Merge tag 'topic/drm-misc-2015-10-08' of git://anongit.freedesktop.org/drm-intel...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205         ADVANCED_CONTEXT = 0,
206         LEGACY_32B_CONTEXT,
207         ADVANCED_AD_CONTEXT,
208         LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
212                 LEGACY_64B_CONTEXT :\
213                 LEGACY_32B_CONTEXT)
214 enum {
215         FAULT_AND_HANG = 0,
216         FAULT_AND_HALT, /* Debug only */
217         FAULT_AND_STREAM,
218         FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225                 struct drm_i915_gem_object *default_ctx_obj);
226
227
228 /**
229  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230  * @dev: DRM device.
231  * @enable_execlists: value of i915.enable_execlists module parameter.
232  *
233  * Only certain platforms support Execlists (the prerequisites being
234  * support for Logical Ring Contexts and Aliasing PPGTT or better).
235  *
236  * Return: 1 if Execlists is supported and has to be enabled.
237  */
238 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 {
240         WARN_ON(i915.enable_ppgtt == -1);
241
242         /* On platforms with execlist available, vGPU will only
243          * support execlist mode, no ring buffer mode.
244          */
245         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246                 return 1;
247
248         if (INTEL_INFO(dev)->gen >= 9)
249                 return 1;
250
251         if (enable_execlists == 0)
252                 return 0;
253
254         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255             i915.use_mmio_flip >= 0)
256                 return 1;
257
258         return 0;
259 }
260
261 /**
262  * intel_execlists_ctx_id() - get the Execlists Context ID
263  * @ctx_obj: Logical Ring Context backing object.
264  *
265  * Do not confuse with ctx->id! Unfortunately we have a name overload
266  * here: the old context ID we pass to userspace as a handler so that
267  * they can refer to a context, and the new context ID we pass to the
268  * ELSP so that the GPU can inform us of the context status via
269  * interrupts.
270  *
271  * Return: 20-bits globally unique context ID.
272  */
273 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 {
275         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276                         LRC_PPHWSP_PN * PAGE_SIZE;
277
278         /* LRCA is required to be 4K aligned so the more significant 20 bits
279          * are globally unique */
280         return lrca >> 12;
281 }
282
283 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 {
285         struct drm_device *dev = ring->dev;
286
287         return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
288                 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
289                (ring->id == VCS || ring->id == VCS2);
290 }
291
292 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293                                      struct intel_engine_cs *ring)
294 {
295         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296         uint64_t desc;
297         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298                         LRC_PPHWSP_PN * PAGE_SIZE;
299
300         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301
302         desc = GEN8_CTX_VALID;
303         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304         if (IS_GEN8(ctx_obj->base.dev))
305                 desc |= GEN8_CTX_L3LLC_COHERENT;
306         desc |= GEN8_CTX_PRIVILEGE;
307         desc |= lrca;
308         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310         /* TODO: WaDisableLiteRestore when we start using semaphore
311          * signalling between Command Streamers */
312         /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
314         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
315         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316         if (disable_lite_restore_wa(ring))
317                 desc |= GEN8_CTX_FORCE_RESTORE;
318
319         return desc;
320 }
321
322 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323                                  struct drm_i915_gem_request *rq1)
324 {
325
326         struct intel_engine_cs *ring = rq0->ring;
327         struct drm_device *dev = ring->dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329         uint64_t desc[2];
330
331         if (rq1) {
332                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333                 rq1->elsp_submitted++;
334         } else {
335                 desc[1] = 0;
336         }
337
338         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339         rq0->elsp_submitted++;
340
341         /* You must always write both descriptors in the order below. */
342         spin_lock(&dev_priv->uncore.lock);
343         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346
347         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348         /* The context is automatically loaded after the following */
349         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350
351         /* ELSP is a wo register, use another nearby reg for posting */
352         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354         spin_unlock(&dev_priv->uncore.lock);
355 }
356
357 static int execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359         struct intel_engine_cs *ring = rq->ring;
360         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363         struct page *page;
364         uint32_t *reg_state;
365
366         BUG_ON(!ctx_obj);
367         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
370         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371         reg_state = kmap_atomic(page);
372
373         reg_state[CTX_RING_TAIL+1] = rq->tail;
374         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375
376         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377                 /* True 32b PPGTT with dynamic page allocation: update PDP
378                  * registers and point the unallocated PDPs to scratch page.
379                  * PML4 is allocated during ppgtt init, so this is not needed
380                  * in 48-bit mode.
381                  */
382                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386         }
387
388         kunmap_atomic(reg_state);
389
390         return 0;
391 }
392
393 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394                                       struct drm_i915_gem_request *rq1)
395 {
396         execlists_update_context(rq0);
397
398         if (rq1)
399                 execlists_update_context(rq1);
400
401         execlists_elsp_write(rq0, rq1);
402 }
403
404 static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 {
406         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408
409         assert_spin_locked(&ring->execlist_lock);
410
411         /*
412          * If irqs are not active generate a warning as batches that finish
413          * without the irqs may get lost and a GPU Hang may occur.
414          */
415         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
417         if (list_empty(&ring->execlist_queue))
418                 return;
419
420         /* Try to read in pairs */
421         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422                                  execlist_link) {
423                 if (!req0) {
424                         req0 = cursor;
425                 } else if (req0->ctx == cursor->ctx) {
426                         /* Same ctx: ignore first request, as second request
427                          * will update tail past first request's workload */
428                         cursor->elsp_submitted = req0->elsp_submitted;
429                         list_del(&req0->execlist_link);
430                         list_add_tail(&req0->execlist_link,
431                                 &ring->execlist_retired_req_list);
432                         req0 = cursor;
433                 } else {
434                         req1 = cursor;
435                         break;
436                 }
437         }
438
439         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440                 /*
441                  * WaIdleLiteRestore: make sure we never cause a lite
442                  * restore with HEAD==TAIL
443                  */
444                 if (req0->elsp_submitted) {
445                         /*
446                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447                          * as we resubmit the request. See gen8_emit_request()
448                          * for where we prepare the padding after the end of the
449                          * request.
450                          */
451                         struct intel_ringbuffer *ringbuf;
452
453                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
454                         req0->tail += 8;
455                         req0->tail &= ringbuf->size - 1;
456                 }
457         }
458
459         WARN_ON(req1 && req1->elsp_submitted);
460
461         execlists_submit_requests(req0, req1);
462 }
463
464 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465                                            u32 request_id)
466 {
467         struct drm_i915_gem_request *head_req;
468
469         assert_spin_locked(&ring->execlist_lock);
470
471         head_req = list_first_entry_or_null(&ring->execlist_queue,
472                                             struct drm_i915_gem_request,
473                                             execlist_link);
474
475         if (head_req != NULL) {
476                 struct drm_i915_gem_object *ctx_obj =
477                                 head_req->ctx->engine[ring->id].state;
478                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479                         WARN(head_req->elsp_submitted == 0,
480                              "Never submitted head request\n");
481
482                         if (--head_req->elsp_submitted <= 0) {
483                                 list_del(&head_req->execlist_link);
484                                 list_add_tail(&head_req->execlist_link,
485                                         &ring->execlist_retired_req_list);
486                                 return true;
487                         }
488                 }
489         }
490
491         return false;
492 }
493
494 /**
495  * intel_lrc_irq_handler() - handle Context Switch interrupts
496  * @ring: Engine Command Streamer to handle.
497  *
498  * Check the unread Context Status Buffers and manage the submission of new
499  * contexts to the ELSP accordingly.
