_disks-1);
2689                         if (*dd_idx >= pd_idx)
2690                                 (*dd_idx)++;
2691                         qd_idx = raid_disks - 1;
2692                         break;
2693
2694                 case ALGORITHM_LEFT_SYMMETRIC_6:
2695                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2696                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2697                         qd_idx = raid_disks - 1;
2698                         break;
2699
2700                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2701                         pd_idx = sector_div(stripe2, raid_disks-1);
2702                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703                         qd_idx = raid_disks - 1;
2704                         break;
2705
2706                 case ALGORITHM_PARITY_0_6:
2707                         pd_idx = 0;
2708                         (*dd_idx)++;
2709                         qd_idx = raid_disks - 1;
2710                         break;
2711
2712                 default:
2713                         BUG();
2714                 }
2715                 break;
2716         }
2717
2718         if (sh) {
2719                 sh->pd_idx = pd_idx;
2720                 sh->qd_idx = qd_idx;
2721                 sh->ddf_layout = ddf_layout;
2722         }
2723         /*
2724          * Finally, compute the new sector number
2725          */
2726         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2727         return new_sector;
2728 }
2729
2730 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2731 {
2732         struct r5conf *conf = sh->raid_conf;
2733         int raid_disks = sh->disks;
2734         int data_disks = raid_disks - conf->max_degraded;
2735         sector_t new_sector = sh->sector, check;
2736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2737                                          : conf->chunk_sectors;
2738         int algorithm = previous ? conf->prev_algo
2739                                  : conf->algorithm;
2740         sector_t stripe;
2741         int chunk_offset;
2742         sector_t chunk_number;
2743         int dummy1, dd_idx = i;
2744         sector_t r_sector;
2745         struct stripe_head sh2;
2746
2747         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2748         stripe = new_sector;
2749
2750         if (i == sh->pd_idx)
2751                 return 0;
2752         switch(conf->level) {
2753         case 4: break;
2754         case 5:
2755                 switch (algorithm) {
2756                 case ALGORITHM_LEFT_ASYMMETRIC:
2757                 case ALGORITHM_RIGHT_ASYMMETRIC:
2758                         if (i > sh->pd_idx)
2759                                 i--;
2760                         break;
2761                 case ALGORITHM_LEFT_SYMMETRIC:
2762                 case ALGORITHM_RIGHT_SYMMETRIC:
2763                         if (i < sh->pd_idx)
2764                                 i += raid_disks;
2765                         i -= (sh->pd_idx + 1);
2766                         break;
2767                 case ALGORITHM_PARITY_0:
2768                         i -= 1;
2769                         break;
2770                 case ALGORITHM_PARITY_N:
2771                         break;
2772                 default:
2773                         BUG();
2774                 }
2775                 break;
2776         case 6:
2777                 if (i == sh->qd_idx)
2778                         return 0; /* It is the Q disk */
2779                 switch (algorithm) {
2780                 case ALGORITHM_LEFT_ASYMMETRIC:
2781                 case ALGORITHM_RIGHT_ASYMMETRIC:
2782                 case ALGORITHM_ROTATING_ZERO_RESTART:
2783                 case ALGORITHM_ROTATING_N_RESTART:
2784                         if (sh->pd_idx == raid_disks-1)
2785                                 i--;    /* Q D D D P */
2786                         else if (i > sh->pd_idx)
2787                                 i -= 2; /* D D P Q D */
2788                         break;
2789                 case ALGORITHM_LEFT_SYMMETRIC:
2790                 case ALGORITHM_RIGHT_SYMMETRIC:
2791                         if (sh->pd_idx == raid_disks-1)
2792                                 i--; /* Q D D D P */
2793                         else {
2794                                 /* D D P Q D */
2795                                 if (i < sh->pd_idx)
2796                                         i += raid_disks;
2797                                 i -= (sh->pd_idx + 2);
2798                         }
2799                         break;
2800                 case ALGORITHM_PARITY_0:
2801                         i -= 2;
2802                         break;
2803                 case ALGORITHM_PARITY_N:
2804                         break;
2805                 case ALGORITHM_ROTATING_N_CONTINUE:
2806                         /* Like left_symmetric, but P is before Q */
2807                         if (sh->pd_idx == 0)
2808                                 i--;    /* P D D D Q */
2809                         else {
2810                                 /* D D Q P D */
2811                                 if (i < sh->pd_idx)
2812                                         i += raid_disks;
2813                                 i -= (sh->pd_idx + 1);
2814                         }
2815                         break;
2816                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2817                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2818                         if (i > sh->pd_idx)
2819                                 i--;
2820                         break;
2821                 case ALGORITHM_LEFT_SYMMETRIC_6:
2822                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2823                         if (i < sh->pd_idx)
2824                                 i += data_disks + 1;
2825                         i -= (sh->pd_idx + 1);
2826                         break;
2827                 case ALGORITHM_PARITY_0_6:
2828                         i -= 1;
2829                         break;
2830                 default:
2831                         BUG();
2832                 }
2833                 break;
2834         }
2835
2836         chunk_number = stripe * data_disks + i;
2837         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2838
2839         check = raid5_compute_sector(conf, r_sector,
2840                                      previous, &dummy1, &sh2);
2841         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2842                 || sh2.qd_idx != sh->qd_idx) {
2843                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2844                        mdname(conf->mddev));
2845                 return 0;
2846         }
2847         return r_sector;
2848 }
2849
2850 static void
2851 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2852                          int rcw, int expand)
2853 {
2854         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2855         struct r5conf *conf = sh->raid_conf;
2856         int level = conf->level;
2857
2858         if (rcw) {
2859
2860                 for (i = disks; i--; ) {
2861                         struct r5dev *dev = &sh->dev[i];
2862
2863                         if (dev->towrite) {
2864                                 set_bit(R5_LOCKED, &dev->flags);
2865                                 set_bit(R5_Wantdrain, &dev->flags);
2866                                 if (!expand)
2867                                         clear_bit(R5_UPTODATE, &dev->flags);
2868                                 s->locked++;
2869                         }
2870                 }
2871                 /* if we are not expanding this is a proper write request, and
2872                  * there will be bios with new data to be drained into the
2873                  * stripe cache
2874                  */
2875                 if (!expand) {
2876                         if (!s->locked)
2877                                 /* False alarm, nothing to do */
2878                                 return;
2879                         sh->reconstruct_state = reconstruct_state_drain_run;
2880                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2881                 } else
2882                         sh->reconstruct_state = reconstruct_state_run;
2883
2884                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2885
2886                 if (s->locked + conf->max_degraded == disks)
2887                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2888                                 atomic_inc(&conf->pending_full_writes);
2889         } else {
2890                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2891                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2892                 BUG_ON(level == 6 &&
2893                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2894                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2895
2896                 for (i = disks; i--; ) {
2897                         struct r5dev *dev = &sh->dev[i];
2898                         if (i == pd_idx || i == qd_idx)
2899                                 continue;
2900
2901                         if (dev->towrite &&
2902                             (test_bit(R5_UPTODATE, &dev->flags) ||
2903                              test_bit(R5_Wantcompute, &dev->flags))) {
2904                                 set_bit(R5_Wantdrain, &dev->flags);
2905                                 set_bit(R5_LOCKED, &dev->flags);
2906                                 clear_bit(R5_UPTODATE, &dev->flags);
2907                                 s->locked++;
2908                         }
2909                 }
2910                 if (!s->locked)
2911                         /* False alarm - nothing to do */
2912                         return;
2913                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2914                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2915                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2916                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2917         }
2918
2919         /* keep the parity disk(s) locked while asynchronous operations
2920          * are in flight
2921          */
2922         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2923         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2924         s->locked++;
2925
2926         if (level == 6) {
2927                 int qd_idx = sh->qd_idx;
2928                 struct r5dev *dev = &sh->dev[qd_idx];
2929
2930                 set_bit(R5_LOCKED, &dev->flags);
2931                 clear_bit(R5_UPTODATE, &dev->flags);
2932                 s->locked++;
2933         }
2934
2935         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2936                 __func__, (unsigned long long)sh->sector,
2937                 s->locked, s->ops_request);
2938 }
2939
2940 /*
2941  * Each stripe/dev can have one or more bion attached.
2942  * toread/towrite point to the first in a chain.
2943  * The bi_next chain must be in order.
2944  */
2945 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2946                           int forwrite, int previous)
2947 {
2948         struct bio **bip;
2949         struct r5conf *conf = sh->raid_conf;
2950         int firstwrite=0;
2951
2952         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2953                 (unsigned long long)bi->bi_iter.bi_sector,
2954                 (unsigned long long)sh->sector);
2955
2956         /*
2957          * If several bio share a stripe. The bio bi_phys_segments acts as a
2958          * reference count to avoid race. The reference count should already be
2959          * increased before this function is called (for example, in
2960          * make_request()), so other bio sharing this stripe will not free the
2961          * stripe. If a stripe is owned by one stripe, the stripe lock will
2962          * protect it.
2963          */
2964         spin_lock_irq(&sh->stripe_lock);
2965         /* Don't allow new IO added to stripes in batch list */
2966         if (sh->batch_head)
2967                 goto overlap;
2968         if (forwrite) {
2969                 bip = &sh->dev[dd_idx].towrite;
2970                 if (*bip == NULL)
2971                         firstwrite = 1;
2972         } else
2973                 bip = &sh->dev[dd_idx].toread;
2974         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2975                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2976                         goto overlap;
2977                 bip = & (*bip)->bi_next;
2978         }
2979         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2980                 goto overlap;
2981
2982         if (!forwrite || previous)
2983                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2984
2985         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2986         if (*bip)
2987                 bi->bi_next = *bip;
2988         *bip = bi;
2989         raid5_inc_bi_active_stripes(bi);
2990
2991         if (forwrite) {
2992                 /* check if page is covered */
2993                 sector_t sector = sh->dev[dd_idx].sector;
2994                 for (bi=sh->dev[dd_idx].towrite;
2995                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2996                              bi && bi->bi_iter.bi_sector <= sector;
2997                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2998                         if (bio_end_sector(bi) >= sector)
2999                                 sector = bio_end_sector(bi);
3000                 }
3001                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3002                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3003                                 sh->overwrite_disks++;
3004         }
3005
3006         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3007                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3008                 (unsigned long long)sh->sector, dd_idx);
3009
3010         if (conf->mddev->bitmap && firstwrite) {
3011                 /* Cannot hold spinlock over bitmap_startwrite,
3012                  * but must ensure this isn't added to a batch until
3013                  * we have added to the bitmap and set bm_seq.
3014                  * So set STRIPE_BITMAP_PENDING to prevent
3015                  * batching.
3016                  * If multiple add_stripe_bio() calls race here they
3017                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3018                  * to complete "bitmap_startwrite" gets to set
3019                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3020                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3021                  * any more.
3022                  */
3023                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3024                 spin_unlock_irq(&sh->stripe_lock);
3025                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3026                                   STRIPE_SECTORS, 0);
3027                 spin_lock_irq(&sh->stripe_lock);
3028                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3029                 if (!sh->batch_head) {
3030                         sh->bm_seq = conf->seq_flush+1;
3031                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3032                 }
3033         }
3034         spin_unlock_irq(&sh->stripe_lock);
3035
3036         if (stripe_can_batch(sh))
3037                 stripe_add_to_batch_list(conf, sh);
3038         return 1;
3039
3040  overlap:
3041         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3042         spin_unlock_irq(&sh->stripe_lock);
3043         return 0;
3044 }
3045
3046 static void end_reshape(struct r5conf *conf);
3047
3048 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3049                             struct stripe_head *sh)
3050 {
3051         int sectors_per_chunk =
3052                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3053         int dd_idx;
3054         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3055         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3056
3057         raid5_compute_sector(conf,
3058                              stripe * (disks - conf->max_degraded)
3059                              *sectors_per_chunk + chunk_offset,
3060                              previous,
3061                              &dd_idx, sh);
3062 }
3063
3064 static void
3065 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3066                                 struct stripe_head_state *s, int disks,
3067                                 struct bio_list *return_bi)
3068 {
3069         int i;
3070         BUG_ON(sh->batch_head);
3071         for (i = disks; i--; ) {
3072                 struct bio *bi;
3073                 int bitmap_end = 0;
3074
3075                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3076                         struct md_rdev *rdev;
3077                         rcu_read_lock();
3078                         rdev = rcu_dereference(conf->disks[i].rdev);
3079                         if (rdev && test_bit(In_sync, &rdev->flags))
3080                                 atomic_inc(&rdev->nr_pending);
3081                         else
3082                                 rdev = NULL;
3083                         rcu_read_unlock();
3084                         if (rdev) {
3085                                 if (!rdev_set_badblocks(
3086                                             rdev,
3087                                             sh->sector,
3088                                             STRIPE_SECTORS, 0))
3089                                         md_error(conf->mddev, rdev);
3090                                 rdev_dec_pending(rdev, conf->mddev);
3091                         }
3092                 }
3093                 spin_lock_irq(&sh->stripe_lock);
3094                 /* fail all writes first */
3095                 bi = sh->dev[i].towrite;
3096                 sh->dev[i].towrite = NULL;
3097                 sh->overwrite_disks = 0;
3098                 spin_unlock_irq(&sh->stripe_lock);
3099                 if (bi)
3100                         bitmap_end = 1;
3101
3102                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3103                         wake_up(&conf->wait_for_overlap);
3104
3105                 while (bi && bi->bi_iter.bi_sector <
3106                         sh->dev[i].sector + STRIPE_SECTORS) {
3107                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3108
3109                         bi->bi_error = -EIO;
3110                         if (!raid5_dec_bi_active_stripes(bi)) {
3111                                 md_write_end(conf->mddev);
3112                                 bio_list_add(return_bi, bi);
3113                         }
3114                         bi = nextbi;
3115                 }
3116                 if (bitmap_end)
3117                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3118                                 STRIPE_SECTORS, 0, 0);
3119                 bitmap_end = 0;
3120                 /* and fail all 'written' */
3121                 bi = sh->dev[i].written;
3122                 sh->dev[i].written = NULL;
3123                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3124                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3125                         sh->dev[i].page = sh->dev[i].orig_page;
3126                 }
3127
3128                 if (bi) bitmap_end = 1;
3129                 while (bi && bi->bi_iter.bi_sector <
3130                        sh->dev[i].sector + STRIPE_SECTORS) {
3131                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3132
3133                         bi->bi_error = -EIO;
3134                         if (!raid5_dec_bi_active_stripes(bi)) {
3135                                 md_write_end(conf->mddev);
3136                                 bio_list_add(return_bi, bi);
3137                         }
3138                         bi = bi2;
3139                 }
3140
3141                 /* fail any reads if this device is non-operational and
3142                  * the data has not reached the cache yet.
3143                  */
3144                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3145                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3146                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3147                         spin_lock_irq(&sh->stripe_lock);
3148                         bi = sh->dev[i].toread;
3149                         sh->dev[i].toread = NULL;
3150                         spin_unlock_irq(&sh->stripe_lock);
3151                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152                                 wake_up(&conf->wait_for_overlap);
3153                         if (bi)
3154                                 s->to_read--;
3155                         while (bi && bi->bi_iter.bi_sector <
3156                                sh->dev[i].sector + STRIPE_SECTORS) {
3157                                 struct bio *nextbi =
3158                                         r5_next_bio(bi, sh->dev[i].sector);
3159
3160                                 bi->bi_error = -EIO;
3161                                 if (!raid5_dec_bi_active_stripes(bi))
3162                                         bio_list_add(return_bi, bi);
3163                                 bi = nextbi;
3164                         }
3165                 }
3166                 if (bitmap_end)
3167                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3168                                         STRIPE_SECTORS, 0, 0);
3169                 /* If we were in the middle of a write the parity block might
3170                  * still be locked - so just clear all R5_LOCKED flags
3171                  */
3172                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3173         }
3174         s->to_write = 0;
3175         s->written = 0;
3176
3177         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3178                 if (atomic_dec_and_test(&conf->pending_full_writes))
3179                         md_wakeup_thread(conf->mddev->thread);
3180 }
3181
3182 static void
3183 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3184                    struct stripe_head_state *s)
3185 {
3186         int abort = 0;
3187         int i;
3188
3189         BUG_ON(sh->batch_head);
3190         clear_bit(STRIPE_SYNCING, &sh->state);
3191         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3192                 wake_up(&conf->wait_for_overlap);
3193         s->syncing = 0;
3194         s->replacing = 0;
3195         /* There is nothing more to do for sync/check/repair.
3196          * Don't even need to abort as that is handled elsewhere
3197          * if needed, and not always wanted e.g. if there is a known
3198          * bad block here.
3199          * For recover/replace we need to record a bad block on all
3200          * non-sync devices, or abort the recovery
3201          */
3202         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3203                 /* During recovery devices cannot be removed, so
3204                  * locking and refcounting of rdevs is not needed
3205                  */
3206                 for (i = 0; i < conf->raid_disks; i++) {
3207                         struct md_rdev *rdev = conf->disks[i].rdev;
3208                         if (rdev
3209                             && !test_bit(Faulty, &rdev->flags)
3210                             && !test_bit(In_sync, &rdev->flags)
3211                             && !rdev_set_badblocks(rdev, sh->sector,
3212                                                    STRIPE_SECTORS, 0))
3213                                 abort = 1;
3214                         rdev = conf->disks[i].replacement;
3215                         if (rdev
3216                             && !test_bit(Faulty, &rdev->flags)
3217                             && !test_bit(In_sync, &rdev->flags)
3218                             && !rdev_set_badblocks(rdev, sh->sector,
3219                                                    STRIPE_SECTORS, 0))
3220                                 abort = 1;
3221                 }
3222                 if (abort)
3223                         conf->recovery_disabled =
3224                                 conf->mddev->recovery_disabled;
3225         }
3226         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3227 }
3228
3229 static int want_replace(struct stripe_head *sh, int disk_idx)
3230 {
3231         struct md_rdev *rdev;
3232         int rv = 0;
3233         /* Doing recovery so rcu locking not required */
3234         rdev = sh->raid_conf->disks[disk_idx].replacement;
3235         if (rdev
3236             && !test_bit(Faulty, &rdev->flags)
3237             && !test_bit(In_sync, &rdev->flags)
3238             && (rdev->recovery_offset <= sh->sector
3239                 || rdev->mddev->recovery_cp <= sh->sector))
3240                 rv = 1;
3241
3242         return rv;
3243 }
3244
3245 /* fetch_block - checks the given member device to see if its data needs
3246  * to be read or computed to satisfy a request.
3247  *
3248  * Returns 1 when no more member devices need to be checked, otherwise returns
3249  * 0 to tell the loop in handle_stripe_fill to continue
3250  */
3251
3252 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3253                            int disk_idx, int disks)
3254 {
3255         struct r5dev *dev = &sh->dev[disk_idx];
3256         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3257                                   &sh->dev[s->failed_num[1]] };
3258         int i;
3259
3260
3261         if (test_bit(R5_LOCKED, &dev->flags) ||
3262             test_bit(R5_UPTODATE, &dev->flags))
3263                 /* No point reading this as we already have it or have
3264                  * decided to get it.
3265                  */
3266                 return 0;
3267
3268         if (dev->toread ||
3269             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3270                 /* We need this block to directly satisfy a request */
3271                 return 1;
3272
3273         if (s->syncing || s->expanding ||
3274             (s->replacing && want_replace(sh, disk_idx)))
3275                 /* When syncing, or expanding we read everything.
3276                  * When replacing, we need the replaced block.
3277                  */
3278                 return 1;
3279
3280         if ((s->failed >= 1 && fdev[0]->toread) ||
3281             (s->failed >= 2 && fdev[1]->toread))
3282                 /* If we want to read from a failed device, then
3283                  * we need to actually read every other device.
3284                  */
3285                 return 1;
3286
3287         /* Sometimes neither read-modify-write nor reconstruct-write
3288          * cycles can work.  In those cases we read every block we
3289          * can.  Then the parity-update is certain to have enough to
3290          * work with.
3291          * This can only be a problem when we need to write something,
3292          * and some device has failed.  If either of those tests
3293          * fail we need look no further.
3294          */
3295         if (!s->failed || !s->to_write)
3296                 return 0;
3297
3298         if (test_bit(R5_Insync, &dev->flags) &&
3299             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3300                 /* Pre-reads at not permitted until after short delay
3301                  * to gather multiple requests.  However if this
3302                  * device is no Insync, the block could only be be computed
3303                  * and there is no need to delay that.
3304                  */
3305                 return 0;
3306
3307         for (i = 0; i < s->failed; i++) {
3308                 if (fdev[i]->towrite &&
3309                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3310                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3311                         /* If we have a partial write to a failed
3312                          * device, then we will need to reconstruct
3313                          * the content of that device, so all other
3314                          * devices must be read.
3315                          */
3316                         return 1;
3317         }
3318
3319         /* If we are forced to do a reconstruct-write, either because
3320          * the current RAID6 implementation only supports that, or
3321          * or because parity cannot be trusted and we are currently
3322          * recovering it, there is extra need to be careful.
3323          * If one of the devices that we would need to read, because
3324          * it is not being overwritten (and maybe not written at all)
3325          * is missing/faulty, then we need to read everything we can.
