Merge tag 'drm-intel-fixes-2013-11-07' of git://people.freedesktop.org/~danvet/drm...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337  * Returns whether any output on the specified pipe is of the specified type
338  */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341         struct drm_device *dev = crtc->dev;
342         struct intel_encoder *encoder;
343
344         for_each_encoder_on_crtc(dev, crtc, encoder)
345                 if (encoder->type == type)
346                         return true;
347
348         return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352                                                 int refclk)
353 {
354         struct drm_device *dev = crtc->dev;
355         const intel_limit_t *limit;
356
357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358                 if (intel_is_dual_link_lvds(dev)) {
359                         if (refclk == 100000)
360                                 limit = &intel_limits_ironlake_dual_lvds_100m;
361                         else
362                                 limit = &intel_limits_ironlake_dual_lvds;
363                 } else {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_single_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_single_lvds;
368                 }
369         } else
370                 limit = &intel_limits_ironlake_dac;
371
372         return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377         struct drm_device *dev = crtc->dev;
378         const intel_limit_t *limit;
379
380         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381                 if (intel_is_dual_link_lvds(dev))
382                         limit = &intel_limits_g4x_dual_channel_lvds;
383                 else
384                         limit = &intel_limits_g4x_single_channel_lvds;
385         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387                 limit = &intel_limits_g4x_hdmi;
388         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389                 limit = &intel_limits_g4x_sdvo;
390         } else /* The option is for other outputs */
391                 limit = &intel_limits_i9xx_sdvo;
392
393         return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398         struct drm_device *dev = crtc->dev;
399         const intel_limit_t *limit;
400
401         if (HAS_PCH_SPLIT(dev))
402                 limit = intel_ironlake_limit(crtc, refclk);
403         else if (IS_G4X(dev)) {
404                 limit = intel_g4x_limit(crtc);
405         } else if (IS_PINEVIEW(dev)) {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_pineview_lvds;
408                 else
409                         limit = &intel_limits_pineview_sdvo;
410         } else if (IS_VALLEYVIEW(dev)) {
411                 limit = &intel_limits_vlv;
412         } else if (!IS_GEN2(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414                         limit = &intel_limits_i9xx_lvds;
415                 else
416                         limit = &intel_limits_i9xx_sdvo;
417         } else {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i8xx_lvds;
420                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421                         limit = &intel_limits_i8xx_dvo;
422                 else
423                         limit = &intel_limits_i8xx_dac;
424         }
425         return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431         clock->m = clock->m2 + 2;
432         clock->p = clock->p1 * clock->p2;
433         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = i9xx_dpll_compute_m(clock);
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452  * Returns whether the given set of divisors are valid for a given refclk with
453  * the given connectors.
454  */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457                                const intel_limit_t *limit,
458                                const intel_clock_t *clock)
459 {
460         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
461                 INTELPllInvalid("n out of range\n");
462         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
463                 INTELPllInvalid("p1 out of range\n");
464         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
465                 INTELPllInvalid("m2 out of range\n");
466         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
467                 INTELPllInvalid("m1 out of range\n");
468
469         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470                 if (clock->m1 <= clock->m2)
471                         INTELPllInvalid("m1 <= m2\n");
472
473         if (!IS_VALLEYVIEW(dev)) {
474                 if (clock->p < limit->p.min || limit->p.max < clock->p)
475                         INTELPllInvalid("p out of range\n");
476                 if (clock->m < limit->m.min || limit->m.max < clock->m)
477                         INTELPllInvalid("m out of range\n");
478         }
479
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         struct drm_device *dev = crtc->dev;
674         intel_clock_t clock;
675         unsigned int bestppm = 1000000;
676         /* min update 19.2 MHz */
677         int max_n = min(limit->n.max, refclk / 19200);
678         bool found = false;
679
680         target *= 5; /* fast clock */
681
682         memset(best_clock, 0, sizeof(*best_clock));
683
684         /* based on hardware requirement, prefer smaller n to precision */
685         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689                                 clock.p = clock.p1 * clock.p2;
690                                 /* based on hardware requirement, prefer bigger m1,m2 values */
691                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692                                         unsigned int ppm, diff;
693
694                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695                                                                      refclk * clock.m1);
696
697                                         vlv_clock(refclk, &clock);
698
699                                         if (!intel_PLL_is_valid(dev, limit,
700                                                                 &clock))
701                                                 continue;
702
703                                         diff = abs(clock.dot - target);
704                                         ppm = div_u64(1000000ULL * diff, target);
705
706                                         if (ppm < 100 && clock.p > best_clock->p) {
707                                                 bestppm = 0;
708                                                 *best_clock = clock;
709                                                 found = true;
710                                         }
711
712                                         if (bestppm >= 10 && ppm < bestppm - 10) {
713                                                 bestppm = ppm;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717                                 }
718                         }
719                 }
720         }
721
722         return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729         /* Be paranoid as we can arrive here with only partial
730          * state retrieved from the hardware during setup.
731          *
732          * We can ditch the adjusted_mode.crtc_clock check as soon
733          * as Haswell has gained clock readout/fastboot support.
734          *
735          * We can ditch the crtc->fb check as soon as we can
736          * properly reconstruct framebuffers.
737          */
738         return intel_crtc->active && crtc->fb &&
739                 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743                                              enum pipe pipe)
744 {
745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748         return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         u32 frame, frame_reg = PIPEFRAME(pipe);
755
756         frame = I915_READ(frame_reg);
757
758         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759                 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763  * intel_wait_for_vblank - wait for vblank on a given pipe
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * Wait for vblank to occur on a given pipe.  Needed for various bits of
768  * mode setting code.
769  */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         int pipestat_reg = PIPESTAT(pipe);
774
775         if (INTEL_INFO(dev)->gen >= 5) {
776                 ironlake_wait_for_vblank(dev, pipe);
777                 return;
778         }
779
780         /* Clear existing vblank status. Note this will clear any other
781          * sticky status fields as well.
782          *
783          * This races with i915_driver_irq_handler() with the result
784          * that either function could miss a vblank event.  Here it is not
785          * fatal, as we will either wait upon the next vblank interrupt or
786          * timeout.  Generally speaking intel_wait_for_vblank() is only
787          * called during modeset at which time the GPU should be idle and
788          * should *not* be performing page flips and thus not waiting on
789          * vblanks...
790          * Currently, the result of us stealing a vblank from the irq
791          * handler is that a single frame will be skipped during swapbuffers.
792          */
793         I915_WRITE(pipestat_reg,
794                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796         /* Wait for vblank interrupt bit to set */
797         if (wait_for(I915_READ(pipestat_reg) &
798                      PIPE_VBLANK_INTERRUPT_STATUS,
799                      50))
800                 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         u32 reg = PIPEDSL(pipe);
807         u32 line1, line2;
808         u32 line_mask;
809
810         if (IS_GEN2(dev))
811                 line_mask = DSL_LINEMASK_GEN2;
812         else
813                 line_mask = DSL_LINEMASK_GEN3;
814
815         line1 = I915_READ(reg) & line_mask;
816         mdelay(5);
817         line2 = I915_READ(reg) & line_mask;
818
819         return line1 == line2;
820 }
821
822 /*
823  * intel_wait_for_pipe_off - wait for pipe to turn off
824  * @dev: drm device
825  * @pipe: pipe to wait for
826  *
827  * After disabling a pipe, we can't wait for vblank in the usual way,
828  * spinning on the vblank interrupt status bit, since we won't actually
829  * see an interrupt when the pipe is disabled.
830  *
831  * On Gen4 and above:
832  *   wait for the pipe register state bit to turn off
833  *
834  * Otherwise:
835  *   wait for the display line value to settle (it usually
836  *   ends up stopping at the start of the next frame).
837  *
838  */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843                                                                       pipe);
844
845         if (INTEL_INFO(dev)->gen >= 4) {
846                 int reg = PIPECONF(cpu_transcoder);
847
848                 /* Wait for the Pipe State to go off */
849                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850                              100))
851                         WARN(1, "pipe_off wait timed out\n");
852         } else {
853                 /* Wait for the display line to settle */
854                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855                         WARN(1, "pipe_off wait timed out\n");
856         }
857 }
858
859 /*
860  * ibx_digital_port_connected - is the specified port connected?
861  * @dev_priv: i915 private structure
862  * @port: the port to test
863  *
864  * Returns true if @port is connected, false otherwise.