500  */
501 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 {
503         struct drm_i915_private *dev_priv = ring->dev->dev_private;
504         u32 status_pointer;
505         u8 read_pointer;
506         u8 write_pointer;
507         u32 status = 0;
508         u32 status_id;
509         u32 submit_contexts = 0;
510
511         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513         read_pointer = ring->next_context_status_buffer;
514         write_pointer = status_pointer & 0x07;
515         if (read_pointer > write_pointer)
516                 write_pointer += 6;
517
518         spin_lock(&ring->execlist_lock);
519
520         while (read_pointer < write_pointer) {
521                 read_pointer++;
522                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
523                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
524
525                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526                         continue;
527
528                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
529                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530                                 if (execlists_check_remove_request(ring, status_id))
531                                         WARN(1, "Lite Restored request removed from queue\n");
532                         } else
533                                 WARN(1, "Preemption without Lite Restore\n");
534                 }
535
536                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538                         if (execlists_check_remove_request(ring, status_id))
539                                 submit_contexts++;
540                 }
541         }
542
543         if (disable_lite_restore_wa(ring)) {
544                 /* Prevent a ctx to preempt itself */
545                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546                     (submit_contexts != 0))
547                         execlists_context_unqueue(ring);
548         } else if (submit_contexts != 0) {
549                 execlists_context_unqueue(ring);
550         }
551
552         spin_unlock(&ring->execlist_lock);
553
554         WARN(submit_contexts > 2, "More than two context complete events?\n");
555         ring->next_context_status_buffer = write_pointer % 6;
556
557         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558                    _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
559 }
560
561 static int execlists_context_queue(struct drm_i915_gem_request *request)
562 {
563         struct intel_engine_cs *ring = request->ring;
564         struct drm_i915_gem_request *cursor;
565         int num_elements = 0;
566
567         if (request->ctx != ring->default_context)
568                 intel_lr_context_pin(request);
569
570         i915_gem_request_reference(request);
571
572         spin_lock_irq(&ring->execlist_lock);
573
574         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
575                 if (++num_elements > 2)
576                         break;
577
578         if (num_elements > 2) {
579                 struct drm_i915_gem_request *tail_req;
580
581                 tail_req = list_last_entry(&ring->execlist_queue,
582                                            struct drm_i915_gem_request,
583                                            execlist_link);
584
585                 if (request->ctx == tail_req->ctx) {
586                         WARN(tail_req->elsp_submitted != 0,
587                                 "More than 2 already-submitted reqs queued\n");
588                         list_del(&tail_req->execlist_link);
589                         list_add_tail(&tail_req->execlist_link,
590                                 &ring->execlist_retired_req_list);
591                 }
592         }
593
594         list_add_tail(&request->execlist_link, &ring->execlist_queue);
595         if (num_elements == 0)
596                 execlists_context_unqueue(ring);
597
598         spin_unlock_irq(&ring->execlist_lock);
599
600         return 0;
601 }
602
603 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
604 {
605         struct intel_engine_cs *ring = req->ring;
606         uint32_t flush_domains;
607         int ret;
608
609         flush_domains = 0;
610         if (ring->gpu_caches_dirty)
611                 flush_domains = I915_GEM_GPU_DOMAINS;
612
613         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
614         if (ret)
615                 return ret;
616
617         ring->gpu_caches_dirty = false;
618         return 0;
619 }
620
621 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
622                                  struct list_head *vmas)
623 {
624         const unsigned other_rings = ~intel_ring_flag(req->ring);
625         struct i915_vma *vma;
626         uint32_t flush_domains = 0;
627         bool flush_chipset = false;
628         int ret;
629
630         list_for_each_entry(vma, vmas, exec_list) {
631                 struct drm_i915_gem_object *obj = vma->obj;
632
633                 if (obj->active & other_rings) {
634                         ret = i915_gem_object_sync(obj, req->ring, &req);
635                         if (ret)
636                                 return ret;
637                 }
638
639                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
640                         flush_chipset |= i915_gem_clflush_object(obj, false);
641
642                 flush_domains |= obj->base.write_domain;
643         }
644
645         if (flush_domains & I915_GEM_DOMAIN_GTT)
646                 wmb();
647
648         /* Unconditionally invalidate gpu caches and ensure that we do flush
649          * any residual writes from the previous batch.
650          */
651         return logical_ring_invalidate_all_caches(req);
652 }
653
654 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
655 {
656         int ret;
657
658         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
659
660         if (request->ctx != request->ring->default_context) {
661                 ret = intel_lr_context_pin(request);
662                 if (ret)
663                         return ret;
664         }
665
666         return 0;
667 }
668
669 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
670                                        int bytes)
671 {
672         struct intel_ringbuffer *ringbuf = req->ringbuf;
673         struct intel_engine_cs *ring = req->ring;
674         struct drm_i915_gem_request *target;
675         unsigned space;
676         int ret;
677
678         if (intel_ring_space(ringbuf) >= bytes)
679                 return 0;
680
681         /* The whole point of reserving space is to not wait! */
682         WARN_ON(ringbuf->reserved_in_use);
683
684         list_for_each_entry(target, &ring->request_list, list) {
685                 /*
686                  * The request queue is per-engine, so can contain requests
687                  * from multiple ringbuffers. Here, we must ignore any that
688                  * aren't from the ringbuffer we're considering.
689                  */
690                 if (target->ringbuf != ringbuf)
691                         continue;
692
693                 /* Would completion of this request free enough space? */
694                 space = __intel_ring_space(target->postfix, ringbuf->tail,
695                                            ringbuf->size);
696                 if (space >= bytes)
697                         break;
698         }
699
700         if (WARN_ON(&target->list == &ring->request_list))
701                 return -ENOSPC;
702
703         ret = i915_wait_request(target);
704         if (ret)
705                 return ret;
706
707         ringbuf->space = space;
708         return 0;
709 }
710
711 /*
712  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
713  * @request: Request to advance the logical ringbuffer of.
714  *
715  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
716  * really happens during submission is that the context and current tail will be placed
717  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
718  * point, the tail *inside* the context is updated and the ELSP written to.
719  */
720 static void
721 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
722 {
723         struct intel_engine_cs *ring = request->ring;
724         struct drm_i915_private *dev_priv = request->i915;
725
726         intel_logical_ring_advance(request->ringbuf);
727
728         request->tail = request->ringbuf->tail;
729
730         if (intel_ring_stopped(ring))
731                 return;
732
733         if (dev_priv->guc.execbuf_client)
734                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
735         else
736                 execlists_context_queue(request);
737 }
738
739 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
740 {
741         uint32_t __iomem *virt;
742         int rem = ringbuf->size - ringbuf->tail;
743
744         virt = ringbuf->virtual_start + ringbuf->tail;
745         rem /= 4;
746         while (rem--)
747                 iowrite32(MI_NOOP, virt++);
748
749         ringbuf->tail = 0;
750         intel_ring_update_space(ringbuf);
751 }
752
753 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
754 {
755         struct intel_ringbuffer *ringbuf = req->ringbuf;
756         int remain_usable = ringbuf->effective_size - ringbuf->tail;
757         int remain_actual = ringbuf->size - ringbuf->tail;
758         int ret, total_bytes, wait_bytes = 0;
759         bool need_wrap = false;
760
761         if (ringbuf->reserved_in_use)
762                 total_bytes = bytes;
763         else
764                 total_bytes = bytes + ringbuf->reserved_size;
765
766         if (unlikely(bytes > remain_usable)) {
767                 /*
768                  * Not enough space for the basic request. So need to flush
769                  * out the remainder and then wait for base + reserved.
770                  */
771                 wait_bytes = remain_actual + total_bytes;
772                 need_wrap = true;
773         } else {
774                 if (unlikely(total_bytes > remain_usable)) {
775                         /*
776                          * The base request will fit but the reserved space
777                          * falls off the end. So only need to to wait for the
778                          * reserved size after flushing out the remainder.
779                          */
780                         wait_bytes = remain_actual + ringbuf->reserved_size;
781                         need_wrap = true;
782                 } else if (total_bytes > ringbuf->space) {
783                         /* No wrapping required, just waiting. */
784                         wait_bytes = total_bytes;
785                 }
786         }
787
788         if (wait_bytes) {
789                 ret = logical_ring_wait_for_space(req, wait_bytes);
790                 if (unlikely(ret))
791                         return ret;
792
793                 if (need_wrap)
794                         __wrap_ring_buffer(ringbuf);
795         }
796
797         return 0;
798 }
799
800 /**
801  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
802  *
803  * @req: The request to start some new work for
804  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
805  *
806  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
807  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
808  * and also preallocates a request (every workload submission is still mediated through
809  * requests, same as it did with legacy ringbuffer submission).