3326          */
3327         if (sh->raid_conf->level != 6 &&
3328             sh->sector < sh->raid_conf->mddev->recovery_cp)
3329                 /* reconstruct-write isn't being forced */
3330                 return 0;
3331         for (i = 0; i < s->failed; i++) {
3332                 if (s->failed_num[i] != sh->pd_idx &&
3333                     s->failed_num[i] != sh->qd_idx &&
3334                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3335                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3336                         return 1;
3337         }
3338
3339         return 0;
3340 }
3341
3342 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3343                        int disk_idx, int disks)
3344 {
3345         struct r5dev *dev = &sh->dev[disk_idx];
3346
3347         /* is the data in this block needed, and can we get it? */
3348         if (need_this_block(sh, s, disk_idx, disks)) {
3349                 /* we would like to get this block, possibly by computing it,
3350                  * otherwise read it if the backing disk is insync
3351                  */
3352                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3353                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3354                 BUG_ON(sh->batch_head);
3355                 if ((s->uptodate == disks - 1) &&
3356                     (s->failed && (disk_idx == s->failed_num[0] ||
3357                                    disk_idx == s->failed_num[1]))) {
3358                         /* have disk failed, and we're requested to fetch it;
3359                          * do compute it
3360                          */
3361                         pr_debug("Computing stripe %llu block %d\n",
3362                                (unsigned long long)sh->sector, disk_idx);
3363                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3364                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3365                         set_bit(R5_Wantcompute, &dev->flags);
3366                         sh->ops.target = disk_idx;
3367                         sh->ops.target2 = -1; /* no 2nd target */
3368                         s->req_compute = 1;
3369                         /* Careful: from this point on 'uptodate' is in the eye
3370                          * of raid_run_ops which services 'compute' operations
3371                          * before writes. R5_Wantcompute flags a block that will
3372                          * be R5_UPTODATE by the time it is needed for a
3373                          * subsequent operation.
3374                          */
3375                         s->uptodate++;
3376                         return 1;
3377                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3378                         /* Computing 2-failure is *very* expensive; only
3379                          * do it if failed >= 2
3380                          */
3381                         int other;
3382                         for (other = disks; other--; ) {
3383                                 if (other == disk_idx)
3384                                         continue;
3385                                 if (!test_bit(R5_UPTODATE,
3386                                       &sh->dev[other].flags))
3387                                         break;
3388                         }
3389                         BUG_ON(other < 0);
3390                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3391                                (unsigned long long)sh->sector,
3392                                disk_idx, other);
3393                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3394                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3395                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3396                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3397                         sh->ops.target = disk_idx;
3398                         sh->ops.target2 = other;
3399                         s->uptodate += 2;
3400                         s->req_compute = 1;
3401                         return 1;
3402                 } else if (test_bit(R5_Insync, &dev->flags)) {
3403                         set_bit(R5_LOCKED, &dev->flags);
3404                         set_bit(R5_Wantread, &dev->flags);
3405                         s->locked++;
3406                         pr_debug("Reading block %d (sync=%d)\n",
3407                                 disk_idx, s->syncing);
3408                 }
3409         }
3410
3411         return 0;
3412 }
3413
3414 /**
3415  * handle_stripe_fill - read or compute data to satisfy pending requests.
3416  */
3417 static void handle_stripe_fill(struct stripe_head *sh,
3418                                struct stripe_head_state *s,
3419                                int disks)
3420 {
3421         int i;
3422
3423         /* look for blocks to read/compute, skip this if a compute
3424          * is already in flight, or if the stripe contents are in the
3425          * midst of changing due to a write
3426          */
3427         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3428             !sh->reconstruct_state)
3429                 for (i = disks; i--; )
3430                         if (fetch_block(sh, s, i, disks))
3431                                 break;
3432         set_bit(STRIPE_HANDLE, &sh->state);
3433 }
3434
3435 static void break_stripe_batch_list(struct stripe_head *head_sh,
3436                                     unsigned long handle_flags);
3437 /* handle_stripe_clean_event
3438  * any written block on an uptodate or failed drive can be returned.
3439  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3440  * never LOCKED, so we don't need to test 'failed' directly.
3441  */
3442 static void handle_stripe_clean_event(struct r5conf *conf,
3443         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3444 {
3445         int i;
3446         struct r5dev *dev;
3447         int discard_pending = 0;
3448         struct stripe_head *head_sh = sh;
3449         bool do_endio = false;
3450
3451         for (i = disks; i--; )
3452                 if (sh->dev[i].written) {
3453                         dev = &sh->dev[i];
3454                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3455                             (test_bit(R5_UPTODATE, &dev->flags) ||
3456                              test_bit(R5_Discard, &dev->flags) ||
3457                              test_bit(R5_SkipCopy, &dev->flags))) {
3458                                 /* We can return any write requests */
3459                                 struct bio *wbi, *wbi2;
3460                                 pr_debug("Return write for disc %d\n", i);
3461                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3462                                         clear_bit(R5_UPTODATE, &dev->flags);
3463                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3464                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3465                                 }
3466                                 do_endio = true;
3467
3468 returnbi:
3469                                 dev->page = dev->orig_page;
3470                                 wbi = dev->written;
3471                                 dev->written = NULL;
3472                                 while (wbi && wbi->bi_iter.bi_sector <
3473                                         dev->sector + STRIPE_SECTORS) {
3474                                         wbi2 = r5_next_bio(wbi, dev->sector);
3475                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3476                                                 md_write_end(conf->mddev);
3477                                                 bio_list_add(return_bi, wbi);
3478                                         }
3479                                         wbi = wbi2;
3480                                 }
3481                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3482                                                 STRIPE_SECTORS,
3483                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3484                                                 0);
3485                                 if (head_sh->batch_head) {
3486                                         sh = list_first_entry(&sh->batch_list,
3487                                                               struct stripe_head,
3488                                                               batch_list);
3489                                         if (sh != head_sh) {
3490                                                 dev = &sh->dev[i];
3491                                                 goto returnbi;
3492                                         }
3493                                 }
3494                                 sh = head_sh;
3495                                 dev = &sh->dev[i];
3496                         } else if (test_bit(R5_Discard, &dev->flags))
3497                                 discard_pending = 1;
3498                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3499                         WARN_ON(dev->page != dev->orig_page);
3500                 }
3501         if (!discard_pending &&
3502             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3503                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505                 if (sh->qd_idx >= 0) {
3506                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508                 }
3509                 /* now that discard is done we can proceed with any sync */
3510                 clear_bit(STRIPE_DISCARD, &sh->state);
3511                 /*
3512                  * SCSI discard will change some bio fields and the stripe has
3513                  * no updated data, so remove it from hash list and the stripe
3514                  * will be reinitialized
3515                  */
3516                 spin_lock_irq(&conf->device_lock);
3517 unhash:
3518                 remove_hash(sh);
3519                 if (head_sh->batch_head) {
3520                         sh = list_first_entry(&sh->batch_list,
3521                                               struct stripe_head, batch_list);
3522                         if (sh != head_sh)
3523                                         goto unhash;
3524                 }
3525                 spin_unlock_irq(&conf->device_lock);
3526                 sh = head_sh;
3527
3528                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3529                         set_bit(STRIPE_HANDLE, &sh->state);
3530
3531         }
3532
3533         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3534                 if (atomic_dec_and_test(&conf->pending_full_writes))
3535                         md_wakeup_thread(conf->mddev->thread);
3536
3537         if (head_sh->batch_head && do_endio)
3538                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3539 }
3540
3541 static void handle_stripe_dirtying(struct r5conf *conf,
3542                                    struct stripe_head *sh,
3543                                    struct stripe_head_state *s,
3544                                    int disks)
3545 {
3546         int rmw = 0, rcw = 0, i;
3547         sector_t recovery_cp = conf->mddev->recovery_cp;
3548
3549         /* Check whether resync is now happening or should start.
3550          * If yes, then the array is dirty (after unclean shutdown or
3551          * initial creation), so parity in some stripes might be inconsistent.
3552          * In this case, we need to always do reconstruct-write, to ensure
3553          * that in case of drive failure or read-error correction, we
3554          * generate correct data from the parity.
3555          */
3556         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3557             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3558              s->failed == 0)) {
3559                 /* Calculate the real rcw later - for now make it
3560                  * look like rcw is cheaper
3561                  */
3562                 rcw = 1; rmw = 2;
3563                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3564                          conf->rmw_level, (unsigned long long)recovery_cp,
3565                          (unsigned long long)sh->sector);
3566         } else for (i = disks; i--; ) {
3567                 /* would I have to read this buffer for read_modify_write */
3568                 struct r5dev *dev = &sh->dev[i];
3569                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3570                     !test_bit(R5_LOCKED, &dev->flags) &&
3571                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3572                       test_bit(R5_Wantcompute, &dev->flags))) {
3573                         if (test_bit(R5_Insync, &dev->flags))
3574                                 rmw++;
3575                         else
3576                                 rmw += 2*disks;  /* cannot read it */
3577                 }
3578                 /* Would I have to read this buffer for reconstruct_write */
3579                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3580                     i != sh->pd_idx && i != sh->qd_idx &&
3581                     !test_bit(R5_LOCKED, &dev->flags) &&
3582                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3583                     test_bit(R5_Wantcompute, &dev->flags))) {
3584                         if (test_bit(R5_Insync, &dev->flags))
3585                                 rcw++;
3586                         else
3587                                 rcw += 2*disks;
3588                 }
3589         }
3590         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3591                 (unsigned long long)sh->sector, rmw, rcw);
3592         set_bit(STRIPE_HANDLE, &sh->state);
3593         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3594                 /* prefer read-modify-write, but need to get some data */
3595                 if (conf->mddev->queue)
3596                         blk_add_trace_msg(conf->mddev->queue,
3597                                           "raid5 rmw %llu %d",
3598                                           (unsigned long long)sh->sector, rmw);
3599                 for (i = disks; i--; ) {
3600                         struct r5dev *dev = &sh->dev[i];
3601                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3602                             !test_bit(R5_LOCKED, &dev->flags) &&
3603                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3604                             test_bit(R5_Wantcompute, &dev->flags)) &&
3605                             test_bit(R5_Insync, &dev->flags)) {
3606                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3607                                              &sh->state)) {
3608                                         pr_debug("Read_old block %d for r-m-w\n",
3609                                                  i);
3610                                         set_bit(R5_LOCKED, &dev->flags);
3611                                         set_bit(R5_Wantread, &dev->flags);
3612                                         s->locked++;
3613                                 } else {
3614                                         set_bit(STRIPE_DELAYED, &sh->state);
3615                                         set_bit(STRIPE_HANDLE, &sh->state);
3616                                 }
3617                         }
3618                 }
3619         }
3620         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3621                 /* want reconstruct write, but need to get some data */
3622                 int qread =0;
3623                 rcw = 0;
3624                 for (i = disks; i--; ) {
3625                         struct r5dev *dev = &sh->dev[i];
3626                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3627                             i != sh->pd_idx && i != sh->qd_idx &&
3628                             !test_bit(R5_LOCKED, &dev->flags) &&
3629                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3630                               test_bit(R5_Wantcompute, &dev->flags))) {
3631                                 rcw++;
3632                                 if (test_bit(R5_Insync, &dev->flags) &&
3633                                     test_bit(STRIPE_PREREAD_ACTIVE,
3634                                              &sh->state)) {
3635                                         pr_debug("Read_old block "
3636                                                 "%d for Reconstruct\n", i);
3637                                         set_bit(R5_LOCKED, &dev->flags);
3638                                         set_bit(R5_Wantread, &dev->flags);
3639                                         s->locked++;
3640                                         qread++;
3641                                 } else {
3642                                         set_bit(STRIPE_DELAYED, &sh->state);
3643                                         set_bit(STRIPE_HANDLE, &sh->state);
3644                                 }
3645                         }
3646                 }
3647                 if (rcw && conf->mddev->queue)
3648                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3649                                           (unsigned long long)sh->sector,
3650                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3651         }
3652
3653         if (rcw > disks && rmw > disks &&
3654             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3655                 set_bit(STRIPE_DELAYED, &sh->state);
3656
3657         /* now if nothing is locked, and if we have enough data,
3658          * we can start a write request
3659          */
3660         /* since handle_stripe can be called at any time we need to handle the
3661          * case where a compute block operation has been submitted and then a
3662          * subsequent call wants to start a write request.  raid_run_ops only
3663          * handles the case where compute block and reconstruct are requested
3664          * simultaneously.  If this is not the case then new writes need to be
3665          * held off until the compute completes.
3666          */
3667         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3668             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3669             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3670                 schedule_reconstruction(sh, s, rcw == 0, 0);
3671 }
3672
3673 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3674                                 struct stripe_head_state *s, int disks)
3675 {
3676         struct r5dev *dev = NULL;
3677
3678         BUG_ON(sh->batch_head);
3679         set_bit(STRIPE_HANDLE, &sh->state);
3680
3681         switch (sh->check_state) {
3682         case check_state_idle:
3683                 /* start a new check operation if there are no failures */
3684                 if (s->failed == 0) {
3685                         BUG_ON(s->uptodate != disks);
3686                         sh->check_state = check_state_run;
3687                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3688                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3689                         s->uptodate--;
3690                         break;
3691                 }
3692                 dev = &sh->dev[s->failed_num[0]];
3693                 /* fall through */
3694         case check_state_compute_result:
3695                 sh->check_state = check_state_idle;
3696                 if (!dev)
3697                         dev = &sh->dev[sh->pd_idx];
3698
3699                 /* check that a write has not made the stripe insync */
3700                 if (test_bit(STRIPE_INSYNC, &sh->state))
3701                         break;
3702
3703                 /* either failed parity check, or recovery is happening */
3704                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3705                 BUG_ON(s->uptodate != disks);
3706
3707                 set_bit(R5_LOCKED, &dev->flags);
3708                 s->locked++;
3709                 set_bit(R5_Wantwrite, &dev->flags);
3710
3711                 clear_bit(STRIPE_DEGRADED, &sh->state);
3712                 set_bit(STRIPE_INSYNC, &sh->state);
3713                 break;
3714         case check_state_run:
3715                 break; /* we will be called again upon completion */
3716         case check_state_check_result:
3717                 sh->check_state = check_state_idle;
3718
3719                 /* if a failure occurred during the check operation, leave
3720                  * STRIPE_INSYNC not set and let the stripe be handled again
3721                  */
3722                 if (s->failed)
3723                         break;
3724
3725                 /* handle a successful check operation, if parity is correct
3726                  * we are done.  Otherwise update the mismatch count and repair
3727                  * parity if !MD_RECOVERY_CHECK
3728                  */
3729                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3730                         /* parity is correct (on disc,
3731                          * not in buffer any more)
3732                          */
3733                         set_bit(STRIPE_INSYNC, &sh->state);
3734                 else {
3735                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3736                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3737                                 /* don't try to repair!! */
3738                                 set_bit(STRIPE_INSYNC, &sh->state);
3739                         else {
3740                                 sh->check_state = check_state_compute_run;
3741                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3742                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3743                                 set_bit(R5_Wantcompute,
3744                                         &sh->dev[sh->pd_idx].flags);
3745                                 sh->ops.target = sh->pd_idx;
3746                                 sh->ops.target2 = -1;
3747                                 s->uptodate++;
3748                         }
3749                 }
3750                 break;
3751         case check_state_compute_run:
3752                 break;
3753         default:
3754                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3755                        __func__, sh->check_state,
3756                        (unsigned long long) sh->sector);
3757                 BUG();
3758         }
3759 }
3760
3761 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3762                                   struct stripe_head_state *s,
3763                                   int disks)
3764 {
3765         int pd_idx = sh->pd_idx;
3766         int qd_idx = sh->qd_idx;
3767         struct r5dev *dev;
3768
3769         BUG_ON(sh->batch_head);
3770         set_bit(STRIPE_HANDLE, &sh->state);
3771
3772         BUG_ON(s->failed > 2);
3773
3774         /* Want to check and possibly repair P and Q.
3775          * However there could be one 'failed' device, in which
3776          * case we can only check one of them, possibly using the
3777          * other to generate missing data
3778          */
3779
3780         switch (sh->check_state) {
3781         case check_state_idle:
3782                 /* start a new check operation if there are < 2 failures */
3783                 if (s->failed == s->q_failed) {
3784                         /* The only possible failed device holds Q, so it
3785                          * makes sense to check P (If anything else were failed,
3786                          * we would have used P to recreate it).
3787                          */
3788                         sh->check_state = check_state_run;
3789                 }
3790                 if (!s->q_failed && s->failed < 2) {
3791                         /* Q is not failed, and we didn't use it to generate
3792                          * anything, so it makes sense to check it
3793                          */
3794                         if (sh->check_state == check_state_run)
3795                                 sh->check_state = check_state_run_pq;
3796                         else
3797                                 sh->check_state = check_state_run_q;
3798                 }
3799
3800                 /* discard potentially stale zero_sum_result */
3801                 sh->ops.zero_sum_result = 0;
3802
3803                 if (sh->check_state == check_state_run) {
3804                         /* async_xor_zero_sum destroys the contents of P */
3805                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3806                         s->uptodate--;
3807                 }
3808                 if (sh->check_state >= check_state_run &&
3809                     sh->check_state <= check_state_run_pq) {
3810                         /* async_syndrome_zero_sum preserves P and Q, so
3811                          * no need to mark them !uptodate here
3812                          */
3813                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3814                         break;
3815                 }
3816
3817                 /* we have 2-disk failure */
3818                 BUG_ON(s->failed != 2);
3819                 /* fall through */
3820         case check_state_compute_result:
3821                 sh->check_state = check_state_idle;
3822
3823                 /* check that a write has not made the stripe insync */
3824                 if (test_bit(STRIPE_INSYNC, &sh->state))
3825                         break;
3826
3827                 /* now write out any block on a failed drive,
3828                  * or P or Q if they were recomputed
3829                  */
3830                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3831                 if (s->failed == 2) {
3832                         dev = &sh->dev[s->failed_num[1]];
3833                         s->locked++;
3834                         set_bit(R5_LOCKED, &dev->flags);
3835                         set_bit(R5_Wantwrite, &dev->flags);
3836                 }
3837                 if (s->failed >= 1) {
3838                         dev = &sh->dev[s->failed_num[0]];
3839                         s->locked++;
3840                         set_bit(R5_LOCKED, &dev->flags);
3841                         set_bit(R5_Wantwrite, &dev->flags);
3842                 }
3843                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3844                         dev = &sh->dev[pd_idx];
3845                         s->locked++;
3846                         set_bit(R5_LOCKED, &dev->flags);
3847                         set_bit(R5_Wantwrite, &dev->flags);
3848                 }
3849                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3850                         dev = &sh->dev[qd_idx];
3851                         s->locked++;
3852                         set_bit(R5_LOCKED, &dev->flags);
3853                         set_bit(R5_Wantwrite, &dev->flags);
3854                 }
3855                 clear_bit(STRIPE_DEGRADED, &sh->state);
3856
3857                 set_bit(STRIPE_INSYNC, &sh->state);
3858                 break;
3859         case check_state_run:
3860         case check_state_run_q:
3861         case check_state_run_pq:
3862                 break; /* we will be called again upon completion */
3863         case check_state_check_result:
3864                 sh->check_state = check_state_idle;
3865
3866                 /* handle a successful check operation, if parity is correct
3867                  * we are done.  Otherwise update the mismatch count and repair
3868                  * parity if !MD_RECOVERY_CHECK
3869                  */
3870                 if (sh->ops.zero_sum_result == 0) {
3871                         /* both parities are correct */
3872                         if (!s->failed)
3873                                 set_bit(STRIPE_INSYNC, &sh->state);
3874                         else {
3875                                 /* in contrast to the raid5 case we can validate
3876                                  * parity, but still have a failure to write
3877                                  * back
3878                                  */
3879                                 sh->check_state = check_state_compute_result;
3880                                 /* Returning at this point means that we may go
3881                                  * off and bring p and/or q uptodate again so
3882                                  * we make sure to check zero_sum_result again
3883                                  * to verify if p or q need writeback
3884                                  */
3885                         }
3886                 } else {
3887                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3888                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3889                                 /* don't try to repair!! */
3890                                 set_bit(STRIPE_INSYNC, &sh->state);
3891                         else {
3892                                 int *target = &sh->ops.target;
3893
3894                                 sh->ops.target = -1;
3895                                 sh->ops.target2 = -1;
3896                                 sh->check_state = check_state_compute_run;
3897                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3900                                         set_bit(R5_Wantcompute,
3901                                                 &sh->dev[pd_idx].flags);
3902                                         *target = pd_idx;
3903                                         target = &sh->ops.target2;
3904                                         s->uptodate++;
3905                                 }
3906                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3907                                         set_bit(R5_Wantcompute,
3908                                                 &sh->dev[qd_idx].flags);
3909                                         *target = qd_idx;
3910                                         s->uptodate++;
3911                                 }
3912                         }
3913                 }
3914                 break;
3915         case check_state_compute_run:
3916                 break;
3917         default:
3918                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3919                        __func__, sh->check_state,
3920                        (unsigned long long) sh->sector);
3921                 BUG();
3922         }
3923 }
3924
3925 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3926 {
3927         int i;
3928
3929         /* We have read all the blocks in this stripe and now we need to
3930          * copy some of them into a target stripe for expand.
3931          */
3932         struct dma_async_tx_descriptor *tx = NULL;
3933         BUG_ON(sh->batch_head);
3934         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935         for (i = 0; i < sh->disks; i++)
3936                 if (i != sh->pd_idx && i != sh->qd_idx) {
3937                         int dd_idx, j;
3938                         struct stripe_head *sh2;
3939                         struct async_submit_ctl submit;
3940
3941                         sector_t bn = compute_blocknr(sh, i, 1);
3942                         sector_t s = raid5_compute_sector(conf, bn, 0,
3943                                                           &dd_idx, NULL);
3944                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3945                         if (sh2 == NULL)
3946                                 /* so far only the early blocks of this stripe
3947                                  * have been requested.  When later blocks
3948                                  * get requested, we will try again
3949                                  */
3950                                 continue;
3951                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3952                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3953                                 /* must have already done this block */
3954                                 release_stripe(sh2);
3955                                 continue;
3956                         }
3957
3958                         /* place all the copies on one channel */
3959                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3960                         tx = async_memcpy(sh2->dev[dd_idx].page,
3961                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3962                                           &submit);
3963
3964                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3965                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3966                         for (j = 0; j < conf->raid_disks; j++)
3967                                 if (j != sh2->pd_idx &&
3968                                     j != sh2->qd_idx &&
3969                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3970                                         break;
3971                         if (j == conf->raid_disks) {
3972                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3973                                 set_bit(STRIPE_HANDLE, &sh2->state);
3974                         }
3975                         release_stripe(sh2);
3976
3977                 }
3978         /* done submitting copies, wait for them to complete */
3979         async_tx_quiesce(&tx);
3980 }
3981
3982 /*
3983  * handle_stripe - do things to a stripe.
