ttm: export ttm_bo_create
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0)) {
357                         ttm_tt_destroy(bo->ttm);
358                         bo->ttm = NULL;
359                 }
360                 break;
361         default:
362                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
363                 ret = -EINVAL;
364                 break;
365         }
366
367         return ret;
368 }
369
370 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
371                                   struct ttm_mem_reg *mem,
372                                   bool evict, bool interruptible,
373                                   bool no_wait_reserve, bool no_wait_gpu)
374 {
375         struct ttm_bo_device *bdev = bo->bdev;
376         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
377         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
378         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
379         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
380         int ret = 0;
381
382         if (old_is_pci || new_is_pci ||
383             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
384                 ret = ttm_mem_io_lock(old_man, true);
385                 if (unlikely(ret != 0))
386                         goto out_err;
387                 ttm_bo_unmap_virtual_locked(bo);
388                 ttm_mem_io_unlock(old_man);
389         }
390
391         /*
392          * Create and bind a ttm if required.
393          */
394
395         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
396                 if (bo->ttm == NULL) {
397                         ret = ttm_bo_add_ttm(bo, false);
398                         if (ret)
399                                 goto out_err;
400                 }
401
402                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
403                 if (ret)
404                         goto out_err;
405
406                 if (mem->mem_type != TTM_PL_SYSTEM) {
407                         ret = ttm_tt_bind(bo->ttm, mem);
408                         if (ret)
409                                 goto out_err;
410                 }
411
412                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
413                         if (bdev->driver->move_notify)
414                                 bdev->driver->move_notify(bo, mem);
415                         bo->mem = *mem;
416                         mem->mm_node = NULL;
417                         goto moved;
418                 }
419         }
420
421         if (bdev->driver->move_notify)
422                 bdev->driver->move_notify(bo, mem);
423
424         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
425             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
426                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
427         else if (bdev->driver->move)
428                 ret = bdev->driver->move(bo, evict, interruptible,
429                                          no_wait_reserve, no_wait_gpu, mem);
430         else
431                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
432
433         if (ret)
434                 goto out_err;
435
436 moved:
437         if (bo->evicted) {
438                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
439                 if (ret)
440                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
441                 bo->evicted = false;
442         }
443
444         if (bo->mem.mm_node) {
445                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
446                     bdev->man[bo->mem.mem_type].gpu_offset;
447                 bo->cur_placement = bo->mem.placement;
448         } else
449                 bo->offset = 0;
450
451         return 0;
452
453 out_err:
454         new_man = &bdev->man[bo->mem.mem_type];
455         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
456                 ttm_tt_unbind(bo->ttm);
457                 ttm_tt_destroy(bo->ttm);
458                 bo->ttm = NULL;
459         }
460
461         return ret;
462 }
463
464 /**
465  * Call bo::reserved.
466  * Will release GPU memory type usage on destruction.
467  * This is the place to put in driver specific hooks to release
468  * driver private resources.
469  * Will release the bo::reserved lock.
470  */
471
472 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
473 {
474         if (bo->ttm) {
475                 ttm_tt_unbind(bo->ttm);
476                 ttm_tt_destroy(bo->ttm);
477                 bo->ttm = NULL;
478         }
479         ttm_bo_mem_put(bo, &bo->mem);
480
481         atomic_set(&bo->reserved, 0);
482
483         /*
484          * Make processes trying to reserve really pick it up.
485          */
486         smp_mb__after_atomic_dec();
487         wake_up_all(&bo->event_queue);
488 }
489
490 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
491 {
492         struct ttm_bo_device *bdev = bo->bdev;
493         struct ttm_bo_global *glob = bo->glob;
494         struct ttm_bo_driver *driver;
495         void *sync_obj = NULL;
496         void *sync_obj_arg;
497         int put_count;
498         int ret;
499
500         spin_lock(&bdev->fence_lock);
501         (void) ttm_bo_wait(bo, false, false, true, TTM_USAGE_READWRITE);
502         if (!bo->sync_obj) {
503
504                 spin_lock(&glob->lru_lock);
505
506                 /**
507                  * Lock inversion between bo:reserve and bdev::fence_lock here,
508                  * but that's OK, since we're only trylocking.
509                  */
510
511                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
512
513                 if (unlikely(ret == -EBUSY))
514                         goto queue;
515
516                 spin_unlock(&bdev->fence_lock);
517                 put_count = ttm_bo_del_from_lru(bo);
518
519                 spin_unlock(&glob->lru_lock);
520                 ttm_bo_cleanup_memtype_use(bo);
521
522                 ttm_bo_list_ref_sub(bo, put_count, true);
523
524                 return;
525         } else {
526                 spin_lock(&glob->lru_lock);
527         }
528 queue:
529         driver = bdev->driver;
530         if (bo->sync_obj)
531                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
532         sync_obj_arg = bo->sync_obj_arg;
533
534         kref_get(&bo->list_kref);
535         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
536         spin_unlock(&glob->lru_lock);
537         spin_unlock(&bdev->fence_lock);
538
539         if (sync_obj) {
540                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
541                 driver->sync_obj_unref(&sync_obj);
542         }
543         schedule_delayed_work(&bdev->wq,
544                               ((HZ / 100) < 1) ? 1 : HZ / 100);
545 }
546
547 /**
548  * function ttm_bo_cleanup_refs
549  * If bo idle, remove from delayed- and lru lists, and unref.
550  * If not idle, do nothing.
551  *
552  * @interruptible         Any sleeps should occur interruptibly.
553  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
554  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
555  */
556
557 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
558                                bool interruptible,
559                                bool no_wait_reserve,
560                                bool no_wait_gpu)
561 {
562         struct ttm_bo_device *bdev = bo->bdev;
563         struct ttm_bo_global *glob = bo->glob;
564         int put_count;
565         int ret = 0;
566
567 retry:
568         spin_lock(&bdev->fence_lock);
569         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu,
570                           TTM_USAGE_READWRITE);
571         spin_unlock(&bdev->fence_lock);
572
573         if (unlikely(ret != 0))
574                 return ret;
575
576         spin_lock(&glob->lru_lock);
577         ret = ttm_bo_reserve_locked(bo, interruptible,
578                                     no_wait_reserve, false, 0);
579
580         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
581                 spin_unlock(&glob->lru_lock);
582                 return ret;
583         }
584
585         /**
586          * We can re-check for sync object without taking
587          * the bo::lock since setting the sync object requires
588          * also bo::reserved. A busy object at this point may
589          * be caused by another thread recently starting an accelerated
590          * eviction.