865  */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867                                 struct intel_digital_port *port)
868 {
869         u32 bit;
870
871         if (HAS_PCH_IBX(dev_priv->dev)) {
872                 switch(port->port) {
873                 case PORT_B:
874                         bit = SDE_PORTB_HOTPLUG;
875                         break;
876                 case PORT_C:
877                         bit = SDE_PORTC_HOTPLUG;
878                         break;
879                 case PORT_D:
880                         bit = SDE_PORTD_HOTPLUG;
881                         break;
882                 default:
883                         return true;
884                 }
885         } else {
886                 switch(port->port) {
887                 case PORT_B:
888                         bit = SDE_PORTB_HOTPLUG_CPT;
889                         break;
890                 case PORT_C:
891                         bit = SDE_PORTC_HOTPLUG_CPT;
892                         break;
893                 case PORT_D:
894                         bit = SDE_PORTD_HOTPLUG_CPT;
895                         break;
896                 default:
897                         return true;
898                 }
899         }
900
901         return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906         return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911                 enum pipe pipe, bool state)
912 {
913         int reg;
914         u32 val;
915         bool cur_state;
916
917         reg = DPLL(pipe);
918         val = I915_READ(reg);
919         cur_state = !!(val & DPLL_VCO_ENABLE);
920         WARN(cur_state != state,
921              "PLL state assertion failure (expected %s, current %s)\n",
922              state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928         u32 val;
929         bool cur_state;
930
931         mutex_lock(&dev_priv->dpio_lock);
932         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933         mutex_unlock(&dev_priv->dpio_lock);
934
935         cur_state = val & DSI_PLL_VCO_EN;
936         WARN(cur_state != state,
937              "DSI PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948         if (crtc->config.shared_dpll < 0)
949                 return NULL;
950
951         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956                         struct intel_shared_dpll *pll,
957                         bool state)
958 {
959         bool cur_state;
960         struct intel_dpll_hw_state hw_state;
961
962         if (HAS_PCH_LPT(dev_priv->dev)) {
963                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964                 return;
965         }
966
967         if (WARN (!pll,
968                   "asserting DPLL %s with no DPLL\n", state_string(state)))
969                 return;
970
971         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972         WARN(cur_state != state,
973              "%s assertion failure (expected %s, current %s)\n",
974              pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978                           enum pipe pipe, bool state)
979 {
980         int reg;
981         u32 val;
982         bool cur_state;
983         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984                                                                       pipe);
985
986         if (HAS_DDI(dev_priv->dev)) {
987                 /* DDI does not have a specific FDI_TX register */
988                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989                 val = I915_READ(reg);
990                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991         } else {
992                 reg = FDI_TX_CTL(pipe);
993                 val = I915_READ(reg);
994                 cur_state = !!(val & FDI_TX_ENABLE);
995         }
996         WARN(cur_state != state,
997              "FDI TX state assertion failure (expected %s, current %s)\n",
998              state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004                           enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = FDI_RX_CTL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & FDI_RX_ENABLE);
1013         WARN(cur_state != state,
1014              "FDI RX state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         /* ILK FDI PLL is always enabled */
1027         if (dev_priv->info->gen == 5)
1028                 return;
1029
1030         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031         if (HAS_DDI(dev_priv->dev))
1032                 return;
1033
1034         reg = FDI_TX_CTL(pipe);
1035         val = I915_READ(reg);
1036         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = FDI_RX_CTL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049         WARN(cur_state != state,
1050              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055                                   enum pipe pipe)
1056 {
1057         int pp_reg, lvds_reg;
1058         u32 val;
1059         enum pipe panel_pipe = PIPE_A;
1060         bool locked = true;
1061
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 pp_reg = PCH_PP_CONTROL;
1064                 lvds_reg = PCH_LVDS;
1065         } else {
1066                 pp_reg = PP_CONTROL;
1067                 lvds_reg = LVDS;
1068         }
1069
1070         val = I915_READ(pp_reg);
1071         if (!(val & PANEL_POWER_ON) ||
1072             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073                 locked = false;
1074
1075         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076                 panel_pipe = PIPE_B;
1077
1078         WARN(panel_pipe == pipe && locked,
1079              "panel assertion failure, pipe %c regs locked\n",
1080              pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         struct drm_device *dev = dev_priv->dev;
1087         bool cur_state;
1088
1089         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091         else if (IS_845G(dev) || IS_I865G(dev))
1092                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093         else
1094                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096         WARN(cur_state != state,
1097              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098              pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104                  enum pipe pipe, bool state)
1105 {
1106         int reg;
1107         u32 val;
1108         bool cur_state;
1109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110                                                                       pipe);
1111
1112         /* if we need the pipe A quirk it must be always on */
1113         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114                 state = true;
1115
1116         if (!intel_display_power_enabled(dev_priv->dev,
1117                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118                 cur_state = false;
1119         } else {
1120                 reg = PIPECONF(cpu_transcoder);
1121                 val = I915_READ(reg);
1122                 cur_state = !!(val & PIPECONF_ENABLE);
1123         }
1124
1125         WARN(cur_state != state,
1126              "pipe %c assertion failure (expected %s, current %s)\n",
1127              pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131                          enum plane plane, bool state)
1132 {
1133         int reg;
1134         u32 val;
1135         bool cur_state;
1136
1137         reg = DSPCNTR(plane);
1138         val = I915_READ(reg);
1139         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140         WARN(cur_state != state,
1141              "plane %c assertion failure (expected %s, current %s)\n",
1142              plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149                                    enum pipe pipe)
1150 {
1151         struct drm_device *dev = dev_priv->dev;
1152         int reg, i;
1153         u32 val;
1154         int cur_pipe;
1155
1156         /* Primary planes are fixed to pipes on gen4+ */
1157         if (INTEL_INFO(dev)->gen >= 4) {
1158                 reg = DSPCNTR(pipe);
1159                 val = I915_READ(reg);
1160                 WARN((val & DISPLAY_PLANE_ENABLE),
1161                      "plane %c assertion failure, should be disabled but not\n",
1162                      plane_name(pipe));
1163                 return;
1164         }
1165
1166         /* Need to check both planes against the pipe */
1167         for_each_pipe(i) {
1168                 reg = DSPCNTR(i);
1169                 val = I915_READ(reg);
1170                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171                         DISPPLANE_SEL_PIPE_SHIFT;
1172                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174                      plane_name(i), pipe_name(pipe));
1175         }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179                                     enum pipe pipe)
1180 {
1181         struct drm_device *dev = dev_priv->dev;
1182         int reg, i;
1183         u32 val;
1184
1185         if (IS_VALLEYVIEW(dev)) {
1186                 for (i = 0; i < dev_priv->num_plane; i++) {
1187                         reg = SPCNTR(pipe, i);
1188                         val = I915_READ(reg);
1189                         WARN((val & SP_ENABLE),
1190                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191                              sprite_name(pipe, i), pipe_name(pipe));
1192                 }
1193         } else if (INTEL_INFO(dev)->gen >= 7) {
1194                 reg = SPRCTL(pipe);
1195                 val = I915_READ(reg);
1196                 WARN((val & SPRITE_ENABLE),
1197                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198                      plane_name(pipe), pipe_name(pipe));
1199         } else if (INTEL_INFO(dev)->gen >= 5) {
1200                 reg = DVSCNTR(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & DVS_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210         u32 val;
1211         bool enabled;
1212
1213         if (HAS_PCH_LPT(dev_priv->dev)) {
1214                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215                 return;
1216         }
1217
1218         val = I915_READ(PCH_DREF_CONTROL);
1219         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220                             DREF_SUPERSPREAD_SOURCE_MASK));
1221         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225                                            enum pipe pipe)
1226 {
1227         int reg;
1228         u32 val;
1229         bool enabled;
1230
1231         reg = PCH_TRANSCONF(pipe);
1232         val = I915_READ(reg);
1233         enabled = !!(val & TRANS_ENABLE);
1234         WARN(enabled,
1235              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236              pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240                             enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242         if ((val & DP_PORT_EN) == 0)
1243                 return false;
1244
1245         if (HAS_PCH_CPT(dev_priv->dev)) {
1246                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249                         return false;
1250         } else {
1251                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252                         return false;
1253         }
1254         return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258                               enum pipe pipe, u32 val)
1259 {
1260         if ((val & SDVO_ENABLE) == 0)
1261                 return false;
1262
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274                               enum pipe pipe, u32 val)
1275 {
1276         if ((val & LVDS_PORT_EN) == 0)
1277                 return false;
1278
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290                               enum pipe pipe, u32 val)
1291 {
1292         if ((val & ADPA_DAC_ENABLE) == 0)
1293                 return false;
1294         if (HAS_PCH_CPT(dev_priv->dev)) {
1295                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296                         return false;
1297         } else {
1298                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299                         return false;
1300         }
1301         return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305                                    enum pipe pipe, int reg, u32 port_sel)
1306 {
1307         u32 val = I915_READ(reg);
1308         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310              reg, pipe_name(pipe));
1311
1312         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313              && (val & DP_PIPEB_SELECT),
1314              "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318                                      enum pipe pipe, int reg)
1319 {
1320         u32 val = I915_READ(reg);
1321         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323              reg, pipe_name(pipe));
1324
1325         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326              && (val & SDVO_PIPE_B_SELECT),
1327              "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331                                       enum pipe pipe)
1332 {
1333         int reg;
1334         u32 val;
1335
1336         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340         reg = PCH_ADPA;
1341         val = I915_READ(reg);
1342         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343              "PCH VGA enabled on transcoder %c, should be disabled\n",
1344              pipe_name(pipe));
1345
1346         reg = PCH_LVDS;
1347         val = I915_READ(reg);
1348         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361         if (!IS_VALLEYVIEW(dev))
1362                 return;
1363
1364         /*
1365          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1367          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368          *   b. The other bits such as sfr settings / modesel may all be set
1369          *      to 0.
1370          *
1371          * This should only be done on init and resume from S3 with both
1372          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373          */
1374         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375 }
1376
1377 static void vlv_enable_pll(struct intel_crtc *crtc)
1378 {
1379         struct drm_device *dev = crtc->base.dev;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int reg = DPLL(crtc->pipe);
1382         u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384         assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386         /* No really, not for ILK+ */
1387         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389         /* PLL is protected by panel, make sure we can write it */
1390         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391                 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393         I915_WRITE(reg, dpll);
1394         POSTING_READ(reg);
1395         udelay(150);
1396
1397         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401         POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403         /* We do this three times for luck */
1404         I915_WRITE(reg, dpll);
1405         POSTING_READ(reg);
1406         udelay(150); /* wait for warmup */
1407         I915_WRITE(reg, dpll);
1408         POSTING_READ(reg);
1409         udelay(150); /* wait for warmup */
1410         I915_WRITE(reg, dpll);
1411         POSTING_READ(reg);
1412         udelay(150); /* wait for warmup */
1413 }
1414
1415 static void i9xx_enable_pll(struct intel_crtc *crtc)
1416 {
1417         struct drm_device *dev = crtc->base.dev;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         int reg = DPLL(crtc->pipe);
1420         u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422         assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424         /* No really, not for ILK+ */
1425         BUG_ON(dev_priv->info->gen >= 5);
1426
1427         /* PLL is protected by panel, make sure we can write it */
1428         if (IS_MOBILE(dev) && !IS_I830(dev))
1429                 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431         I915_WRITE(reg, dpll);
1432
1433         /* Wait for the clocks to stabilize. */
1434         POSTING_READ(reg);
1435         udelay(150);
1436
1437         if (INTEL_INFO(dev)->gen >= 4) {
1438                 I915_WRITE(DPLL_MD(crtc->pipe),
1439                            crtc->config.dpll_hw_state.dpll_md);
1440         } else {
1441                 /* The pixel multiplier can only be updated once the
1442                  * DPLL is enabled and the clocks are stable.
1443                  *
1444                  * So write it again.
1445                  */
1446                 I915_WRITE(reg, dpll);
1447         }
1448
1449         /* We do this three times for luck */
1450         I915_WRITE(reg, dpll);
1451         POSTING_READ(reg);
1452         udelay(150); /* wait for warmup */
1453         I915_WRITE(reg, dpll);
1454         POSTING_READ(reg);
1455         udelay(150); /* wait for warmup */
1456         I915_WRITE(reg, dpll);
1457         POSTING_READ(reg);
1458         udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462  * i9xx_disable_pll - disable a PLL
1463  * @dev_priv: i915 private structure
1464  * @pipe: pipe PLL to disable
1465  *
1466  * Disable the PLL for @pipe, making sure the pipe is off first.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  */
1470 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472         /* Don't disable pipe A or pipe A PLLs if needed */
1473         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474                 return;
1475
1476         /* Make sure the pipe isn't still relying on us */
1477         assert_pipe_disabled(dev_priv, pipe);
1478
1479         I915_WRITE(DPLL(pipe), 0);
1480         POSTING_READ(DPLL(pipe));
1481 }
1482
1483 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484 {
1485         u32 val = 0;
1486
1487         /* Make sure the pipe isn't still relying on us */
1488         assert_pipe_disabled(dev_priv, pipe);
1489
1490         /* Leave integrated clock source enabled */
1491         if (pipe == PIPE_B)
1492                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493         I915_WRITE(DPLL(pipe), val);
1494         POSTING_READ(DPLL(pipe));
1495 }
1496
1497 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498 {
1499         u32 port_mask;
1500
1501         if (!port)
1502                 port_mask = DPLL_PORTB_READY_MASK;
1503         else
1504                 port_mask = DPLL_PORTC_READY_MASK;
1505
1506         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508                      'B' + port, I915_READ(DPLL(0)));
1509 }
1510
1511 /**
1512  * ironlake_enable_shared_dpll - enable PCH PLL
1513  * @dev_priv: i915 private structure
1514  * @pipe: pipe PLL to enable
1515  *
1516  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517  * drives the transcoder clock.