3984  *
3985  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3986  * state of various bits to see what needs to be done.
3987  * Possible results:
3988  *    return some read requests which now have data
3989  *    return some write requests which are safely on storage
3990  *    schedule a read on some buffers
3991  *    schedule a write of some buffers
3992  *    return confirmation of parity correctness
3993  *
3994  */
3995
3996 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3997 {
3998         struct r5conf *conf = sh->raid_conf;
3999         int disks = sh->disks;
4000         struct r5dev *dev;
4001         int i;
4002         int do_recovery = 0;
4003
4004         memset(s, 0, sizeof(*s));
4005
4006         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4007         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4008         s->failed_num[0] = -1;
4009         s->failed_num[1] = -1;
4010
4011         /* Now to look around and see what can be done */
4012         rcu_read_lock();
4013         for (i=disks; i--; ) {
4014                 struct md_rdev *rdev;
4015                 sector_t first_bad;
4016                 int bad_sectors;
4017                 int is_bad = 0;
4018
4019                 dev = &sh->dev[i];
4020
4021                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4022                          i, dev->flags,
4023                          dev->toread, dev->towrite, dev->written);
4024                 /* maybe we can reply to a read
4025                  *
4026                  * new wantfill requests are only permitted while
4027                  * ops_complete_biofill is guaranteed to be inactive
4028                  */
4029                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4030                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4031                         set_bit(R5_Wantfill, &dev->flags);
4032
4033                 /* now count some things */
4034                 if (test_bit(R5_LOCKED, &dev->flags))
4035                         s->locked++;
4036                 if (test_bit(R5_UPTODATE, &dev->flags))
4037                         s->uptodate++;
4038                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4039                         s->compute++;
4040                         BUG_ON(s->compute > 2);
4041                 }
4042
4043                 if (test_bit(R5_Wantfill, &dev->flags))
4044                         s->to_fill++;
4045                 else if (dev->toread)
4046                         s->to_read++;
4047                 if (dev->towrite) {
4048                         s->to_write++;
4049                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4050                                 s->non_overwrite++;
4051                 }
4052                 if (dev->written)
4053                         s->written++;
4054                 /* Prefer to use the replacement for reads, but only
4055                  * if it is recovered enough and has no bad blocks.
4056                  */
4057                 rdev = rcu_dereference(conf->disks[i].replacement);
4058                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4059                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4060                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4061                                  &first_bad, &bad_sectors))
4062                         set_bit(R5_ReadRepl, &dev->flags);
4063                 else {
4064                         if (rdev && !test_bit(Faulty, &rdev->flags))
4065                                 set_bit(R5_NeedReplace, &dev->flags);
4066                         else
4067                                 clear_bit(R5_NeedReplace, &dev->flags);
4068                         rdev = rcu_dereference(conf->disks[i].rdev);
4069                         clear_bit(R5_ReadRepl, &dev->flags);
4070                 }
4071                 if (rdev && test_bit(Faulty, &rdev->flags))
4072                         rdev = NULL;
4073                 if (rdev) {
4074                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4075                                              &first_bad, &bad_sectors);
4076                         if (s->blocked_rdev == NULL
4077                             && (test_bit(Blocked, &rdev->flags)
4078                                 || is_bad < 0)) {
4079                                 if (is_bad < 0)
4080                                         set_bit(BlockedBadBlocks,
4081                                                 &rdev->flags);
4082                                 s->blocked_rdev = rdev;
4083                                 atomic_inc(&rdev->nr_pending);
4084                         }
4085                 }
4086                 clear_bit(R5_Insync, &dev->flags);
4087                 if (!rdev)
4088                         /* Not in-sync */;
4089                 else if (is_bad) {
4090                         /* also not in-sync */
4091                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4092                             test_bit(R5_UPTODATE, &dev->flags)) {
4093                                 /* treat as in-sync, but with a read error
4094                                  * which we can now try to correct
4095                                  */
4096                                 set_bit(R5_Insync, &dev->flags);
4097                                 set_bit(R5_ReadError, &dev->flags);
4098                         }
4099                 } else if (test_bit(In_sync, &rdev->flags))
4100                         set_bit(R5_Insync, &dev->flags);
4101                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4102                         /* in sync if before recovery_offset */
4103                         set_bit(R5_Insync, &dev->flags);
4104                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4105                          test_bit(R5_Expanded, &dev->flags))
4106                         /* If we've reshaped into here, we assume it is Insync.
4107                          * We will shortly update recovery_offset to make
4108                          * it official.
4109                          */
4110                         set_bit(R5_Insync, &dev->flags);
4111
4112                 if (test_bit(R5_WriteError, &dev->flags)) {
4113                         /* This flag does not apply to '.replacement'
4114                          * only to .rdev, so make sure to check that*/
4115                         struct md_rdev *rdev2 = rcu_dereference(
4116                                 conf->disks[i].rdev);
4117                         if (rdev2 == rdev)
4118                                 clear_bit(R5_Insync, &dev->flags);
4119                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4120                                 s->handle_bad_blocks = 1;
4121                                 atomic_inc(&rdev2->nr_pending);
4122                         } else
4123                                 clear_bit(R5_WriteError, &dev->flags);
4124                 }
4125                 if (test_bit(R5_MadeGood, &dev->flags)) {
4126                         /* This flag does not apply to '.replacement'
4127                          * only to .rdev, so make sure to check that*/
4128                         struct md_rdev *rdev2 = rcu_dereference(
4129                                 conf->disks[i].rdev);
4130                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4131                                 s->handle_bad_blocks = 1;
4132                                 atomic_inc(&rdev2->nr_pending);
4133                         } else
4134                                 clear_bit(R5_MadeGood, &dev->flags);
4135                 }
4136                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4137                         struct md_rdev *rdev2 = rcu_dereference(
4138                                 conf->disks[i].replacement);
4139                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4140                                 s->handle_bad_blocks = 1;
4141                                 atomic_inc(&rdev2->nr_pending);
4142                         } else
4143                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4144                 }
4145                 if (!test_bit(R5_Insync, &dev->flags)) {
4146                         /* The ReadError flag will just be confusing now */
4147                         clear_bit(R5_ReadError, &dev->flags);
4148                         clear_bit(R5_ReWrite, &dev->flags);
4149                 }
4150                 if (test_bit(R5_ReadError, &dev->flags))
4151                         clear_bit(R5_Insync, &dev->flags);
4152                 if (!test_bit(R5_Insync, &dev->flags)) {
4153                         if (s->failed < 2)
4154                                 s->failed_num[s->failed] = i;
4155                         s->failed++;
4156                         if (rdev && !test_bit(Faulty, &rdev->flags))
4157                                 do_recovery = 1;
4158                 }
4159         }
4160         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4161                 /* If there is a failed device being replaced,
4162                  *     we must be recovering.
4163                  * else if we are after recovery_cp, we must be syncing
4164                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4165                  * else we can only be replacing
4166                  * sync and recovery both need to read all devices, and so
4167                  * use the same flag.
4168                  */
4169                 if (do_recovery ||
4170                     sh->sector >= conf->mddev->recovery_cp ||
4171                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4172                         s->syncing = 1;
4173                 else
4174                         s->replacing = 1;
4175         }
4176         rcu_read_unlock();
4177 }
4178
4179 static int clear_batch_ready(struct stripe_head *sh)
4180 {
4181         /* Return '1' if this is a member of batch, or
4182          * '0' if it is a lone stripe or a head which can now be
4183          * handled.
4184          */
4185         struct stripe_head *tmp;
4186         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4187                 return (sh->batch_head && sh->batch_head != sh);
4188         spin_lock(&sh->stripe_lock);
4189         if (!sh->batch_head) {
4190                 spin_unlock(&sh->stripe_lock);
4191                 return 0;
4192         }
4193
4194         /*
4195          * this stripe could be added to a batch list before we check
4196          * BATCH_READY, skips it
4197          */
4198         if (sh->batch_head != sh) {
4199                 spin_unlock(&sh->stripe_lock);
4200                 return 1;
4201         }
4202         spin_lock(&sh->batch_lock);
4203         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4204                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4205         spin_unlock(&sh->batch_lock);
4206         spin_unlock(&sh->stripe_lock);
4207
4208         /*
4209          * BATCH_READY is cleared, no new stripes can be added.
4210          * batch_list can be accessed without lock
4211          */
4212         return 0;
4213 }
4214
4215 static void break_stripe_batch_list(struct stripe_head *head_sh,
4216                                     unsigned long handle_flags)
4217 {
4218         struct stripe_head *sh, *next;
4219         int i;
4220         int do_wakeup = 0;
4221
4222         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4223
4224                 list_del_init(&sh->batch_list);
4225
4226                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4227                                           (1 << STRIPE_SYNCING) |
4228                                           (1 << STRIPE_REPLACED) |
4229                                           (1 << STRIPE_PREREAD_ACTIVE) |
4230                                           (1 << STRIPE_DELAYED) |
4231                                           (1 << STRIPE_BIT_DELAY) |
4232                                           (1 << STRIPE_FULL_WRITE) |
4233                                           (1 << STRIPE_BIOFILL_RUN) |
4234                                           (1 << STRIPE_COMPUTE_RUN)  |
4235                                           (1 << STRIPE_OPS_REQ_PENDING) |
4236                                           (1 << STRIPE_DISCARD) |
4237                                           (1 << STRIPE_BATCH_READY) |
4238                                           (1 << STRIPE_BATCH_ERR) |
4239                                           (1 << STRIPE_BITMAP_PENDING)));
4240                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4241                                               (1 << STRIPE_REPLACED)));
4242
4243                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4244                                             (1 << STRIPE_DEGRADED)),
4245                               head_sh->state & (1 << STRIPE_INSYNC));
4246
4247                 sh->check_state = head_sh->check_state;
4248                 sh->reconstruct_state = head_sh->reconstruct_state;
4249                 for (i = 0; i < sh->disks; i++) {
4250                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4251                                 do_wakeup = 1;
4252                         sh->dev[i].flags = head_sh->dev[i].flags &
4253                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4254                 }
4255                 spin_lock_irq(&sh->stripe_lock);
4256                 sh->batch_head = NULL;
4257                 spin_unlock_irq(&sh->stripe_lock);
4258                 if (handle_flags == 0 ||
4259                     sh->state & handle_flags)
4260                         set_bit(STRIPE_HANDLE, &sh->state);
4261                 release_stripe(sh);
4262         }
4263         spin_lock_irq(&head_sh->stripe_lock);
4264         head_sh->batch_head = NULL;
4265         spin_unlock_irq(&head_sh->stripe_lock);
4266         for (i = 0; i < head_sh->disks; i++)
4267                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4268                         do_wakeup = 1;
4269         if (head_sh->state & handle_flags)
4270                 set_bit(STRIPE_HANDLE, &head_sh->state);
4271
4272         if (do_wakeup)
4273                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4274 }
4275
4276 static void handle_stripe(struct stripe_head *sh)
4277 {
4278         struct stripe_head_state s;
4279         struct r5conf *conf = sh->raid_conf;
4280         int i;
4281         int prexor;
4282         int disks = sh->disks;
4283         struct r5dev *pdev, *qdev;
4284
4285         clear_bit(STRIPE_HANDLE, &sh->state);
4286         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4287                 /* already being handled, ensure it gets handled
4288                  * again when current action finishes */
4289                 set_bit(STRIPE_HANDLE, &sh->state);
4290                 return;
4291         }
4292
4293         if (clear_batch_ready(sh) ) {
4294                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4295                 return;
4296         }
4297
4298         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4299                 break_stripe_batch_list(sh, 0);
4300
4301         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4302                 spin_lock(&sh->stripe_lock);
4303                 /* Cannot process 'sync' concurrently with 'discard' */
4304                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4305                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4306                         set_bit(STRIPE_SYNCING, &sh->state);
4307                         clear_bit(STRIPE_INSYNC, &sh->state);
4308                         clear_bit(STRIPE_REPLACED, &sh->state);
4309                 }
4310                 spin_unlock(&sh->stripe_lock);
4311         }
4312         clear_bit(STRIPE_DELAYED, &sh->state);
4313
4314         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4315                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4316                (unsigned long long)sh->sector, sh->state,
4317                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4318                sh->check_state, sh->reconstruct_state);
4319
4320         analyse_stripe(sh, &s);
4321
4322         if (s.handle_bad_blocks) {
4323                 set_bit(STRIPE_HANDLE, &sh->state);
4324                 goto finish;
4325         }
4326
4327         if (unlikely(s.blocked_rdev)) {
4328                 if (s.syncing || s.expanding || s.expanded ||
4329                     s.replacing || s.to_write || s.written) {
4330                         set_bit(STRIPE_HANDLE, &sh->state);
4331                         goto finish;
4332                 }
4333                 /* There is nothing for the blocked_rdev to block */
4334                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4335                 s.blocked_rdev = NULL;
4336         }
4337
4338         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4339                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4340                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4341         }
4342
4343         pr_debug("locked=%d uptodate=%d to_read=%d"
4344                " to_write=%d failed=%d failed_num=%d,%d\n",
4345                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4346                s.failed_num[0], s.failed_num[1]);
4347         /* check if the array has lost more than max_degraded devices and,
4348          * if so, some requests might need to be failed.
4349          */
4350         if (s.failed > conf->max_degraded) {
4351                 sh->check_state = 0;
4352                 sh->reconstruct_state = 0;
4353                 break_stripe_batch_list(sh, 0);
4354                 if (s.to_read+s.to_write+s.written)
4355                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4356                 if (s.syncing + s.replacing)
4357                         handle_failed_sync(conf, sh, &s);
4358         }
4359
4360         /* Now we check to see if any write operations have recently
4361          * completed
4362          */
4363         prexor = 0;
4364         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4365                 prexor = 1;
4366         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4367             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4368                 sh->reconstruct_state = reconstruct_state_idle;
4369
4370                 /* All the 'written' buffers and the parity block are ready to
4371                  * be written back to disk
4372                  */
4373                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4374                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4375                 BUG_ON(sh->qd_idx >= 0 &&
4376                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4377                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4378                 for (i = disks; i--; ) {
4379                         struct r5dev *dev = &sh->dev[i];
4380                         if (test_bit(R5_LOCKED, &dev->flags) &&
4381                                 (i == sh->pd_idx || i == sh->qd_idx ||
4382                                  dev->written)) {
4383                                 pr_debug("Writing block %d\n", i);
4384                                 set_bit(R5_Wantwrite, &dev->flags);
4385                                 if (prexor)
4386                                         continue;
4387                                 if (s.failed > 1)
4388                                         continue;
4389                                 if (!test_bit(R5_Insync, &dev->flags) ||
4390                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4391                                      s.failed == 0))
4392                                         set_bit(STRIPE_INSYNC, &sh->state);
4393                         }
4394                 }
4395                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4396                         s.dec_preread_active = 1;
4397         }
4398
4399         /*
4400          * might be able to return some write requests if the parity blocks
4401          * are safe, or on a failed drive
4402          */
4403         pdev = &sh->dev[sh->pd_idx];
4404         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4405                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4406         qdev = &sh->dev[sh->qd_idx];
4407         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4408                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4409                 || conf->level < 6;
4410
4411         if (s.written &&
4412             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4413                              && !test_bit(R5_LOCKED, &pdev->flags)
4414                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4415                                  test_bit(R5_Discard, &pdev->flags))))) &&
4416             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4417                              && !test_bit(R5_LOCKED, &qdev->flags)
4418                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4419                                  test_bit(R5_Discard, &qdev->flags))))))
4420                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4421
4422         /* Now we might consider reading some blocks, either to check/generate
4423          * parity, or to satisfy requests
4424          * or to load a block that is being partially written.
4425          */
4426         if (s.to_read || s.non_overwrite
4427             || (conf->level == 6 && s.to_write && s.failed)
4428             || (s.syncing && (s.uptodate + s.compute < disks))
4429             || s.replacing
4430             || s.expanding)
4431                 handle_stripe_fill(sh, &s, disks);
4432
4433         /* Now to consider new write requests and what else, if anything
4434          * should be read.  We do not handle new writes when:
4435          * 1/ A 'write' operation (copy+xor) is already in flight.
4436          * 2/ A 'check' operation is in flight, as it may clobber the parity
4437          *    block.
4438          */
4439         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4440                 handle_stripe_dirtying(conf, sh, &s, disks);
4441
4442         /* maybe we need to check and possibly fix the parity for this stripe
4443          * Any reads will already have been scheduled, so we just see if enough
4444          * data is available.  The parity check is held off while parity
4445          * dependent operations are in flight.
4446          */
4447         if (sh->check_state ||
4448             (s.syncing && s.locked == 0 &&
4449              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4450              !test_bit(STRIPE_INSYNC, &sh->state))) {
4451                 if (conf->level == 6)
4452                         handle_parity_checks6(conf, sh, &s, disks);
4453                 else
4454                         handle_parity_checks5(conf, sh, &s, disks);
4455         }
4456
4457         if ((s.replacing || s.syncing) && s.locked == 0
4458             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4459             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4460                 /* Write out to replacement devices where possible */
4461                 for (i = 0; i < conf->raid_disks; i++)
4462                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4463                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4464                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4465                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4466                                 s.locked++;
4467                         }
4468                 if (s.replacing)
4469                         set_bit(STRIPE_INSYNC, &sh->state);
4470                 set_bit(STRIPE_REPLACED, &sh->state);
4471         }
4472         if ((s.syncing || s.replacing) && s.locked == 0 &&
4473             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4474             test_bit(STRIPE_INSYNC, &sh->state)) {
4475                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4476                 clear_bit(STRIPE_SYNCING, &sh->state);
4477                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4478                         wake_up(&conf->wait_for_overlap);
4479         }
4480
4481         /* If the failed drives are just a ReadError, then we might need
4482          * to progress the repair/check process
4483          */
4484         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4485                 for (i = 0; i < s.failed; i++) {
4486                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4487                         if (test_bit(R5_ReadError, &dev->flags)
4488                             && !test_bit(R5_LOCKED, &dev->flags)
4489                             && test_bit(R5_UPTODATE, &dev->flags)
4490                                 ) {
4491                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4492                                         set_bit(R5_Wantwrite, &dev->flags);
4493                                         set_bit(R5_ReWrite, &dev->flags);
4494                                         set_bit(R5_LOCKED, &dev->flags);
4495                                         s.locked++;
4496                                 } else {
4497                                         /* let's read it back */
4498                                         set_bit(R5_Wantread, &dev->flags);
4499                                         set_bit(R5_LOCKED, &dev->flags);
4500                                         s.locked++;
4501                                 }
4502                         }
4503                 }
4504
4505         /* Finish reconstruct operations initiated by the expansion process */
4506         if (sh->reconstruct_state == reconstruct_state_result) {
4507                 struct stripe_head *sh_src
4508                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4509                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4510                         /* sh cannot be written until sh_src has been read.
4511                          * so arrange for sh to be delayed a little
4512                          */
4513                         set_bit(STRIPE_DELAYED, &sh->state);
4514                         set_bit(STRIPE_HANDLE, &sh->state);
4515                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4516                                               &sh_src->state))
4517                                 atomic_inc(&conf->preread_active_stripes);
4518                         release_stripe(sh_src);
4519                         goto finish;
4520                 }
4521                 if (sh_src)
4522                         release_stripe(sh_src);
4523
4524                 sh->reconstruct_state = reconstruct_state_idle;
4525                 clear_bit(STRIPE_EXPANDING, &sh->state);
4526                 for (i = conf->raid_disks; i--; ) {
4527                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4528                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4529                         s.locked++;
4530                 }
4531         }
4532
4533         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4534             !sh->reconstruct_state) {
4535                 /* Need to write out all blocks after computing parity */
4536                 sh->disks = conf->raid_disks;
4537                 stripe_set_idx(sh->sector, conf, 0, sh);
4538                 schedule_reconstruction(sh, &s, 1, 1);
4539         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4540                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4541                 atomic_dec(&conf->reshape_stripes);
4542                 wake_up(&conf->wait_for_overlap);
4543                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4544         }
4545
4546         if (s.expanding && s.locked == 0 &&
4547             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4548                 handle_stripe_expansion(conf, sh);
4549
4550 finish:
4551         /* wait for this device to become unblocked */
4552         if (unlikely(s.blocked_rdev)) {
4553                 if (conf->mddev->external)
4554                         md_wait_for_blocked_rdev(s.blocked_rdev,
4555                                                  conf->mddev);
4556                 else
4557                         /* Internal metadata will immediately
4558                          * be written by raid5d, so we don't
4559                          * need to wait here.
4560                          */
4561                         rdev_dec_pending(s.blocked_rdev,
4562                                          conf->mddev);
4563         }
4564
4565         if (s.handle_bad_blocks)
4566                 for (i = disks; i--; ) {
4567                         struct md_rdev *rdev;
4568                         struct r5dev *dev = &sh->dev[i];
4569                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4570                                 /* We own a safe reference to the rdev */
4571                                 rdev = conf->disks[i].rdev;
4572                                 if (!rdev_set_badblocks(rdev, sh->sector,
4573                                                         STRIPE_SECTORS, 0))
4574                                         md_error(conf->mddev, rdev);
4575                                 rdev_dec_pending(rdev, conf->mddev);
4576                         }
4577                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4578                                 rdev = conf->disks[i].rdev;
4579                                 rdev_clear_badblocks(rdev, sh->sector,
4580                                                      STRIPE_SECTORS, 0);
4581                                 rdev_dec_pending(rdev, conf->mddev);
4582                         }
4583                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4584                                 rdev = conf->disks[i].replacement;
4585                                 if (!rdev)
4586                                         /* rdev have been moved down */
4587                                         rdev = conf->disks[i].rdev;
4588                                 rdev_clear_badblocks(rdev, sh->sector,
4589                                                      STRIPE_SECTORS, 0);
4590                                 rdev_dec_pending(rdev, conf->mddev);
4591                         }
4592                 }
4593
4594         if (s.ops_request)
4595                 raid_run_ops(sh, s.ops_request);
4596
4597         ops_run_io(sh, &s);
4598
4599         if (s.dec_preread_active) {
4600                 /* We delay this until after ops_run_io so that if make_request
4601                  * is waiting on a flush, it won't continue until the writes
4602                  * have actually been submitted.