591          */
592
593         if (unlikely(bo->sync_obj)) {
594                 atomic_set(&bo->reserved, 0);
595                 wake_up_all(&bo->event_queue);
596                 spin_unlock(&glob->lru_lock);
597                 goto retry;
598         }
599
600         put_count = ttm_bo_del_from_lru(bo);
601         list_del_init(&bo->ddestroy);
602         ++put_count;
603
604         spin_unlock(&glob->lru_lock);
605         ttm_bo_cleanup_memtype_use(bo);
606
607         ttm_bo_list_ref_sub(bo, put_count, true);
608
609         return 0;
610 }
611
612 /**
613  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
614  * encountered buffers.
615  */
616
617 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
618 {
619         struct ttm_bo_global *glob = bdev->glob;
620         struct ttm_buffer_object *entry = NULL;
621         int ret = 0;
622
623         spin_lock(&glob->lru_lock);
624         if (list_empty(&bdev->ddestroy))
625                 goto out_unlock;
626
627         entry = list_first_entry(&bdev->ddestroy,
628                 struct ttm_buffer_object, ddestroy);
629         kref_get(&entry->list_kref);
630
631         for (;;) {
632                 struct ttm_buffer_object *nentry = NULL;
633
634                 if (entry->ddestroy.next != &bdev->ddestroy) {
635                         nentry = list_first_entry(&entry->ddestroy,
636                                 struct ttm_buffer_object, ddestroy);
637                         kref_get(&nentry->list_kref);
638                 }
639
640                 spin_unlock(&glob->lru_lock);
641                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
642                                           !remove_all);
643                 kref_put(&entry->list_kref, ttm_bo_release_list);
644                 entry = nentry;
645
646                 if (ret || !entry)
647                         goto out;
648
649                 spin_lock(&glob->lru_lock);
650                 if (list_empty(&entry->ddestroy))
651                         break;
652         }
653
654 out_unlock:
655         spin_unlock(&glob->lru_lock);
656 out:
657         if (entry)
658                 kref_put(&entry->list_kref, ttm_bo_release_list);
659         return ret;
660 }
661
662 static void ttm_bo_delayed_workqueue(struct work_struct *work)
663 {
664         struct ttm_bo_device *bdev =
665             container_of(work, struct ttm_bo_device, wq.work);
666
667         if (ttm_bo_delayed_delete(bdev, false)) {
668                 schedule_delayed_work(&bdev->wq,
669                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
670         }
671 }
672
673 static void ttm_bo_release(struct kref *kref)
674 {
675         struct ttm_buffer_object *bo =
676             container_of(kref, struct ttm_buffer_object, kref);
677         struct ttm_bo_device *bdev = bo->bdev;
678         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
679
680         if (likely(bo->vm_node != NULL)) {
681                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
682                 drm_mm_put_block(bo->vm_node);
683                 bo->vm_node = NULL;
684         }
685         write_unlock(&bdev->vm_lock);
686         ttm_mem_io_lock(man, false);
687         ttm_mem_io_free_vm(bo);
688         ttm_mem_io_unlock(man);
689         ttm_bo_cleanup_refs_or_queue(bo);
690         kref_put(&bo->list_kref, ttm_bo_release_list);
691         write_lock(&bdev->vm_lock);
692 }
693
694 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
695 {
696         struct ttm_buffer_object *bo = *p_bo;
697         struct ttm_bo_device *bdev = bo->bdev;
698
699         *p_bo = NULL;
700         write_lock(&bdev->vm_lock);
701         kref_put(&bo->kref, ttm_bo_release);
702         write_unlock(&bdev->vm_lock);
703 }
704 EXPORT_SYMBOL(ttm_bo_unref);
705
706 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
707 {
708         return cancel_delayed_work_sync(&bdev->wq);
709 }
710 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
711
712 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
713 {
714         if (resched)
715                 schedule_delayed_work(&bdev->wq,
716                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
717 }
718 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
719
720 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
721                         bool no_wait_reserve, bool no_wait_gpu)
722 {
723         struct ttm_bo_device *bdev = bo->bdev;
724         struct ttm_mem_reg evict_mem;
725         struct ttm_placement placement;
726         int ret = 0;
727
728         spin_lock(&bdev->fence_lock);
729         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu,
730                           TTM_USAGE_READWRITE);
731         spin_unlock(&bdev->fence_lock);
732
733         if (unlikely(ret != 0)) {
734                 if (ret != -ERESTARTSYS) {
735                         printk(KERN_ERR TTM_PFX
736                                "Failed to expire sync object before "
737                                "buffer eviction.\n");
738                 }
739                 goto out;
740         }
741
742         BUG_ON(!atomic_read(&bo->reserved));
743
744         evict_mem = bo->mem;
745         evict_mem.mm_node = NULL;
746         evict_mem.bus.io_reserved_vm = false;
747         evict_mem.bus.io_reserved_count = 0;
748
749         placement.fpfn = 0;
750         placement.lpfn = 0;
751         placement.num_placement = 0;
752         placement.num_busy_placement = 0;
753         bdev->driver->evict_flags(bo, &placement);
754         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
755                                 no_wait_reserve, no_wait_gpu);
756         if (ret) {
757                 if (ret != -ERESTARTSYS) {
758                         printk(KERN_ERR TTM_PFX
759                                "Failed to find memory space for "
760                                "buffer 0x%p eviction.\n", bo);
761                         ttm_bo_mem_space_debug(bo, &placement);
762                 }
763                 goto out;
764         }
765
766         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
767                                      no_wait_reserve, no_wait_gpu);
768         if (ret) {
769                 if (ret != -ERESTARTSYS)
770                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
771                 ttm_bo_mem_put(bo, &evict_mem);
772                 goto out;
773         }
774         bo->evicted = true;
775 out:
776         return ret;
777 }
778
779 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
780                                 uint32_t mem_type,
781                                 bool interruptible, bool no_wait_reserve,
782                                 bool no_wait_gpu)
783 {
784         struct ttm_bo_global *glob = bdev->glob;
785         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
786         struct ttm_buffer_object *bo;
787         int ret, put_count = 0;
788
789 retry:
790         spin_lock(&glob->lru_lock);
791         if (list_empty(&man->lru)) {
792                 spin_unlock(&glob->lru_lock);
793                 return -EBUSY;
794         }
795
796         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
797         kref_get(&bo->list_kref);
798
799         if (!list_empty(&bo->ddestroy)) {
800                 spin_unlock(&glob->lru_lock);
801                 ret = ttm_bo_cleanup_refs(bo, interruptible,
802                                           no_wait_reserve, no_wait_gpu);
803                 kref_put(&bo->list_kref, ttm_bo_release_list);
804
805                 if (likely(ret == 0 || ret == -ERESTARTSYS))
806                         return ret;
807
808                 goto retry;
809         }
810
811         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
812
813         if (unlikely(ret == -EBUSY)) {
814                 spin_unlock(&glob->lru_lock);
815                 if (likely(!no_wait_gpu))
816                         ret = ttm_bo_wait_unreserved(bo, interruptible);
817
818                 kref_put(&bo->list_kref, ttm_bo_release_list);
819
820                 /**
821                  * We *need* to retry after releasing the lru lock.