1518  */
1519 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524         /* PCH PLLs only available on ILK, SNB and IVB */
1525         BUG_ON(dev_priv->info->gen < 5);
1526         if (WARN_ON(pll == NULL))
1527                 return;
1528
1529         if (WARN_ON(pll->refcount == 0))
1530                 return;
1531
1532         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533                       pll->name, pll->active, pll->on,
1534                       crtc->base.base.id);
1535
1536         if (pll->active++) {
1537                 WARN_ON(!pll->on);
1538                 assert_shared_dpll_enabled(dev_priv, pll);
1539                 return;
1540         }
1541         WARN_ON(pll->on);
1542
1543         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544         pll->enable(dev_priv, pll);
1545         pll->on = true;
1546 }
1547
1548 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549 {
1550         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553         /* PCH only available on ILK+ */
1554         BUG_ON(dev_priv->info->gen < 5);
1555         if (WARN_ON(pll == NULL))
1556                return;
1557
1558         if (WARN_ON(pll->refcount == 0))
1559                 return;
1560
1561         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562                       pll->name, pll->active, pll->on,
1563                       crtc->base.base.id);
1564
1565         if (WARN_ON(pll->active == 0)) {
1566                 assert_shared_dpll_disabled(dev_priv, pll);
1567                 return;
1568         }
1569
1570         assert_shared_dpll_enabled(dev_priv, pll);
1571         WARN_ON(!pll->on);
1572         if (--pll->active)
1573                 return;
1574
1575         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576         pll->disable(dev_priv, pll);
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586         uint32_t reg, val, pipeconf_val;
1587
1588         /* PCH only available on ILK+ */
1589         BUG_ON(dev_priv->info->gen < 5);
1590
1591         /* Make sure PCH DPLL is enabled */
1592         assert_shared_dpll_enabled(dev_priv,
1593                                    intel_crtc_to_shared_dpll(intel_crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = PCH_TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(LPT_TRANSCONF, val);
1663         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = PCH_TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(LPT_TRANSCONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(LPT_TRANSCONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port, bool dsi)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_cursor_disabled(dev_priv, pipe);
1739         assert_sprites_disabled(dev_priv, pipe);
1740
1741         if (HAS_PCH_LPT(dev_priv->dev))
1742                 pch_transcoder = TRANSCODER_A;
1743         else
1744                 pch_transcoder = pipe;
1745
1746         /*
1747          * A pipe without a PLL won't actually be able to drive bits from
1748          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1749          * need the check.
1750          */
1751         if (!HAS_PCH_SPLIT(dev_priv->dev))
1752                 if (dsi)
1753                         assert_dsi_pll_enabled(dev_priv);
1754                 else
1755                         assert_pll_enabled(dev_priv, pipe);
1756         else {
1757                 if (pch_port) {
1758                         /* if driving the PCH, we need FDI enabled */
1759                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760                         assert_fdi_tx_pll_enabled(dev_priv,
1761                                                   (enum pipe) cpu_transcoder);
1762                 }
1763                 /* FIXME: assert CPU port conditions for SNB+ */
1764         }
1765
1766         reg = PIPECONF(cpu_transcoder);
1767         val = I915_READ(reg);
1768         if (val & PIPECONF_ENABLE)
1769                 return;
1770
1771         I915_WRITE(reg, val | PIPECONF_ENABLE);
1772         intel_wait_for_vblank(dev_priv->dev, pipe);
1773 }
1774
1775 /**
1776  * intel_disable_pipe - disable a pipe, asserting requirements
1777  * @dev_priv: i915 private structure
1778  * @pipe: pipe to disable
1779  *
1780  * Disable @pipe, making sure that various hardware specific requirements
1781  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782  *
1783  * @pipe should be %PIPE_A or %PIPE_B.
1784  *
1785  * Will wait until the pipe has shut down before returning.
1786  */
1787 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788                                enum pipe pipe)
1789 {
1790         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791                                                                       pipe);
1792         int reg;
1793         u32 val;
1794
1795         /*
1796          * Make sure planes won't keep trying to pump pixels to us,
1797          * or we might hang the display.
1798          */
1799         assert_planes_disabled(dev_priv, pipe);
1800         assert_cursor_disabled(dev_priv, pipe);
1801         assert_sprites_disabled(dev_priv, pipe);
1802
1803         /* Don't disable pipe A or pipe A PLLs if needed */
1804         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805                 return;
1806
1807         reg = PIPECONF(cpu_transcoder);
1808         val = I915_READ(reg);
1809         if ((val & PIPECONF_ENABLE) == 0)
1810                 return;
1811
1812         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814 }
1815
1816 /*
1817  * Plane regs are double buffered, going from enabled->disabled needs a
1818  * trigger in order to latch.  The display address reg provides this.
1819  */
1820 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821                                enum plane plane)
1822 {
1823         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825         I915_WRITE(reg, I915_READ(reg));
1826         POSTING_READ(reg);
1827 }
1828
1829 /**
1830  * intel_enable_primary_plane - enable the primary plane on a given pipe
1831  * @dev_priv: i915 private structure
1832  * @plane: plane to enable
1833  * @pipe: pipe being fed
1834  *
1835  * Enable @plane on @pipe, making sure that @pipe is running first.
1836  */
1837 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838                                        enum plane plane, enum pipe pipe)
1839 {
1840         struct intel_crtc *intel_crtc =
1841                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842         int reg;
1843         u32 val;
1844
1845         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846         assert_pipe_enabled(dev_priv, pipe);
1847
1848         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850         intel_crtc->primary_enabled = true;
1851
1852         reg = DSPCNTR(plane);
1853         val = I915_READ(reg);
1854         if (val & DISPLAY_PLANE_ENABLE)
1855                 return;
1856
1857         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858         intel_flush_primary_plane(dev_priv, plane);
1859         intel_wait_for_vblank(dev_priv->dev, pipe);
1860 }
1861
1862 /**
1863  * intel_disable_primary_plane - disable the primary plane
1864  * @dev_priv: i915 private structure
1865  * @plane: plane to disable
1866  * @pipe: pipe consuming the data
1867  *
1868  * Disable @plane; should be an independent operation.
1869  */
1870 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871                                         enum plane plane, enum pipe pipe)
1872 {
1873         struct intel_crtc *intel_crtc =
1874                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875         int reg;
1876         u32 val;
1877
1878         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880         intel_crtc->primary_enabled = false;
1881
1882         reg = DSPCNTR(plane);
1883         val = I915_READ(reg);
1884         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888         intel_flush_primary_plane(dev_priv, plane);
1889         intel_wait_for_vblank(dev_priv->dev, pipe);
1890 }
1891
1892 static bool need_vtd_wa(struct drm_device *dev)
1893 {
1894 #ifdef CONFIG_INTEL_IOMMU
1895         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896                 return true;
1897 #endif
1898         return false;
1899 }
1900
1901 int
1902 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903                            struct drm_i915_gem_object *obj,
1904                            struct intel_ring_buffer *pipelined)
1905 {
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         u32 alignment;
1908         int ret;
1909
1910         switch (obj->tiling_mode) {
1911         case I915_TILING_NONE:
1912                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913                         alignment = 128 * 1024;
1914                 else if (INTEL_INFO(dev)->gen >= 4)
1915                         alignment = 4 * 1024;
1916                 else
1917                         alignment = 64 * 1024;
1918                 break;
1919         case I915_TILING_X:
1920                 /* pin() will align the object as required by fence */
1921                 alignment = 0;
1922                 break;
1923         case I915_TILING_Y:
1924                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925                 return -EINVAL;
1926         default:
1927                 BUG();
1928         }
1929
1930         /* Note that the w/a also requires 64 PTE of padding following the
1931          * bo. We currently fill all unused PTE with the shadow page and so
1932          * we should always have valid PTE following the scanout preventing
1933          * the VT-d warning.
1934          */
1935         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936                 alignment = 256 * 1024;
1937
1938         dev_priv->mm.interruptible = false;
1939         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940         if (ret)
1941                 goto err_interruptible;
1942
1943         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944          * fence, whereas 965+ only requires a fence if using
1945          * framebuffer compression.  For simplicity, we always install
1946          * a fence as the cost is not that onerous.