4603                  */
4604                 atomic_dec(&conf->preread_active_stripes);
4605                 if (atomic_read(&conf->preread_active_stripes) <
4606                     IO_THRESHOLD)
4607                         md_wakeup_thread(conf->mddev->thread);
4608         }
4609
4610         if (!bio_list_empty(&s.return_bi)) {
4611                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4612                         spin_lock_irq(&conf->device_lock);
4613                         bio_list_merge(&conf->return_bi, &s.return_bi);
4614                         spin_unlock_irq(&conf->device_lock);
4615                         md_wakeup_thread(conf->mddev->thread);
4616                 } else
4617                         return_io(&s.return_bi);
4618         }
4619
4620         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4621 }
4622
4623 static void raid5_activate_delayed(struct r5conf *conf)
4624 {
4625         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4626                 while (!list_empty(&conf->delayed_list)) {
4627                         struct list_head *l = conf->delayed_list.next;
4628                         struct stripe_head *sh;
4629                         sh = list_entry(l, struct stripe_head, lru);
4630                         list_del_init(l);
4631                         clear_bit(STRIPE_DELAYED, &sh->state);
4632                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4633                                 atomic_inc(&conf->preread_active_stripes);
4634                         list_add_tail(&sh->lru, &conf->hold_list);
4635                         raid5_wakeup_stripe_thread(sh);
4636                 }
4637         }
4638 }
4639
4640 static void activate_bit_delay(struct r5conf *conf,
4641         struct list_head *temp_inactive_list)
4642 {
4643         /* device_lock is held */
4644         struct list_head head;
4645         list_add(&head, &conf->bitmap_list);
4646         list_del_init(&conf->bitmap_list);
4647         while (!list_empty(&head)) {
4648                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4649                 int hash;
4650                 list_del_init(&sh->lru);
4651                 atomic_inc(&sh->count);
4652                 hash = sh->hash_lock_index;
4653                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4654         }
4655 }
4656
4657 static int raid5_congested(struct mddev *mddev, int bits)
4658 {
4659         struct r5conf *conf = mddev->private;
4660
4661         /* No difference between reads and writes.  Just check
4662          * how busy the stripe_cache is
4663          */
4664
4665         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4666                 return 1;
4667         if (conf->quiesce)
4668                 return 1;
4669         if (atomic_read(&conf->empty_inactive_list_nr))
4670                 return 1;
4671
4672         return 0;
4673 }
4674
4675 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4676 {
4677         struct r5conf *conf = mddev->private;
4678         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4679         unsigned int chunk_sectors;
4680         unsigned int bio_sectors = bio_sectors(bio);
4681
4682         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4683         return  chunk_sectors >=
4684                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4685 }
4686
4687 /*
4688  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4689  *  later sampled by raid5d.
4690  */
4691 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4692 {
4693         unsigned long flags;
4694
4695         spin_lock_irqsave(&conf->device_lock, flags);
4696
4697         bi->bi_next = conf->retry_read_aligned_list;
4698         conf->retry_read_aligned_list = bi;
4699
4700         spin_unlock_irqrestore(&conf->device_lock, flags);
4701         md_wakeup_thread(conf->mddev->thread);
4702 }
4703
4704 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4705 {
4706         struct bio *bi;
4707
4708         bi = conf->retry_read_aligned;
4709         if (bi) {
4710                 conf->retry_read_aligned = NULL;
4711                 return bi;
4712         }
4713         bi = conf->retry_read_aligned_list;
4714         if(bi) {
4715                 conf->retry_read_aligned_list = bi->bi_next;
4716                 bi->bi_next = NULL;
4717                 /*
4718                  * this sets the active strip count to 1 and the processed
4719                  * strip count to zero (upper 8 bits)
4720                  */
4721                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4722         }
4723
4724         return bi;
4725 }
4726
4727 /*
4728  *  The "raid5_align_endio" should check if the read succeeded and if it
4729  *  did, call bio_endio on the original bio (having bio_put the new bio
4730  *  first).
4731  *  If the read failed..
4732  */
4733 static void raid5_align_endio(struct bio *bi)
4734 {
4735         struct bio* raid_bi  = bi->bi_private;
4736         struct mddev *mddev;
4737         struct r5conf *conf;
4738         struct md_rdev *rdev;
4739         int error = bi->bi_error;
4740
4741         bio_put(bi);
4742
4743         rdev = (void*)raid_bi->bi_next;
4744         raid_bi->bi_next = NULL;
4745         mddev = rdev->mddev;
4746         conf = mddev->private;
4747
4748         rdev_dec_pending(rdev, conf->mddev);
4749
4750         if (!error) {
4751                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4752                                          raid_bi, 0);
4753                 bio_endio(raid_bi);
4754                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4755                         wake_up(&conf->wait_for_quiescent);
4756                 return;
4757         }
4758
4759         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4760
4761         add_bio_to_retry(raid_bi, conf);
4762 }
4763
4764 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4765 {
4766         struct r5conf *conf = mddev->private;
4767         int dd_idx;
4768         struct bio* align_bi;
4769         struct md_rdev *rdev;
4770         sector_t end_sector;
4771
4772         if (!in_chunk_boundary(mddev, raid_bio)) {
4773                 pr_debug("%s: non aligned\n", __func__);
4774                 return 0;
4775         }
4776         /*
4777          * use bio_clone_mddev to make a copy of the bio
4778          */
4779         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4780         if (!align_bi)
4781                 return 0;
4782         /*
4783          *   set bi_end_io to a new function, and set bi_private to the
4784          *     original bio.
4785          */
4786         align_bi->bi_end_io  = raid5_align_endio;
4787         align_bi->bi_private = raid_bio;
4788         /*
4789          *      compute position
4790          */
4791         align_bi->bi_iter.bi_sector =
4792                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4793                                      0, &dd_idx, NULL);
4794
4795         end_sector = bio_end_sector(align_bi);
4796         rcu_read_lock();
4797         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4798         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4799             rdev->recovery_offset < end_sector) {
4800                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4801                 if (rdev &&
4802                     (test_bit(Faulty, &rdev->flags) ||
4803                     !(test_bit(In_sync, &rdev->flags) ||
4804                       rdev->recovery_offset >= end_sector)))
4805                         rdev = NULL;
4806         }
4807         if (rdev) {
4808                 sector_t first_bad;
4809                 int bad_sectors;
4810
4811                 atomic_inc(&rdev->nr_pending);
4812                 rcu_read_unlock();
4813                 raid_bio->bi_next = (void*)rdev;
4814                 align_bi->bi_bdev =  rdev->bdev;
4815                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4816
4817                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4818                                 bio_sectors(align_bi),
4819                                 &first_bad, &bad_sectors)) {
4820                         bio_put(align_bi);
4821                         rdev_dec_pending(rdev, mddev);
4822                         return 0;
4823                 }
4824
4825                 /* No reshape active, so we can trust rdev->data_offset */
4826                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4827
4828                 spin_lock_irq(&conf->device_lock);
4829                 wait_event_lock_irq(conf->wait_for_quiescent,
4830                                     conf->quiesce == 0,
4831                                     conf->device_lock);
4832                 atomic_inc(&conf->active_aligned_reads);
4833                 spin_unlock_irq(&conf->device_lock);
4834
4835                 if (mddev->gendisk)
4836                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4837                                               align_bi, disk_devt(mddev->gendisk),
4838                                               raid_bio->bi_iter.bi_sector);
4839                 generic_make_request(align_bi);
4840                 return 1;
4841         } else {
4842                 rcu_read_unlock();
4843                 bio_put(align_bi);
4844                 return 0;
4845         }
4846 }
4847
4848 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4849 {
4850         struct bio *split;
4851
4852         do {
4853                 sector_t sector = raid_bio->bi_iter.bi_sector;
4854                 unsigned chunk_sects = mddev->chunk_sectors;
4855                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4856
4857                 if (sectors < bio_sectors(raid_bio)) {
4858                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4859                         bio_chain(split, raid_bio);
4860                 } else
4861                         split = raid_bio;
4862
4863                 if (!raid5_read_one_chunk(mddev, split)) {
4864                         if (split != raid_bio)
4865                                 generic_make_request(raid_bio);
4866                         return split;
4867                 }
4868         } while (split != raid_bio);
4869
4870         return NULL;
4871 }
4872
4873 /* __get_priority_stripe - get the next stripe to process
4874  *
4875  * Full stripe writes are allowed to pass preread active stripes up until
4876  * the bypass_threshold is exceeded.  In general the bypass_count
4877  * increments when the handle_list is handled before the hold_list; however, it
4878  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4879  * stripe with in flight i/o.  The bypass_count will be reset when the
4880  * head of the hold_list has changed, i.e. the head was promoted to the
4881  * handle_list.
4882  */
4883 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4884 {
4885         struct stripe_head *sh = NULL, *tmp;
4886         struct list_head *handle_list = NULL;
4887         struct r5worker_group *wg = NULL;
4888
4889         if (conf->worker_cnt_per_group == 0) {
4890                 handle_list = &conf->handle_list;
4891         } else if (group != ANY_GROUP) {
4892                 handle_list = &conf->worker_groups[group].handle_list;
4893                 wg = &conf->worker_groups[group];
4894         } else {
4895                 int i;
4896                 for (i = 0; i < conf->group_cnt; i++) {
4897                         handle_list = &conf->worker_groups[i].handle_list;
4898                         wg = &conf->worker_groups[i];
4899                         if (!list_empty(handle_list))
4900                                 break;
4901                 }
4902         }
4903
4904         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4905                   __func__,
4906                   list_empty(handle_list) ? "empty" : "busy",
4907                   list_empty(&conf->hold_list) ? "empty" : "busy",
4908                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4909
4910         if (!list_empty(handle_list)) {
4911                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4912
4913                 if (list_empty(&conf->hold_list))
4914                         conf->bypass_count = 0;
4915                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4916                         if (conf->hold_list.next == conf->last_hold)
4917                                 conf->bypass_count++;
4918                         else {
4919                                 conf->last_hold = conf->hold_list.next;
4920                                 conf->bypass_count -= conf->bypass_threshold;
4921                                 if (conf->bypass_count < 0)
4922                                         conf->bypass_count = 0;
4923                         }
4924                 }
4925         } else if (!list_empty(&conf->hold_list) &&
4926                    ((conf->bypass_threshold &&
4927                      conf->bypass_count > conf->bypass_threshold) ||
4928                     atomic_read(&conf->pending_full_writes) == 0)) {
4929
4930                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4931                         if (conf->worker_cnt_per_group == 0 ||
4932                             group == ANY_GROUP ||
4933                             !cpu_online(tmp->cpu) ||
4934                             cpu_to_group(tmp->cpu) == group) {
4935                                 sh = tmp;
4936                                 break;
4937                         }
4938                 }
4939
4940                 if (sh) {
4941                         conf->bypass_count -= conf->bypass_threshold;
4942                         if (conf->bypass_count < 0)
4943                                 conf->bypass_count = 0;
4944                 }
4945                 wg = NULL;
4946         }
4947
4948         if (!sh)
4949                 return NULL;
4950
4951         if (wg) {
4952                 wg->stripes_cnt--;
4953                 sh->group = NULL;
4954         }
4955         list_del_init(&sh->lru);
4956         BUG_ON(atomic_inc_return(&sh->count) != 1);
4957         return sh;
4958 }
4959
4960 struct raid5_plug_cb {
4961         struct blk_plug_cb      cb;
4962         struct list_head        list;
4963         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4964 };
4965
4966 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4967 {
4968         struct raid5_plug_cb *cb = container_of(
4969                 blk_cb, struct raid5_plug_cb, cb);
4970         struct stripe_head *sh;
4971         struct mddev *mddev = cb->cb.data;
4972         struct r5conf *conf = mddev->private;
4973         int cnt = 0;
4974         int hash;
4975
4976         if (cb->list.next && !list_empty(&cb->list)) {
4977                 spin_lock_irq(&conf->device_lock);
4978                 while (!list_empty(&cb->list)) {
4979                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4980                         list_del_init(&sh->lru);
4981                         /*
4982                          * avoid race release_stripe_plug() sees
4983                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4984                          * is still in our list
4985                          */
4986                         smp_mb__before_atomic();
4987                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4988                         /*
4989                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4990                          * case, the count is always > 1 here
4991                          */
4992                         hash = sh->hash_lock_index;
4993                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4994                         cnt++;
4995                 }
4996                 spin_unlock_irq(&conf->device_lock);
4997         }
4998         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4999                                      NR_STRIPE_HASH_LOCKS);
5000         if (mddev->queue)
5001                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5002         kfree(cb);
5003 }
5004
5005 static void release_stripe_plug(struct mddev *mddev,
5006                                 struct stripe_head *sh)
5007 {
5008         struct blk_plug_cb *blk_cb = blk_check_plugged(
5009                 raid5_unplug, mddev,
5010                 sizeof(struct raid5_plug_cb));
5011         struct raid5_plug_cb *cb;
5012
5013         if (!blk_cb) {
5014                 release_stripe(sh);
5015                 return;
5016         }
5017
5018         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5019
5020         if (cb->list.next == NULL) {
5021                 int i;
5022                 INIT_LIST_HEAD(&cb->list);
5023                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5024                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5025         }
5026
5027         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5028                 list_add_tail(&sh->lru, &cb->list);
5029         else
5030                 release_stripe(sh);
5031 }
5032
5033 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5034 {
5035         struct r5conf *conf = mddev->private;
5036         sector_t logical_sector, last_sector;
5037         struct stripe_head *sh;
5038         int remaining;
5039         int stripe_sectors;
5040
5041         if (mddev->reshape_position != MaxSector)
5042                 /* Skip discard while reshape is happening */
5043                 return;
5044
5045         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5046         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5047
5048         bi->bi_next = NULL;
5049         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5050
5051         stripe_sectors = conf->chunk_sectors *
5052                 (conf->raid_disks - conf->max_degraded);
5053         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5054                                                stripe_sectors);
5055         sector_div(last_sector, stripe_sectors);
5056
5057         logical_sector *= conf->chunk_sectors;
5058         last_sector *= conf->chunk_sectors;
5059
5060         for (; logical_sector < last_sector;
5061              logical_sector += STRIPE_SECTORS) {
5062                 DEFINE_WAIT(w);
5063                 int d;
5064         again:
5065                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5066                 prepare_to_wait(&conf->wait_for_overlap, &w,
5067                                 TASK_UNINTERRUPTIBLE);
5068                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5069                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5070                         release_stripe(sh);
5071                         schedule();
5072                         goto again;
5073                 }
5074                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5075                 spin_lock_irq(&sh->stripe_lock);
5076                 for (d = 0; d < conf->raid_disks; d++) {
5077                         if (d == sh->pd_idx || d == sh->qd_idx)
5078                                 continue;
5079                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5080                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5081                                 spin_unlock_irq(&sh->stripe_lock);
5082                                 release_stripe(sh);
5083                                 schedule();
5084                                 goto again;
5085                         }
5086                 }
5087                 set_bit(STRIPE_DISCARD, &sh->state);
5088                 finish_wait(&conf->wait_for_overlap, &w);
5089                 sh->overwrite_disks = 0;
5090                 for (d = 0; d < conf->raid_disks; d++) {
5091                         if (d == sh->pd_idx || d == sh->qd_idx)
5092                                 continue;
5093                         sh->dev[d].towrite = bi;
5094                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5095                         raid5_inc_bi_active_stripes(bi);
5096                         sh->overwrite_disks++;
5097                 }
5098                 spin_unlock_irq(&sh->stripe_lock);
5099                 if (conf->mddev->bitmap) {
5100                         for (d = 0;
5101                              d < conf->raid_disks - conf->max_degraded;
5102                              d++)
5103                                 bitmap_startwrite(mddev->bitmap,
5104                                                   sh->sector,
5105                                                   STRIPE_SECTORS,
5106                                                   0);
5107                         sh->bm_seq = conf->seq_flush + 1;
5108                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5109                 }
5110
5111                 set_bit(STRIPE_HANDLE, &sh->state);
5112                 clear_bit(STRIPE_DELAYED, &sh->state);
5113                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5114                         atomic_inc(&conf->preread_active_stripes);
5115                 release_stripe_plug(mddev, sh);
5116         }
5117
5118         remaining = raid5_dec_bi_active_stripes(bi);
5119         if (remaining == 0) {
5120                 md_write_end(mddev);
5121                 bio_endio(bi);
5122         }
5123 }
5124
5125 static void make_request(struct mddev *mddev, struct bio * bi)
5126 {
5127         struct r5conf *conf = mddev->private;
5128         int dd_idx;
5129         sector_t new_sector;
5130         sector_t logical_sector, last_sector;
5131         struct stripe_head *sh;
5132         const int rw = bio_data_dir(bi);
5133         int remaining;
5134         DEFINE_WAIT(w);
5135         bool do_prepare;
5136
5137         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5138                 md_flush_request(mddev, bi);
5139                 return;
5140         }
5141
5142         md_write_start(mddev, bi);
5143
5144         /*
5145          * If array is degraded, better not do chunk aligned read because
5146          * later we might have to read it again in order to reconstruct
5147          * data on failed drives.
5148          */
5149         if (rw == READ && mddev->degraded == 0 &&
5150             mddev->reshape_position == MaxSector) {
5151                 bi = chunk_aligned_read(mddev, bi);
5152                 if (!bi)
5153                         return;
5154         }
5155
5156         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5157                 make_discard_request(mddev, bi);
5158                 return;
5159         }
5160
5161         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5162         last_sector = bio_end_sector(bi);
5163         bi->bi_next = NULL;
5164         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5165
5166         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5167         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5168                 int previous;
5169                 int seq;
5170
5171                 do_prepare = false;
5172         retry:
5173                 seq = read_seqcount_begin(&conf->gen_lock);
5174                 previous = 0;
5175                 if (do_prepare)
5176                         prepare_to_wait(&conf->wait_for_overlap, &w,
5177                                 TASK_UNINTERRUPTIBLE);
5178                 if (unlikely(conf->reshape_progress != MaxSector)) {
5179                         /* spinlock is needed as reshape_progress may be
5180                          * 64bit on a 32bit platform, and so it might be
5181                          * possible to see a half-updated value
5182                          * Of course reshape_progress could change after
5183                          * the lock is dropped, so once we get a reference
5184                          * to the stripe that we think it is, we will have
5185                          * to check again.
5186                          */
5187                         spin_lock_irq(&conf->device_lock);
5188                         if (mddev->reshape_backwards
5189                             ? logical_sector < conf->reshape_progress
5190                             : logical_sector >= conf->reshape_progress) {
5191                                 previous = 1;
5192                         } else {
5193                                 if (mddev->reshape_backwards
5194                                     ? logical_sector < conf->reshape_safe
5195                                     : logical_sector >= conf->reshape_safe) {
5196                                         spin_unlock_irq(&conf->device_lock);
5197                                         schedule();
5198                                         do_prepare = true;
5199                                         goto retry;
5200                                 }
5201                         }
5202                         spin_unlock_irq(&conf->device_lock);
5203                 }
5204
5205                 new_sector = raid5_compute_sector(conf, logical_sector,
5206                                                   previous,
5207                                                   &dd_idx, NULL);
5208                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5209                         (unsigned long long)new_sector,
5210                         (unsigned long long)logical_sector);
5211
5212                 sh = get_active_stripe(conf, new_sector, previous,
5213                                        (bi->bi_rw&RWA_MASK), 0);
5214                 if (sh) {
5215                         if (unlikely(previous)) {
5216                                 /* expansion might have moved on while waiting for a
5217                                  * stripe, so we must do the range check again.
5218                                  * Expansion could still move past after this
5219                                  * test, but as we are holding a reference to
5220                                  * 'sh', we know that if that happens,
5221                                  *  STRIPE_EXPANDING will get set and the expansion
5222                                  * won't proceed until we finish with the stripe.
5223                                  */
5224                                 int must_retry = 0;
5225                                 spin_lock_irq(&conf->device_lock);
5226                                 if (mddev->reshape_backwards
5227                                     ? logical_sector >= conf->reshape_progress
5228                                     : logical_sector < conf->reshape_progress)
5229                                         /* mismatch, need to try again */
5230                                         must_retry = 1;
5231                                 spin_unlock_irq(&conf->device_lock);
5232                                 if (must_retry) {
5233                                         release_stripe(sh);
5234                                         schedule();
5235                                         do_prepare = true;
5236                                         goto retry;
5237                                 }
5238                         }
5239                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5240                                 /* Might have got the wrong stripe_head
5241                                  * by accident
5242                                  */
5243                                 release_stripe(sh);
5244                                 goto retry;
5245                         }
5246
5247                         if (rw == WRITE &&
5248                             logical_sector >= mddev->suspend_lo &&
5249                             logical_sector < mddev->suspend_hi) {
5250                                 release_stripe(sh);
5251                                 /* As the suspend_* range is controlled by
5252                                  * userspace, we want an interruptible
5253                                  * wait.