822                  */
823
824                 if (unlikely(ret != 0))
825                         return ret;
826                 goto retry;
827         }
828
829         put_count = ttm_bo_del_from_lru(bo);
830         spin_unlock(&glob->lru_lock);
831
832         BUG_ON(ret != 0);
833
834         ttm_bo_list_ref_sub(bo, put_count, true);
835
836         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
837         ttm_bo_unreserve(bo);
838
839         kref_put(&bo->list_kref, ttm_bo_release_list);
840         return ret;
841 }
842
843 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
844 {
845         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
846
847         if (mem->mm_node)
848                 (*man->func->put_node)(man, mem);
849 }
850 EXPORT_SYMBOL(ttm_bo_mem_put);
851
852 /**
853  * Repeatedly evict memory from the LRU for @mem_type until we create enough
854  * space, or we've evicted everything and there isn't enough space.
855  */
856 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
857                                         uint32_t mem_type,
858                                         struct ttm_placement *placement,
859                                         struct ttm_mem_reg *mem,
860                                         bool interruptible,
861                                         bool no_wait_reserve,
862                                         bool no_wait_gpu)
863 {
864         struct ttm_bo_device *bdev = bo->bdev;
865         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
866         int ret;
867
868         do {
869                 ret = (*man->func->get_node)(man, bo, placement, mem);
870                 if (unlikely(ret != 0))
871                         return ret;
872                 if (mem->mm_node)
873                         break;
874                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
875                                                 no_wait_reserve, no_wait_gpu);
876                 if (unlikely(ret != 0))
877                         return ret;
878         } while (1);
879         if (mem->mm_node == NULL)
880                 return -ENOMEM;
881         mem->mem_type = mem_type;
882         return 0;
883 }
884
885 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
886                                       uint32_t cur_placement,
887                                       uint32_t proposed_placement)
888 {
889         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
890         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
891
892         /**
893          * Keep current caching if possible.
894          */
895
896         if ((cur_placement & caching) != 0)
897                 result |= (cur_placement & caching);
898         else if ((man->default_caching & caching) != 0)
899                 result |= man->default_caching;
900         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
901                 result |= TTM_PL_FLAG_CACHED;
902         else if ((TTM_PL_FLAG_WC & caching) != 0)
903                 result |= TTM_PL_FLAG_WC;
904         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
905                 result |= TTM_PL_FLAG_UNCACHED;
906
907         return result;
908 }
909
910 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
911                                  bool disallow_fixed,
912                                  uint32_t mem_type,
913                                  uint32_t proposed_placement,
914                                  uint32_t *masked_placement)
915 {
916         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
917
918         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
919                 return false;
920
921         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
922                 return false;
923
924         if ((proposed_placement & man->available_caching) == 0)
925                 return false;
926
927         cur_flags |= (proposed_placement & man->available_caching);
928
929         *masked_placement = cur_flags;
930         return true;
931 }
932
933 /**
934  * Creates space for memory region @mem according to its type.
935  *
936  * This function first searches for free space in compatible memory types in
937  * the priority order defined by the driver.  If free space isn't found, then
938  * ttm_bo_mem_force_space is attempted in priority order to evict and find
939  * space.