1947          */
1948         ret = i915_gem_object_get_fence(obj);
1949         if (ret)
1950                 goto err_unpin;
1951
1952         i915_gem_object_pin_fence(obj);
1953
1954         dev_priv->mm.interruptible = true;
1955         return 0;
1956
1957 err_unpin:
1958         i915_gem_object_unpin_from_display_plane(obj);
1959 err_interruptible:
1960         dev_priv->mm.interruptible = true;
1961         return ret;
1962 }
1963
1964 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965 {
1966         i915_gem_object_unpin_fence(obj);
1967         i915_gem_object_unpin_from_display_plane(obj);
1968 }
1969
1970 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971  * is assumed to be a power-of-two. */
1972 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973                                              unsigned int tiling_mode,
1974                                              unsigned int cpp,
1975                                              unsigned int pitch)
1976 {
1977         if (tiling_mode != I915_TILING_NONE) {
1978                 unsigned int tile_rows, tiles;
1979
1980                 tile_rows = *y / 8;
1981                 *y %= 8;
1982
1983                 tiles = *x / (512/cpp);
1984                 *x %= 512/cpp;
1985
1986                 return tile_rows * pitch * 8 + tiles * 4096;
1987         } else {
1988                 unsigned int offset;
1989
1990                 offset = *y * pitch + *x * cpp;
1991                 *y = 0;
1992                 *x = (offset & 4095) / cpp;
1993                 return offset & -4096;
1994         }
1995 }
1996
1997 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998                              int x, int y)
1999 {
2000         struct drm_device *dev = crtc->dev;
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003         struct intel_framebuffer *intel_fb;
2004         struct drm_i915_gem_object *obj;
2005         int plane = intel_crtc->plane;
2006         unsigned long linear_offset;
2007         u32 dspcntr;
2008         u32 reg;
2009
2010         switch (plane) {
2011         case 0:
2012         case 1:
2013                 break;
2014         default:
2015                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016                 return -EINVAL;
2017         }
2018
2019         intel_fb = to_intel_framebuffer(fb);
2020         obj = intel_fb->obj;
2021
2022         reg = DSPCNTR(plane);
2023         dspcntr = I915_READ(reg);
2024         /* Mask out pixel format bits in case we change it */
2025         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026         switch (fb->pixel_format) {
2027         case DRM_FORMAT_C8:
2028                 dspcntr |= DISPPLANE_8BPP;
2029                 break;
2030         case DRM_FORMAT_XRGB1555:
2031         case DRM_FORMAT_ARGB1555:
2032                 dspcntr |= DISPPLANE_BGRX555;
2033                 break;
2034         case DRM_FORMAT_RGB565:
2035                 dspcntr |= DISPPLANE_BGRX565;
2036                 break;
2037         case DRM_FORMAT_XRGB8888:
2038         case DRM_FORMAT_ARGB8888:
2039                 dspcntr |= DISPPLANE_BGRX888;
2040                 break;
2041         case DRM_FORMAT_XBGR8888:
2042         case DRM_FORMAT_ABGR8888:
2043                 dspcntr |= DISPPLANE_RGBX888;
2044                 break;
2045         case DRM_FORMAT_XRGB2101010:
2046         case DRM_FORMAT_ARGB2101010:
2047                 dspcntr |= DISPPLANE_BGRX101010;
2048                 break;
2049         case DRM_FORMAT_XBGR2101010:
2050         case DRM_FORMAT_ABGR2101010:
2051                 dspcntr |= DISPPLANE_RGBX101010;
2052                 break;
2053         default:
2054                 BUG();
2055         }
2056
2057         if (INTEL_INFO(dev)->gen >= 4) {
2058                 if (obj->tiling_mode != I915_TILING_NONE)
2059                         dspcntr |= DISPPLANE_TILED;
2060                 else
2061                         dspcntr &= ~DISPPLANE_TILED;
2062         }
2063
2064         if (IS_G4X(dev))
2065                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067         I915_WRITE(reg, dspcntr);
2068
2069         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071         if (INTEL_INFO(dev)->gen >= 4) {
2072                 intel_crtc->dspaddr_offset =
2073                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074                                                        fb->bits_per_pixel / 8,
2075                                                        fb->pitches[0]);
2076                 linear_offset -= intel_crtc->dspaddr_offset;
2077         } else {
2078                 intel_crtc->dspaddr_offset = linear_offset;
2079         }
2080
2081         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083                       fb->pitches[0]);
2084         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085         if (INTEL_INFO(dev)->gen >= 4) {
2086                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090         } else
2091                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092         POSTING_READ(reg);
2093
2094         return 0;
2095 }
2096
2097 static int ironlake_update_plane(struct drm_crtc *crtc,
2098                                  struct drm_framebuffer *fb, int x, int y)
2099 {
2100         struct drm_device *dev = crtc->dev;
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103         struct intel_framebuffer *intel_fb;
2104         struct drm_i915_gem_object *obj;
2105         int plane = intel_crtc->plane;
2106         unsigned long linear_offset;
2107         u32 dspcntr;
2108         u32 reg;
2109
2110         switch (plane) {
2111         case 0:
2112         case 1:
2113         case 2:
2114                 break;
2115         default:
2116                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117                 return -EINVAL;
2118         }
2119
2120         intel_fb = to_intel_framebuffer(fb);
2121         obj = intel_fb->obj;
2122
2123         reg = DSPCNTR(plane);
2124         dspcntr = I915_READ(reg);
2125         /* Mask out pixel format bits in case we change it */
2126         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127         switch (fb->pixel_format) {
2128         case DRM_FORMAT_C8:
2129                 dspcntr |= DISPPLANE_8BPP;
2130                 break;
2131         case DRM_FORMAT_RGB565:
2132                 dspcntr |= DISPPLANE_BGRX565;
2133                 break;
2134         case DRM_FORMAT_XRGB8888:
2135         case DRM_FORMAT_ARGB8888:
2136                 dspcntr |= DISPPLANE_BGRX888;
2137                 break;
2138         case DRM_FORMAT_XBGR8888:
2139         case DRM_FORMAT_ABGR8888:
2140                 dspcntr |= DISPPLANE_RGBX888;
2141                 break;
2142         case DRM_FORMAT_XRGB2101010:
2143         case DRM_FORMAT_ARGB2101010:
2144                 dspcntr |= DISPPLANE_BGRX101010;
2145                 break;
2146         case DRM_FORMAT_XBGR2101010:
2147         case DRM_FORMAT_ABGR2101010:
2148                 dspcntr |= DISPPLANE_RGBX101010;
2149                 break;
2150         default:
2151                 BUG();
2152         }
2153
2154         if (obj->tiling_mode != I915_TILING_NONE)
2155                 dspcntr |= DISPPLANE_TILED;
2156         else
2157                 dspcntr &= ~DISPPLANE_TILED;
2158
2159         if (IS_HASWELL(dev))
2160                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161         else
2162                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164         I915_WRITE(reg, dspcntr);
2165
2166         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167         intel_crtc->dspaddr_offset =
2168                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169                                                fb->bits_per_pixel / 8,
2170                                                fb->pitches[0]);
2171         linear_offset -= intel_crtc->dspaddr_offset;
2172
2173         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175                       fb->pitches[0]);
2176         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177         I915_MODIFY_DISPBASE(DSPSURF(plane),
2178                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179         if (IS_HASWELL(dev)) {
2180                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181         } else {
2182                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184         }
2185         POSTING_READ(reg);
2186
2187         return 0;
2188 }
2189
2190 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2191 static int
2192 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193                            int x, int y, enum mode_set_atomic state)
2194 {
2195         struct drm_device *dev = crtc->dev;
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198         if (dev_priv->display.disable_fbc)
2199                 dev_priv->display.disable_fbc(dev);
2200         intel_increase_pllclock(crtc);
2201
2202         return dev_priv->display.update_plane(crtc, fb, x, y);
2203 }
2204
2205 void intel_display_handle_reset(struct drm_device *dev)
2206 {
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct drm_crtc *crtc;
2209
2210         /*
2211          * Flips in the rings have been nuked by the reset,
2212          * so complete all pending flips so that user space
2213          * will get its events and not get stuck.
2214          *
2215          * Also update the base address of all primary
2216          * planes to the the last fb to make sure we're
2217          * showing the correct fb after a reset.
2218          *
2219          * Need to make two loops over the crtcs so that we
2220          * don't try to grab a crtc mutex before the
2221          * pending_flip_queue really got woken up.
2222          */
2223
2224         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226                 enum plane plane = intel_crtc->plane;
2227
2228                 intel_prepare_page_flip(dev, plane);
2229                 intel_finish_page_flip_plane(dev, plane);
2230         }
2231
2232         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235                 mutex_lock(&crtc->mutex);
2236                 if (intel_crtc->active)
2237                         dev_priv->display.update_plane(crtc, crtc->fb,
2238                                                        crtc->x, crtc->y);
2239                 mutex_unlock(&crtc->mutex);
2240         }
2241 }
2242
2243 static int
2244 intel_finish_fb(struct drm_framebuffer *old_fb)
2245 {
2246         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248         bool was_interruptible = dev_priv->mm.interruptible;
2249         int ret;
2250
2251         /* Big Hammer, we also need to ensure that any pending
2252          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253          * current scanout is retired before unpinning the old
2254          * framebuffer.
2255          *
2256          * This should only fail upon a hung GPU, in which case we
2257          * can safely continue.
2258          */
2259         dev_priv->mm.interruptible = false;
2260         ret = i915_gem_object_finish_gpu(obj);
2261         dev_priv->mm.interruptible = was_interruptible;
2262
2263         return ret;
2264 }
2265
2266 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267 {
2268         struct drm_device *dev = crtc->dev;
2269         struct drm_i915_master_private *master_priv;
2270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272         if (!dev->primary->master)
2273                 return;
2274
2275         master_priv = dev->primary->master->driver_priv;
2276         if (!master_priv->sarea_priv)
2277                 return;
2278
2279         switch (intel_crtc->pipe) {
2280         case 0:
2281                 master_priv->sarea_priv->pipeA_x = x;
2282                 master_priv->sarea_priv->pipeA_y = y;
2283                 break;
2284         case 1:
2285                 master_priv->sarea_priv->pipeB_x = x;
2286                 master_priv->sarea_priv->pipeB_y = y;
2287                 break;
2288         default:
2289                 break;
2290         }
2291 }
2292
2293 static int
2294 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295                     struct drm_framebuffer *fb)
2296 {
2297         struct drm_device *dev = crtc->dev;
2298         struct drm_i915_private *dev_priv = dev->dev_private;
2299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300         struct drm_framebuffer *old_fb;
2301         int ret;
2302
2303         /* no fb bound */
2304         if (!fb) {
2305                 DRM_ERROR("No FB bound\n");
2306                 return 0;
2307         }
2308
2309         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311                           plane_name(intel_crtc->plane),
2312                           INTEL_INFO(dev)->num_pipes);
2313                 return -EINVAL;
2314         }
2315
2316         mutex_lock(&dev->struct_mutex);
2317         ret = intel_pin_and_fence_fb_obj(dev,
2318                                          to_intel_framebuffer(fb)->obj,
2319                                          NULL);
2320         if (ret != 0) {
2321                 mutex_unlock(&dev->struct_mutex);
2322                 DRM_ERROR("pin & fence failed\n");
2323                 return ret;
2324         }
2325
2326         /*
2327          * Update pipe size and adjust fitter if needed: the reason for this is
2328          * that in compute_mode_changes we check the native mode (not the pfit
2329          * mode) to see if we can flip rather than do a full mode set. In the
2330          * fastboot case, we'll flip, but if we don't update the pipesrc and
2331          * pfit state, we'll end up with a big fb scanned out into the wrong
2332          * sized surface.
2333          *
2334          * To fix this properly, we need to hoist the checks up into
2335          * compute_mode_changes (or above), check the actual pfit state and
2336          * whether the platform allows pfit disable with pipe active, and only
2337          * then update the pipesrc and pfit state, even on the flip path.
2338          */
2339         if (i915_fastboot) {
2340                 const struct drm_display_mode *adjusted_mode =
2341                         &intel_crtc->config.adjusted_mode;
2342
2343                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345                            (adjusted_mode->crtc_vdisplay - 1));
2346                 if (!intel_crtc->config.pch_pfit.enabled &&
2347                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352                 }
2353         }
2354
2355         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356         if (ret) {
2357                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358                 mutex_unlock(&dev->struct_mutex);
2359                 DRM_ERROR("failed to update base address\n");
2360                 return ret;
2361         }
2362
2363         old_fb = crtc->fb;
2364         crtc->fb = fb;
2365         crtc->x = x;
2366         crtc->y = y;
2367
2368         if (old_fb) {
2369                 if (intel_crtc->active && old_fb != fb)
2370                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2371                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372         }
2373
2374         intel_update_fbc(dev);
2375         intel_edp_psr_update(dev);
2376         mutex_unlock(&dev->struct_mutex);
2377
2378         intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380         return 0;
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385         struct drm_device *dev = crtc->dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388         int pipe = intel_crtc->pipe;
2389         u32 reg, temp;
2390
2391         /* enable normal train */
2392         reg = FDI_TX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         if (IS_IVYBRIDGE(dev)) {
2395                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397         } else {
2398                 temp &= ~FDI_LINK_TRAIN_NONE;
2399                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400         }
2401         I915_WRITE(reg, temp);
2402
2403         reg = FDI_RX_CTL(pipe);
2404         temp = I915_READ(reg);
2405         if (HAS_PCH_CPT(dev)) {
2406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408         } else {
2409                 temp &= ~FDI_LINK_TRAIN_NONE;
2410                 temp |= FDI_LINK_TRAIN_NONE;
2411         }
2412         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414         /* wait one idle pattern time */
2415         POSTING_READ(reg);
2416         udelay(1000);
2417
2418         /* IVB wants error correction enabled */
2419         if (IS_IVYBRIDGE(dev))
2420                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421                            FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2425 {
2426         return crtc->base.enabled && crtc->active &&
2427                 crtc->config.has_pch_encoder;
2428 }
2429
2430 static void ivb_modeset_global_resources(struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *pipe_B_crtc =
2434                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2435         struct intel_crtc *pipe_C_crtc =
2436                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2437         uint32_t temp;
2438
2439         /*
2440          * When everything is off disable fdi C so that we could enable fdi B
2441          * with all lanes. Note that we don't care about enabled pipes without
2442          * an enabled pch encoder.