5254                                  */
5255                                 flush_signals(current);
5256                                 prepare_to_wait(&conf->wait_for_overlap,
5257                                                 &w, TASK_INTERRUPTIBLE);
5258                                 if (logical_sector >= mddev->suspend_lo &&
5259                                     logical_sector < mddev->suspend_hi) {
5260                                         schedule();
5261                                         do_prepare = true;
5262                                 }
5263                                 goto retry;
5264                         }
5265
5266                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5267                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5268                                 /* Stripe is busy expanding or
5269                                  * add failed due to overlap.  Flush everything
5270                                  * and wait a while
5271                                  */
5272                                 md_wakeup_thread(mddev->thread);
5273                                 release_stripe(sh);
5274                                 schedule();
5275                                 do_prepare = true;
5276                                 goto retry;
5277                         }
5278                         set_bit(STRIPE_HANDLE, &sh->state);
5279                         clear_bit(STRIPE_DELAYED, &sh->state);
5280                         if ((!sh->batch_head || sh == sh->batch_head) &&
5281                             (bi->bi_rw & REQ_SYNC) &&
5282                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5283                                 atomic_inc(&conf->preread_active_stripes);
5284                         release_stripe_plug(mddev, sh);
5285                 } else {
5286                         /* cannot get stripe for read-ahead, just give-up */
5287                         bi->bi_error = -EIO;
5288                         break;
5289                 }
5290         }
5291         finish_wait(&conf->wait_for_overlap, &w);
5292
5293         remaining = raid5_dec_bi_active_stripes(bi);
5294         if (remaining == 0) {
5295
5296                 if ( rw == WRITE )
5297                         md_write_end(mddev);
5298
5299                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5300                                          bi, 0);
5301                 bio_endio(bi);
5302         }
5303 }
5304
5305 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5306
5307 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5308 {
5309         /* reshaping is quite different to recovery/resync so it is
5310          * handled quite separately ... here.
5311          *
5312          * On each call to sync_request, we gather one chunk worth of
5313          * destination stripes and flag them as expanding.
5314          * Then we find all the source stripes and request reads.
5315          * As the reads complete, handle_stripe will copy the data
5316          * into the destination stripe and release that stripe.
5317          */
5318         struct r5conf *conf = mddev->private;
5319         struct stripe_head *sh;
5320         sector_t first_sector, last_sector;
5321         int raid_disks = conf->previous_raid_disks;
5322         int data_disks = raid_disks - conf->max_degraded;
5323         int new_data_disks = conf->raid_disks - conf->max_degraded;
5324         int i;
5325         int dd_idx;
5326         sector_t writepos, readpos, safepos;
5327         sector_t stripe_addr;
5328         int reshape_sectors;
5329         struct list_head stripes;
5330         sector_t retn;
5331
5332         if (sector_nr == 0) {
5333                 /* If restarting in the middle, skip the initial sectors */
5334                 if (mddev->reshape_backwards &&
5335                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5336                         sector_nr = raid5_size(mddev, 0, 0)
5337                                 - conf->reshape_progress;
5338                 } else if (mddev->reshape_backwards &&
5339                            conf->reshape_progress == MaxSector) {
5340                         /* shouldn't happen, but just in case, finish up.*/
5341                         sector_nr = MaxSector;
5342                 } else if (!mddev->reshape_backwards &&
5343                            conf->reshape_progress > 0)
5344                         sector_nr = conf->reshape_progress;
5345                 sector_div(sector_nr, new_data_disks);
5346                 if (sector_nr) {
5347                         mddev->curr_resync_completed = sector_nr;
5348                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5349                         *skipped = 1;
5350                         retn = sector_nr;
5351                         goto finish;
5352                 }
5353         }
5354
5355         /* We need to process a full chunk at a time.
5356          * If old and new chunk sizes differ, we need to process the
5357          * largest of these
5358          */
5359
5360         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5361
5362         /* We update the metadata at least every 10 seconds, or when
5363          * the data about to be copied would over-write the source of
5364          * the data at the front of the range.  i.e. one new_stripe
5365          * along from reshape_progress new_maps to after where
5366          * reshape_safe old_maps to
5367          */
5368         writepos = conf->reshape_progress;
5369         sector_div(writepos, new_data_disks);
5370         readpos = conf->reshape_progress;
5371         sector_div(readpos, data_disks);
5372         safepos = conf->reshape_safe;
5373         sector_div(safepos, data_disks);
5374         if (mddev->reshape_backwards) {
5375                 BUG_ON(writepos < reshape_sectors);
5376                 writepos -= reshape_sectors;
5377                 readpos += reshape_sectors;
5378                 safepos += reshape_sectors;
5379         } else {
5380                 writepos += reshape_sectors;
5381                 /* readpos and safepos are worst-case calculations.
5382                  * A negative number is overly pessimistic, and causes
5383                  * obvious problems for unsigned storage.  So clip to 0.
5384                  */
5385                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5386                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5387         }
5388
5389         /* Having calculated the 'writepos' possibly use it
5390          * to set 'stripe_addr' which is where we will write to.
5391          */
5392         if (mddev->reshape_backwards) {
5393                 BUG_ON(conf->reshape_progress == 0);
5394                 stripe_addr = writepos;
5395                 BUG_ON((mddev->dev_sectors &
5396                         ~((sector_t)reshape_sectors - 1))
5397                        - reshape_sectors - stripe_addr
5398                        != sector_nr);
5399         } else {
5400                 BUG_ON(writepos != sector_nr + reshape_sectors);
5401                 stripe_addr = sector_nr;
5402         }
5403
5404         /* 'writepos' is the most advanced device address we might write.
5405          * 'readpos' is the least advanced device address we might read.
5406          * 'safepos' is the least address recorded in the metadata as having
5407          *     been reshaped.
5408          * If there is a min_offset_diff, these are adjusted either by
5409          * increasing the safepos/readpos if diff is negative, or
5410          * increasing writepos if diff is positive.
5411          * If 'readpos' is then behind 'writepos', there is no way that we can
5412          * ensure safety in the face of a crash - that must be done by userspace
5413          * making a backup of the data.  So in that case there is no particular
5414          * rush to update metadata.
5415          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5416          * update the metadata to advance 'safepos' to match 'readpos' so that
5417          * we can be safe in the event of a crash.
5418          * So we insist on updating metadata if safepos is behind writepos and
5419          * readpos is beyond writepos.
5420          * In any case, update the metadata every 10 seconds.
5421          * Maybe that number should be configurable, but I'm not sure it is
5422          * worth it.... maybe it could be a multiple of safemode_delay???
5423          */
5424         if (conf->min_offset_diff < 0) {
5425                 safepos += -conf->min_offset_diff;
5426                 readpos += -conf->min_offset_diff;
5427         } else
5428                 writepos += conf->min_offset_diff;
5429
5430         if ((mddev->reshape_backwards
5431              ? (safepos > writepos && readpos < writepos)
5432              : (safepos < writepos && readpos > writepos)) ||
5433             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5434                 /* Cannot proceed until we've updated the superblock... */
5435                 wait_event(conf->wait_for_overlap,
5436                            atomic_read(&conf->reshape_stripes)==0
5437                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5438                 if (atomic_read(&conf->reshape_stripes) != 0)
5439                         return 0;
5440                 mddev->reshape_position = conf->reshape_progress;
5441                 mddev->curr_resync_completed = sector_nr;
5442                 conf->reshape_checkpoint = jiffies;
5443                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5444                 md_wakeup_thread(mddev->thread);
5445                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5446                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5447                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5448                         return 0;
5449                 spin_lock_irq(&conf->device_lock);
5450                 conf->reshape_safe = mddev->reshape_position;
5451                 spin_unlock_irq(&conf->device_lock);
5452                 wake_up(&conf->wait_for_overlap);
5453                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5454         }
5455
5456         INIT_LIST_HEAD(&stripes);
5457         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5458                 int j;
5459                 int skipped_disk = 0;
5460                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5461                 set_bit(STRIPE_EXPANDING, &sh->state);
5462                 atomic_inc(&conf->reshape_stripes);
5463                 /* If any of this stripe is beyond the end of the old
5464                  * array, then we need to zero those blocks
5465                  */
5466                 for (j=sh->disks; j--;) {
5467                         sector_t s;
5468                         if (j == sh->pd_idx)
5469                                 continue;
5470                         if (conf->level == 6 &&
5471                             j == sh->qd_idx)
5472                                 continue;
5473                         s = compute_blocknr(sh, j, 0);
5474                         if (s < raid5_size(mddev, 0, 0)) {
5475                                 skipped_disk = 1;
5476                                 continue;
5477                         }
5478                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5479                         set_bit(R5_Expanded, &sh->dev[j].flags);
5480                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5481                 }
5482                 if (!skipped_disk) {
5483                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5484                         set_bit(STRIPE_HANDLE, &sh->state);
5485                 }
5486                 list_add(&sh->lru, &stripes);
5487         }
5488         spin_lock_irq(&conf->device_lock);
5489         if (mddev->reshape_backwards)
5490                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5491         else
5492                 conf->reshape_progress += reshape_sectors * new_data_disks;
5493         spin_unlock_irq(&conf->device_lock);
5494         /* Ok, those stripe are ready. We can start scheduling
5495          * reads on the source stripes.
5496          * The source stripes are determined by mapping the first and last
5497          * block on the destination stripes.
5498          */
5499         first_sector =
5500                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5501                                      1, &dd_idx, NULL);
5502         last_sector =
5503                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5504                                             * new_data_disks - 1),
5505                                      1, &dd_idx, NULL);
5506         if (last_sector >= mddev->dev_sectors)
5507                 last_sector = mddev->dev_sectors - 1;
5508         while (first_sector <= last_sector) {
5509                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5510                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5511                 set_bit(STRIPE_HANDLE, &sh->state);
5512                 release_stripe(sh);
5513                 first_sector += STRIPE_SECTORS;
5514         }
5515         /* Now that the sources are clearly marked, we can release
5516          * the destination stripes
5517          */
5518         while (!list_empty(&stripes)) {
5519                 sh = list_entry(stripes.next, struct stripe_head, lru);
5520                 list_del_init(&sh->lru);
5521                 release_stripe(sh);
5522         }
5523         /* If this takes us to the resync_max point where we have to pause,
5524          * then we need to write out the superblock.
5525          */
5526         sector_nr += reshape_sectors;
5527         retn = reshape_sectors;
5528 finish:
5529         if (mddev->curr_resync_completed > mddev->resync_max ||
5530             (sector_nr - mddev->curr_resync_completed) * 2
5531             >= mddev->resync_max - mddev->curr_resync_completed) {
5532                 /* Cannot proceed until we've updated the superblock... */
5533                 wait_event(conf->wait_for_overlap,
5534                            atomic_read(&conf->reshape_stripes) == 0
5535                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5536                 if (atomic_read(&conf->reshape_stripes) != 0)
5537                         goto ret;
5538                 mddev->reshape_position = conf->reshape_progress;
5539                 mddev->curr_resync_completed = sector_nr;
5540                 conf->reshape_checkpoint = jiffies;
5541                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5542                 md_wakeup_thread(mddev->thread);
5543                 wait_event(mddev->sb_wait,
5544                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5545                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5546                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5547                         goto ret;
5548                 spin_lock_irq(&conf->device_lock);
5549                 conf->reshape_safe = mddev->reshape_position;
5550                 spin_unlock_irq(&conf->device_lock);
5551                 wake_up(&conf->wait_for_overlap);
5552                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5553         }
5554 ret:
5555         return retn;
5556 }
5557
5558 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5559 {
5560         struct r5conf *conf = mddev->private;
5561         struct stripe_head *sh;
5562         sector_t max_sector = mddev->dev_sectors;
5563         sector_t sync_blocks;
5564         int still_degraded = 0;
5565         int i;
5566
5567         if (sector_nr >= max_sector) {
5568                 /* just being told to finish up .. nothing much to do */
5569
5570                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5571                         end_reshape(conf);
5572                         return 0;
5573                 }
5574
5575                 if (mddev->curr_resync < max_sector) /* aborted */
5576                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5577                                         &sync_blocks, 1);
5578                 else /* completed sync */
5579                         conf->fullsync = 0;
5580                 bitmap_close_sync(mddev->bitmap);
5581
5582                 return 0;
5583         }
5584
5585         /* Allow raid5_quiesce to complete */
5586         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5587
5588         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5589                 return reshape_request(mddev, sector_nr, skipped);
5590
5591         /* No need to check resync_max as we never do more than one
5592          * stripe, and as resync_max will always be on a chunk boundary,
5593          * if the check in md_do_sync didn't fire, there is no chance
5594          * of overstepping resync_max here
5595          */
5596
5597         /* if there is too many failed drives and we are trying
5598          * to resync, then assert that we are finished, because there is
5599          * nothing we can do.
5600          */
5601         if (mddev->degraded >= conf->max_degraded &&
5602             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5603                 sector_t rv = mddev->dev_sectors - sector_nr;
5604                 *skipped = 1;
5605                 return rv;
5606         }
5607         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5608             !conf->fullsync &&
5609             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5610             sync_blocks >= STRIPE_SECTORS) {
5611                 /* we can skip this block, and probably more */
5612                 sync_blocks /= STRIPE_SECTORS;
5613                 *skipped = 1;
5614                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5615         }
5616
5617         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5618
5619         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5620         if (sh == NULL) {
5621                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5622                 /* make sure we don't swamp the stripe cache if someone else
5623                  * is trying to get access
5624                  */
5625                 schedule_timeout_uninterruptible(1);
5626         }
5627         /* Need to check if array will still be degraded after recovery/resync
5628          * Note in case of > 1 drive failures it's possible we're rebuilding
5629          * one drive while leaving another faulty drive in array.
5630          */
5631         rcu_read_lock();
5632         for (i = 0; i < conf->raid_disks; i++) {
5633                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5634
5635                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5636                         still_degraded = 1;
5637         }
5638         rcu_read_unlock();
5639
5640         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5641
5642         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5643         set_bit(STRIPE_HANDLE, &sh->state);
5644
5645         release_stripe(sh);
5646
5647         return STRIPE_SECTORS;
5648 }
5649
5650 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5651 {
5652         /* We may not be able to submit a whole bio at once as there
5653          * may not be enough stripe_heads available.
5654          * We cannot pre-allocate enough stripe_heads as we may need
5655          * more than exist in the cache (if we allow ever large chunks).
5656          * So we do one stripe head at a time and record in
5657          * ->bi_hw_segments how many have been done.
5658          *
5659          * We *know* that this entire raid_bio is in one chunk, so
5660          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5661          */
5662         struct stripe_head *sh;
5663         int dd_idx;
5664         sector_t sector, logical_sector, last_sector;
5665         int scnt = 0;
5666         int remaining;
5667         int handled = 0;
5668
5669         logical_sector = raid_bio->bi_iter.bi_sector &
5670                 ~((sector_t)STRIPE_SECTORS-1);
5671         sector = raid5_compute_sector(conf, logical_sector,
5672                                       0, &dd_idx, NULL);
5673         last_sector = bio_end_sector(raid_bio);
5674
5675         for (; logical_sector < last_sector;
5676              logical_sector += STRIPE_SECTORS,
5677                      sector += STRIPE_SECTORS,
5678                      scnt++) {
5679
5680                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5681                         /* already done this stripe */
5682                         continue;
5683
5684                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5685
5686                 if (!sh) {
5687                         /* failed to get a stripe - must wait */
5688                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5689                         conf->retry_read_aligned = raid_bio;
5690                         return handled;
5691                 }
5692
5693                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5694                         release_stripe(sh);
5695                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5696                         conf->retry_read_aligned = raid_bio;
5697                         return handled;
5698                 }
5699
5700                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5701                 handle_stripe(sh);
5702                 release_stripe(sh);
5703                 handled++;
5704         }
5705         remaining = raid5_dec_bi_active_stripes(raid_bio);
5706         if (remaining == 0) {
5707                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5708                                          raid_bio, 0);
5709                 bio_endio(raid_bio);
5710         }
5711         if (atomic_dec_and_test(&conf->active_aligned_reads))
5712                 wake_up(&conf->wait_for_quiescent);
5713         return handled;
5714 }
5715
5716 static int handle_active_stripes(struct r5conf *conf, int group,
5717                                  struct r5worker *worker,
5718                                  struct list_head *temp_inactive_list)
5719 {
5720         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5721         int i, batch_size = 0, hash;
5722         bool release_inactive = false;
5723
5724         while (batch_size < MAX_STRIPE_BATCH &&
5725                         (sh = __get_priority_stripe(conf, group)) != NULL)
5726                 batch[batch_size++] = sh;
5727
5728         if (batch_size == 0) {
5729                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5730                         if (!list_empty(temp_inactive_list + i))
5731                                 break;
5732                 if (i == NR_STRIPE_HASH_LOCKS)
5733                         return batch_size;
5734                 release_inactive = true;
5735         }
5736         spin_unlock_irq(&conf->device_lock);
5737
5738         release_inactive_stripe_list(conf, temp_inactive_list,
5739                                      NR_STRIPE_HASH_LOCKS);
5740
5741         if (release_inactive) {
5742                 spin_lock_irq(&conf->device_lock);
5743                 return 0;
5744         }
5745
5746         for (i = 0; i < batch_size; i++)
5747                 handle_stripe(batch[i]);
5748
5749         cond_resched();
5750
5751         spin_lock_irq(&conf->device_lock);
5752         for (i = 0; i < batch_size; i++) {
5753                 hash = batch[i]->hash_lock_index;
5754                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5755         }
5756         return batch_size;
5757 }
5758
5759 static void raid5_do_work(struct work_struct *work)
5760 {
5761         struct r5worker *worker = container_of(work, struct r5worker, work);
5762         struct r5worker_group *group = worker->group;
5763         struct r5conf *conf = group->conf;
5764         int group_id = group - conf->worker_groups;
5765         int handled;
5766         struct blk_plug plug;
5767
5768         pr_debug("+++ raid5worker active\n");
5769
5770         blk_start_plug(&plug);
5771         handled = 0;
5772         spin_lock_irq(&conf->device_lock);
5773         while (1) {
5774                 int batch_size, released;
5775
5776                 released = release_stripe_list(conf, worker->temp_inactive_list);
5777
5778                 batch_size = handle_active_stripes(conf, group_id, worker,
5779                                                    worker->temp_inactive_list);
5780                 worker->working = false;
5781                 if (!batch_size && !released)
5782                         break;
5783                 handled += batch_size;
5784         }
5785         pr_debug("%d stripes handled\n", handled);
5786
5787         spin_unlock_irq(&conf->device_lock);
5788         blk_finish_plug(&plug);
5789
5790         pr_debug("--- raid5worker inactive\n");
5791 }
5792
5793 /*
5794  * This is our raid5 kernel thread.
5795  *
5796  * We scan the hash table for stripes which can be handled now.
5797  * During the scan, completed stripes are saved for us by the interrupt
5798  * handler, so that they will not have to wait for our next wakeup.