940  */
941 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
942                         struct ttm_placement *placement,
943                         struct ttm_mem_reg *mem,
944                         bool interruptible, bool no_wait_reserve,
945                         bool no_wait_gpu)
946 {
947         struct ttm_bo_device *bdev = bo->bdev;
948         struct ttm_mem_type_manager *man;
949         uint32_t mem_type = TTM_PL_SYSTEM;
950         uint32_t cur_flags = 0;
951         bool type_found = false;
952         bool type_ok = false;
953         bool has_erestartsys = false;
954         int i, ret;
955
956         mem->mm_node = NULL;
957         for (i = 0; i < placement->num_placement; ++i) {
958                 ret = ttm_mem_type_from_flags(placement->placement[i],
959                                                 &mem_type);
960                 if (ret)
961                         return ret;
962                 man = &bdev->man[mem_type];
963
964                 type_ok = ttm_bo_mt_compatible(man,
965                                                 bo->type == ttm_bo_type_user,
966                                                 mem_type,
967                                                 placement->placement[i],
968                                                 &cur_flags);
969
970                 if (!type_ok)
971                         continue;
972
973                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
974                                                   cur_flags);
975                 /*
976                  * Use the access and other non-mapping-related flag bits from
977                  * the memory placement flags to the current flags
978                  */
979                 ttm_flag_masked(&cur_flags, placement->placement[i],
980                                 ~TTM_PL_MASK_MEMTYPE);
981
982                 if (mem_type == TTM_PL_SYSTEM)
983                         break;
984
985                 if (man->has_type && man->use_type) {
986                         type_found = true;
987                         ret = (*man->func->get_node)(man, bo, placement, mem);
988                         if (unlikely(ret))
989                                 return ret;
990                 }
991                 if (mem->mm_node)
992                         break;
993         }
994
995         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
996                 mem->mem_type = mem_type;
997                 mem->placement = cur_flags;
998                 return 0;
999         }
1000
1001         if (!type_found)
1002                 return -EINVAL;
1003
1004         for (i = 0; i < placement->num_busy_placement; ++i) {
1005                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1006                                                 &mem_type);
1007                 if (ret)
1008                         return ret;
1009                 man = &bdev->man[mem_type];
1010                 if (!man->has_type)
1011                         continue;
1012                 if (!ttm_bo_mt_compatible(man,
1013                                                 bo->type == ttm_bo_type_user,
1014                                                 mem_type,
1015                                                 placement->busy_placement[i],
1016                                                 &cur_flags))
1017                         continue;
1018
1019                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1020                                                   cur_flags);
1021                 /*
1022                  * Use the access and other non-mapping-related flag bits from
1023                  * the memory placement flags to the current flags
1024                  */
1025                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1026                                 ~TTM_PL_MASK_MEMTYPE);
1027
1028
1029                 if (mem_type == TTM_PL_SYSTEM) {
1030                         mem->mem_type = mem_type;
1031                         mem->placement = cur_flags;
1032                         mem->mm_node = NULL;
1033                         return 0;
1034                 }
1035
1036                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1037                                                 interruptible, no_wait_reserve, no_wait_gpu);
1038                 if (ret == 0 && mem->mm_node) {
1039                         mem->placement = cur_flags;
1040                         return 0;
1041                 }
1042                 if (ret == -ERESTARTSYS)
1043                         has_erestartsys = true;
1044         }
1045         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1046         return ret;
1047 }
1048 EXPORT_SYMBOL(ttm_bo_mem_space);
1049
1050 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1051 {
1052         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1053                 return -EBUSY;
1054
1055         return wait_event_interruptible(bo->event_queue,
1056                                         atomic_read(&bo->cpu_writers) == 0);
1057 }
1058 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1059
1060 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1061                         struct ttm_placement *placement,
1062                         bool interruptible, bool no_wait_reserve,
1063                         bool no_wait_gpu)
1064 {
1065         int ret = 0;
1066         struct ttm_mem_reg mem;
1067         struct ttm_bo_device *bdev = bo->bdev;
1068
1069         BUG_ON(!atomic_read(&bo->reserved));
1070
1071         /*
1072          * FIXME: It's possible to pipeline buffer moves.
1073          * Have the driver move function wait for idle when necessary,
1074          * instead of doing it here.
1075          */
1076         spin_lock(&bdev->fence_lock);
1077         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu,
1078                           TTM_USAGE_READWRITE);
1079         spin_unlock(&bdev->fence_lock);
1080         if (ret)
1081                 return ret;
1082         mem.num_pages = bo->num_pages;
1083         mem.size = mem.num_pages << PAGE_SHIFT;
1084         mem.page_alignment = bo->mem.page_alignment;
1085         mem.bus.io_reserved_vm = false;
1086         mem.bus.io_reserved_count = 0;
1087         /*
1088          * Determine where to move the buffer.
1089          */
1090         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1091         if (ret)
1092                 goto out_unlock;
1093         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1094 out_unlock:
1095         if (ret && mem.mm_node)
1096                 ttm_bo_mem_put(bo, &mem);
1097         return ret;
1098 }
1099
1100 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1101                              struct ttm_mem_reg *mem)
1102 {
1103         int i;
1104
1105         if (mem->mm_node && placement->lpfn != 0 &&
1106             (mem->start < placement->fpfn ||
1107              mem->start + mem->num_pages > placement->lpfn))
1108                 return -1;
1109
1110         for (i = 0; i < placement->num_placement; i++) {
1111                 if ((placement->placement[i] & mem->placement &
1112                         TTM_PL_MASK_CACHING) &&
1113                         (placement->placement[i] & mem->placement &
1114                         TTM_PL_MASK_MEM))
1115                         return i;
1116         }
1117         return -1;
1118 }
1119
1120 int ttm_bo_validate(struct ttm_buffer_object *bo,
1121                         struct ttm_placement *placement,
1122                         bool interruptible, bool no_wait_reserve,
1123                         bool no_wait_gpu)
1124 {
1125         int ret;
1126
1127         BUG_ON(!atomic_read(&bo->reserved));
1128         /* Check that range is valid */
1129         if (placement->lpfn || placement->fpfn)
1130                 if (placement->fpfn > placement->lpfn ||
1131                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1132                         return -EINVAL;
1133         /*
1134          * Check whether we need to move buffer.
1135          */
1136         ret = ttm_bo_mem_compat(placement, &bo->mem);
1137         if (ret < 0) {
1138                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1139                 if (ret)
1140                         return ret;
1141         } else {
1142                 /*
1143                  * Use the access and other non-mapping-related flag bits from
1144                  * the compatible memory placement flags to the active flags
1145                  */
1146                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1147                                 ~TTM_PL_MASK_MEMTYPE);
1148         }
1149         /*
1150          * We might need to add a TTM.