810  *
811  * Return: non-zero if the ringbuffer is not ready to be written to.
812  */
813 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
814 {
815         struct drm_i915_private *dev_priv;
816         int ret;
817
818         WARN_ON(req == NULL);
819         dev_priv = req->ring->dev->dev_private;
820
821         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
822                                    dev_priv->mm.interruptible);
823         if (ret)
824                 return ret;
825
826         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
827         if (ret)
828                 return ret;
829
830         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
831         return 0;
832 }
833
834 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
835 {
836         /*
837          * The first call merely notes the reserve request and is common for
838          * all back ends. The subsequent localised _begin() call actually
839          * ensures that the reservation is available. Without the begin, if
840          * the request creator immediately submitted the request without
841          * adding any commands to it then there might not actually be
842          * sufficient room for the submission commands.
843          */
844         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
845
846         return intel_logical_ring_begin(request, 0);
847 }
848
849 /**
850  * execlists_submission() - submit a batchbuffer for execution, Execlists style
851  * @dev: DRM device.
852  * @file: DRM file.
853  * @ring: Engine Command Streamer to submit to.
854  * @ctx: Context to employ for this submission.
855  * @args: execbuffer call arguments.
856  * @vmas: list of vmas.
857  * @batch_obj: the batchbuffer to submit.
858  * @exec_start: batchbuffer start virtual address pointer.
859  * @dispatch_flags: translated execbuffer call flags.
860  *
861  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
862  * away the submission details of the execbuffer ioctl call.
863  *
864  * Return: non-zero if the submission fails.
865  */
866 int intel_execlists_submission(struct i915_execbuffer_params *params,
867                                struct drm_i915_gem_execbuffer2 *args,
868                                struct list_head *vmas)
869 {
870         struct drm_device       *dev = params->dev;
871         struct intel_engine_cs  *ring = params->ring;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
874         u64 exec_start;
875         int instp_mode;
876         u32 instp_mask;
877         int ret;
878
879         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880         instp_mask = I915_EXEC_CONSTANTS_MASK;
881         switch (instp_mode) {
882         case I915_EXEC_CONSTANTS_REL_GENERAL:
883         case I915_EXEC_CONSTANTS_ABSOLUTE:
884         case I915_EXEC_CONSTANTS_REL_SURFACE:
885                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887                         return -EINVAL;
888                 }
889
890                 if (instp_mode != dev_priv->relative_constants_mode) {
891                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893                                 return -EINVAL;
894                         }
895
896                         /* The HW changed the meaning on this bit on gen6 */
897                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898                 }
899                 break;
900         default:
901                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902                 return -EINVAL;
903         }
904
905         if (args->num_cliprects != 0) {
906                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
907                 return -EINVAL;
908         } else {
909                 if (args->DR4 == 0xffffffff) {
910                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
911                         args->DR4 = 0;
912                 }
913
914                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
915                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
916                         return -EINVAL;
917                 }
918         }
919
920         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
921                 DRM_DEBUG("sol reset is gen7 only\n");
922                 return -EINVAL;
923         }
924
925         ret = execlists_move_to_gpu(params->request, vmas);
926         if (ret)
927                 return ret;
928
929         if (ring == &dev_priv->ring[RCS] &&
930             instp_mode != dev_priv->relative_constants_mode) {
931                 ret = intel_logical_ring_begin(params->request, 4);
932                 if (ret)
933                         return ret;
934
935                 intel_logical_ring_emit(ringbuf, MI_NOOP);
936                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
937                 intel_logical_ring_emit(ringbuf, INSTPM);
938                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
939                 intel_logical_ring_advance(ringbuf);
940
941                 dev_priv->relative_constants_mode = instp_mode;
942         }
943
944         exec_start = params->batch_obj_vm_offset +
945                      args->batch_start_offset;
946
947         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
948         if (ret)
949                 return ret;
950
951         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
952
953         i915_gem_execbuffer_move_to_active(vmas, params->request);
954         i915_gem_execbuffer_retire_commands(params);
955
956         return 0;
957 }
958
959 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
960 {
961         struct drm_i915_gem_request *req, *tmp;
962         struct list_head retired_list;
963
964         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965         if (list_empty(&ring->execlist_retired_req_list))
966                 return;
967
968         INIT_LIST_HEAD(&retired_list);
969         spin_lock_irq(&ring->execlist_lock);
970         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
971         spin_unlock_irq(&ring->execlist_lock);
972
973         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
974                 struct intel_context *ctx = req->ctx;
975                 struct drm_i915_gem_object *ctx_obj =
976                                 ctx->engine[ring->id].state;
977
978                 if (ctx_obj && (ctx != ring->default_context))
979                         intel_lr_context_unpin(req);
980                 list_del(&req->execlist_link);
981                 i915_gem_request_unreference(req);
982         }
983 }
984
985 void intel_logical_ring_stop(struct intel_engine_cs *ring)
986 {
987         struct drm_i915_private *dev_priv = ring->dev->dev_private;
988         int ret;
989
990         if (!intel_ring_initialized(ring))
991                 return;
992
993         ret = intel_ring_idle(ring);
994         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
995                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
996                           ring->name, ret);
997
998         /* TODO: Is this correct with Execlists enabled? */
999         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1000         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1001                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1002                 return;
1003         }
1004         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1005 }
1006
1007 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1008 {
1009         struct intel_engine_cs *ring = req->ring;
1010         int ret;
1011
1012         if (!ring->gpu_caches_dirty)
1013                 return 0;
1014
1015         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1016         if (ret)
1017                 return ret;
1018
1019         ring->gpu_caches_dirty = false;
1020         return 0;
1021 }
1022
1023 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1024                 struct drm_i915_gem_object *ctx_obj,
1025                 struct intel_ringbuffer *ringbuf)
1026 {
1027         struct drm_device *dev = ring->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         int ret = 0;
1030
1031         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1032         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1033                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1034         if (ret)
1035                 return ret;
1036
1037         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1038         if (ret)
1039                 goto unpin_ctx_obj;
1040
1041         ctx_obj->dirty = true;
1042
1043         /* Invalidate GuC TLB. */
1044         if (i915.enable_guc_submission)
1045                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1046
1047         return ret;
1048
1049 unpin_ctx_obj:
1050         i915_gem_object_ggtt_unpin(ctx_obj);
1051
1052         return ret;
1053 }
1054
1055 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1056 {
1057         int ret = 0;
1058         struct intel_engine_cs *ring = rq->ring;
1059         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1060         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1061
1062         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1063                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1064                 if (ret)
1065                         goto reset_pin_count;
1066         }
1067         return ret;
1068
1069 reset_pin_count:
1070         rq->ctx->engine[ring->id].pin_count = 0;
1071         return ret;
1072 }
1073
1074 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1075 {
1076         struct intel_engine_cs *ring = rq->ring;
1077         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1078         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1079
1080         if (ctx_obj) {
1081                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1082                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1083                         intel_unpin_ringbuffer_obj(ringbuf);
1084                         i915_gem_object_ggtt_unpin(ctx_obj);
1085                 }
1086         }
1087 }
1088
1089 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1090 {
1091         int ret, i;
1092         struct intel_engine_cs *ring = req->ring;
1093         struct intel_ringbuffer *ringbuf = req->ringbuf;
1094         struct drm_device *dev = ring->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         struct i915_workarounds *w = &dev_priv->workarounds;
1097
1098         if (WARN_ON_ONCE(w->count == 0))
1099                 return 0;
1100
1101         ring->gpu_caches_dirty = true;
1102         ret = logical_ring_flush_all_caches(req);
1103         if (ret)
1104                 return ret;
1105
1106         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1107         if (ret)
1108                 return ret;
1109
1110         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1111         for (i = 0; i < w->count; i++) {
1112                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1113                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1114         }
1115         intel_logical_ring_emit(ringbuf, MI_NOOP);
1116
1117         intel_logical_ring_advance(ringbuf);
1118
1119         ring->gpu_caches_dirty = true;
1120         ret = logical_ring_flush_all_caches(req);
1121         if (ret)
1122                 return ret;
1123
1124         return 0;
1125 }
1126
1127 #define wa_ctx_emit(batch, index, cmd)                                  \
1128         do {                                                            \
1129                 int __index = (index)++;                                \
1130                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1131                         return -ENOSPC;                                 \
1132                 }                                                       \
1133                 batch[__index] = (cmd);                                 \
1134         } while (0)
1135
1136
1137 /*
1138  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1139  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1140  * but there is a slight complication as this is applied in WA batch where the
1141  * values are only initialized once so we cannot take register value at the
1142  * beginning and reuse it further; hence we save its value to memory, upload a
1143  * constant value with bit21 set and then we restore it back with the saved value.