5799  */
5800 static void raid5d(struct md_thread *thread)
5801 {
5802         struct mddev *mddev = thread->mddev;
5803         struct r5conf *conf = mddev->private;
5804         int handled;
5805         struct blk_plug plug;
5806
5807         pr_debug("+++ raid5d active\n");
5808
5809         md_check_recovery(mddev);
5810
5811         if (!bio_list_empty(&conf->return_bi) &&
5812             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5813                 struct bio_list tmp = BIO_EMPTY_LIST;
5814                 spin_lock_irq(&conf->device_lock);
5815                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5816                         bio_list_merge(&tmp, &conf->return_bi);
5817                         bio_list_init(&conf->return_bi);
5818                 }
5819                 spin_unlock_irq(&conf->device_lock);
5820                 return_io(&tmp);
5821         }
5822
5823         blk_start_plug(&plug);
5824         handled = 0;
5825         spin_lock_irq(&conf->device_lock);
5826         while (1) {
5827                 struct bio *bio;
5828                 int batch_size, released;
5829
5830                 released = release_stripe_list(conf, conf->temp_inactive_list);
5831                 if (released)
5832                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5833
5834                 if (
5835                     !list_empty(&conf->bitmap_list)) {
5836                         /* Now is a good time to flush some bitmap updates */
5837                         conf->seq_flush++;
5838                         spin_unlock_irq(&conf->device_lock);
5839                         bitmap_unplug(mddev->bitmap);
5840                         spin_lock_irq(&conf->device_lock);
5841                         conf->seq_write = conf->seq_flush;
5842                         activate_bit_delay(conf, conf->temp_inactive_list);
5843                 }
5844                 raid5_activate_delayed(conf);
5845
5846                 while ((bio = remove_bio_from_retry(conf))) {
5847                         int ok;
5848                         spin_unlock_irq(&conf->device_lock);
5849                         ok = retry_aligned_read(conf, bio);
5850                         spin_lock_irq(&conf->device_lock);
5851                         if (!ok)
5852                                 break;
5853                         handled++;
5854                 }
5855
5856                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5857                                                    conf->temp_inactive_list);
5858                 if (!batch_size && !released)
5859                         break;
5860                 handled += batch_size;
5861
5862                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5863                         spin_unlock_irq(&conf->device_lock);
5864                         md_check_recovery(mddev);
5865                         spin_lock_irq(&conf->device_lock);
5866                 }
5867         }
5868         pr_debug("%d stripes handled\n", handled);
5869
5870         spin_unlock_irq(&conf->device_lock);
5871         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5872             mutex_trylock(&conf->cache_size_mutex)) {
5873                 grow_one_stripe(conf, __GFP_NOWARN);
5874                 /* Set flag even if allocation failed.  This helps
5875                  * slow down allocation requests when mem is short
5876                  */
5877                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5878                 mutex_unlock(&conf->cache_size_mutex);
5879         }
5880
5881         async_tx_issue_pending_all();
5882         blk_finish_plug(&plug);
5883
5884         pr_debug("--- raid5d inactive\n");
5885 }
5886
5887 static ssize_t
5888 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5889 {
5890         struct r5conf *conf;
5891         int ret = 0;
5892         spin_lock(&mddev->lock);
5893         conf = mddev->private;
5894         if (conf)
5895                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5896         spin_unlock(&mddev->lock);
5897         return ret;
5898 }
5899
5900 int
5901 raid5_set_cache_size(struct mddev *mddev, int size)
5902 {
5903         struct r5conf *conf = mddev->private;
5904         int err;
5905
5906         if (size <= 16 || size > 32768)
5907                 return -EINVAL;
5908
5909         conf->min_nr_stripes = size;
5910         mutex_lock(&conf->cache_size_mutex);
5911         while (size < conf->max_nr_stripes &&
5912                drop_one_stripe(conf))
5913                 ;
5914         mutex_unlock(&conf->cache_size_mutex);
5915
5916
5917         err = md_allow_write(mddev);
5918         if (err)
5919                 return err;
5920
5921         mutex_lock(&conf->cache_size_mutex);
5922         while (size > conf->max_nr_stripes)
5923                 if (!grow_one_stripe(conf, GFP_KERNEL))
5924                         break;
5925         mutex_unlock(&conf->cache_size_mutex);
5926
5927         return 0;
5928 }
5929 EXPORT_SYMBOL(raid5_set_cache_size);
5930
5931 static ssize_t
5932 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5933 {
5934         struct r5conf *conf;
5935         unsigned long new;
5936         int err;
5937
5938         if (len >= PAGE_SIZE)
5939                 return -EINVAL;
5940         if (kstrtoul(page, 10, &new))
5941                 return -EINVAL;
5942         err = mddev_lock(mddev);
5943         if (err)
5944                 return err;
5945         conf = mddev->private;
5946         if (!conf)
5947                 err = -ENODEV;
5948         else
5949                 err = raid5_set_cache_size(mddev, new);
5950         mddev_unlock(mddev);
5951
5952         return err ?: len;
5953 }
5954
5955 static struct md_sysfs_entry
5956 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5957                                 raid5_show_stripe_cache_size,
5958                                 raid5_store_stripe_cache_size);
5959
5960 static ssize_t
5961 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5962 {
5963         struct r5conf *conf = mddev->private;
5964         if (conf)
5965                 return sprintf(page, "%d\n", conf->rmw_level);
5966         else
5967                 return 0;
5968 }
5969
5970 static ssize_t
5971 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5972 {
5973         struct r5conf *conf = mddev->private;
5974         unsigned long new;
5975
5976         if (!conf)
5977                 return -ENODEV;
5978
5979         if (len >= PAGE_SIZE)
5980                 return -EINVAL;
5981
5982         if (kstrtoul(page, 10, &new))
5983                 return -EINVAL;
5984
5985         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5986                 return -EINVAL;
5987
5988         if (new != PARITY_DISABLE_RMW &&
5989             new != PARITY_ENABLE_RMW &&
5990             new != PARITY_PREFER_RMW)
5991                 return -EINVAL;
5992
5993         conf->rmw_level = new;
5994         return len;
5995 }
5996
5997 static struct md_sysfs_entry
5998 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5999                          raid5_show_rmw_level,
6000                          raid5_store_rmw_level);
6001
6002
6003 static ssize_t
6004 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6005 {
6006         struct r5conf *conf;
6007         int ret = 0;
6008         spin_lock(&mddev->lock);
6009         conf = mddev->private;
6010         if (conf)
6011                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6012         spin_unlock(&mddev->lock);
6013         return ret;
6014 }
6015
6016 static ssize_t
6017 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6018 {
6019         struct r5conf *conf;
6020         unsigned long new;
6021         int err;
6022
6023         if (len >= PAGE_SIZE)
6024                 return -EINVAL;
6025         if (kstrtoul(page, 10, &new))
6026                 return -EINVAL;
6027
6028         err = mddev_lock(mddev);
6029         if (err)
6030                 return err;
6031         conf = mddev->private;
6032         if (!conf)
6033                 err = -ENODEV;
6034         else if (new > conf->min_nr_stripes)
6035                 err = -EINVAL;
6036         else
6037                 conf->bypass_threshold = new;
6038         mddev_unlock(mddev);
6039         return err ?: len;
6040 }
6041
6042 static struct md_sysfs_entry
6043 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6044                                         S_IRUGO | S_IWUSR,
6045                                         raid5_show_preread_threshold,
6046                                         raid5_store_preread_threshold);
6047
6048 static ssize_t
6049 raid5_show_skip_copy(struct mddev *mddev, char *page)
6050 {
6051         struct r5conf *conf;
6052         int ret = 0;
6053         spin_lock(&mddev->lock);
6054         conf = mddev->private;
6055         if (conf)
6056                 ret = sprintf(page, "%d\n", conf->skip_copy);
6057         spin_unlock(&mddev->lock);
6058         return ret;
6059 }
6060
6061 static ssize_t
6062 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6063 {
6064         struct r5conf *conf;
6065         unsigned long new;
6066         int err;
6067
6068         if (len >= PAGE_SIZE)
6069                 return -EINVAL;
6070         if (kstrtoul(page, 10, &new))
6071                 return -EINVAL;
6072         new = !!new;
6073
6074         err = mddev_lock(mddev);
6075         if (err)
6076                 return err;
6077         conf = mddev->private;
6078         if (!conf)
6079                 err = -ENODEV;
6080         else if (new != conf->skip_copy) {
6081                 mddev_suspend(mddev);
6082                 conf->skip_copy = new;
6083                 if (new)
6084                         mddev->queue->backing_dev_info.capabilities |=
6085                                 BDI_CAP_STABLE_WRITES;
6086                 else
6087                         mddev->queue->backing_dev_info.capabilities &=
6088                                 ~BDI_CAP_STABLE_WRITES;
6089                 mddev_resume(mddev);
6090         }
6091         mddev_unlock(mddev);
6092         return err ?: len;
6093 }
6094
6095 static struct md_sysfs_entry
6096 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6097                                         raid5_show_skip_copy,
6098                                         raid5_store_skip_copy);
6099
6100 static ssize_t
6101 stripe_cache_active_show(struct mddev *mddev, char *page)
6102 {
6103         struct r5conf *conf = mddev->private;
6104         if (conf)
6105                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6106         else
6107                 return 0;
6108 }
6109
6110 static struct md_sysfs_entry
6111 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6112
6113 static ssize_t
6114 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6115 {
6116         struct r5conf *conf;
6117         int ret = 0;
6118         spin_lock(&mddev->lock);
6119         conf = mddev->private;
6120         if (conf)
6121                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6122         spin_unlock(&mddev->lock);
6123         return ret;
6124 }
6125
6126 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6127                                int *group_cnt,
6128                                int *worker_cnt_per_group,
6129                                struct r5worker_group **worker_groups);
6130 static ssize_t
6131 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6132 {
6133         struct r5conf *conf;
6134         unsigned long new;
6135         int err;
6136         struct r5worker_group *new_groups, *old_groups;
6137         int group_cnt, worker_cnt_per_group;
6138
6139         if (len >= PAGE_SIZE)
6140                 return -EINVAL;
6141         if (kstrtoul(page, 10, &new))
6142                 return -EINVAL;
6143
6144         err = mddev_lock(mddev);
6145         if (err)
6146                 return err;
6147         conf = mddev->private;
6148         if (!conf)
6149                 err = -ENODEV;
6150         else if (new != conf->worker_cnt_per_group) {
6151                 mddev_suspend(mddev);
6152
6153                 old_groups = conf->worker_groups;
6154                 if (old_groups)
6155                         flush_workqueue(raid5_wq);
6156
6157                 err = alloc_thread_groups(conf, new,
6158                                           &group_cnt, &worker_cnt_per_group,
6159                                           &new_groups);
6160                 if (!err) {
6161                         spin_lock_irq(&conf->device_lock);
6162                         conf->group_cnt = group_cnt;
6163                         conf->worker_cnt_per_group = worker_cnt_per_group;
6164                         conf->worker_groups = new_groups;
6165                         spin_unlock_irq(&conf->device_lock);
6166
6167                         if (old_groups)
6168                                 kfree(old_groups[0].workers);
6169                         kfree(old_groups);
6170                 }
6171                 mddev_resume(mddev);
6172         }
6173         mddev_unlock(mddev);
6174
6175         return err ?: len;
6176 }
6177
6178 static struct md_sysfs_entry
6179 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6180                                 raid5_show_group_thread_cnt,
6181                                 raid5_store_group_thread_cnt);
6182
6183 static struct attribute *raid5_attrs[] =  {
6184         &raid5_stripecache_size.attr,
6185         &raid5_stripecache_active.attr,
6186         &raid5_preread_bypass_threshold.attr,
6187         &raid5_group_thread_cnt.attr,
6188         &raid5_skip_copy.attr,
6189         &raid5_rmw_level.attr,
6190         NULL,
6191 };
6192 static struct attribute_group raid5_attrs_group = {
6193         .name = NULL,
6194         .attrs = raid5_attrs,
6195 };
6196
6197 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6198                                int *group_cnt,
6199                                int *worker_cnt_per_group,
6200                                struct r5worker_group **worker_groups)
6201 {
6202         int i, j, k;
6203         ssize_t size;
6204         struct r5worker *workers;
6205
6206         *worker_cnt_per_group = cnt;
6207         if (cnt == 0) {
6208                 *group_cnt = 0;
6209                 *worker_groups = NULL;
6210                 return 0;
6211         }
6212         *group_cnt = num_possible_nodes();
6213         size = sizeof(struct r5worker) * cnt;
6214         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6215         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6216                                 *group_cnt, GFP_NOIO);
6217         if (!*worker_groups || !workers) {
6218                 kfree(workers);
6219                 kfree(*worker_groups);
6220                 return -ENOMEM;
6221         }
6222
6223         for (i = 0; i < *group_cnt; i++) {
6224                 struct r5worker_group *group;
6225
6226                 group = &(*worker_groups)[i];
6227                 INIT_LIST_HEAD(&group->handle_list);
6228                 group->conf = conf;
6229                 group->workers = workers + i * cnt;
6230
6231                 for (j = 0; j < cnt; j++) {
6232                         struct r5worker *worker = group->workers + j;
6233                         worker->group = group;
6234                         INIT_WORK(&worker->work, raid5_do_work);
6235
6236                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6237                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6238                 }
6239         }
6240
6241         return 0;
6242 }
6243
6244 static void free_thread_groups(struct r5conf *conf)
6245 {
6246         if (conf->worker_groups)
6247                 kfree(conf->worker_groups[0].workers);
6248         kfree(conf->worker_groups);
6249         conf->worker_groups = NULL;
6250 }
6251
6252 static sector_t
6253 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6254 {
6255         struct r5conf *conf = mddev->private;
6256
6257         if (!sectors)
6258                 sectors = mddev->dev_sectors;
6259         if (!raid_disks)
6260                 /* size is defined by the smallest of previous and new size */
6261                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6262
6263         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6264         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6265         return sectors * (raid_disks - conf->max_degraded);
6266 }
6267
6268 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6269 {
6270         safe_put_page(percpu->spare_page);
6271         if (percpu->scribble)
6272                 flex_array_free(percpu->scribble);
6273         percpu->spare_page = NULL;
6274         percpu->scribble = NULL;
6275 }
6276
6277 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6278 {
6279         if (conf->level == 6 && !percpu->spare_page)
6280                 percpu->spare_page = alloc_page(GFP_KERNEL);
6281         if (!percpu->scribble)
6282                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6283                                                       conf->previous_raid_disks),
6284                                                   max(conf->chunk_sectors,
6285                                                       conf->prev_chunk_sectors)
6286                                                    / STRIPE_SECTORS,
6287                                                   GFP_KERNEL);
6288
6289         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6290                 free_scratch_buffer(conf, percpu);
6291                 return -ENOMEM;
6292         }
6293
6294         return 0;
6295 }
6296
6297 static void raid5_free_percpu(struct r5conf *conf)
6298 {
6299         unsigned long cpu;
6300
6301         if (!conf->percpu)
6302                 return;
6303
6304 #ifdef CONFIG_HOTPLUG_CPU
6305         unregister_cpu_notifier(&conf->cpu_notify);
6306 #endif
6307
6308         get_online_cpus();
6309         for_each_possible_cpu(cpu)
6310                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6311         put_online_cpus();
6312
6313         free_percpu(conf->percpu);
6314 }
6315
6316 static void free_conf(struct r5conf *conf)
6317 {
6318         if (conf->shrinker.seeks)
6319                 unregister_shrinker(&conf->shrinker);
6320         free_thread_groups(conf);
6321         shrink_stripes(conf);
6322         raid5_free_percpu(conf);
6323         kfree(conf->disks);
6324         kfree(conf->stripe_hashtbl);
6325         kfree(conf);
6326 }
6327
6328 #ifdef CONFIG_HOTPLUG_CPU
6329 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6330                               void *hcpu)
6331 {
6332         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6333         long cpu = (long)hcpu;
6334         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6335
6336         switch (action) {
6337         case CPU_UP_PREPARE:
6338         case CPU_UP_PREPARE_FROZEN:
6339                 if (alloc_scratch_buffer(conf, percpu)) {
6340                         pr_err("%s: failed memory allocation for cpu%ld\n",
6341                                __func__, cpu);
6342                         return notifier_from_errno(-ENOMEM);
6343                 }
6344                 break;
6345         case CPU_DEAD:
6346         case CPU_DEAD_FROZEN:
6347                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6348                 break;
6349         default:
6350                 break;
6351         }
6352         return NOTIFY_OK;
6353 }
6354 #endif
6355
6356 static int raid5_alloc_percpu(struct r5conf *conf)
6357 {
6358         unsigned long cpu;
6359         int err = 0;
6360
6361         conf->percpu = alloc_percpu(struct raid5_percpu);
6362         if (!conf->percpu)
6363                 return -ENOMEM;
6364
6365 #ifdef CONFIG_HOTPLUG_CPU
6366         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6367         conf->cpu_notify.priority = 0;
6368         err = register_cpu_notifier(&conf->cpu_notify);
6369         if (err)
6370                 return err;
6371 #endif
6372
6373         get_online_cpus();
6374         for_each_present_cpu(cpu) {
6375                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6376                 if (err) {
6377                         pr_err("%s: failed memory allocation for cpu%ld\n",
6378                                __func__, cpu);
6379                         break;
6380                 }
6381         }
6382         put_online_cpus();
6383
6384         return err;
6385 }
6386
6387 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6388                                       struct shrink_control *sc)
6389 {
6390         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6391         unsigned long ret = SHRINK_STOP;
6392
6393         if (mutex_trylock(&conf->cache_size_mutex)) {
6394                 ret= 0;
6395                 while (ret < sc->nr_to_scan &&
6396                        conf->max_nr_stripes > conf->min_nr_stripes) {
6397                         if (drop_one_stripe(conf) == 0) {
6398                                 ret = SHRINK_STOP;
6399                                 break;
6400                         }
6401                         ret++;
6402                 }
6403                 mutex_unlock(&conf->cache_size_mutex);
6404         }
6405         return ret;
6406 }
6407
6408 static unsigned long raid5_cache_count(struct shrinker *shrink,
6409                                        struct shrink_control *sc)
6410 {
6411         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6412
6413         if (conf->max_nr_stripes < conf->min_nr_stripes)
6414                 /* unlikely, but not impossible */
6415                 return 0;
6416         return conf->max_nr_stripes - conf->min_nr_stripes;
6417 }
6418
6419 static struct r5conf *setup_conf(struct mddev *mddev)
6420 {
6421         struct r5conf *conf;
6422         int raid_disk, memory, max_disks;
6423         struct md_rdev *rdev;
6424         struct disk_info *disk;
6425         char pers_name[6];
6426         int i;
6427         int group_cnt, worker_cnt_per_group;
6428         struct r5worker_group *new_group;
6429
6430         if (mddev->new_level != 5
6431             && mddev->new_level != 4
6432             && mddev->new_level != 6) {
6433                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6434                        mdname(mddev), mddev->new_level);
6435                 return ERR_PTR(-EIO);
6436         }
6437         if ((mddev->new_level == 5
6438              && !algorithm_valid_raid5(mddev->new_layout)) ||
6439             (mddev->new_level == 6
6440              && !algorithm_valid_raid6(mddev->new_layout))) {
6441                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6442                        mdname(mddev), mddev->new_layout);
6443                 return ERR_PTR(-EIO);
6444         }
6445         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6446                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6447                        mdname(mddev), mddev->raid_disks);
6448                 return ERR_PTR(-EINVAL);
6449         }
6450
6451         if (!mddev->new_chunk_sectors ||
6452             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6453             !is_power_of_2(mddev->new_chunk_sectors)) {
6454                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6455                        mdname(mddev), mddev->new_chunk_sectors << 9);
6456                 return ERR_PTR(-EINVAL);
6457         }
6458
6459         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6460         if (conf == NULL)
6461                 goto abort;
6462         /* Don't enable multi-threading by default*/
6463         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6464                                  &new_group)) {
6465                 conf->group_cnt = group_cnt;
6466                 conf->worker_cnt_per_group = worker_cnt_per_group;
6467                 conf->worker_groups = new_group;
6468         } else
6469                 goto abort;
6470         spin_lock_init(&conf->device_lock);
6471         seqcount_init(&conf->gen_lock);
6472         mutex_init(&conf->cache_size_mutex);
6473         init_waitqueue_head(&conf->wait_for_quiescent);
6474         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6475                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6476         }
6477         init_waitqueue_head(&conf->wait_for_overlap);
6478         INIT_LIST_HEAD(&conf->handle_list);
6479         INIT_LIST_HEAD(&conf->hold_list);
6480         INIT_LIST_HEAD(&conf->delayed_list);
6481         INIT_LIST_HEAD(&conf->bitmap_list);
6482         bio_list_init(&conf->return_bi);
6483         init_llist_head(&conf->released_stripes);
6484         atomic_set(&conf->active_stripes, 0);
6485         atomic_set(&conf->preread_active_stripes, 0);
6486         atomic_set(&conf->active_aligned_reads, 0);
6487         conf->bypass_threshold = BYPASS_THRESHOLD;
6488         conf->recovery_disabled = mddev->recovery_disabled - 1;
6489
6490         conf->raid_disks = mddev->raid_disks;
6491         if (mddev->reshape_position == MaxSector)
6492                 conf->previous_raid_disks = mddev->raid_disks;
6493         else
6494                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6495         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6496
6497         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6498                               GFP_KERNEL);
6499         if (!conf->disks)
6500                 goto abort;
6501
6502         conf->mddev = mddev;
6503
6504         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6505                 goto abort;
6506
6507         /* We init hash_locks[0] separately to that it can be used
6508          * as the reference lock in the spin_lock_nest_lock() call
6509          * in lock_all_device_hash_locks_irq in order to convince
6510          * lockdep that we know what we are doing.
6511          */
6512         spin_lock_init(conf->hash_locks);
6513         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6514                 spin_lock_init(conf->hash_locks + i);
6515
6516         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6517                 INIT_LIST_HEAD(conf->inactive_list + i);
6518
6519         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6520                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6521
6522         conf->level = mddev->new_level;
6523         conf->chunk_sectors = mddev->new_chunk_sectors;
6524         if (raid5_alloc_percpu(conf) != 0)
6525                 goto abort;
6526
6527         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6528
6529         rdev_for_each(rdev, mddev) {
6530                 raid_disk = rdev->raid_disk;
6531                 if (raid_disk >= max_disks
6532                     || raid_disk < 0)
6533                         continue;
6534                 disk = conf->disks + raid_disk;
6535
6536                 if (test_bit(Replacement, &rdev->flags)) {
6537                         if (disk->replacement)
6538                                 goto abort;
6539                         disk->replacement = rdev;
6540                 } else {
6541                         if (disk->rdev)
6542                                 goto abort;
6543                         disk->rdev = rdev;
6544                 }
6545
6546                 if (test_bit(In_sync, &rdev->flags)) {
6547                         char b[BDEVNAME_SIZE];
6548                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6549                                " disk %d\n",
6550                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6551                 } else if (rdev->saved_raid_disk != raid_disk)
6552                         /* Cannot rely on bitmap to complete recovery */
6553                         conf->fullsync = 1;
6554         }
6555
6556         conf->level = mddev->new_level;
6557         if (conf->level == 6) {
6558                 conf->max_degraded = 2;
6559                 if (raid6_call.xor_syndrome)
6560                         conf->rmw_level = PARITY_ENABLE_RMW;
6561                 else
6562                         conf->rmw_level = PARITY_DISABLE_RMW;
6563         } else {
6564                 conf->max_degraded = 1;
6565                 conf->rmw_level = PARITY_ENABLE_RMW;
6566         }
6567         conf->algorithm = mddev->new_layout;
6568         conf->reshape_progress = mddev->reshape_position;
6569         if (conf->reshape_progress != MaxSector) {
6570                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6571                 conf->prev_algo = mddev->layout;
6572         } else {
6573                 conf->prev_chunk_sectors = conf->chunk_sectors;
6574                 conf->prev_algo = conf->algorithm;
6575         }
6576
6577         conf->min_nr_stripes = NR_STRIPES;
6578         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6579                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6580         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6581         if (grow_stripes(conf, conf->min_nr_stripes)) {
6582                 printk(KERN_ERR
6583                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6584                        mdname(mddev), memory);
6585                 goto abort;
6586         } else
6587                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6588                        mdname(mddev), memory);
6589         /*
6590          * Losing a stripe head costs more than the time to refill it,
6591          * it reduces the queue depth and so can hurt throughput.
6592          * So set it rather large, scaled by number of devices.