1151          */
1152         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1153                 ret = ttm_bo_add_ttm(bo, true);
1154                 if (ret)
1155                         return ret;
1156         }
1157         return 0;
1158 }
1159 EXPORT_SYMBOL(ttm_bo_validate);
1160
1161 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1162                                 struct ttm_placement *placement)
1163 {
1164         BUG_ON((placement->fpfn || placement->lpfn) &&
1165                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1166
1167         return 0;
1168 }
1169
1170 int ttm_bo_init(struct ttm_bo_device *bdev,
1171                 struct ttm_buffer_object *bo,
1172                 unsigned long size,
1173                 enum ttm_bo_type type,
1174                 struct ttm_placement *placement,
1175                 uint32_t page_alignment,
1176                 unsigned long buffer_start,
1177                 bool interruptible,
1178                 struct file *persistent_swap_storage,
1179                 size_t acc_size,
1180                 void (*destroy) (struct ttm_buffer_object *))
1181 {
1182         int ret = 0;
1183         unsigned long num_pages;
1184
1185         size += buffer_start & ~PAGE_MASK;
1186         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187         if (num_pages == 0) {
1188                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1189                 if (destroy)
1190                         (*destroy)(bo);
1191                 else
1192                         kfree(bo);
1193                 return -EINVAL;
1194         }
1195         bo->destroy = destroy;
1196
1197         kref_init(&bo->kref);
1198         kref_init(&bo->list_kref);
1199         atomic_set(&bo->cpu_writers, 0);
1200         atomic_set(&bo->reserved, 1);
1201         init_waitqueue_head(&bo->event_queue);
1202         INIT_LIST_HEAD(&bo->lru);
1203         INIT_LIST_HEAD(&bo->ddestroy);
1204         INIT_LIST_HEAD(&bo->swap);
1205         INIT_LIST_HEAD(&bo->io_reserve_lru);
1206         bo->bdev = bdev;
1207         bo->glob = bdev->glob;
1208         bo->type = type;
1209         bo->num_pages = num_pages;
1210         bo->mem.size = num_pages << PAGE_SHIFT;
1211         bo->mem.mem_type = TTM_PL_SYSTEM;
1212         bo->mem.num_pages = bo->num_pages;
1213         bo->mem.mm_node = NULL;
1214         bo->mem.page_alignment = page_alignment;
1215         bo->mem.bus.io_reserved_vm = false;
1216         bo->mem.bus.io_reserved_count = 0;
1217         bo->buffer_start = buffer_start & PAGE_MASK;
1218         bo->priv_flags = 0;
1219         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1220         bo->seq_valid = false;
1221         bo->persistent_swap_storage = persistent_swap_storage;
1222         bo->acc_size = acc_size;
1223         atomic_inc(&bo->glob->bo_count);
1224
1225         ret = ttm_bo_check_placement(bo, placement);
1226         if (unlikely(ret != 0))
1227                 goto out_err;
1228
1229         /*
1230          * For ttm_bo_type_device buffers, allocate
1231          * address space from the device.
1232          */
1233         if (bo->type == ttm_bo_type_device) {
1234                 ret = ttm_bo_setup_vm(bo);
1235                 if (ret)
1236                         goto out_err;
1237         }
1238
1239         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1240         if (ret)
1241                 goto out_err;
1242
1243         ttm_bo_unreserve(bo);
1244         return 0;
1245
1246 out_err:
1247         ttm_bo_unreserve(bo);
1248         ttm_bo_unref(&bo);
1249
1250         return ret;
1251 }
1252 EXPORT_SYMBOL(ttm_bo_init);
1253
1254 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1255                                  unsigned long num_pages)
1256 {
1257         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1258             PAGE_MASK;
1259
1260         return glob->ttm_bo_size + 2 * page_array_size;
1261 }
1262
1263 int ttm_bo_create(struct ttm_bo_device *bdev,
1264                         unsigned long size,
1265                         enum ttm_bo_type type,
1266                         struct ttm_placement *placement,
1267                         uint32_t page_alignment,
1268                         unsigned long buffer_start,
1269                         bool interruptible,
1270                         struct file *persistent_swap_storage,
1271                         struct ttm_buffer_object **p_bo)
1272 {
1273         struct ttm_buffer_object *bo;
1274         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1275         int ret;
1276
1277         size_t acc_size =
1278             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1279         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1280         if (unlikely(ret != 0))
1281                 return ret;
1282
1283         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1284
1285         if (unlikely(bo == NULL)) {
1286                 ttm_mem_global_free(mem_glob, acc_size);
1287                 return -ENOMEM;
1288         }
1289
1290         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1291                                 buffer_start, interruptible,
1292                                 persistent_swap_storage, acc_size, NULL);
1293         if (likely(ret == 0))
1294                 *p_bo = bo;
1295
1296         return ret;
1297 }
1298 EXPORT_SYMBOL(ttm_bo_create);
1299
1300 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1301                                         unsigned mem_type, bool allow_errors)
1302 {
1303         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1304         struct ttm_bo_global *glob = bdev->glob;
1305         int ret;
1306
1307         /*
1308          * Can't use standard list traversal since we're unlocking.
1309          */
1310
1311         spin_lock(&glob->lru_lock);
1312         while (!list_empty(&man->lru)) {
1313                 spin_unlock(&glob->lru_lock);
1314                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1315                 if (ret) {
1316                         if (allow_errors) {
1317                                 return ret;
1318                         } else {
1319                                 printk(KERN_ERR TTM_PFX
1320                                         "Cleanup eviction failed\n");
1321                         }
1322                 }
1323                 spin_lock(&glob->lru_lock);
1324         }
1325         spin_unlock(&glob->lru_lock);
1326         return 0;
1327 }
1328
1329 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1330 {
1331         struct ttm_mem_type_manager *man;
1332         int ret = -EINVAL;
1333
1334         if (mem_type >= TTM_NUM_MEM_TYPES) {
1335                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1336                 return ret;
1337         }
1338         man = &bdev->man[mem_type];
1339
1340         if (!man->has_type) {
1341                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1342                        "memory manager type %u\n", mem_type);
1343                 return ret;
1344         }
1345
1346         man->use_type = false;
1347         man->has_type = false;
1348
1349         ret = 0;
1350         if (mem_type > 0) {
1351                 ttm_bo_force_list_clean(bdev, mem_type, false);
1352
1353                 ret = (*man->func->takedown)(man);
1354         }
1355
1356         return ret;
1357 }
1358 EXPORT_SYMBOL(ttm_bo_clean_mm);
1359
1360 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1361 {
1362         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1363