2443          */
2444         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2445             !pipe_has_enabled_pch(pipe_C_crtc)) {
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449                 temp = I915_READ(SOUTH_CHICKEN1);
2450                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452                 I915_WRITE(SOUTH_CHICKEN1, temp);
2453         }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459         struct drm_device *dev = crtc->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462         int pipe = intel_crtc->pipe;
2463         int plane = intel_crtc->plane;
2464         u32 reg, temp, tries;
2465
2466         /* FDI needs bits from pipe & plane first */
2467         assert_pipe_enabled(dev_priv, pipe);
2468         assert_plane_enabled(dev_priv, plane);
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477         I915_READ(reg);
2478         udelay(150);
2479
2480         /* enable CPU FDI TX and PCH FDI RX */
2481         reg = FDI_TX_CTL(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2484         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2485         temp &= ~FDI_LINK_TRAIN_NONE;
2486         temp |= FDI_LINK_TRAIN_PATTERN_1;
2487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489         reg = FDI_RX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495         POSTING_READ(reg);
2496         udelay(150);
2497
2498         /* Ironlake workaround, enable clock pointer after FDI enable*/
2499         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501                    FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503         reg = FDI_RX_IIR(pipe);
2504         for (tries = 0; tries < 5; tries++) {
2505                 temp = I915_READ(reg);
2506                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508                 if ((temp & FDI_RX_BIT_LOCK)) {
2509                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2510                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511                         break;
2512                 }
2513         }
2514         if (tries == 5)
2515                 DRM_ERROR("FDI train 1 fail!\n");
2516
2517         /* Train 2 */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_2;
2522         I915_WRITE(reg, temp);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_2;
2528         I915_WRITE(reg, temp);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         reg = FDI_RX_IIR(pipe);
2534         for (tries = 0; tries < 5; tries++) {
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_SYMBOL_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (tries == 5)
2545                 DRM_ERROR("FDI train 2 fail!\n");
2546
2547         DRM_DEBUG_KMS("FDI train done\n");
2548
2549 }
2550
2551 static const int snb_b_fdi_train_param[] = {
2552         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556 };
2557
2558 /* The FDI link training functions for SNB/Cougarpoint. */
2559 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560 {
2561         struct drm_device *dev = crtc->dev;
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564         int pipe = intel_crtc->pipe;
2565         u32 reg, temp, i, retry;
2566
2567         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568            for train result */
2569         reg = FDI_RX_IMR(pipe);
2570         temp = I915_READ(reg);
2571         temp &= ~FDI_RX_SYMBOL_LOCK;
2572         temp &= ~FDI_RX_BIT_LOCK;
2573         I915_WRITE(reg, temp);
2574
2575         POSTING_READ(reg);
2576         udelay(150);
2577
2578         /* enable CPU FDI TX and PCH FDI RX */
2579         reg = FDI_TX_CTL(pipe);
2580         temp = I915_READ(reg);
2581         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2582         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_1;
2585         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586         /* SNB-B */
2587         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590         I915_WRITE(FDI_RX_MISC(pipe),
2591                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601         }
2602         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_BIT_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 1 fail!\n");
2633
2634         /* Train 2 */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         temp &= ~FDI_LINK_TRAIN_NONE;
2638         temp |= FDI_LINK_TRAIN_PATTERN_2;
2639         if (IS_GEN6(dev)) {
2640                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641                 /* SNB-B */
2642                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643         }
2644         I915_WRITE(reg, temp);
2645
2646         reg = FDI_RX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         if (HAS_PCH_CPT(dev)) {
2649                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651         } else {
2652                 temp &= ~FDI_LINK_TRAIN_NONE;
2653                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         POSTING_READ(reg);
2658         udelay(150);
2659
2660         for (i = 0; i < 4; i++) {
2661                 reg = FDI_TX_CTL(pipe);
2662                 temp = I915_READ(reg);
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 temp |= snb_b_fdi_train_param[i];
2665                 I915_WRITE(reg, temp);
2666
2667                 POSTING_READ(reg);
2668                 udelay(500);
2669
2670                 for (retry = 0; retry < 5; retry++) {
2671                         reg = FDI_RX_IIR(pipe);
2672                         temp = I915_READ(reg);
2673                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674                         if (temp & FDI_RX_SYMBOL_LOCK) {
2675                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677                                 break;
2678                         }
2679                         udelay(50);
2680                 }
2681                 if (retry < 5)
2682                         break;
2683         }
2684         if (i == 4)
2685                 DRM_ERROR("FDI train 2 fail!\n");
2686
2687         DRM_DEBUG_KMS("FDI train done.\n");
2688 }
2689
2690 /* Manual link training for Ivy Bridge A0 parts */
2691 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692 {
2693         struct drm_device *dev = crtc->dev;
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696         int pipe = intel_crtc->pipe;
2697         u32 reg, temp, i, j;
2698
2699         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700            for train result */
2701         reg = FDI_RX_IMR(pipe);
2702         temp = I915_READ(reg);
2703         temp &= ~FDI_RX_SYMBOL_LOCK;
2704         temp &= ~FDI_RX_BIT_LOCK;
2705         I915_WRITE(reg, temp);
2706
2707         POSTING_READ(reg);
2708         udelay(150);
2709
2710         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711                       I915_READ(FDI_RX_IIR(pipe)));
2712
2713         /* Try each vswing and preemphasis setting twice before moving on */
2714         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2715                 /* disable first in case we need to retry */
2716                 reg = FDI_TX_CTL(pipe);
2717                 temp = I915_READ(reg);
2718                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719                 temp &= ~FDI_TX_ENABLE;
2720                 I915_WRITE(reg, temp);
2721
2722                 reg = FDI_RX_CTL(pipe);
2723                 temp = I915_READ(reg);
2724                 temp &= ~FDI_LINK_TRAIN_AUTO;
2725                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726                 temp &= ~FDI_RX_ENABLE;
2727                 I915_WRITE(reg, temp);
2728
2729                 /* enable CPU FDI TX and PCH FDI RX */
2730                 reg = FDI_TX_CTL(pipe);
2731                 temp = I915_READ(reg);
2732                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2733                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2734                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736                 temp |= snb_b_fdi_train_param[j/2];
2737                 temp |= FDI_COMPOSITE_SYNC;
2738                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740                 I915_WRITE(FDI_RX_MISC(pipe),
2741                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743                 reg = FDI_RX_CTL(pipe);
2744                 temp = I915_READ(reg);
2745                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746                 temp |= FDI_COMPOSITE_SYNC;
2747                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(1); /* should be 0.5us */
2751
2752                 for (i = 0; i < 4; i++) {
2753                         reg = FDI_RX_IIR(pipe);
2754                         temp = I915_READ(reg);
2755                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757                         if (temp & FDI_RX_BIT_LOCK ||
2758                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2761                                               i);
2762                                 break;
2763                         }
2764                         udelay(1); /* should be 0.5us */
2765                 }
2766                 if (i == 4) {
2767                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2768                         continue;
2769                 }
2770
2771                 /* Train 2 */
2772                 reg = FDI_TX_CTL(pipe);
2773                 temp = I915_READ(reg);
2774                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776                 I915_WRITE(reg, temp);
2777
2778                 reg = FDI_RX_CTL(pipe);
2779                 temp = I915_READ(reg);
2780                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2782                 I915_WRITE(reg, temp);
2783
2784                 POSTING_READ(reg);
2785                 udelay(2); /* should be 1.5us */
2786
2787                 for (i = 0; i < 4; i++) {
2788                         reg = FDI_RX_IIR(pipe);
2789                         temp = I915_READ(reg);
2790                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2791
2792                         if (temp & FDI_RX_SYMBOL_LOCK ||
2793                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2794                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2796                                               i);
2797                                 goto train_done;
2798                         }
2799                         udelay(2); /* should be 1.5us */
2800                 }
2801                 if (i == 4)
2802                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2803         }
2804
2805 train_done:
2806         DRM_DEBUG_KMS("FDI train done.\n");
2807 }
2808
2809 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810 {
2811         struct drm_device *dev = intel_crtc->base.dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         int pipe = intel_crtc->pipe;
2814         u32 reg, temp;
2815
2816
2817         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2818         reg = FDI_RX_CTL(pipe);
2819         temp = I915_READ(reg);
2820         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2821         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2822         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824
2825         POSTING_READ(reg);
2826         udelay(200);
2827
2828         /* Switch from Rawclk to PCDclk */
2829         temp = I915_READ(reg);
2830         I915_WRITE(reg, temp | FDI_PCDCLK);
2831
2832         POSTING_READ(reg);
2833         udelay(200);
2834
2835         /* Enable CPU FDI TX PLL, always on for Ironlake */
2836         reg = FDI_TX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2840
2841                 POSTING_READ(reg);
2842                 udelay(100);
2843         }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848         struct drm_device *dev = intel_crtc->base.dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         int pipe = intel_crtc->pipe;
2851         u32 reg, temp;
2852
2853         /* Switch from PCDclk to Rawclk */
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858         /* Disable CPU FDI TX PLL */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865
2866         reg = FDI_RX_CTL(pipe);
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870         /* Wait for the clocks to turn off. */
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp;
2882
2883         /* disable CPU FDI tx and PCH FDI rx */
2884         reg = FDI_TX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887         POSTING_READ(reg);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         temp &= ~(0x7 << 16);
2892         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2893         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895         POSTING_READ(reg);
2896         udelay(100);
2897
2898         /* Ironlake workaround, disable clock pointer after downing FDI */
2899         if (HAS_PCH_IBX(dev)) {
2900                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901         }
2902
2903         /* still set train pattern 1 */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_LINK_TRAIN_NONE;
2907         temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         I915_WRITE(reg, temp);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         if (HAS_PCH_CPT(dev)) {
2913                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915         } else {
2916                 temp &= ~FDI_LINK_TRAIN_NONE;
2917                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918         }
2919         /* BPC in FDI rx is consistent with that in PIPECONF */
2920         temp &= ~(0x07 << 16);
2921         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2922         I915_WRITE(reg, temp);
2923
2924         POSTING_READ(reg);
2925         udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930         struct drm_device *dev = crtc->dev;
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2933         unsigned long flags;
2934         bool pending;
2935
2936         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2937             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2938                 return false;
2939
2940         spin_lock_irqsave(&dev->event_lock, flags);
2941         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2942         spin_unlock_irqrestore(&dev->event_lock, flags);
2943
2944         return pending;
2945 }
2946
2947 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2948 {
2949         struct drm_device *dev = crtc->dev;
2950         struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952         if (crtc->fb == NULL)
2953                 return;
2954
2955         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2956
2957         wait_event(dev_priv->pending_flip_queue,
2958                    !intel_crtc_has_pending_flip(crtc));
2959
2960         mutex_lock(&dev->struct_mutex);
2961         intel_finish_fb(crtc->fb);
2962         mutex_unlock(&dev->struct_mutex);
2963 }
2964
2965 /* Program iCLKIP clock to the desired frequency */
2966 static void lpt_program_iclkip(struct drm_crtc *crtc)
2967 {
2968         struct drm_device *dev = crtc->dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2971         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2972         u32 temp;
2973
2974         mutex_lock(&dev_priv->dpio_lock);
2975
2976         /* It is necessary to ungate the pixclk gate prior to programming
2977          * the divisors, and gate it back when it is done.