1144  * To simplify the WA, a constant value is formed by using the default value
1145  * of this register. This shouldn't be a problem because we are only modifying
1146  * it for a short period and this batch in non-premptible. We can ofcourse
1147  * use additional instructions that read the actual value of the register
1148  * at that time and set our bit of interest but it makes the WA complicated.
1149  *
1150  * This WA is also required for Gen9 so extracting as a function avoids
1151  * code duplication.
1152  */
1153 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1154                                                 uint32_t *const batch,
1155                                                 uint32_t index)
1156 {
1157         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1158
1159         /*
1160          * WaDisableLSQCROPERFforOCL:skl
1161          * This WA is implemented in skl_init_clock_gating() but since
1162          * this batch updates GEN8_L3SQCREG4 with default value we need to
1163          * set this bit here to retain the WA during flush.
1164          */
1165         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1166                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1167
1168         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1169                                    MI_SRM_LRM_GLOBAL_GTT));
1170         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1171         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1172         wa_ctx_emit(batch, index, 0);
1173
1174         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1175         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1176         wa_ctx_emit(batch, index, l3sqc4_flush);
1177
1178         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1179         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1180                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1181         wa_ctx_emit(batch, index, 0);
1182         wa_ctx_emit(batch, index, 0);
1183         wa_ctx_emit(batch, index, 0);
1184         wa_ctx_emit(batch, index, 0);
1185
1186         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1187                                    MI_SRM_LRM_GLOBAL_GTT));
1188         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1189         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1190         wa_ctx_emit(batch, index, 0);
1191
1192         return index;
1193 }
1194
1195 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1196                                     uint32_t offset,
1197                                     uint32_t start_alignment)
1198 {
1199         return wa_ctx->offset = ALIGN(offset, start_alignment);
1200 }
1201
1202 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1203                              uint32_t offset,
1204                              uint32_t size_alignment)
1205 {
1206         wa_ctx->size = offset - wa_ctx->offset;
1207
1208         WARN(wa_ctx->size % size_alignment,
1209              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1210              wa_ctx->size, size_alignment);
1211         return 0;
1212 }
1213
1214 /**
1215  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1216  *
1217  * @ring: only applicable for RCS
1218  * @wa_ctx: structure representing wa_ctx
1219  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1220  *    with the offset value received as input.
1221  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1222  * @batch: page in which WA are loaded
1223  * @offset: This field specifies the start of the batch, it should be
1224  *  cache-aligned otherwise it is adjusted accordingly.
1225  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1226  *  initialized at the beginning and shared across all contexts but this field
1227  *  helps us to have multiple batches at different offsets and select them based
1228  *  on a criteria. At the moment this batch always start at the beginning of the page
1229  *  and at this point we don't have multiple wa_ctx batch buffers.
1230  *
1231  *  The number of WA applied are not known at the beginning; we use this field
1232  *  to return the no of DWORDS written.
1233  *
1234  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1235  *  so it adds NOOPs as padding to make it cacheline aligned.
1236  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1237  *  makes a complete batch buffer.
1238  *
1239  * Return: non-zero if we exceed the PAGE_SIZE limit.
1240  */
1241
1242 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1243                                     struct i915_wa_ctx_bb *wa_ctx,
1244                                     uint32_t *const batch,
1245                                     uint32_t *offset)
1246 {
1247         uint32_t scratch_addr;
1248         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1249
1250         /* WaDisableCtxRestoreArbitration:bdw,chv */
1251         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1252
1253         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1254         if (IS_BROADWELL(ring->dev)) {
1255                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1256                 if (rc < 0)
1257                         return rc;
1258                 index = rc;
1259         }
1260
1261         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1262         /* Actual scratch location is at 128 bytes offset */
1263         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1264
1265         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1267                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1268                                    PIPE_CONTROL_CS_STALL |
1269                                    PIPE_CONTROL_QW_WRITE));
1270         wa_ctx_emit(batch, index, scratch_addr);
1271         wa_ctx_emit(batch, index, 0);
1272         wa_ctx_emit(batch, index, 0);
1273         wa_ctx_emit(batch, index, 0);
1274
1275         /* Pad to end of cacheline */
1276         while (index % CACHELINE_DWORDS)
1277                 wa_ctx_emit(batch, index, MI_NOOP);
1278
1279         /*
1280          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1281          * execution depends on the length specified in terms of cache lines
1282          * in the register CTX_RCS_INDIRECT_CTX
1283          */
1284
1285         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1286 }
1287
1288 /**
1289  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1290  *
1291  * @ring: only applicable for RCS
1292  * @wa_ctx: structure representing wa_ctx
1293  *  offset: specifies start of the batch, should be cache-aligned.
1294  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1295  * @batch: page in which WA are loaded
1296  * @offset: This field specifies the start of this batch.
1297  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1298  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1299  *
1300  *   The number of DWORDS written are returned using this field.
1301  *
1302  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1303  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1304  */
1305 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1306                                struct i915_wa_ctx_bb *wa_ctx,
1307                                uint32_t *const batch,
1308                                uint32_t *offset)
1309 {
1310         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1311
1312         /* WaDisableCtxRestoreArbitration:bdw,chv */
1313         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1314
1315         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1316
1317         return wa_ctx_end(wa_ctx, *offset = index, 1);
1318 }
1319
1320 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1321                                     struct i915_wa_ctx_bb *wa_ctx,
1322                                     uint32_t *const batch,
1323                                     uint32_t *offset)
1324 {
1325         int ret;
1326         struct drm_device *dev = ring->dev;
1327         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1328
1329         /* WaDisableCtxRestoreArbitration:skl,bxt */
1330         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1331             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1332                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1333
1334         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1335         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1336         if (ret < 0)
1337                 return ret;
1338         index = ret;
1339
1340         /* Pad to end of cacheline */
1341         while (index % CACHELINE_DWORDS)
1342                 wa_ctx_emit(batch, index, MI_NOOP);
1343
1344         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1345 }
1346
1347 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1348                                struct i915_wa_ctx_bb *wa_ctx,
1349                                uint32_t *const batch,
1350                                uint32_t *offset)
1351 {
1352         struct drm_device *dev = ring->dev;
1353         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1354
1355         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1356         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1357             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1358                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1359                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1360                 wa_ctx_emit(batch, index,
1361                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1362                 wa_ctx_emit(batch, index, MI_NOOP);
1363         }
1364
1365         /* WaDisableCtxRestoreArbitration:skl,bxt */
1366         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1367             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1368                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1369
1370         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1371
1372         return wa_ctx_end(wa_ctx, *offset = index, 1);
1373 }
1374
1375 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1376 {
1377         int ret;
1378
1379         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1380         if (!ring->wa_ctx.obj) {
1381                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1382                 return -ENOMEM;
1383         }
1384
1385         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1386         if (ret) {
1387                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1388                                  ret);
1389                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1390                 return ret;
1391         }
1392
1393         return 0;
1394 }
1395
1396 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1397 {
1398         if (ring->wa_ctx.obj) {
1399                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1400                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1401                 ring->wa_ctx.obj = NULL;
1402         }
1403 }
1404
1405 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1406 {
1407         int ret;
1408         uint32_t *batch;
1409         uint32_t offset;
1410         struct page *page;
1411         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1412
1413         WARN_ON(ring->id != RCS);
1414
1415         /* update this when WA for higher Gen are added */
1416         if (INTEL_INFO(ring->dev)->gen > 9) {
1417                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1418                           INTEL_INFO(ring->dev)->gen);
1419                 return 0;
1420         }