1364         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1365                 printk(KERN_ERR TTM_PFX
1366                        "Illegal memory manager memory type %u.\n",
1367                        mem_type);
1368                 return -EINVAL;
1369         }
1370
1371         if (!man->has_type) {
1372                 printk(KERN_ERR TTM_PFX
1373                        "Memory type %u has not been initialized.\n",
1374                        mem_type);
1375                 return 0;
1376         }
1377
1378         return ttm_bo_force_list_clean(bdev, mem_type, true);
1379 }
1380 EXPORT_SYMBOL(ttm_bo_evict_mm);
1381
1382 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1383                         unsigned long p_size)
1384 {
1385         int ret = -EINVAL;
1386         struct ttm_mem_type_manager *man;
1387
1388         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1389         man = &bdev->man[type];
1390         BUG_ON(man->has_type);
1391         man->io_reserve_fastpath = true;
1392         man->use_io_reserve_lru = false;
1393         mutex_init(&man->io_reserve_mutex);
1394         INIT_LIST_HEAD(&man->io_reserve_lru);
1395
1396         ret = bdev->driver->init_mem_type(bdev, type, man);
1397         if (ret)
1398                 return ret;
1399         man->bdev = bdev;
1400
1401         ret = 0;
1402         if (type != TTM_PL_SYSTEM) {
1403                 ret = (*man->func->init)(man, p_size);
1404                 if (ret)
1405                         return ret;
1406         }
1407         man->has_type = true;
1408         man->use_type = true;
1409         man->size = p_size;
1410
1411         INIT_LIST_HEAD(&man->lru);
1412
1413         return 0;
1414 }
1415 EXPORT_SYMBOL(ttm_bo_init_mm);
1416
1417 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1418 {
1419         struct ttm_bo_global *glob =
1420                 container_of(kobj, struct ttm_bo_global, kobj);
1421
1422         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1423         __free_page(glob->dummy_read_page);
1424         kfree(glob);
1425 }
1426
1427 void ttm_bo_global_release(struct drm_global_reference *ref)
1428 {
1429         struct ttm_bo_global *glob = ref->object;
1430
1431         kobject_del(&glob->kobj);
1432         kobject_put(&glob->kobj);
1433 }
1434 EXPORT_SYMBOL(ttm_bo_global_release);
1435
1436 int ttm_bo_global_init(struct drm_global_reference *ref)
1437 {
1438         struct ttm_bo_global_ref *bo_ref =
1439                 container_of(ref, struct ttm_bo_global_ref, ref);
1440         struct ttm_bo_global *glob = ref->object;
1441         int ret;
1442
1443         mutex_init(&glob->device_list_mutex);
1444         spin_lock_init(&glob->lru_lock);
1445         glob->mem_glob = bo_ref->mem_glob;
1446         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1447
1448         if (unlikely(glob->dummy_read_page == NULL)) {
1449                 ret = -ENOMEM;
1450                 goto out_no_drp;
1451         }
1452
1453         INIT_LIST_HEAD(&glob->swap_lru);
1454         INIT_LIST_HEAD(&glob->device_list);
1455
1456         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1457         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1458         if (unlikely(ret != 0)) {
1459                 printk(KERN_ERR TTM_PFX
1460                        "Could not register buffer object swapout.\n");
1461                 goto out_no_shrink;
1462         }
1463
1464         glob->ttm_bo_extra_size =
1465                 ttm_round_pot(sizeof(struct ttm_tt)) +
1466                 ttm_round_pot(sizeof(struct ttm_backend));
1467
1468         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1469                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1470
1471         atomic_set(&glob->bo_count, 0);
1472
1473         ret = kobject_init_and_add(
1474                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1475         if (unlikely(ret != 0))
1476                 kobject_put(&glob->kobj);
1477         return ret;
1478 out_no_shrink:
1479         __free_page(glob->dummy_read_page);
1480 out_no_drp:
1481         kfree(glob);
1482         return ret;
1483 }
1484 EXPORT_SYMBOL(ttm_bo_global_init);
1485
1486
1487 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1488 {
1489         int ret = 0;
1490         unsigned i = TTM_NUM_MEM_TYPES;
1491         struct ttm_mem_type_manager *man;
1492         struct ttm_bo_global *glob = bdev->glob;
1493
1494         while (i--) {
1495                 man = &bdev->man[i];
1496                 if (man->has_type) {
1497                         man->use_type = false;
1498                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1499                                 ret = -EBUSY;
1500                                 printk(KERN_ERR TTM_PFX
1501                                        "DRM memory manager type %d "
1502                                        "is not clean.\n", i);
1503                         }
1504                         man->has_type = false;
1505                 }
1506         }
1507
1508         mutex_lock(&glob->device_list_mutex);
1509         list_del(&bdev->device_list);
1510         mutex_unlock(&glob->device_list_mutex);
1511
1512         cancel_delayed_work_sync(&bdev->wq);
1513
1514         while (ttm_bo_delayed_delete(bdev, true))
1515                 ;
1516
1517         spin_lock(&glob->lru_lock);
1518         if (list_empty(&bdev->ddestroy))
1519                 TTM_DEBUG("Delayed destroy list was clean\n");
1520
1521         if (list_empty(&bdev->man[0].lru))
1522                 TTM_DEBUG("Swap list was clean\n");
1523         spin_unlock(&glob->lru_lock);
1524
1525         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1526         write_lock(&bdev->vm_lock);
1527         drm_mm_takedown(&bdev->addr_space_mm);
1528         write_unlock(&bdev->vm_lock);
1529
1530         return ret;
1531 }
1532 EXPORT_SYMBOL(ttm_bo_device_release);
1533
1534 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1535                        struct ttm_bo_global *glob,
1536                        struct ttm_bo_driver *driver,
1537                        uint64_t file_page_offset,
1538                        bool need_dma32)
1539 {
1540         int ret = -EINVAL;
1541
1542         rwlock_init(&bdev->vm_lock);
1543         bdev->driver = driver;
1544
1545         memset(bdev->man, 0, sizeof(bdev->man));
1546
1547         /*
1548          * Initialize the system memory buffer type.
1549          * Other types need to be driver / IOCTL initialized.
1550          */
1551         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1552         if (unlikely(ret != 0))
1553                 goto out_no_sys;
1554
1555         bdev->addr_space_rb = RB_ROOT;
1556         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1557         if (unlikely(ret != 0))
1558                 goto out_no_addr_mm;
1559
1560         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1561         bdev->nice_mode = true;
1562         INIT_LIST_HEAD(&bdev->ddestroy);
1563         bdev->dev_mapping = NULL;
1564         bdev->glob = glob;
1565         bdev->need_dma32 = need_dma32;
1566         bdev->val_seq = 0;
1567         spin_lock_init(&bdev->fence_lock);
1568         mutex_lock(&glob->device_list_mutex);
1569         list_add_tail(&bdev->device_list, &glob->device_list);
1570         mutex_unlock(&glob->device_list_mutex);
1571
1572         return 0;
1573 out_no_addr_mm:
1574         ttm_bo_clean_mm(bdev, 0);
1575 out_no_sys:
1576         return ret;
1577 }
1578 EXPORT_SYMBOL(ttm_bo_device_init);
1579
1580 /*
1581  * buffer object vm functions.