2978          */
2979         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2980
2981         /* Disable SSCCTL */
2982         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2983                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2984                                 SBI_SSCCTL_DISABLE,
2985                         SBI_ICLK);
2986
2987         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2988         if (clock == 20000) {
2989                 auxdiv = 1;
2990                 divsel = 0x41;
2991                 phaseinc = 0x20;
2992         } else {
2993                 /* The iCLK virtual clock root frequency is in MHz,
2994                  * but the adjusted_mode->crtc_clock in in KHz. To get the
2995                  * divisors, it is necessary to divide one by another, so we
2996                  * convert the virtual clock precision to KHz here for higher
2997                  * precision.
2998                  */
2999                 u32 iclk_virtual_root_freq = 172800 * 1000;
3000                 u32 iclk_pi_range = 64;
3001                 u32 desired_divisor, msb_divisor_value, pi_value;
3002
3003                 desired_divisor = (iclk_virtual_root_freq / clock);
3004                 msb_divisor_value = desired_divisor / iclk_pi_range;
3005                 pi_value = desired_divisor % iclk_pi_range;
3006
3007                 auxdiv = 0;
3008                 divsel = msb_divisor_value - 2;
3009                 phaseinc = pi_value;
3010         }
3011
3012         /* This should not happen with any sane values */
3013         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3014                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3015         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3016                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3017
3018         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3019                         clock,
3020                         auxdiv,
3021                         divsel,
3022                         phasedir,
3023                         phaseinc);
3024
3025         /* Program SSCDIVINTPHASE6 */
3026         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3027         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3028         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3029         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3030         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3031         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3032         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3033         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3034
3035         /* Program SSCAUXDIV */
3036         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3037         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3038         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3039         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3045
3046         /* Wait for initialization time */
3047         udelay(24);
3048
3049         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3050
3051         mutex_unlock(&dev_priv->dpio_lock);
3052 }
3053
3054 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3055                                                 enum pipe pch_transcoder)
3056 {
3057         struct drm_device *dev = crtc->base.dev;
3058         struct drm_i915_private *dev_priv = dev->dev_private;
3059         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3060
3061         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3062                    I915_READ(HTOTAL(cpu_transcoder)));
3063         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3064                    I915_READ(HBLANK(cpu_transcoder)));
3065         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3066                    I915_READ(HSYNC(cpu_transcoder)));
3067
3068         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3069                    I915_READ(VTOTAL(cpu_transcoder)));
3070         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3071                    I915_READ(VBLANK(cpu_transcoder)));
3072         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3073                    I915_READ(VSYNC(cpu_transcoder)));
3074         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3075                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3076 }
3077
3078 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3079 {
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         uint32_t temp;
3082
3083         temp = I915_READ(SOUTH_CHICKEN1);
3084         if (temp & FDI_BC_BIFURCATION_SELECT)
3085                 return;
3086
3087         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3088         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3089
3090         temp |= FDI_BC_BIFURCATION_SELECT;
3091         DRM_DEBUG_KMS("enabling fdi C rx\n");
3092         I915_WRITE(SOUTH_CHICKEN1, temp);
3093         POSTING_READ(SOUTH_CHICKEN1);
3094 }
3095
3096 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3097 {
3098         struct drm_device *dev = intel_crtc->base.dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100
3101         switch (intel_crtc->pipe) {
3102         case PIPE_A:
3103                 break;
3104         case PIPE_B:
3105                 if (intel_crtc->config.fdi_lanes > 2)
3106                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3107                 else
3108                         cpt_enable_fdi_bc_bifurcation(dev);
3109
3110                 break;
3111         case PIPE_C:
3112                 cpt_enable_fdi_bc_bifurcation(dev);
3113
3114                 break;
3115         default:
3116                 BUG();
3117         }
3118 }
3119
3120 /*
3121  * Enable PCH resources required for PCH ports:
3122  *   - PCH PLLs
3123  *   - FDI training & RX/TX
3124  *   - update transcoder timings
3125  *   - DP transcoding bits
3126  *   - transcoder
3127  */
3128 static void ironlake_pch_enable(struct drm_crtc *crtc)
3129 {
3130         struct drm_device *dev = crtc->dev;
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133         int pipe = intel_crtc->pipe;
3134         u32 reg, temp;
3135
3136         assert_pch_transcoder_disabled(dev_priv, pipe);
3137
3138         if (IS_IVYBRIDGE(dev))
3139                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3140
3141         /* Write the TU size bits before fdi link training, so that error
3142          * detection works. */
3143         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3144                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3145
3146         /* For PCH output, training FDI link */
3147         dev_priv->display.fdi_link_train(crtc);
3148
3149         /* We need to program the right clock selection before writing the pixel
3150          * mutliplier into the DPLL. */
3151         if (HAS_PCH_CPT(dev)) {
3152                 u32 sel;
3153
3154                 temp = I915_READ(PCH_DPLL_SEL);
3155                 temp |= TRANS_DPLL_ENABLE(pipe);
3156                 sel = TRANS_DPLLB_SEL(pipe);
3157                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3158                         temp |= sel;
3159                 else
3160                         temp &= ~sel;
3161                 I915_WRITE(PCH_DPLL_SEL, temp);
3162         }
3163
3164         /* XXX: pch pll's can be enabled any time before we enable the PCH
3165          * transcoder, and we actually should do this to not upset any PCH
3166          * transcoder that already use the clock when we share it.
3167          *
3168          * Note that enable_shared_dpll tries to do the right thing, but
3169          * get_shared_dpll unconditionally resets the pll - we need that to have
3170          * the right LVDS enable sequence. */
3171         ironlake_enable_shared_dpll(intel_crtc);
3172
3173         /* set transcoder timing, panel must allow it */
3174         assert_panel_unlocked(dev_priv, pipe);
3175         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3176
3177         intel_fdi_normal_train(crtc);
3178
3179         /* For PCH DP, enable TRANS_DP_CTL */
3180         if (HAS_PCH_CPT(dev) &&
3181             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3182              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3183                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3184                 reg = TRANS_DP_CTL(pipe);
3185                 temp = I915_READ(reg);
3186                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3187                           TRANS_DP_SYNC_MASK |
3188                           TRANS_DP_BPC_MASK);
3189                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3190                          TRANS_DP_ENH_FRAMING);
3191                 temp |= bpc << 9; /* same format but at 11:9 */
3192
3193                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3194                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3195                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3196                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3197
3198                 switch (intel_trans_dp_port_sel(crtc)) {
3199                 case PCH_DP_B:
3200                         temp |= TRANS_DP_PORT_SEL_B;
3201                         break;
3202                 case PCH_DP_C:
3203                         temp |= TRANS_DP_PORT_SEL_C;
3204                         break;
3205                 case PCH_DP_D:
3206                         temp |= TRANS_DP_PORT_SEL_D;
3207                         break;
3208                 default:
3209                         BUG();
3210                 }
3211
3212                 I915_WRITE(reg, temp);
3213         }
3214
3215         ironlake_enable_pch_transcoder(dev_priv, pipe);
3216 }
3217
3218 static void lpt_pch_enable(struct drm_crtc *crtc)
3219 {
3220         struct drm_device *dev = crtc->dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3224
3225         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227         lpt_program_iclkip(crtc);
3228
3229         /* Set transcoder timing. */
3230         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3231
3232         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3233 }
3234
3235 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3236 {
3237         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3238
3239         if (pll == NULL)
3240                 return;
3241
3242         if (pll->refcount == 0) {
3243                 WARN(1, "bad %s refcount\n", pll->name);
3244                 return;
3245         }
3246
3247         if (--pll->refcount == 0) {
3248                 WARN_ON(pll->on);
3249                 WARN_ON(pll->active);
3250         }
3251
3252         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3253 }
3254
3255 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3256 {
3257         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3259         enum intel_dpll_id i;
3260
3261         if (pll) {
3262                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3263                               crtc->base.base.id, pll->name);
3264                 intel_put_shared_dpll(crtc);
3265         }
3266
3267         if (HAS_PCH_IBX(dev_priv->dev)) {
3268                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3269                 i = (enum intel_dpll_id) crtc->pipe;
3270                 pll = &dev_priv->shared_dplls[i];
3271
3272                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3273                               crtc->base.base.id, pll->name);
3274
3275                 goto found;
3276         }
3277
3278         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3279                 pll = &dev_priv->shared_dplls[i];
3280
3281                 /* Only want to check enabled timings first */
3282                 if (pll->refcount == 0)
3283                         continue;
3284
3285                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3286                            sizeof(pll->hw_state)) == 0) {
3287                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3288                                       crtc->base.base.id,
3289                                       pll->name, pll->refcount, pll->active);
3290
3291                         goto found;
3292                 }
3293         }
3294
3295         /* Ok no matching timings, maybe there's a free one? */
3296         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3297                 pll = &dev_priv->shared_dplls[i];
3298                 if (pll->refcount == 0) {
3299                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3300                                       crtc->base.base.id, pll->name);
3301                         goto found;
3302                 }
3303         }
3304
3305         return NULL;
3306
3307 found:
3308         crtc->config.shared_dpll = i;
3309         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3310                          pipe_name(crtc->pipe));
3311
3312         if (pll->active == 0) {
3313                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3314                        sizeof(pll->hw_state));
3315
3316                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3317                 WARN_ON(pll->on);
3318                 assert_shared_dpll_disabled(dev_priv, pll);
3319
3320                 pll->mode_set(dev_priv, pll);
3321         }
3322         pll->refcount++;
3323
3324         return pll;
3325 }
3326
3327 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3328 {
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         int dslreg = PIPEDSL(pipe);
3331         u32 temp;
3332
3333         temp = I915_READ(dslreg);
3334         udelay(500);
3335         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3336                 if (wait_for(I915_READ(dslreg) != temp, 5))
3337                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3338         }
3339 }
3340
3341 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->base.dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         int pipe = crtc->pipe;
3346
3347         if (crtc->config.pch_pfit.enabled) {
3348                 /* Force use of hard-coded filter coefficients
3349                  * as some pre-programmed values are broken,
3350                  * e.g. x201.
3351                  */
3352                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3353                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3354                                                  PF_PIPE_SEL_IVB(pipe));
3355                 else
3356                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3357                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3358                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3359         }
3360 }
3361
3362 static void intel_enable_planes(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3366         struct intel_plane *intel_plane;
3367
3368         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3369                 if (intel_plane->pipe == pipe)
3370                         intel_plane_restore(&intel_plane->base);
3371 }
3372
3373 static void intel_disable_planes(struct drm_crtc *crtc)
3374 {
3375         struct drm_device *dev = crtc->dev;
3376         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3377         struct intel_plane *intel_plane;
3378
3379         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3380                 if (intel_plane->pipe == pipe)
3381                         intel_plane_disable(&intel_plane->base);
3382 }
3383
3384 void hsw_enable_ips(struct intel_crtc *crtc)
3385 {
3386         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3387
3388         if (!crtc->config.ips_enabled)
3389                 return;
3390
3391         /* We can only enable IPS after we enable a plane and wait for a vblank.