1421
1422         /* some WA perform writes to scratch page, ensure it is valid */
1423         if (ring->scratch.obj == NULL) {
1424                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1425                 return -EINVAL;
1426         }
1427
1428         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1429         if (ret) {
1430                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1431                 return ret;
1432         }
1433
1434         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1435         batch = kmap_atomic(page);
1436         offset = 0;
1437
1438         if (INTEL_INFO(ring->dev)->gen == 8) {
1439                 ret = gen8_init_indirectctx_bb(ring,
1440                                                &wa_ctx->indirect_ctx,
1441                                                batch,
1442                                                &offset);
1443                 if (ret)
1444                         goto out;
1445
1446                 ret = gen8_init_perctx_bb(ring,
1447                                           &wa_ctx->per_ctx,
1448                                           batch,
1449                                           &offset);
1450                 if (ret)
1451                         goto out;
1452         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1453                 ret = gen9_init_indirectctx_bb(ring,
1454                                                &wa_ctx->indirect_ctx,
1455                                                batch,
1456                                                &offset);
1457                 if (ret)
1458                         goto out;
1459
1460                 ret = gen9_init_perctx_bb(ring,
1461                                           &wa_ctx->per_ctx,
1462                                           batch,
1463                                           &offset);
1464                 if (ret)
1465                         goto out;
1466         }
1467
1468 out:
1469         kunmap_atomic(batch);
1470         if (ret)
1471                 lrc_destroy_wa_ctx_obj(ring);
1472
1473         return ret;
1474 }
1475
1476 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1477 {
1478         struct drm_device *dev = ring->dev;
1479         struct drm_i915_private *dev_priv = dev->dev_private;
1480
1481         lrc_setup_hardware_status_page(ring,
1482                                 ring->default_context->engine[ring->id].state);
1483
1484         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1485         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1486
1487         if (ring->status_page.obj) {
1488                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1489                            (u32)ring->status_page.gfx_addr);
1490                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1491         }
1492
1493         I915_WRITE(RING_MODE_GEN7(ring),
1494                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1495                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1496         POSTING_READ(RING_MODE_GEN7(ring));
1497         ring->next_context_status_buffer = 0;
1498         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1499
1500         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1501
1502         return 0;
1503 }
1504
1505 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1506 {
1507         struct drm_device *dev = ring->dev;
1508         struct drm_i915_private *dev_priv = dev->dev_private;
1509         int ret;
1510
1511         ret = gen8_init_common_ring(ring);
1512         if (ret)
1513                 return ret;
1514
1515         /* We need to disable the AsyncFlip performance optimisations in order
1516          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1517          * programmed to '1' on all products.
1518          *
1519          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1520          */
1521         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1522
1523         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1524
1525         return init_workarounds_ring(ring);
1526 }
1527
1528 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1529 {
1530         int ret;
1531
1532         ret = gen8_init_common_ring(ring);
1533         if (ret)
1534                 return ret;
1535
1536         return init_workarounds_ring(ring);
1537 }
1538
1539 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1540 {
1541         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1542         struct intel_engine_cs *ring = req->ring;
1543         struct intel_ringbuffer *ringbuf = req->ringbuf;
1544         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1545         int i, ret;
1546
1547         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1548         if (ret)
1549                 return ret;
1550
1551         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1552         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1553                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1554
1555                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1556                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1557                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1558                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1559         }
1560
1561         intel_logical_ring_emit(ringbuf, MI_NOOP);
1562         intel_logical_ring_advance(ringbuf);
1563
1564         return 0;
1565 }
1566
1567 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1568                               u64 offset, unsigned dispatch_flags)
1569 {
1570         struct intel_ringbuffer *ringbuf = req->ringbuf;
1571         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1572         int ret;
1573
1574         /* Don't rely in hw updating PDPs, specially in lite-restore.
1575          * Ideally, we should set Force PD Restore in ctx descriptor,
1576          * but we can't. Force Restore would be a second option, but
1577          * it is unsafe in case of lite-restore (because the ctx is
1578          * not idle). PML4 is allocated during ppgtt init so this is
1579          * not needed in 48-bit.*/
1580         if (req->ctx->ppgtt &&
1581             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1582                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1583                     !intel_vgpu_active(req->i915->dev)) {
1584                         ret = intel_logical_ring_emit_pdps(req);
1585                         if (ret)
1586                                 return ret;
1587                 }
1588
1589                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1590         }
1591
1592         ret = intel_logical_ring_begin(req, 4);
1593         if (ret)
1594                 return ret;
1595
1596         /* FIXME(BDW): Address space and security selectors. */
1597         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1598                                 (ppgtt<<8) |
1599                                 (dispatch_flags & I915_DISPATCH_RS ?
1600                                  MI_BATCH_RESOURCE_STREAMER : 0));
1601         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1602         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1603         intel_logical_ring_emit(ringbuf, MI_NOOP);
1604         intel_logical_ring_advance(ringbuf);
1605
1606         return 0;
1607 }
1608
1609 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1610 {
1611         struct drm_device *dev = ring->dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         unsigned long flags;
1614
1615         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1616                 return false;
1617
1618         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1619         if (ring->irq_refcount++ == 0) {
1620                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1621                 POSTING_READ(RING_IMR(ring->mmio_base));
1622         }
1623         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1624
1625         return true;
1626 }
1627
1628 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1629 {
1630         struct drm_device *dev = ring->dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         unsigned long flags;
1633
1634         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1635         if (--ring->irq_refcount == 0) {
1636                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1637                 POSTING_READ(RING_IMR(ring->mmio_base));
1638         }
1639         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1640 }
1641
1642 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1643                            u32 invalidate_domains,
1644                            u32 unused)
1645 {
1646         struct intel_ringbuffer *ringbuf = request->ringbuf;
1647         struct intel_engine_cs *ring = ringbuf->ring;
1648         struct drm_device *dev = ring->dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650         uint32_t cmd;
1651         int ret;
1652
1653         ret = intel_logical_ring_begin(request, 4);
1654         if (ret)
1655                 return ret;
1656
1657         cmd = MI_FLUSH_DW + 1;
1658
1659         /* We always require a command barrier so that subsequent
1660          * commands, such as breadcrumb interrupts, are strictly ordered
1661          * wrt the contents of the write cache being flushed to memory
1662          * (and thus being coherent from the CPU).
1663          */
1664         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1665
1666         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1667                 cmd |= MI_INVALIDATE_TLB;
1668                 if (ring == &dev_priv->ring[VCS])
1669                         cmd |= MI_INVALIDATE_BSD;
1670         }
1671
1672         intel_logical_ring_emit(ringbuf, cmd);
1673         intel_logical_ring_emit(ringbuf,
1674                                 I915_GEM_HWS_SCRATCH_ADDR |
1675                                 MI_FLUSH_DW_USE_GTT);
1676         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1677         intel_logical_ring_emit(ringbuf, 0); /* value */
1678         intel_logical_ring_advance(ringbuf);
1679
1680         return 0;
1681 }
1682
1683 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1684                                   u32 invalidate_domains,
1685                                   u32 flush_domains)
1686 {
1687         struct intel_ringbuffer *ringbuf = request->ringbuf;
1688         struct intel_engine_cs *ring = ringbuf->ring;
1689         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1690         bool vf_flush_wa;
1691         u32 flags = 0;
1692         int ret;
1693
1694         flags |= PIPE_CONTROL_CS_STALL;
1695
1696         if (flush_domains) {
1697                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1698                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1699         }
1700
1701         if (invalidate_domains) {
1702                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1703                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1704                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1705                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1706                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1707                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1708                 flags |= PIPE_CONTROL_QW_WRITE;
1709                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1710         }
1711
1712         /*
1713          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1714          * control.