1582  */
1583
1584 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1585 {
1586         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1587
1588         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1589                 if (mem->mem_type == TTM_PL_SYSTEM)
1590                         return false;
1591
1592                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1593                         return false;
1594
1595                 if (mem->placement & TTM_PL_FLAG_CACHED)
1596                         return false;
1597         }
1598         return true;
1599 }
1600
1601 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1602 {
1603         struct ttm_bo_device *bdev = bo->bdev;
1604         loff_t offset = (loff_t) bo->addr_space_offset;
1605         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1606
1607         if (!bdev->dev_mapping)
1608                 return;
1609         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1610         ttm_mem_io_free_vm(bo);
1611 }
1612
1613 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1614 {
1615         struct ttm_bo_device *bdev = bo->bdev;
1616         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1617
1618         ttm_mem_io_lock(man, false);
1619         ttm_bo_unmap_virtual_locked(bo);
1620         ttm_mem_io_unlock(man);
1621 }
1622
1623
1624 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1625
1626 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1627 {
1628         struct ttm_bo_device *bdev = bo->bdev;
1629         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1630         struct rb_node *parent = NULL;
1631         struct ttm_buffer_object *cur_bo;
1632         unsigned long offset = bo->vm_node->start;
1633         unsigned long cur_offset;
1634
1635         while (*cur) {
1636                 parent = *cur;
1637                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1638                 cur_offset = cur_bo->vm_node->start;
1639                 if (offset < cur_offset)
1640                         cur = &parent->rb_left;
1641                 else if (offset > cur_offset)
1642                         cur = &parent->rb_right;
1643                 else
1644                         BUG();
1645         }
1646
1647         rb_link_node(&bo->vm_rb, parent, cur);
1648         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1649 }
1650
1651 /**
1652  * ttm_bo_setup_vm:
1653  *
1654  * @bo: the buffer to allocate address space for
1655  *
1656  * Allocate address space in the drm device so that applications
1657  * can mmap the buffer and access the contents. This only
1658  * applies to ttm_bo_type_device objects as others are not
1659  * placed in the drm device address space.
1660  */
1661
1662 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1663 {
1664         struct ttm_bo_device *bdev = bo->bdev;
1665         int ret;
1666
1667 retry_pre_get:
1668         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1669         if (unlikely(ret != 0))
1670                 return ret;
1671
1672         write_lock(&bdev->vm_lock);
1673         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1674                                          bo->mem.num_pages, 0, 0);
1675
1676         if (unlikely(bo->vm_node == NULL)) {
1677                 ret = -ENOMEM;
1678                 goto out_unlock;
1679         }
1680
1681         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1682                                               bo->mem.num_pages, 0);
1683
1684         if (unlikely(bo->vm_node == NULL)) {
1685                 write_unlock(&bdev->vm_lock);
1686                 goto retry_pre_get;
1687         }
1688
1689         ttm_bo_vm_insert_rb(bo);
1690         write_unlock(&bdev->vm_lock);
1691         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1692
1693         return 0;
1694 out_unlock:
1695         write_unlock(&bdev->vm_lock);
1696         return ret;
1697 }
1698
1699 static void ttm_bo_unref_sync_obj_locked(struct ttm_buffer_object *bo,
1700                                          void *sync_obj,
1701                                          void **extra_sync_obj)
1702 {
1703         struct ttm_bo_device *bdev = bo->bdev;
1704         struct ttm_bo_driver *driver = bdev->driver;
1705         void *tmp_obj = NULL, *tmp_obj_read = NULL, *tmp_obj_write = NULL;
1706
1707         /* We must unref the sync obj wherever it's ref'd.
1708          * Note that if we unref bo->sync_obj, we can unref both the read
1709          * and write sync objs too, because they can't be newer than
1710          * bo->sync_obj, so they are no longer relevant. */
1711         if (sync_obj == bo->sync_obj ||
1712             sync_obj == bo->sync_obj_read) {
1713                 tmp_obj_read = bo->sync_obj_read;
1714                 bo->sync_obj_read = NULL;
1715         }
1716         if (sync_obj == bo->sync_obj ||
1717             sync_obj == bo->sync_obj_write) {
1718                 tmp_obj_write = bo->sync_obj_write;
1719                 bo->sync_obj_write = NULL;
1720         }
1721         if (sync_obj == bo->sync_obj) {
1722                 tmp_obj = bo->sync_obj;
1723                 bo->sync_obj = NULL;
1724         }
1725
1726         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1727         spin_unlock(&bdev->fence_lock);
1728         if (tmp_obj)
1729                 driver->sync_obj_unref(&tmp_obj);
1730         if (tmp_obj_read)
1731                 driver->sync_obj_unref(&tmp_obj_read);
1732         if (tmp_obj_write)
1733                 driver->sync_obj_unref(&tmp_obj_write);
1734         if (extra_sync_obj)
1735                 driver->sync_obj_unref(extra_sync_obj);
1736         spin_lock(&bdev->fence_lock);
1737 }
1738
1739 int ttm_bo_wait(struct ttm_buffer_object *bo,
1740                 bool lazy, bool interruptible, bool no_wait,
1741                 enum ttm_buffer_usage usage)
1742 {
1743         struct ttm_bo_driver *driver = bo->bdev->driver;
1744         struct ttm_bo_device *bdev = bo->bdev;
1745         void *sync_obj;
1746         void *sync_obj_arg;
1747         int ret = 0;
1748         void **bo_sync_obj;
1749
1750         switch (usage) {
1751         case TTM_USAGE_READ:
1752                 bo_sync_obj = &bo->sync_obj_read;
1753                 break;
1754         case TTM_USAGE_WRITE:
1755                 bo_sync_obj = &bo->sync_obj_write;
1756                 break;
1757         case TTM_USAGE_READWRITE:
1758         default:
1759                 bo_sync_obj = &bo->sync_obj;
1760         }
1761
1762         if (likely(*bo_sync_obj == NULL))