6593          */
6594         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6595         conf->shrinker.scan_objects = raid5_cache_scan;
6596         conf->shrinker.count_objects = raid5_cache_count;
6597         conf->shrinker.batch = 128;
6598         conf->shrinker.flags = 0;
6599         register_shrinker(&conf->shrinker);
6600
6601         sprintf(pers_name, "raid%d", mddev->new_level);
6602         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6603         if (!conf->thread) {
6604                 printk(KERN_ERR
6605                        "md/raid:%s: couldn't allocate thread.\n",
6606                        mdname(mddev));
6607                 goto abort;
6608         }
6609
6610         return conf;
6611
6612  abort:
6613         if (conf) {
6614                 free_conf(conf);
6615                 return ERR_PTR(-EIO);
6616         } else
6617                 return ERR_PTR(-ENOMEM);
6618 }
6619
6620 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6621 {
6622         switch (algo) {
6623         case ALGORITHM_PARITY_0:
6624                 if (raid_disk < max_degraded)
6625                         return 1;
6626                 break;
6627         case ALGORITHM_PARITY_N:
6628                 if (raid_disk >= raid_disks - max_degraded)
6629                         return 1;
6630                 break;
6631         case ALGORITHM_PARITY_0_6:
6632                 if (raid_disk == 0 ||
6633                     raid_disk == raid_disks - 1)
6634                         return 1;
6635                 break;
6636         case ALGORITHM_LEFT_ASYMMETRIC_6:
6637         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6638         case ALGORITHM_LEFT_SYMMETRIC_6:
6639         case ALGORITHM_RIGHT_SYMMETRIC_6:
6640                 if (raid_disk == raid_disks - 1)
6641                         return 1;
6642         }
6643         return 0;
6644 }
6645
6646 static int run(struct mddev *mddev)
6647 {
6648         struct r5conf *conf;
6649         int working_disks = 0;
6650         int dirty_parity_disks = 0;
6651         struct md_rdev *rdev;
6652         sector_t reshape_offset = 0;
6653         int i;
6654         long long min_offset_diff = 0;
6655         int first = 1;
6656
6657         if (mddev->recovery_cp != MaxSector)
6658                 printk(KERN_NOTICE "md/raid:%s: not clean"
6659                        " -- starting background reconstruction\n",
6660                        mdname(mddev));
6661
6662         rdev_for_each(rdev, mddev) {
6663                 long long diff;
6664                 if (rdev->raid_disk < 0)
6665                         continue;
6666                 diff = (rdev->new_data_offset - rdev->data_offset);
6667                 if (first) {
6668                         min_offset_diff = diff;
6669                         first = 0;
6670                 } else if (mddev->reshape_backwards &&
6671                          diff < min_offset_diff)
6672                         min_offset_diff = diff;
6673                 else if (!mddev->reshape_backwards &&
6674                          diff > min_offset_diff)
6675                         min_offset_diff = diff;
6676         }
6677
6678         if (mddev->reshape_position != MaxSector) {
6679                 /* Check that we can continue the reshape.
6680                  * Difficulties arise if the stripe we would write to
6681                  * next is at or after the stripe we would read from next.
6682                  * For a reshape that changes the number of devices, this
6683                  * is only possible for a very short time, and mdadm makes
6684                  * sure that time appears to have past before assembling
6685                  * the array.  So we fail if that time hasn't passed.
6686                  * For a reshape that keeps the number of devices the same
6687                  * mdadm must be monitoring the reshape can keeping the
6688                  * critical areas read-only and backed up.  It will start
6689                  * the array in read-only mode, so we check for that.
6690                  */
6691                 sector_t here_new, here_old;
6692                 int old_disks;
6693                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6694                 int chunk_sectors;
6695                 int new_data_disks;
6696
6697                 if (mddev->new_level != mddev->level) {
6698                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6699                                "required - aborting.\n",
6700                                mdname(mddev));
6701                         return -EINVAL;
6702                 }
6703                 old_disks = mddev->raid_disks - mddev->delta_disks;
6704                 /* reshape_position must be on a new-stripe boundary, and one
6705                  * further up in new geometry must map after here in old
6706                  * geometry.
6707                  * If the chunk sizes are different, then as we perform reshape
6708                  * in units of the largest of the two, reshape_position needs
6709                  * be a multiple of the largest chunk size times new data disks.
6710                  */
6711                 here_new = mddev->reshape_position;
6712                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6713                 new_data_disks = mddev->raid_disks - max_degraded;
6714                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6715                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6716                                "on a stripe boundary\n", mdname(mddev));
6717                         return -EINVAL;
6718                 }
6719                 reshape_offset = here_new * chunk_sectors;
6720                 /* here_new is the stripe we will write to */
6721                 here_old = mddev->reshape_position;
6722                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6723                 /* here_old is the first stripe that we might need to read
6724                  * from */
6725                 if (mddev->delta_disks == 0) {
6726                         /* We cannot be sure it is safe to start an in-place
6727                          * reshape.  It is only safe if user-space is monitoring
6728                          * and taking constant backups.
6729                          * mdadm always starts a situation like this in
6730                          * readonly mode so it can take control before
6731                          * allowing any writes.  So just check for that.
6732                          */
6733                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6734                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6735                                 /* not really in-place - so OK */;
6736                         else if (mddev->ro == 0) {
6737                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6738                                        "must be started in read-only mode "
6739                                        "- aborting\n",
6740                                        mdname(mddev));
6741                                 return -EINVAL;
6742                         }
6743                 } else if (mddev->reshape_backwards
6744                     ? (here_new * chunk_sectors + min_offset_diff <=
6745                        here_old * chunk_sectors)
6746                     : (here_new * chunk_sectors >=
6747                        here_old * chunk_sectors + (-min_offset_diff))) {
6748                         /* Reading from the same stripe as writing to - bad */
6749                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6750                                "auto-recovery - aborting.\n",
6751                                mdname(mddev));
6752                         return -EINVAL;
6753                 }
6754                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6755                        mdname(mddev));
6756                 /* OK, we should be able to continue; */
6757         } else {
6758                 BUG_ON(mddev->level != mddev->new_level);
6759                 BUG_ON(mddev->layout != mddev->new_layout);
6760                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6761                 BUG_ON(mddev->delta_disks != 0);
6762         }
6763
6764         if (mddev->private == NULL)
6765                 conf = setup_conf(mddev);
6766         else
6767                 conf = mddev->private;
6768
6769         if (IS_ERR(conf))
6770                 return PTR_ERR(conf);
6771
6772         conf->min_offset_diff = min_offset_diff;
6773         mddev->thread = conf->thread;
6774         conf->thread = NULL;
6775         mddev->private = conf;
6776
6777         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6778              i++) {
6779                 rdev = conf->disks[i].rdev;
6780                 if (!rdev && conf->disks[i].replacement) {
6781                         /* The replacement is all we have yet */
6782                         rdev = conf->disks[i].replacement;
6783                         conf->disks[i].replacement = NULL;
6784                         clear_bit(Replacement, &rdev->flags);
6785                         conf->disks[i].rdev = rdev;
6786                 }
6787                 if (!rdev)
6788                         continue;
6789                 if (conf->disks[i].replacement &&
6790                     conf->reshape_progress != MaxSector) {
6791                         /* replacements and reshape simply do not mix. */
6792                         printk(KERN_ERR "md: cannot handle concurrent "
6793                                "replacement and reshape.\n");
6794                         goto abort;
6795                 }
6796                 if (test_bit(In_sync, &rdev->flags)) {
6797                         working_disks++;
6798                         continue;
6799                 }
6800                 /* This disc is not fully in-sync.  However if it
6801                  * just stored parity (beyond the recovery_offset),
6802                  * when we don't need to be concerned about the
6803                  * array being dirty.
6804                  * When reshape goes 'backwards', we never have
6805                  * partially completed devices, so we only need
6806                  * to worry about reshape going forwards.
6807                  */
6808                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6809                 if (mddev->major_version == 0 &&
6810                     mddev->minor_version > 90)
6811                         rdev->recovery_offset = reshape_offset;
6812
6813                 if (rdev->recovery_offset < reshape_offset) {
6814                         /* We need to check old and new layout */
6815                         if (!only_parity(rdev->raid_disk,
6816                                          conf->algorithm,
6817                                          conf->raid_disks,
6818                                          conf->max_degraded))
6819                                 continue;
6820                 }
6821                 if (!only_parity(rdev->raid_disk,
6822                                  conf->prev_algo,
6823                                  conf->previous_raid_disks,
6824                                  conf->max_degraded))
6825                         continue;
6826                 dirty_parity_disks++;
6827         }
6828
6829         /*
6830          * 0 for a fully functional array, 1 or 2 for a degraded array.
6831          */
6832         mddev->degraded = calc_degraded(conf);
6833
6834         if (has_failed(conf)) {
6835                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6836                         " (%d/%d failed)\n",
6837                         mdname(mddev), mddev->degraded, conf->raid_disks);
6838                 goto abort;
6839         }
6840
6841         /* device size must be a multiple of chunk size */
6842         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6843         mddev->resync_max_sectors = mddev->dev_sectors;
6844
6845         if (mddev->degraded > dirty_parity_disks &&
6846             mddev->recovery_cp != MaxSector) {
6847                 if (mddev->ok_start_degraded)
6848                         printk(KERN_WARNING
6849                                "md/raid:%s: starting dirty degraded array"
6850                                " - data corruption possible.\n",
6851                                mdname(mddev));
6852                 else {
6853                         printk(KERN_ERR
6854                                "md/raid:%s: cannot start dirty degraded array.\n",
6855                                mdname(mddev));
6856                         goto abort;
6857                 }
6858         }
6859
6860         if (mddev->degraded == 0)
6861                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6862                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6863                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6864                        mddev->new_layout);
6865         else
6866                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6867                        " out of %d devices, algorithm %d\n",
6868                        mdname(mddev), conf->level,
6869                        mddev->raid_disks - mddev->degraded,
6870                        mddev->raid_disks, mddev->new_layout);
6871
6872         print_raid5_conf(conf);
6873
6874         if (conf->reshape_progress != MaxSector) {
6875                 conf->reshape_safe = conf->reshape_progress;
6876                 atomic_set(&conf->reshape_stripes, 0);
6877                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6878                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6879                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6880                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6881                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6882                                                         "reshape");
6883         }
6884
6885         /* Ok, everything is just fine now */
6886         if (mddev->to_remove == &raid5_attrs_group)
6887                 mddev->to_remove = NULL;
6888         else if (mddev->kobj.sd &&
6889             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6890                 printk(KERN_WARNING
6891                        "raid5: failed to create sysfs attributes for %s\n",
6892                        mdname(mddev));
6893         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6894
6895         if (mddev->queue) {
6896                 int chunk_size;
6897                 bool discard_supported = true;
6898                 /* read-ahead size must cover two whole stripes, which
6899                  * is 2 * (datadisks) * chunksize where 'n' is the
6900                  * number of raid devices
6901                  */
6902                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6903                 int stripe = data_disks *
6904                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6905                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6906                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6907
6908                 chunk_size = mddev->chunk_sectors << 9;
6909                 blk_queue_io_min(mddev->queue, chunk_size);
6910                 blk_queue_io_opt(mddev->queue, chunk_size *
6911                                  (conf->raid_disks - conf->max_degraded));
6912                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6913                 /*
6914                  * We can only discard a whole stripe. It doesn't make sense to
6915                  * discard data disk but write parity disk
6916                  */
6917                 stripe = stripe * PAGE_SIZE;
6918                 /* Round up to power of 2, as discard handling
6919                  * currently assumes that */
6920                 while ((stripe-1) & stripe)
6921                         stripe = (stripe | (stripe-1)) + 1;
6922                 mddev->queue->limits.discard_alignment = stripe;
6923                 mddev->queue->limits.discard_granularity = stripe;
6924                 /*
6925                  * unaligned part of discard request will be ignored, so can't
6926                  * guarantee discard_zeroes_data
6927                  */
6928                 mddev->queue->limits.discard_zeroes_data = 0;
6929
6930                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6931
6932                 rdev_for_each(rdev, mddev) {
6933                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6934                                           rdev->data_offset << 9);
6935                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6936                                           rdev->new_data_offset << 9);
6937                         /*
6938                          * discard_zeroes_data is required, otherwise data
6939                          * could be lost. Consider a scenario: discard a stripe
6940                          * (the stripe could be inconsistent if
6941                          * discard_zeroes_data is 0); write one disk of the
6942                          * stripe (the stripe could be inconsistent again
6943                          * depending on which disks are used to calculate
6944                          * parity); the disk is broken; The stripe data of this
6945                          * disk is lost.
6946                          */
6947                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6948                             !bdev_get_queue(rdev->bdev)->
6949                                                 limits.discard_zeroes_data)
6950                                 discard_supported = false;
6951                         /* Unfortunately, discard_zeroes_data is not currently
6952                          * a guarantee - just a hint.  So we only allow DISCARD
6953                          * if the sysadmin has confirmed that only safe devices
6954                          * are in use by setting a module parameter.
6955                          */
6956                         if (!devices_handle_discard_safely) {
6957                                 if (discard_supported) {
6958                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6959                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6960                                 }
6961                                 discard_supported = false;
6962                         }
6963                 }
6964
6965                 if (discard_supported &&
6966                    mddev->queue->limits.max_discard_sectors >= stripe &&
6967                    mddev->queue->limits.discard_granularity >= stripe)
6968                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6969                                                 mddev->queue);
6970                 else
6971                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6972                                                 mddev->queue);
6973         }
6974
6975         return 0;
6976 abort:
6977         md_unregister_thread(&mddev->thread);
6978         print_raid5_conf(conf);
6979         free_conf(conf);
6980         mddev->private = NULL;
6981         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6982         return -EIO;
6983 }
6984
6985 static void raid5_free(struct mddev *mddev, void *priv)
6986 {
6987         struct r5conf *conf = priv;
6988
6989         free_conf(conf);
6990         mddev->to_remove = &raid5_attrs_group;
6991 }
6992
6993 static void status(struct seq_file *seq, struct mddev *mddev)
6994 {
6995         struct r5conf *conf = mddev->private;
6996         int i;
6997
6998         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6999                 conf->chunk_sectors / 2, mddev->layout);
7000         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7001         for (i = 0; i < conf->raid_disks; i++)
7002                 seq_printf (seq, "%s",
7003                                conf->disks[i].rdev &&
7004                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7005         seq_printf (seq, "]");
7006 }
7007
7008 static void print_raid5_conf (struct r5conf *conf)
7009 {
7010         int i;
7011         struct disk_info *tmp;
7012
7013         printk(KERN_DEBUG "RAID conf printout:\n");
7014         if (!conf) {
7015                 printk("(conf==NULL)\n");
7016                 return;
7017         }
7018         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7019                conf->raid_disks,
7020                conf->raid_disks - conf->mddev->degraded);
7021
7022         for (i = 0; i < conf->raid_disks; i++) {
7023                 char b[BDEVNAME_SIZE];
7024                 tmp = conf->disks + i;
7025                 if (tmp->rdev)
7026                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7027                                i, !test_bit(Faulty, &tmp->rdev->flags),
7028                                bdevname(tmp->rdev->bdev, b));
7029         }
7030 }
7031
7032 static int raid5_spare_active(struct mddev *mddev)
7033 {
7034         int i;
7035         struct r5conf *conf = mddev->private;
7036         struct disk_info *tmp;
7037         int count = 0;
7038         unsigned long flags;
7039
7040         for (i = 0; i < conf->raid_disks; i++) {
7041                 tmp = conf->disks + i;
7042                 if (tmp->replacement
7043                     && tmp->replacement->recovery_offset == MaxSector
7044                     && !test_bit(Faulty, &tmp->replacement->flags)
7045                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7046                         /* Replacement has just become active. */
7047                         if (!tmp->rdev
7048                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7049                                 count++;
7050                         if (tmp->rdev) {
7051                                 /* Replaced device not technically faulty,
7052                                  * but we need to be sure it gets removed
7053                                  * and never re-added.
7054                                  */
7055                                 set_bit(Faulty, &tmp->rdev->flags);
7056                                 sysfs_notify_dirent_safe(
7057                                         tmp->rdev->sysfs_state);
7058                         }
7059                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7060                 } else if (tmp->rdev
7061                     && tmp->rdev->recovery_offset == MaxSector
7062                     && !test_bit(Faulty, &tmp->rdev->flags)
7063                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7064                         count++;
7065                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7066                 }
7067         }
7068         spin_lock_irqsave(&conf->device_lock, flags);
7069         mddev->degraded = calc_degraded(conf);
7070         spin_unlock_irqrestore(&conf->device_lock, flags);
7071         print_raid5_conf(conf);
7072         return count;
7073 }
7074
7075 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7076 {
7077         struct r5conf *conf = mddev->private;
7078         int err = 0;
7079         int number = rdev->raid_disk;
7080         struct md_rdev **rdevp;
7081         struct disk_info *p = conf->disks + number;
7082
7083         print_raid5_conf(conf);
7084         if (rdev == p->rdev)
7085                 rdevp = &p->rdev;
7086         else if (rdev == p->replacement)
7087                 rdevp = &p->replacement;
7088         else
7089                 return 0;
7090
7091         if (number >= conf->raid_disks &&
7092             conf->reshape_progress == MaxSector)
7093                 clear_bit(In_sync, &rdev->flags);
7094
7095         if (test_bit(In_sync, &rdev->flags) ||
7096             atomic_read(&rdev->nr_pending)) {
7097                 err = -EBUSY;
7098                 goto abort;
7099         }
7100         /* Only remove non-faulty devices if recovery
7101          * isn't possible.
7102          */
7103         if (!test_bit(Faulty, &rdev->flags) &&
7104             mddev->recovery_disabled != conf->recovery_disabled &&
7105             !has_failed(conf) &&
7106             (!p->replacement || p->replacement == rdev) &&
7107             number < conf->raid_disks) {
7108                 err = -EBUSY;
7109                 goto abort;
7110         }
7111         *rdevp = NULL;
7112         synchronize_rcu();
7113         if (atomic_read(&rdev->nr_pending)) {
7114                 /* lost the race, try later */
7115                 err = -EBUSY;
7116                 *rdevp = rdev;
7117         } else if (p->replacement) {
7118                 /* We must have just cleared 'rdev' */
7119                 p->rdev = p->replacement;
7120                 clear_bit(Replacement, &p->replacement->flags);
7121                 smp_mb(); /* Make sure other CPUs may see both as identical
7122                            * but will never see neither - if they are careful
7123                            */
7124                 p->replacement = NULL;
7125                 clear_bit(WantReplacement, &rdev->flags);
7126         } else
7127                 /* We might have just removed the Replacement as faulty-
7128                  * clear the bit just in case
7129                  */
7130                 clear_bit(WantReplacement, &rdev->flags);
7131 abort:
7132
7133         print_raid5_conf(conf);
7134         return err;
7135 }
7136
7137 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7138 {
7139         struct r5conf *conf = mddev->private;
7140         int err = -EEXIST;
7141         int disk;
7142         struct disk_info *p;
7143         int first = 0;
7144         int last = conf->raid_disks - 1;
7145
7146         if (mddev->recovery_disabled == conf->recovery_disabled)
7147                 return -EBUSY;
7148
7149         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7150                 /* no point adding a device */
7151                 return -EINVAL;
7152
7153         if (rdev->raid_disk >= 0)
7154                 first = last = rdev->raid_disk;
7155
7156         /*
7157          * find the disk ... but prefer rdev->saved_raid_disk
7158          * if possible.
7159          */
7160         if (rdev->saved_raid_disk >= 0 &&
7161             rdev->saved_raid_disk >= first &&
7162             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7163                 first = rdev->saved_raid_disk;
7164
7165         for (disk = first; disk <= last; disk++) {
7166                 p = conf->disks + disk;
7167                 if (p->rdev == NULL) {
7168                         clear_bit(In_sync, &rdev->flags);
7169                         rdev->raid_disk = disk;
7170                         err = 0;
7171                         if (rdev->saved_raid_disk != disk)
7172                                 conf->fullsync = 1;
7173                         rcu_assign_pointer(p->rdev, rdev);
7174                         goto out;
7175                 }
7176         }
7177         for (disk = first; disk <= last; disk++) {
7178                 p = conf->disks + disk;
7179                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7180                     p->replacement == NULL) {
7181                         clear_bit(In_sync, &rdev->flags);
7182                         set_bit(Replacement, &rdev->flags);
7183                         rdev->raid_disk = disk;
7184                         err = 0;
7185                         conf->fullsync = 1;
7186                         rcu_assign_pointer(p->replacement, rdev);
7187                         break;
7188                 }
7189         }
7190 out:
7191         print_raid5_conf(conf);
7192         return err;
7193 }
7194
7195 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7196 {
7197         /* no resync is happening, and there is enough space
7198          * on all devices, so we can resize.
7199          * We need to make sure resync covers any new space.
7200          * If the array is shrinking we should possibly wait until
7201          * any io in the removed space completes, but it hardly seems
7202          * worth it.
7203          */
7204         sector_t newsize;
7205         struct r5conf *conf = mddev->private;
7206
7207         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7208         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7209         if (mddev->external_size &&
7210             mddev->array_sectors > newsize)
7211                 return -EINVAL;
7212         if (mddev->bitmap) {
7213                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7214                 if (ret)
7215                         return ret;
7216         }
7217         md_set_array_sectors(mddev, newsize);
7218         set_capacity(mddev->gendisk, mddev->array_sectors);
7219         revalidate_disk(mddev->gendisk);
7220         if (sectors > mddev->dev_sectors &&
7221             mddev->recovery_cp > mddev->dev_sectors) {
7222                 mddev->recovery_cp = mddev->dev_sectors;
7223                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7224         }
7225         mddev->dev_sectors = sectors;
7226         mddev->resync_max_sectors = sectors;
7227         return 0;
7228 }
7229
7230 static int check_stripe_cache(struct mddev *mddev)
7231 {
7232         /* Can only proceed if there are plenty of stripe_heads.
7233          * We need a minimum of one full stripe,, and for sensible progress
7234          * it is best to have about 4 times that.
7235          * If we require 4 times, then the default 256 4K stripe_heads will
7236          * allow for chunk sizes up to 256K, which is probably OK.
7237          * If the chunk size is greater, user-space should request more
7238          * stripe_heads first.
7239          */
7240         struct r5conf *conf = mddev->private;
7241         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7242             > conf->min_nr_stripes ||
7243             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7244             > conf->min_nr_stripes) {
7245                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7246                        mdname(mddev),
7247                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7248                         / STRIPE_SIZE)*4);
7249                 return 0;
7250         }
7251         return 1;
7252 }
7253
7254 static int check_reshape(struct mddev *mddev)
7255 {
7256         struct r5conf *conf = mddev->private;
7257
7258         if (mddev->delta_disks == 0 &&
7259             mddev->new_layout == mddev->layout &&
7260             mddev->new_chunk_sectors == mddev->chunk_sectors)
7261                 return 0; /* nothing to do */
7262         if (has_failed(conf))
7263                 return -EINVAL;
7264         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7265                 /* We might be able to shrink, but the devices must
7266                  * be made bigger first.