3392          * We guarantee that the plane is enabled by calling intel_enable_ips
3393          * only after intel_enable_plane. And intel_enable_plane already waits
3394          * for a vblank, so all we need to do here is to enable the IPS bit. */
3395         assert_plane_enabled(dev_priv, crtc->plane);
3396         I915_WRITE(IPS_CTL, IPS_ENABLE);
3397
3398         /* The bit only becomes 1 in the next vblank, so this wait here is
3399          * essentially intel_wait_for_vblank. If we don't have this and don't
3400          * wait for vblanks until the end of crtc_enable, then the HW state
3401          * readout code will complain that the expected IPS_CTL value is not the
3402          * one we read. */
3403         if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3404                 DRM_ERROR("Timed out waiting for IPS enable\n");
3405 }
3406
3407 void hsw_disable_ips(struct intel_crtc *crtc)
3408 {
3409         struct drm_device *dev = crtc->base.dev;
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412         if (!crtc->config.ips_enabled)
3413                 return;
3414
3415         assert_plane_enabled(dev_priv, crtc->plane);
3416         I915_WRITE(IPS_CTL, 0);
3417         POSTING_READ(IPS_CTL);
3418
3419         /* We need to wait for a vblank before we can disable the plane. */
3420         intel_wait_for_vblank(dev, crtc->pipe);
3421 }
3422
3423 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3424 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3425 {
3426         struct drm_device *dev = crtc->dev;
3427         struct drm_i915_private *dev_priv = dev->dev_private;
3428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3429         enum pipe pipe = intel_crtc->pipe;
3430         int palreg = PALETTE(pipe);
3431         int i;
3432         bool reenable_ips = false;
3433
3434         /* The clocks have to be on to load the palette. */
3435         if (!crtc->enabled || !intel_crtc->active)
3436                 return;
3437
3438         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3440                         assert_dsi_pll_enabled(dev_priv);
3441                 else
3442                         assert_pll_enabled(dev_priv, pipe);
3443         }
3444
3445         /* use legacy palette for Ironlake */
3446         if (HAS_PCH_SPLIT(dev))
3447                 palreg = LGC_PALETTE(pipe);
3448
3449         /* Workaround : Do not read or write the pipe palette/gamma data while
3450          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3451          */
3452         if (intel_crtc->config.ips_enabled &&
3453             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3454              GAMMA_MODE_MODE_SPLIT)) {
3455                 hsw_disable_ips(intel_crtc);
3456                 reenable_ips = true;
3457         }
3458
3459         for (i = 0; i < 256; i++) {
3460                 I915_WRITE(palreg + 4 * i,
3461                            (intel_crtc->lut_r[i] << 16) |
3462                            (intel_crtc->lut_g[i] << 8) |
3463                            intel_crtc->lut_b[i]);
3464         }
3465
3466         if (reenable_ips)
3467                 hsw_enable_ips(intel_crtc);
3468 }
3469
3470 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3471 {
3472         struct drm_device *dev = crtc->dev;
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3475         struct intel_encoder *encoder;
3476         int pipe = intel_crtc->pipe;
3477         int plane = intel_crtc->plane;
3478
3479         WARN_ON(!crtc->enabled);
3480
3481         if (intel_crtc->active)
3482                 return;
3483
3484         intel_crtc->active = true;
3485
3486         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3487         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3488
3489         for_each_encoder_on_crtc(dev, crtc, encoder)
3490                 if (encoder->pre_enable)
3491                         encoder->pre_enable(encoder);
3492
3493         if (intel_crtc->config.has_pch_encoder) {
3494                 /* Note: FDI PLL enabling _must_ be done before we enable the
3495                  * cpu pipes, hence this is separate from all the other fdi/pch
3496                  * enabling. */
3497                 ironlake_fdi_pll_enable(intel_crtc);
3498         } else {
3499                 assert_fdi_tx_disabled(dev_priv, pipe);
3500                 assert_fdi_rx_disabled(dev_priv, pipe);
3501         }
3502
3503         ironlake_pfit_enable(intel_crtc);
3504
3505         /*
3506          * On ILK+ LUT must be loaded before the pipe is running but with
3507          * clocks enabled
3508          */
3509         intel_crtc_load_lut(crtc);
3510
3511         intel_update_watermarks(crtc);
3512         intel_enable_pipe(dev_priv, pipe,
3513                           intel_crtc->config.has_pch_encoder, false);
3514         intel_enable_primary_plane(dev_priv, plane, pipe);
3515         intel_enable_planes(crtc);
3516         intel_crtc_update_cursor(crtc, true);
3517
3518         if (intel_crtc->config.has_pch_encoder)
3519                 ironlake_pch_enable(crtc);
3520
3521         mutex_lock(&dev->struct_mutex);
3522         intel_update_fbc(dev);
3523         mutex_unlock(&dev->struct_mutex);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 encoder->enable(encoder);
3527
3528         if (HAS_PCH_CPT(dev))
3529                 cpt_verify_modeset(dev, intel_crtc->pipe);
3530
3531         /*
3532          * There seems to be a race in PCH platform hw (at least on some
3533          * outputs) where an enabled pipe still completes any pageflip right
3534          * away (as if the pipe is off) instead of waiting for vblank. As soon
3535          * as the first vblank happend, everything works as expected. Hence just
3536          * wait for one vblank before returning to avoid strange things
3537          * happening.
3538          */
3539         intel_wait_for_vblank(dev, intel_crtc->pipe);
3540 }
3541
3542 /* IPS only exists on ULT machines and is tied to pipe A. */
3543 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3544 {
3545         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3546 }
3547
3548 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         int pipe = intel_crtc->pipe;
3554         int plane = intel_crtc->plane;
3555
3556         intel_enable_primary_plane(dev_priv, plane, pipe);
3557         intel_enable_planes(crtc);
3558         intel_crtc_update_cursor(crtc, true);
3559
3560         hsw_enable_ips(intel_crtc);
3561
3562         mutex_lock(&dev->struct_mutex);
3563         intel_update_fbc(dev);
3564         mutex_unlock(&dev->struct_mutex);
3565 }
3566
3567 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3568 {
3569         struct drm_device *dev = crtc->dev;
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572         int pipe = intel_crtc->pipe;
3573         int plane = intel_crtc->plane;
3574
3575         intel_crtc_wait_for_pending_flips(crtc);
3576         drm_vblank_off(dev, pipe);
3577
3578         /* FBC must be disabled before disabling the plane on HSW. */
3579         if (dev_priv->fbc.plane == plane)
3580                 intel_disable_fbc(dev);
3581
3582         hsw_disable_ips(intel_crtc);
3583
3584         intel_crtc_update_cursor(crtc, false);
3585         intel_disable_planes(crtc);
3586         intel_disable_primary_plane(dev_priv, plane, pipe);
3587 }
3588
3589 /*
3590  * This implements the workaround described in the "notes" section of the mode
3591  * set sequence documentation. When going from no pipes or single pipe to
3592  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3593  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3594  */
3595 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3596 {
3597         struct drm_device *dev = crtc->base.dev;
3598         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3599
3600         /* We want to get the other_active_crtc only if there's only 1 other
3601          * active crtc. */
3602         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3603                 if (!crtc_it->active || crtc_it == crtc)
3604                         continue;
3605
3606                 if (other_active_crtc)
3607                         return;
3608
3609                 other_active_crtc = crtc_it;
3610         }
3611         if (!other_active_crtc)
3612                 return;
3613
3614         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3615         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3616 }
3617
3618 static void haswell_crtc_enable(struct drm_crtc *crtc)
3619 {
3620         struct drm_device *dev = crtc->dev;
3621         struct drm_i915_private *dev_priv = dev->dev_private;
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623         struct intel_encoder *encoder;
3624         int pipe = intel_crtc->pipe;
3625
3626         WARN_ON(!crtc->enabled);
3627
3628         if (intel_crtc->active)
3629                 return;
3630
3631         intel_crtc->active = true;
3632
3633         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3634         if (intel_crtc->config.has_pch_encoder)
3635                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3636
3637         if (intel_crtc->config.has_pch_encoder)
3638                 dev_priv->display.fdi_link_train(crtc);
3639
3640         for_each_encoder_on_crtc(dev, crtc, encoder)
3641                 if (encoder->pre_enable)
3642                         encoder->pre_enable(encoder);
3643
3644         intel_ddi_enable_pipe_clock(intel_crtc);
3645
3646         ironlake_pfit_enable(intel_crtc);
3647
3648         /*
3649          * On ILK+ LUT must be loaded before the pipe is running but with
3650          * clocks enabled
3651          */
3652         intel_crtc_load_lut(crtc);
3653
3654         intel_ddi_set_pipe_settings(crtc);
3655         intel_ddi_enable_transcoder_func(crtc);
3656
3657         intel_update_watermarks(crtc);
3658         intel_enable_pipe(dev_priv, pipe,
3659                           intel_crtc->config.has_pch_encoder, false);
3660
3661         if (intel_crtc->config.has_pch_encoder)
3662                 lpt_pch_enable(crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder) {
3665                 encoder->enable(encoder);
3666                 intel_opregion_notify_encoder(encoder, true);
3667         }
3668
3669         /* If we change the relative order between pipe/planes enabling, we need
3670          * to change the workaround. */
3671         haswell_mode_set_planes_workaround(intel_crtc);
3672         haswell_crtc_enable_planes(crtc);
3673
3674         /*
3675          * There seems to be a race in PCH platform hw (at least on some
3676          * outputs) where an enabled pipe still completes any pageflip right
3677          * away (as if the pipe is off) instead of waiting for vblank. As soon
3678          * as the first vblank happend, everything works as expected. Hence just
3679          * wait for one vblank before returning to avoid strange things
3680          * happening.