1763                 return 0;
1764
1765         while (*bo_sync_obj) {
1766
1767                 if (driver->sync_obj_signaled(*bo_sync_obj, bo->sync_obj_arg)) {
1768                         ttm_bo_unref_sync_obj_locked(bo, *bo_sync_obj, NULL);
1769                         continue;
1770                 }
1771
1772                 if (no_wait)
1773                         return -EBUSY;
1774
1775                 sync_obj = driver->sync_obj_ref(*bo_sync_obj);
1776                 sync_obj_arg = bo->sync_obj_arg;
1777                 spin_unlock(&bdev->fence_lock);
1778                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1779                                             lazy, interruptible);
1780                 if (unlikely(ret != 0)) {
1781                         driver->sync_obj_unref(&sync_obj);
1782                         spin_lock(&bdev->fence_lock);
1783                         return ret;
1784                 }
1785                 spin_lock(&bdev->fence_lock);
1786                 if (likely(*bo_sync_obj == sync_obj &&
1787                            bo->sync_obj_arg == sync_obj_arg)) {
1788                         ttm_bo_unref_sync_obj_locked(bo, *bo_sync_obj, &sync_obj);
1789                 } else {
1790                         spin_unlock(&bdev->fence_lock);
1791                         driver->sync_obj_unref(&sync_obj);
1792                         spin_lock(&bdev->fence_lock);
1793                 }
1794         }
1795         return 0;
1796 }
1797 EXPORT_SYMBOL(ttm_bo_wait);
1798
1799 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1800 {
1801         struct ttm_bo_device *bdev = bo->bdev;
1802         int ret = 0;
1803
1804         /*
1805          * Using ttm_bo_reserve makes sure the lru lists are updated.
1806          */
1807
1808         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1809         if (unlikely(ret != 0))
1810                 return ret;
1811         spin_lock(&bdev->fence_lock);
1812         ret = ttm_bo_wait(bo, false, true, no_wait, TTM_USAGE_READWRITE);
1813         spin_unlock(&bdev->fence_lock);
1814         if (likely(ret == 0))
1815                 atomic_inc(&bo->cpu_writers);
1816         ttm_bo_unreserve(bo);
1817         return ret;
1818 }
1819 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1820
1821 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1822 {
1823         if (atomic_dec_and_test(&bo->cpu_writers))
1824                 wake_up_all(&bo->event_queue);
1825 }
1826 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1827
1828 /**
1829  * A buffer object shrink method that tries to swap out the first
1830  * buffer object on the bo_global::swap_lru list.
1831  */
1832
1833 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1834 {
1835         struct ttm_bo_global *glob =
1836             container_of(shrink, struct ttm_bo_global, shrink);
1837         struct ttm_buffer_object *bo;
1838         int ret = -EBUSY;
1839         int put_count;
1840         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1841
1842         spin_lock(&glob->lru_lock);
1843         while (ret == -EBUSY) {
1844                 if (unlikely(list_empty(&glob->swap_lru))) {
1845                         spin_unlock(&glob->lru_lock);
1846                         return -EBUSY;
1847                 }
1848
1849                 bo = list_first_entry(&glob->swap_lru,
1850                                       struct ttm_buffer_object, swap);
1851                 kref_get(&bo->list_kref);
1852
1853                 if (!list_empty(&bo->ddestroy)) {
1854                         spin_unlock(&glob->lru_lock);
1855                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1856                         kref_put(&bo->list_kref, ttm_bo_release_list);
1857                         continue;
1858                 }
1859
1860                 /**
1861                  * Reserve buffer. Since we unlock while sleeping, we need
1862                  * to re-check that nobody removed us from the swap-list while
1863                  * we slept.
1864                  */
1865
1866                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1867                 if (unlikely(ret == -EBUSY)) {
1868                         spin_unlock(&glob->lru_lock);
1869                         ttm_bo_wait_unreserved(bo, false);
1870                         kref_put(&bo->list_kref, ttm_bo_release_list);
1871                         spin_lock(&glob->lru_lock);
1872                 }
1873         }
1874
1875         BUG_ON(ret != 0);
1876         put_count = ttm_bo_del_from_lru(bo);
1877         spin_unlock(&glob->lru_lock);
1878
1879         ttm_bo_list_ref_sub(bo, put_count, true);
1880
1881         /**
1882          * Wait for GPU, then move to system cached.
1883          */
1884
1885         spin_lock(&bo->bdev->fence_lock);
1886         ret = ttm_bo_wait(bo, false, false, false, TTM_USAGE_READWRITE);
1887         spin_unlock(&bo->bdev->fence_lock);
1888
1889         if (unlikely(ret != 0))
1890                 goto out;
1891
1892         if ((bo->mem.placement & swap_placement) != swap_placement) {
1893                 struct ttm_mem_reg evict_mem;
1894
1895                 evict_mem = bo->mem;
1896                 evict_mem.mm_node = NULL;
1897                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1898                 evict_mem.mem_type = TTM_PL_SYSTEM;
1899
1900                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1901                                              false, false, false);
1902                 if (unlikely(ret != 0))
1903                         goto out;
1904         }
1905
1906         ttm_bo_unmap_virtual(bo);
1907
1908         /**
1909          * Swap out. Buffer will be swapped in again as soon as
1910          * anyone tries to access a ttm page.
1911          */
1912
1913         if (bo->bdev->driver->swap_notify)
1914                 bo->bdev->driver->swap_notify(bo);
1915
1916         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1917 out:
1918
1919         /**
1920          *
1921          * Unreserve without putting on LRU to avoid swapping out an
1922          * already swapped buffer.
1923          */
1924
1925         atomic_set(&bo->reserved, 0);
1926         wake_up_all(&bo->event_queue);
1927         kref_put(&bo->list_kref, ttm_bo_release_list);
1928         return ret;
1929 }
1930
1931 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1932 {
1933         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1934                 ;
1935 }
1936 EXPORT_SYMBOL(ttm_bo_swapout_all);