7267                  * For raid6, 4 is the minimum size.
7268                  * Otherwise 2 is the minimum
7269                  */
7270                 int min = 2;
7271                 if (mddev->level == 6)
7272                         min = 4;
7273                 if (mddev->raid_disks + mddev->delta_disks < min)
7274                         return -EINVAL;
7275         }
7276
7277         if (!check_stripe_cache(mddev))
7278                 return -ENOSPC;
7279
7280         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7281             mddev->delta_disks > 0)
7282                 if (resize_chunks(conf,
7283                                   conf->previous_raid_disks
7284                                   + max(0, mddev->delta_disks),
7285                                   max(mddev->new_chunk_sectors,
7286                                       mddev->chunk_sectors)
7287                             ) < 0)
7288                         return -ENOMEM;
7289         return resize_stripes(conf, (conf->previous_raid_disks
7290                                      + mddev->delta_disks));
7291 }
7292
7293 static int raid5_start_reshape(struct mddev *mddev)
7294 {
7295         struct r5conf *conf = mddev->private;
7296         struct md_rdev *rdev;
7297         int spares = 0;
7298         unsigned long flags;
7299
7300         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7301                 return -EBUSY;
7302
7303         if (!check_stripe_cache(mddev))
7304                 return -ENOSPC;
7305
7306         if (has_failed(conf))
7307                 return -EINVAL;
7308
7309         rdev_for_each(rdev, mddev) {
7310                 if (!test_bit(In_sync, &rdev->flags)
7311                     && !test_bit(Faulty, &rdev->flags))
7312                         spares++;
7313         }
7314
7315         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7316                 /* Not enough devices even to make a degraded array
7317                  * of that size
7318                  */
7319                 return -EINVAL;
7320
7321         /* Refuse to reduce size of the array.  Any reductions in
7322          * array size must be through explicit setting of array_size
7323          * attribute.
7324          */
7325         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7326             < mddev->array_sectors) {
7327                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7328                        "before number of disks\n", mdname(mddev));
7329                 return -EINVAL;
7330         }
7331
7332         atomic_set(&conf->reshape_stripes, 0);
7333         spin_lock_irq(&conf->device_lock);
7334         write_seqcount_begin(&conf->gen_lock);
7335         conf->previous_raid_disks = conf->raid_disks;
7336         conf->raid_disks += mddev->delta_disks;
7337         conf->prev_chunk_sectors = conf->chunk_sectors;
7338         conf->chunk_sectors = mddev->new_chunk_sectors;
7339         conf->prev_algo = conf->algorithm;
7340         conf->algorithm = mddev->new_layout;
7341         conf->generation++;
7342         /* Code that selects data_offset needs to see the generation update
7343          * if reshape_progress has been set - so a memory barrier needed.
7344          */
7345         smp_mb();
7346         if (mddev->reshape_backwards)
7347                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7348         else
7349                 conf->reshape_progress = 0;
7350         conf->reshape_safe = conf->reshape_progress;
7351         write_seqcount_end(&conf->gen_lock);
7352         spin_unlock_irq(&conf->device_lock);
7353
7354         /* Now make sure any requests that proceeded on the assumption
7355          * the reshape wasn't running - like Discard or Read - have
7356          * completed.
7357          */
7358         mddev_suspend(mddev);
7359         mddev_resume(mddev);
7360
7361         /* Add some new drives, as many as will fit.
7362          * We know there are enough to make the newly sized array work.
7363          * Don't add devices if we are reducing the number of
7364          * devices in the array.  This is because it is not possible
7365          * to correctly record the "partially reconstructed" state of
7366          * such devices during the reshape and confusion could result.
7367          */
7368         if (mddev->delta_disks >= 0) {
7369                 rdev_for_each(rdev, mddev)
7370                         if (rdev->raid_disk < 0 &&
7371                             !test_bit(Faulty, &rdev->flags)) {
7372                                 if (raid5_add_disk(mddev, rdev) == 0) {
7373                                         if (rdev->raid_disk
7374                                             >= conf->previous_raid_disks)
7375                                                 set_bit(In_sync, &rdev->flags);
7376                                         else
7377                                                 rdev->recovery_offset = 0;
7378
7379                                         if (sysfs_link_rdev(mddev, rdev))
7380                                                 /* Failure here is OK */;
7381                                 }
7382                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7383                                    && !test_bit(Faulty, &rdev->flags)) {
7384                                 /* This is a spare that was manually added */
7385                                 set_bit(In_sync, &rdev->flags);
7386                         }
7387
7388                 /* When a reshape changes the number of devices,
7389                  * ->degraded is measured against the larger of the
7390                  * pre and post number of devices.
7391                  */
7392                 spin_lock_irqsave(&conf->device_lock, flags);
7393                 mddev->degraded = calc_degraded(conf);
7394                 spin_unlock_irqrestore(&conf->device_lock, flags);
7395         }
7396         mddev->raid_disks = conf->raid_disks;
7397         mddev->reshape_position = conf->reshape_progress;
7398         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7399
7400         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7401         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7402         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7403         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7404         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7405         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7406                                                 "reshape");
7407         if (!mddev->sync_thread) {
7408                 mddev->recovery = 0;
7409                 spin_lock_irq(&conf->device_lock);
7410                 write_seqcount_begin(&conf->gen_lock);
7411                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7412                 mddev->new_chunk_sectors =
7413                         conf->chunk_sectors = conf->prev_chunk_sectors;
7414                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7415                 rdev_for_each(rdev, mddev)
7416                         rdev->new_data_offset = rdev->data_offset;
7417                 smp_wmb();
7418                 conf->generation --;
7419                 conf->reshape_progress = MaxSector;
7420                 mddev->reshape_position = MaxSector;
7421                 write_seqcount_end(&conf->gen_lock);
7422                 spin_unlock_irq(&conf->device_lock);
7423                 return -EAGAIN;
7424         }
7425         conf->reshape_checkpoint = jiffies;
7426         md_wakeup_thread(mddev->sync_thread);
7427         md_new_event(mddev);
7428         return 0;
7429 }
7430
7431 /* This is called from the reshape thread and should make any
7432  * changes needed in 'conf'
7433  */
7434 static void end_reshape(struct r5conf *conf)
7435 {
7436
7437         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7438                 struct md_rdev *rdev;
7439
7440                 spin_lock_irq(&conf->device_lock);
7441                 conf->previous_raid_disks = conf->raid_disks;
7442                 rdev_for_each(rdev, conf->mddev)
7443                         rdev->data_offset = rdev->new_data_offset;
7444                 smp_wmb();
7445                 conf->reshape_progress = MaxSector;
7446                 conf->mddev->reshape_position = MaxSector;
7447                 spin_unlock_irq(&conf->device_lock);
7448                 wake_up(&conf->wait_for_overlap);
7449
7450                 /* read-ahead size must cover two whole stripes, which is
7451                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7452                  */
7453                 if (conf->mddev->queue) {
7454                         int data_disks = conf->raid_disks - conf->max_degraded;
7455                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7456                                                    / PAGE_SIZE);
7457                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7458                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7459                 }
7460         }
7461 }
7462
7463 /* This is called from the raid5d thread with mddev_lock held.
7464  * It makes config changes to the device.
7465  */
7466 static void raid5_finish_reshape(struct mddev *mddev)
7467 {
7468         struct r5conf *conf = mddev->private;
7469
7470         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7471
7472                 if (mddev->delta_disks > 0) {
7473                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7474                         set_capacity(mddev->gendisk, mddev->array_sectors);
7475                         revalidate_disk(mddev->gendisk);
7476                 } else {
7477                         int d;
7478                         spin_lock_irq(&conf->device_lock);
7479                         mddev->degraded = calc_degraded(conf);
7480                         spin_unlock_irq(&conf->device_lock);
7481                         for (d = conf->raid_disks ;
7482                              d < conf->raid_disks - mddev->delta_disks;
7483                              d++) {
7484                                 struct md_rdev *rdev = conf->disks[d].rdev;
7485                                 if (rdev)
7486                                         clear_bit(In_sync, &rdev->flags);
7487                                 rdev = conf->disks[d].replacement;
7488                                 if (rdev)
7489                                         clear_bit(In_sync, &rdev->flags);
7490                         }
7491                 }
7492                 mddev->layout = conf->algorithm;
7493                 mddev->chunk_sectors = conf->chunk_sectors;
7494                 mddev->reshape_position = MaxSector;
7495                 mddev->delta_disks = 0;
7496                 mddev->reshape_backwards = 0;
7497         }
7498 }
7499
7500 static void raid5_quiesce(struct mddev *mddev, int state)
7501 {
7502         struct r5conf *conf = mddev->private;
7503
7504         switch(state) {
7505         case 2: /* resume for a suspend */
7506                 wake_up(&conf->wait_for_overlap);
7507                 break;
7508
7509         case 1: /* stop all writes */
7510                 lock_all_device_hash_locks_irq(conf);
7511                 /* '2' tells resync/reshape to pause so that all
7512                  * active stripes can drain
7513                  */
7514                 conf->quiesce = 2;
7515                 wait_event_cmd(conf->wait_for_quiescent,
7516                                     atomic_read(&conf->active_stripes) == 0 &&
7517                                     atomic_read(&conf->active_aligned_reads) == 0,
7518                                     unlock_all_device_hash_locks_irq(conf),
7519                                     lock_all_device_hash_locks_irq(conf));
7520                 conf->quiesce = 1;
7521                 unlock_all_device_hash_locks_irq(conf);
7522                 /* allow reshape to continue */
7523                 wake_up(&conf->wait_for_overlap);
7524                 break;
7525
7526         case 0: /* re-enable writes */
7527                 lock_all_device_hash_locks_irq(conf);
7528                 conf->quiesce = 0;
7529                 wake_up(&conf->wait_for_quiescent);
7530                 wake_up(&conf->wait_for_overlap);
7531                 unlock_all_device_hash_locks_irq(conf);
7532                 break;
7533         }
7534 }
7535
7536 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7537 {
7538         struct r0conf *raid0_conf = mddev->private;
7539         sector_t sectors;
7540
7541         /* for raid0 takeover only one zone is supported */
7542         if (raid0_conf->nr_strip_zones > 1) {
7543                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7544                        mdname(mddev));
7545                 return ERR_PTR(-EINVAL);
7546         }
7547
7548         sectors = raid0_conf->strip_zone[0].zone_end;
7549         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7550         mddev->dev_sectors = sectors;
7551         mddev->new_level = level;
7552         mddev->new_layout = ALGORITHM_PARITY_N;
7553         mddev->new_chunk_sectors = mddev->chunk_sectors;
7554         mddev->raid_disks += 1;
7555         mddev->delta_disks = 1;
7556         /* make sure it will be not marked as dirty */
7557         mddev->recovery_cp = MaxSector;
7558
7559         return setup_conf(mddev);
7560 }
7561
7562 static void *raid5_takeover_raid1(struct mddev *mddev)
7563 {
7564         int chunksect;
7565
7566         if (mddev->raid_disks != 2 ||
7567             mddev->degraded > 1)
7568                 return ERR_PTR(-EINVAL);
7569
7570         /* Should check if there are write-behind devices? */
7571
7572         chunksect = 64*2; /* 64K by default */
7573
7574         /* The array must be an exact multiple of chunksize */
7575         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7576                 chunksect >>= 1;
7577
7578         if ((chunksect<<9) < STRIPE_SIZE)
7579                 /* array size does not allow a suitable chunk size */
7580                 return ERR_PTR(-EINVAL);
7581
7582         mddev->new_level = 5;
7583         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7584         mddev->new_chunk_sectors = chunksect;
7585
7586         return setup_conf(mddev);
7587 }
7588
7589 static void *raid5_takeover_raid6(struct mddev *mddev)
7590 {
7591         int new_layout;
7592
7593         switch (mddev->layout) {
7594         case ALGORITHM_LEFT_ASYMMETRIC_6:
7595                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7596                 break;
7597         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7598                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7599                 break;
7600         case ALGORITHM_LEFT_SYMMETRIC_6:
7601                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7602                 break;
7603         case ALGORITHM_RIGHT_SYMMETRIC_6:
7604                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7605                 break;
7606         case ALGORITHM_PARITY_0_6:
7607                 new_layout = ALGORITHM_PARITY_0;
7608                 break;
7609         case ALGORITHM_PARITY_N:
7610                 new_layout = ALGORITHM_PARITY_N;
7611                 break;
7612         default:
7613                 return ERR_PTR(-EINVAL);
7614         }
7615         mddev->new_level = 5;
7616         mddev->new_layout = new_layout;
7617         mddev->delta_disks = -1;
7618         mddev->raid_disks -= 1;
7619         return setup_conf(mddev);
7620 }
7621
7622 static int raid5_check_reshape(struct mddev *mddev)
7623 {
7624         /* For a 2-drive array, the layout and chunk size can be changed
7625          * immediately as not restriping is needed.
7626          * For larger arrays we record the new value - after validation
7627          * to be used by a reshape pass.
7628          */
7629         struct r5conf *conf = mddev->private;
7630         int new_chunk = mddev->new_chunk_sectors;
7631
7632         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7633                 return -EINVAL;
7634         if (new_chunk > 0) {
7635                 if (!is_power_of_2(new_chunk))
7636                         return -EINVAL;
7637                 if (new_chunk < (PAGE_SIZE>>9))
7638                         return -EINVAL;
7639                 if (mddev->array_sectors & (new_chunk-1))
7640                         /* not factor of array size */
7641                         return -EINVAL;
7642         }
7643
7644         /* They look valid */
7645
7646         if (mddev->raid_disks == 2) {
7647                 /* can make the change immediately */
7648                 if (mddev->new_layout >= 0) {
7649                         conf->algorithm = mddev->new_layout;
7650                         mddev->layout = mddev->new_layout;
7651                 }
7652                 if (new_chunk > 0) {
7653                         conf->chunk_sectors = new_chunk ;
7654                         mddev->chunk_sectors = new_chunk;
7655                 }
7656                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7657                 md_wakeup_thread(mddev->thread);
7658         }
7659         return check_reshape(mddev);
7660 }
7661
7662 static int raid6_check_reshape(struct mddev *mddev)
7663 {
7664         int new_chunk = mddev->new_chunk_sectors;
7665
7666         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7667                 return -EINVAL;
7668         if (new_chunk > 0) {
7669                 if (!is_power_of_2(new_chunk))
7670                         return -EINVAL;
7671                 if (new_chunk < (PAGE_SIZE >> 9))
7672                         return -EINVAL;
7673                 if (mddev->array_sectors & (new_chunk-1))
7674                         /* not factor of array size */
7675                         return -EINVAL;
7676         }
7677
7678         /* They look valid */
7679         return check_reshape(mddev);
7680 }
7681
7682 static void *raid5_takeover(struct mddev *mddev)
7683 {
7684         /* raid5 can take over:
7685          *  raid0 - if there is only one strip zone - make it a raid4 layout
7686          *  raid1 - if there are two drives.  We need to know the chunk size
7687          *  raid4 - trivial - just use a raid4 layout.
7688          *  raid6 - Providing it is a *_6 layout
7689          */
7690         if (mddev->level == 0)
7691                 return raid45_takeover_raid0(mddev, 5);
7692         if (mddev->level == 1)
7693                 return raid5_takeover_raid1(mddev);
7694         if (mddev->level == 4) {
7695                 mddev->new_layout = ALGORITHM_PARITY_N;
7696                 mddev->new_level = 5;
7697                 return setup_conf(mddev);
7698         }
7699         if (mddev->level == 6)
7700                 return raid5_takeover_raid6(mddev);
7701
7702         return ERR_PTR(-EINVAL);
7703 }
7704
7705 static void *raid4_takeover(struct mddev *mddev)
7706 {
7707         /* raid4 can take over:
7708          *  raid0 - if there is only one strip zone
7709          *  raid5 - if layout is right
7710          */
7711         if (mddev->level == 0)
7712                 return raid45_takeover_raid0(mddev, 4);
7713         if (mddev->level == 5 &&
7714             mddev->layout == ALGORITHM_PARITY_N) {
7715                 mddev->new_layout = 0;
7716                 mddev->new_level = 4;
7717                 return setup_conf(mddev);
7718         }
7719         return ERR_PTR(-EINVAL);
7720 }
7721
7722 static struct md_personality raid5_personality;
7723
7724 static void *raid6_takeover(struct mddev *mddev)
7725 {
7726         /* Currently can only take over a raid5.  We map the
7727          * personality to an equivalent raid6 personality
7728          * with the Q block at the end.
7729          */
7730         int new_layout;
7731
7732         if (mddev->pers != &raid5_personality)
7733                 return ERR_PTR(-EINVAL);
7734         if (mddev->degraded > 1)
7735                 return ERR_PTR(-EINVAL);
7736         if (mddev->raid_disks > 253)
7737                 return ERR_PTR(-EINVAL);
7738         if (mddev->raid_disks < 3)
7739                 return ERR_PTR(-EINVAL);
7740
7741         switch (mddev->layout) {
7742         case ALGORITHM_LEFT_ASYMMETRIC:
7743                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7744                 break;
7745         case ALGORITHM_RIGHT_ASYMMETRIC:
7746                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7747                 break;
7748         case ALGORITHM_LEFT_SYMMETRIC:
7749                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7750                 break;
7751         case ALGORITHM_RIGHT_SYMMETRIC:
7752                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7753                 break;
7754         case ALGORITHM_PARITY_0:
7755                 new_layout = ALGORITHM_PARITY_0_6;
7756                 break;
7757         case ALGORITHM_PARITY_N:
7758                 new_layout = ALGORITHM_PARITY_N;
7759                 break;
7760         default:
7761                 return ERR_PTR(-EINVAL);
7762         }
7763         mddev->new_level = 6;
7764         mddev->new_layout = new_layout;
7765         mddev->delta_disks = 1;
7766         mddev->raid_disks += 1;
7767         return setup_conf(mddev);
7768 }
7769
7770 static struct md_personality raid6_personality =
7771 {
7772         .name           = "raid6",
7773         .level          = 6,
7774         .owner          = THIS_MODULE,
7775         .make_request   = make_request,
7776         .run            = run,
7777         .free           = raid5_free,
7778         .status         = status,
7779         .error_handler  = error,
7780         .hot_add_disk   = raid5_add_disk,
7781         .hot_remove_disk= raid5_remove_disk,
7782         .spare_active   = raid5_spare_active,
7783         .sync_request   = sync_request,
7784         .resize         = raid5_resize,
7785         .size           = raid5_size,
7786         .check_reshape  = raid6_check_reshape,
7787         .start_reshape  = raid5_start_reshape,
7788         .finish_reshape = raid5_finish_reshape,
7789         .quiesce        = raid5_quiesce,
7790         .takeover       = raid6_takeover,
7791         .congested      = raid5_congested,
7792 };
7793 static struct md_personality raid5_personality =
7794 {
7795         .name           = "raid5",
7796         .level          = 5,
7797         .owner          = THIS_MODULE,
7798         .make_request   = make_request,
7799         .run            = run,
7800         .free           = raid5_free,
7801         .status         = status,
7802         .error_handler  = error,
7803         .hot_add_disk   = raid5_add_disk,
7804         .hot_remove_disk= raid5_remove_disk,
7805         .spare_active   = raid5_spare_active,
7806         .sync_request   = sync_request,
7807         .resize         = raid5_resize,
7808         .size           = raid5_size,
7809         .check_reshape  = raid5_check_reshape,
7810         .start_reshape  = raid5_start_reshape,
7811         .finish_reshape = raid5_finish_reshape,
7812         .quiesce        = raid5_quiesce,
7813         .takeover       = raid5_takeover,
7814         .congested      = raid5_congested,
7815 };
7816
7817 static struct md_personality raid4_personality =
7818 {
7819         .name           = "raid4",
7820         .level          = 4,
7821         .owner          = THIS_MODULE,
7822         .make_request   = make_request,
7823         .run            = run,
7824         .free           = raid5_free,
7825         .status         = status,
7826         .error_handler  = error,
7827         .hot_add_disk   = raid5_add_disk,
7828         .hot_remove_disk= raid5_remove_disk,
7829         .spare_active   = raid5_spare_active,
7830         .sync_request   = sync_request,
7831         .resize         = raid5_resize,
7832         .size           = raid5_size,
7833         .check_reshape  = raid5_check_reshape,
7834         .start_reshape  = raid5_start_reshape,
7835         .finish_reshape = raid5_finish_reshape,
7836         .quiesce        = raid5_quiesce,
7837         .takeover       = raid4_takeover,
7838         .congested      = raid5_congested,
7839 };
7840
7841 static int __init raid5_init(void)
7842 {
7843         raid5_wq = alloc_workqueue("raid5wq",
7844                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7845         if (!raid5_wq)
7846                 return -ENOMEM;
7847         register_md_personality(&raid6_personality);
7848         register_md_personality(&raid5_personality);
7849         register_md_personality(&raid4_personality);
7850         return 0;
7851 }
7852
7853 static void raid5_exit(void)
7854 {
7855         unregister_md_personality(&raid6_personality);
7856         unregister_md_personality(&raid5_personality);
7857         unregister_md_personality(&raid4_personality);
7858         destroy_workqueue(raid5_wq);
7859 }
7860
7861 module_init(raid5_init);
7862 module_exit(raid5_exit);
7863 MODULE_LICENSE("GPL");
7864 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7865 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7866 MODULE_ALIAS("md-raid5");
7867 MODULE_ALIAS("md-raid4");
7868 MODULE_ALIAS("md-level-5");
7869 MODULE_ALIAS("md-level-4");
7870 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7871 MODULE_ALIAS("md-raid6");
7872 MODULE_ALIAS("md-level-6");
7873
7874 /* This used to be two separate modules, they were: */
7875 MODULE_ALIAS("raid5");
7876 MODULE_ALIAS("raid6");