1715          */
1716         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1717                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1718
1719         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1720         if (ret)
1721                 return ret;
1722
1723         if (vf_flush_wa) {
1724                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1725                 intel_logical_ring_emit(ringbuf, 0);
1726                 intel_logical_ring_emit(ringbuf, 0);
1727                 intel_logical_ring_emit(ringbuf, 0);
1728                 intel_logical_ring_emit(ringbuf, 0);
1729                 intel_logical_ring_emit(ringbuf, 0);
1730         }
1731
1732         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1733         intel_logical_ring_emit(ringbuf, flags);
1734         intel_logical_ring_emit(ringbuf, scratch_addr);
1735         intel_logical_ring_emit(ringbuf, 0);
1736         intel_logical_ring_emit(ringbuf, 0);
1737         intel_logical_ring_emit(ringbuf, 0);
1738         intel_logical_ring_advance(ringbuf);
1739
1740         return 0;
1741 }
1742
1743 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1744 {
1745         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1746 }
1747
1748 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1749 {
1750         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1751 }
1752
1753 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1754 {
1755
1756         /*
1757          * On BXT A steppings there is a HW coherency issue whereby the
1758          * MI_STORE_DATA_IMM storing the completed request's seqno
1759          * occasionally doesn't invalidate the CPU cache. Work around this by
1760          * clflushing the corresponding cacheline whenever the caller wants
1761          * the coherency to be guaranteed. Note that this cacheline is known
1762          * to be clean at this point, since we only write it in
1763          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1764          * this clflush in practice becomes an invalidate operation.
1765          */
1766
1767         if (!lazy_coherency)
1768                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1769
1770         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1771 }
1772
1773 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1774 {
1775         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1776
1777         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1778         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1779 }
1780
1781 static int gen8_emit_request(struct drm_i915_gem_request *request)
1782 {
1783         struct intel_ringbuffer *ringbuf = request->ringbuf;
1784         struct intel_engine_cs *ring = ringbuf->ring;
1785         u32 cmd;
1786         int ret;
1787
1788         /*
1789          * Reserve space for 2 NOOPs at the end of each request to be
1790          * used as a workaround for not being allowed to do lite
1791          * restore with HEAD==TAIL (WaIdleLiteRestore).
1792          */
1793         ret = intel_logical_ring_begin(request, 8);
1794         if (ret)
1795                 return ret;
1796
1797         cmd = MI_STORE_DWORD_IMM_GEN4;
1798         cmd |= MI_GLOBAL_GTT;
1799
1800         intel_logical_ring_emit(ringbuf, cmd);
1801         intel_logical_ring_emit(ringbuf,
1802                                 (ring->status_page.gfx_addr +
1803                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1804         intel_logical_ring_emit(ringbuf, 0);
1805         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1806         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1807         intel_logical_ring_emit(ringbuf, MI_NOOP);
1808         intel_logical_ring_advance_and_submit(request);
1809
1810         /*
1811          * Here we add two extra NOOPs as padding to avoid
1812          * lite restore of a context with HEAD==TAIL.
1813          */
1814         intel_logical_ring_emit(ringbuf, MI_NOOP);
1815         intel_logical_ring_emit(ringbuf, MI_NOOP);
1816         intel_logical_ring_advance(ringbuf);
1817
1818         return 0;
1819 }
1820
1821 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1822 {
1823         struct render_state so;
1824         int ret;
1825
1826         ret = i915_gem_render_state_prepare(req->ring, &so);
1827         if (ret)
1828                 return ret;
1829
1830         if (so.rodata == NULL)
1831                 return 0;
1832
1833         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1834                                        I915_DISPATCH_SECURE);
1835         if (ret)
1836                 goto out;
1837
1838         ret = req->ring->emit_bb_start(req,
1839                                        (so.ggtt_offset + so.aux_batch_offset),
1840                                        I915_DISPATCH_SECURE);
1841         if (ret)
1842                 goto out;
1843
1844         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1845
1846 out:
1847         i915_gem_render_state_fini(&so);
1848         return ret;
1849 }
1850
1851 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1852 {
1853         int ret;
1854
1855         ret = intel_logical_ring_workarounds_emit(req);
1856         if (ret)
1857                 return ret;
1858
1859         ret = intel_rcs_context_init_mocs(req);
1860         /*
1861          * Failing to program the MOCS is non-fatal.The system will not
1862          * run at peak performance. So generate an error and carry on.
1863          */
1864         if (ret)
1865                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1866
1867         return intel_lr_context_render_state_init(req);
1868 }
1869
1870 /**
1871  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1872  *
1873  * @ring: Engine Command Streamer.
1874  *
1875  */
1876 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1877 {
1878         struct drm_i915_private *dev_priv;
1879
1880         if (!intel_ring_initialized(ring))
1881                 return;
1882
1883         dev_priv = ring->dev->dev_private;
1884
1885         intel_logical_ring_stop(ring);
1886         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1887
1888         if (ring->cleanup)
1889                 ring->cleanup(ring);
1890
1891         i915_cmd_parser_fini_ring(ring);
1892         i915_gem_batch_pool_fini(&ring->batch_pool);
1893
1894         if (ring->status_page.obj) {
1895                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1896                 ring->status_page.obj = NULL;
1897         }
1898
1899         lrc_destroy_wa_ctx_obj(ring);
1900 }
1901
1902 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1903 {
1904         int ret;
1905
1906         /* Intentionally left blank. */
1907         ring->buffer = NULL;
1908
1909         ring->dev = dev;
1910         INIT_LIST_HEAD(&ring->active_list);
1911         INIT_LIST_HEAD(&ring->request_list);
1912         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1913         init_waitqueue_head(&ring->irq_queue);
1914
1915         INIT_LIST_HEAD(&ring->execlist_queue);
1916         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1917         spin_lock_init(&ring->execlist_lock);
1918
1919         ret = i915_cmd_parser_init_ring(ring);
1920         if (ret)
1921                 return ret;
1922
1923         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1924         if (ret)
1925                 return ret;
1926
1927         /* As this is the default context, always pin it */
1928         ret = intel_lr_context_do_pin(
1929                         ring,
1930                         ring->default_context->engine[ring->id].state,
1931                         ring->default_context->engine[ring->id].ringbuf);
1932         if (ret) {
1933                 DRM_ERROR(
1934                         "Failed to pin and map ringbuffer %s: %d\n",
1935                         ring->name, ret);
1936                 return ret;
1937         }
1938
1939         return ret;
1940 }
1941
1942 static int logical_render_ring_init(struct drm_device *dev)
1943 {
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1946         int ret;
1947
1948         ring->name = "render ring";
1949         ring->id = RCS;
1950         ring->mmio_base = RENDER_RING_BASE;
1951         ring->irq_enable_mask =
1952                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1953         ring->irq_keep_mask =
1954                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1955         if (HAS_L3_DPF(dev))
1956                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1957
1958         if (INTEL_INFO(dev)->gen >= 9)
1959                 ring->init_hw = gen9_init_render_ring;
1960         else
1961                 ring->init_hw = gen8_init_render_ring;
1962         ring->init_context = gen8_init_rcs_context;
1963         ring->cleanup = intel_fini_pipe_control;
1964         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1965                 ring->get_seqno = bxt_a_get_seqno;
1966                 ring->set_seqno = bxt_a_set_seqno;
1967         } else {
1968                 ring->get_seqno = gen8_get_seqno;
1969                 ring->set_seqno = gen8_set_seqno;
1970         }
1971         ring->emit_request = gen8_emit_request;
1972         ring->emit_flush = gen8_emit_flush_render;
1973         ring->irq_get = gen8_logical_ring_get_irq;
1974         ring->irq_put = gen8_logical_ring_put_irq;
1975         ring->emit_bb_start = gen8_emit_bb_start;
1976
1977         ring->dev = dev;
1978
1979         ret = intel_init_pipe_control(ring);
1980         if (ret)
1981                 return ret;
1982
1983         ret = intel_init_workaround_bb(ring);
1984         if (ret) {
1985                 /*
1986                  * We continue even if we fail to initialize WA batch
1987                  * because we only expect rare glitches but nothing
1988                  * critical to prevent us from using GPU
1989                  */
1990                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1991                           ret);
1992         }
1993
1994         ret = logical_ring_init(dev, ring);
1995         if (ret) {
1996                 lrc_destroy_wa_ctx_obj(ring);
1997         }
1998
1999         return ret;
2000 }
2001
2002 static int logical_bsd_ring_init(struct drm_device *dev)
2003 {
2004         struct drm_i915_private *dev_priv = dev->dev_private;
2005         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2006
2007         ring->name = "bsd ring";
2008         ring->id = VCS;
2009         ring->mmio_base = GEN6_BSD_RING_BASE;
2010         ring->irq_enable_mask =
2011                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2012         ring->irq_keep_mask =
2013                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2014
2015         ring->init_hw = gen8_init_common_ring;
2016         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2017                 ring->get_seqno = bxt_a_get_seqno;
2018                 ring->set_seqno = bxt_a_set_seqno;
2019         } else {
2020                 ring->get_seqno = gen8_get_seqno;
2021                 ring->set_seqno = gen8_set_seqno;
2022         }
2023         ring->emit_request = gen8_emit_request;
2024         ring->emit_flush = gen8_emit_flush;
2025         ring->irq_get = gen8_logical_ring_get_irq;
2026         ring->irq_put = gen8_logical_ring_put_irq;
2027         ring->emit_bb_start = gen8_emit_bb_start;
2028
2029         return logical_ring_init(dev, ring);
2030 }
2031
2032 static int logical_bsd2_ring_init(struct drm_device *dev)
2033 {
2034         struct drm_i915_private *dev_priv = dev->dev_private;
2035         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2036
2037         ring->name = "bds2 ring";
2038         ring->id = VCS2;
2039         ring->mmio_base = GEN8_BSD2_RING_BASE;
2040         ring->irq_enable_mask =
2041                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2042         ring->irq_keep_mask =
2043                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2044
2045         ring->init_hw = gen8_init_common_ring;
2046         ring->get_seqno = gen8_get_seqno;
2047         ring->set_seqno = gen8_set_seqno;
2048         ring->emit_request = gen8_emit_request;
2049         ring->emit_flush = gen8_emit_flush;
2050         ring->irq_get = gen8_logical_ring_get_irq;
2051         ring->irq_put = gen8_logical_ring_put_irq;
2052         ring->emit_bb_start = gen8_emit_bb_start;
2053
2054         return logical_ring_init(dev, ring);
2055 }
2056
2057 static int logical_blt_ring_init(struct drm_device *dev)
2058 {
2059         struct drm_i915_private *dev_priv = dev->dev_private;
2060         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2061
2062         ring->name = "blitter ring";
2063         ring->id = BCS;
2064         ring->mmio_base = BLT_RING_BASE;
2065         ring->irq_enable_mask =
2066                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2067         ring->irq_keep_mask =
2068                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2069
2070         ring->init_hw = gen8_init_common_ring;
2071         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2072                 ring->get_seqno = bxt_a_get_seqno;
2073                 ring->set_seqno = bxt_a_set_seqno;
2074         } else {
2075                 ring->get_seqno = gen8_get_seqno;
2076                 ring->set_seqno = gen8_set_seqno;
2077         }
2078         ring->emit_request = gen8_emit_request;
2079         ring->emit_flush = gen8_emit_flush;
2080         ring->irq_get = gen8_logical_ring_get_irq;
2081         ring->irq_put = gen8_logical_ring_put_irq;
2082         ring->emit_bb_start = gen8_emit_bb_start;
2083
2084         return logical_ring_init(dev, ring);
2085 }
2086
2087 static int logical_vebox_ring_init(struct drm_device *dev)
2088 {
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2091
2092         ring->name = "video enhancement ring";
2093         ring->id = VECS;
2094         ring->mmio_base = VEBOX_RING_BASE;
2095         ring->irq_enable_mask =
2096                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2097         ring->irq_keep_mask =
2098                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2099
2100         ring->init_hw = gen8_init_common_ring;
2101         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2102                 ring->get_seqno = bxt_a_get_seqno;
2103                 ring->set_seqno = bxt_a_set_seqno;
2104         } else {
2105                 ring->get_seqno = gen8_get_seqno;
2106                 ring->set_seqno = gen8_set_seqno;
2107         }
2108         ring->emit_request = gen8_emit_request;
2109         ring->emit_flush = gen8_emit_flush;
2110         ring->irq_get = gen8_logical_ring_get_irq;
2111         ring->irq_put = gen8_logical_ring_put_irq;
2112         ring->emit_bb_start = gen8_emit_bb_start;
2113
2114         return logical_ring_init(dev, ring);
2115 }
2116
2117 /**
2118  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2119  * @dev: DRM device.
2120  *
2121  * This function inits the engines for an Execlists submission style (the equivalent in the
2122  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2123  * those engines that are present in the hardware.
2124  *
2125  * Return: non-zero if the initialization failed.
2126  */
2127 int intel_logical_rings_init(struct drm_device *dev)
2128 {
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130         int ret;
2131
2132         ret = logical_render_ring_init(dev);
2133         if (ret)
2134                 return ret;
2135
2136         if (HAS_BSD(dev)) {
2137                 ret = logical_bsd_ring_init(dev);
2138                 if (ret)
2139                         goto cleanup_render_ring;
2140         }
2141
2142         if (HAS_BLT(dev)) {
2143                 ret = logical_blt_ring_init(dev);
2144                 if (ret)
2145                         goto cleanup_bsd_ring;
2146         }
2147
2148         if (HAS_VEBOX(dev)) {
2149                 ret = logical_vebox_ring_init(dev);
2150                 if (ret)
2151                         goto cleanup_blt_ring;
2152         }
2153
2154         if (HAS_BSD2(dev)) {
2155                 ret = logical_bsd2_ring_init(dev);
2156                 if (ret)
2157                         goto cleanup_vebox_ring;
2158         }
2159
2160         return 0;
2161
2162 cleanup_vebox_ring:
2163         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2164 cleanup_blt_ring:
2165         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2166 cleanup_bsd_ring:
2167         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2168 cleanup_render_ring:
2169         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2170
2171         return ret;
2172 }
2173
2174 static u32
2175 make_rpcs(struct drm_device *dev)
2176 {
2177         u32 rpcs = 0;
2178
2179         /*
2180          * No explicit RPCS request is needed to ensure full
2181          * slice/subslice/EU enablement prior to Gen9.
2182         */
2183         if (INTEL_INFO(dev)->gen < 9)
2184                 return 0;
2185
2186         /*
2187          * Starting in Gen9, render power gating can leave
2188          * slice/subslice/EU in a partially enabled state. We
2189          * must make an explicit request through RPCS for full
2190          * enablement.
2191         */
2192         if (INTEL_INFO(dev)->has_slice_pg) {
2193                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2194                 rpcs |= INTEL_INFO(dev)->slice_total <<
2195                         GEN8_RPCS_S_CNT_SHIFT;
2196                 rpcs |= GEN8_RPCS_ENABLE;
2197         }
2198
2199         if (INTEL_INFO(dev)->has_subslice_pg) {
2200                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2201                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2202                         GEN8_RPCS_SS_CNT_SHIFT;
2203                 rpcs |= GEN8_RPCS_ENABLE;
2204         }
2205
2206         if (INTEL_INFO(dev)->has_eu_pg) {
2207                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2208                         GEN8_RPCS_EU_MIN_SHIFT;
2209                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2210                         GEN8_RPCS_EU_MAX_SHIFT;
2211                 rpcs |= GEN8_RPCS_ENABLE;
2212         }
2213
2214         return rpcs;
2215 }
2216
2217 static int
2218 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2219                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2220 {
2221         struct drm_device *dev = ring->dev;
2222         struct drm_i915_private *dev_priv = dev->dev_private;
2223         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2224         struct page *page;
2225         uint32_t *reg_state;
2226         int ret;
2227
2228         if (!ppgtt)
2229                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2230
2231         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2232         if (ret) {
2233                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2234                 return ret;
2235         }
2236
2237         ret = i915_gem_object_get_pages(ctx_obj);
2238         if (ret) {
2239                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2240                 return ret;
2241         }
2242
2243         i915_gem_object_pin_pages(ctx_obj);
2244
2245         /* The second page of the context object contains some fields which must
2246          * be set up prior to the first execution. */
2247         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2248         reg_state = kmap_atomic(page);
2249
2250         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2251          * commands followed by (reg, value) pairs. The values we are setting here are
2252          * only for the first context restore: on a subsequent save, the GPU will
2253          * recreate this batchbuffer with new values (including all the missing
2254          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2255         if (ring->id == RCS)
2256                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2257         else
2258                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2259         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2260         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2261         reg_state[CTX_CONTEXT_CONTROL+1] =
2262                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2263                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2264                                    CTX_CTRL_RS_CTX_ENABLE);
2265         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2266         reg_state[CTX_RING_HEAD+1] = 0;
2267         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2268         reg_state[CTX_RING_TAIL+1] = 0;
2269         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2270         /* Ring buffer start address is not known until the buffer is pinned.
2271          * It is written to the context image in execlists_update_context()
2272          */
2273         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2274         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2275                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2276         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2277         reg_state[CTX_BB_HEAD_U+1] = 0;
2278         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2279         reg_state[CTX_BB_HEAD_L+1] = 0;
2280         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2281         reg_state[CTX_BB_STATE+1] = (1<<5);
2282         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2283         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2284         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2285         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2286         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2287         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2288         if (ring->id == RCS) {
2289                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2290                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2291                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2292                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2293                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2294                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2295                 if (ring->wa_ctx.obj) {
2296                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2297                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2298
2299                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2300                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2301                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2302
2303                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2304                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2305
2306                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2307                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2308                                 0x01;
2309                 }
2310         }
2311         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2312         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2313         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2314         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2315         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2316         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2317         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2318         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2319         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2320         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2321         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2322         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2323
2324         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2325                 /* 64b PPGTT (48bit canonical)
2326                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2327                  * other PDP Descriptors are ignored.
2328                  */
2329                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2330         } else {
2331                 /* 32b PPGTT
2332                  * PDP*_DESCRIPTOR contains the base address of space supported.
2333                  * With dynamic page allocation, PDPs may not be allocated at
2334                  * this point. Point the unallocated PDPs to the scratch page
2335                  */
2336                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2337                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2338                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2339                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2340         }
2341
2342         if (ring->id == RCS) {
2343                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2344                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2345                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2346         }
2347
2348         kunmap_atomic(reg_state);
2349
2350         ctx_obj->dirty = 1;
2351         set_page_dirty(page);
2352         i915_gem_object_unpin_pages(ctx_obj);
2353
2354         return 0;
2355 }
2356
2357 /**
2358  * intel_lr_context_free() - free the LRC specific bits of a context
2359  * @ctx: the LR context to free.
2360  *
2361  * The real context freeing is done in i915_gem_context_free: this only
2362  * takes care of the bits that are LRC related: the per-engine backing
2363  * objects and the logical ringbuffer.
2364  */
2365 void intel_lr_context_free(struct intel_context *ctx)
2366 {
2367         int i;
2368
2369         for (i = 0; i < I915_NUM_RINGS; i++) {
2370                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2371
2372                 if (ctx_obj) {
2373                         struct intel_ringbuffer *ringbuf =
2374                                         ctx->engine[i].ringbuf;
2375                         struct intel_engine_cs *ring = ringbuf->ring;
2376
2377                         if (ctx == ring->default_context) {
2378                                 intel_unpin_ringbuffer_obj(ringbuf);
2379                                 i915_gem_object_ggtt_unpin(ctx_obj);
2380                         }
2381                         WARN_ON(ctx->engine[ring->id].pin_count);
2382                         intel_ringbuffer_free(ringbuf);
2383                         drm_gem_object_unreference(&ctx_obj->base);
2384                 }
2385         }
2386 }
2387
2388 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2389 {
2390         int ret = 0;
2391
2392         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2393
2394         switch (ring->id) {
2395         case RCS:
2396                 if (INTEL_INFO(ring->dev)->gen >= 9)
2397                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2398                 else
2399                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2400                 break;
2401         case VCS:
2402         case BCS:
2403         case VECS:
2404         case VCS2:
2405                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2406                 break;
2407         }
2408
2409         return ret;
2410 }
2411
2412 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2413                 struct drm_i915_gem_object *default_ctx_obj)
2414 {
2415         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2416         struct page *page;
2417
2418         /* The HWSP is part of the default context object in LRC mode. */
2419         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2420                         + LRC_PPHWSP_PN * PAGE_SIZE;
2421         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2422         ring->status_page.page_addr = kmap(page);
2423         ring->status_page.obj = default_ctx_obj;
2424
2425         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2426                         (u32)ring->status_page.gfx_addr);
2427         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2428 }
2429
2430 /**
2431  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2432  * @ctx: LR context to create.
2433  * @ring: engine to be used with the context.
2434  *
2435  * This function can be called more than once, with different engines, if we plan
2436  * to use the context with them. The context backing objects and the ringbuffers
2437  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2438  * the creation is a deferred call: it's better to make sure first that we need to use
2439  * a given ring with the context.
2440  *
2441  * Return: non-zero on error.
2442  */
2443
2444 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2445                                      struct intel_engine_cs *ring)
2446 {
2447         struct drm_device *dev = ring->dev;
2448         struct drm_i915_gem_object *ctx_obj;
2449         uint32_t context_size;
2450         struct intel_ringbuffer *ringbuf;
2451         int ret;
2452
2453         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2454         WARN_ON(ctx->engine[ring->id].state);
2455
2456         context_size = round_up(get_lr_context_size(ring), 4096);
2457
2458         /* One extra page as the sharing data between driver and GuC */
2459         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2460
2461         ctx_obj = i915_gem_alloc_object(dev, context_size);
2462         if (!ctx_obj) {
2463                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2464                 return -ENOMEM;
2465         }
2466
2467         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2468         if (IS_ERR(ringbuf)) {
2469                 ret = PTR_ERR(ringbuf);
2470                 goto error_deref_obj;
2471         }
2472
2473         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2474         if (ret) {
2475                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2476                 goto error_ringbuf;
2477         }
2478
2479         ctx->engine[ring->id].ringbuf = ringbuf;
2480         ctx->engine[ring->id].state = ctx_obj;
2481
2482         if (ctx != ring->default_context && ring->init_context) {
2483                 struct drm_i915_gem_request *req;
2484
2485                 ret = i915_gem_request_alloc(ring,
2486                         ctx, &req);
2487                 if (ret) {
2488                         DRM_ERROR("ring create req: %d\n",
2489                                 ret);
2490                         goto error_ringbuf;
2491                 }
2492
2493                 ret = ring->init_context(req);
2494                 if (ret) {
2495                         DRM_ERROR("ring init context: %d\n",
2496                                 ret);
2497                         i915_gem_request_cancel(req);
2498                         goto error_ringbuf;
2499                 }
2500                 i915_add_request_no_flush(req);
2501         }
2502         return 0;
2503
2504 error_ringbuf:
2505         intel_ringbuffer_free(ringbuf);
2506 error_deref_obj:
2507         drm_gem_object_unreference(&ctx_obj->base);
2508         ctx->engine[ring->id].ringbuf = NULL;
2509         ctx->engine[ring->id].state = NULL;
2510         return ret;
2511 }
2512
2513 void intel_lr_context_reset(struct drm_device *dev,
2514                         struct intel_context *ctx)
2515 {
2516         struct drm_i915_private *dev_priv = dev->dev_private;
2517         struct intel_engine_cs *ring;
2518         int i;
2519
2520         for_each_ring(ring, dev_priv, i) {
2521                 struct drm_i915_gem_object *ctx_obj =
2522                                 ctx->engine[ring->id].state;
2523                 struct intel_ringbuffer *ringbuf =
2524                                 ctx->engine[ring->id].ringbuf;
2525                 uint32_t *reg_state;
2526                 struct page *page;
2527
2528                 if (!ctx_obj)
2529                         continue;
2530
2531                 if (i915_gem_object_get_pages(ctx_obj)) {
2532                         WARN(1, "Failed get_pages for context obj\n");
2533                         continue;
2534                 }
2535                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2536                 reg_state = kmap_atomic(page);
2537
2538                 reg_state[CTX_RING_HEAD+1] = 0;
2539                 reg_state[CTX_RING_TAIL+1] = 0;
2540
2541                 kunmap_atomic(reg_state);
2542
2543                 ringbuf->head = 0;
2544                 ringbuf->tail = 0;
2545         }
2546 }