3681          */
3682         intel_wait_for_vblank(dev, intel_crtc->pipe);
3683 }
3684
3685 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3686 {
3687         struct drm_device *dev = crtc->base.dev;
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689         int pipe = crtc->pipe;
3690
3691         /* To avoid upsetting the power well on haswell only disable the pfit if
3692          * it's in use. The hw state code will make sure we get this right. */
3693         if (crtc->config.pch_pfit.enabled) {
3694                 I915_WRITE(PF_CTL(pipe), 0);
3695                 I915_WRITE(PF_WIN_POS(pipe), 0);
3696                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3697         }
3698 }
3699
3700 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3701 {
3702         struct drm_device *dev = crtc->dev;
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705         struct intel_encoder *encoder;
3706         int pipe = intel_crtc->pipe;
3707         int plane = intel_crtc->plane;
3708         u32 reg, temp;
3709
3710
3711         if (!intel_crtc->active)
3712                 return;
3713
3714         for_each_encoder_on_crtc(dev, crtc, encoder)
3715                 encoder->disable(encoder);
3716
3717         intel_crtc_wait_for_pending_flips(crtc);
3718         drm_vblank_off(dev, pipe);
3719
3720         if (dev_priv->fbc.plane == plane)
3721                 intel_disable_fbc(dev);
3722
3723         intel_crtc_update_cursor(crtc, false);
3724         intel_disable_planes(crtc);
3725         intel_disable_primary_plane(dev_priv, plane, pipe);
3726
3727         if (intel_crtc->config.has_pch_encoder)
3728                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3729
3730         intel_disable_pipe(dev_priv, pipe);
3731
3732         ironlake_pfit_disable(intel_crtc);
3733
3734         for_each_encoder_on_crtc(dev, crtc, encoder)
3735                 if (encoder->post_disable)
3736                         encoder->post_disable(encoder);
3737
3738         if (intel_crtc->config.has_pch_encoder) {
3739                 ironlake_fdi_disable(crtc);
3740
3741                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3742                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3743
3744                 if (HAS_PCH_CPT(dev)) {
3745                         /* disable TRANS_DP_CTL */
3746                         reg = TRANS_DP_CTL(pipe);
3747                         temp = I915_READ(reg);
3748                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3749                                   TRANS_DP_PORT_SEL_MASK);
3750                         temp |= TRANS_DP_PORT_SEL_NONE;
3751                         I915_WRITE(reg, temp);
3752
3753                         /* disable DPLL_SEL */
3754                         temp = I915_READ(PCH_DPLL_SEL);
3755                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3756                         I915_WRITE(PCH_DPLL_SEL, temp);
3757                 }
3758
3759                 /* disable PCH DPLL */
3760                 intel_disable_shared_dpll(intel_crtc);
3761
3762                 ironlake_fdi_pll_disable(intel_crtc);
3763         }
3764
3765         intel_crtc->active = false;
3766         intel_update_watermarks(crtc);
3767
3768         mutex_lock(&dev->struct_mutex);
3769         intel_update_fbc(dev);
3770         mutex_unlock(&dev->struct_mutex);
3771 }
3772
3773 static void haswell_crtc_disable(struct drm_crtc *crtc)
3774 {
3775         struct drm_device *dev = crtc->dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3778         struct intel_encoder *encoder;
3779         int pipe = intel_crtc->pipe;
3780         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3781
3782         if (!intel_crtc->active)
3783                 return;
3784
3785         haswell_crtc_disable_planes(crtc);
3786
3787         for_each_encoder_on_crtc(dev, crtc, encoder) {
3788                 intel_opregion_notify_encoder(encoder, false);
3789                 encoder->disable(encoder);
3790         }
3791
3792         if (intel_crtc->config.has_pch_encoder)
3793                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3794         intel_disable_pipe(dev_priv, pipe);
3795
3796         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3797
3798         ironlake_pfit_disable(intel_crtc);
3799
3800         intel_ddi_disable_pipe_clock(intel_crtc);
3801
3802         for_each_encoder_on_crtc(dev, crtc, encoder)
3803                 if (encoder->post_disable)
3804                         encoder->post_disable(encoder);
3805
3806         if (intel_crtc->config.has_pch_encoder) {
3807                 lpt_disable_pch_transcoder(dev_priv);
3808                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3809                 intel_ddi_fdi_disable(crtc);
3810         }
3811
3812         intel_crtc->active = false;
3813         intel_update_watermarks(crtc);
3814
3815         mutex_lock(&dev->struct_mutex);
3816         intel_update_fbc(dev);
3817         mutex_unlock(&dev->struct_mutex);
3818 }
3819
3820 static void ironlake_crtc_off(struct drm_crtc *crtc)
3821 {
3822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3823         intel_put_shared_dpll(intel_crtc);
3824 }
3825
3826 static void haswell_crtc_off(struct drm_crtc *crtc)
3827 {
3828         intel_ddi_put_crtc_pll(crtc);
3829 }
3830
3831 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3832 {
3833         if (!enable && intel_crtc->overlay) {
3834                 struct drm_device *dev = intel_crtc->base.dev;
3835                 struct drm_i915_private *dev_priv = dev->dev_private;
3836
3837                 mutex_lock(&dev->struct_mutex);
3838                 dev_priv->mm.interruptible = false;
3839                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3840                 dev_priv->mm.interruptible = true;
3841                 mutex_unlock(&dev->struct_mutex);
3842         }
3843
3844         /* Let userspace switch the overlay on again. In most cases userspace
3845          * has to recompute where to put it anyway.
3846          */
3847 }
3848
3849 /**
3850  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3851  * cursor plane briefly if not already running after enabling the display
3852  * plane.
3853  * This workaround avoids occasional blank screens when self refresh is
3854  * enabled.
3855  */
3856 static void
3857 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3858 {
3859         u32 cntl = I915_READ(CURCNTR(pipe));
3860
3861         if ((cntl & CURSOR_MODE) == 0) {
3862                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3863
3864                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3865                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3866                 intel_wait_for_vblank(dev_priv->dev, pipe);
3867                 I915_WRITE(CURCNTR(pipe), cntl);
3868                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3869                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3870         }
3871 }
3872
3873 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3874 {
3875         struct drm_device *dev = crtc->base.dev;
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877         struct intel_crtc_config *pipe_config = &crtc->config;
3878
3879         if (!crtc->config.gmch_pfit.control)
3880                 return;
3881
3882         /*
3883          * The panel fitter should only be adjusted whilst the pipe is disabled,
3884          * according to register description and PRM.
3885          */
3886         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3887         assert_pipe_disabled(dev_priv, crtc->pipe);
3888
3889         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3890         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3891
3892         /* Border color in case we don't scale up to the full screen. Black by
3893          * default, change to something else for debugging. */
3894         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3895 }
3896
3897 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3898 {
3899         struct drm_device *dev = crtc->dev;
3900         struct drm_i915_private *dev_priv = dev->dev_private;
3901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902         struct intel_encoder *encoder;
3903         int pipe = intel_crtc->pipe;
3904         int plane = intel_crtc->plane;
3905         bool is_dsi;
3906
3907         WARN_ON(!crtc->enabled);
3908
3909         if (intel_crtc->active)
3910                 return;
3911
3912         intel_crtc->active = true;
3913
3914         for_each_encoder_on_crtc(dev, crtc, encoder)
3915                 if (encoder->pre_pll_enable)
3916                         encoder->pre_pll_enable(encoder);
3917
3918         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3919
3920         if (!is_dsi)
3921                 vlv_enable_pll(intel_crtc);
3922
3923         for_each_encoder_on_crtc(dev, crtc, encoder)
3924                 if (encoder->pre_enable)
3925                         encoder->pre_enable(encoder);
3926
3927         i9xx_pfit_enable(intel_crtc);
3928
3929         intel_crtc_load_lut(crtc);
3930
3931         intel_update_watermarks(crtc);
3932         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3933         intel_enable_primary_plane(dev_priv, plane, pipe);
3934         intel_enable_planes(crtc);
3935         intel_crtc_update_cursor(crtc, true);
3936
3937         intel_update_fbc(dev);
3938
3939         for_each_encoder_on_crtc(dev, crtc, encoder)
3940                 encoder->enable(encoder);
3941 }
3942
3943 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3944 {
3945         struct drm_device *dev = crtc->dev;
3946         struct drm_i915_private *dev_priv = dev->dev_private;
3947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3948         struct intel_encoder *encoder;
3949         int pipe = intel_crtc->pipe;
3950         int plane = intel_crtc->plane;
3951
3952         WARN_ON(!crtc->enabled);
3953
3954         if (intel_crtc->active)
3955                 return;
3956
3957         intel_crtc->active = true;
3958
3959         for_each_encoder_on_crtc(dev, crtc, encoder)
3960                 if (encoder->pre_enable)
3961                         encoder->pre_enable(encoder);
3962
3963         i9xx_enable_pll(intel_crtc);
3964
3965         i9xx_pfit_enable(intel_crtc);
3966
3967         intel_crtc_load_lut(crtc);
3968
3969         intel_update_watermarks(crtc);
3970         intel_enable_pipe(dev_priv, pipe, false, false);
3971         intel_enable_primary_plane(dev_priv, plane, pipe);
3972         intel_enable_planes(crtc);
3973         /* The fixup needs to happen before cursor is enabled */
3974         if (IS_G4X(dev))
3975                 g4x_fixup_plane(dev_priv, pipe);
3976         intel_crtc_update_cursor(crtc, true);
3977
3978         /* Give the overlay scaler a chance to enable if it's on this pipe */
3979         intel_crtc_dpms_overlay(intel_crtc, true);
3980
3981         intel_update_fbc(dev);
3982
3983         for_each_encoder_on_crtc(dev, crtc, encoder)
3984                 encoder->enable(encoder);
3985 }
3986
3987 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3988 {
3989         struct drm_device *dev = crtc->base.dev;
3990         struct drm_i915_private *dev_priv = dev->dev_private;
3991
3992         if (!crtc->config.gmch_pfit.control)
3993                 return;
3994
3995         assert_pipe_disabled(dev_priv, crtc->pipe);
3996
3997         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3998                          I915_READ(PFIT_CONTROL));
3999         I915_WRITE(PFIT_CONTROL, 0);
4000 }
4001
4002 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4003 {
4004         struct drm_device *dev = crtc->dev;
4005         struct drm_i915_private *dev_priv = dev->dev_private;
4006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4007         struct intel_encoder *encoder;
4008         int pipe = intel_crtc->pipe;
4009         int plane = intel_crtc->plane;
4010
4011         if (!intel_crtc->active)
4012                 return;
4013
4014         for_each_encoder_on_crtc(dev, crtc, encoder)
4015                 encoder->disable(encoder);
4016
4017         /* Give the overlay scaler a chance to disable if it's on this pipe */
4018         intel_crtc_wait_for_pending_flips(crtc);
4019         drm_vblank_off(dev, pipe);
4020
4021         if (dev_priv->fbc.plane == plane)
4022                 intel_disable_fbc(dev);
4023
4024         intel_crtc_dpms_overlay(intel_crtc, false);
4025         intel_crtc_update_cursor(crtc, false);
4026         intel_disable_planes(crtc);
4027         intel_disable_primary_plane(dev_priv, plane, pipe);
4028
4029         intel_disable_pipe(dev_priv, pipe);
4030
4031         i9xx_pfit_disable(intel_crtc);
4032
4033         for_each_encoder_on_crtc(dev, crtc, encoder)
4034                 if (encoder->post_disable)
4035                         encoder->post_disable(encoder);
4036
4037         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4038                 vlv_disable_pll(dev_priv, pipe);
4039         else if (!IS_VALLEYVIEW(dev))
4040                 i9xx_disable_pll(dev_priv, pipe);
4041
4042         intel_crtc->active = false;
4043         intel_update_watermarks(crtc);
4044
4045         intel_update_fbc(dev);
4046 }
4047
4048 static void i9xx_crtc_off(struct drm_crtc *crtc)
4049 {
4050 }
4051
4052 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4053                                     bool enabled)
4054 {
4055         struct drm_device *dev = crtc->dev;
4056         struct drm_i915_master_private *master_priv;
4057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4058         int pipe = intel_crtc->pipe;
4059
4060         if (!dev->primary->master)
4061                 return;
4062
4063         master_priv = dev->primary->master->driver_priv;
4064         if (!master_priv->sarea_priv)
4065                 return;
4066
4067         switch (pipe) {
4068         case 0:
4069                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4070                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4071                 break;
4072         case 1:
4073                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4074                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4075                 break;
4076         default:
4077                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4078                 break;
4079         }
4080 }
4081
4082 /**
4083  * Sets the power management mode of the pipe and plane.
4084  */
4085 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4086 {
4087         struct drm_device *dev = crtc->dev;
4088         struct drm_i915_private *dev_priv = dev->dev_private;
4089         struct intel_encoder *intel_encoder;
4090         bool enable = false;
4091
4092         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4093                 enable |= intel_encoder->connectors_active;
4094
4095         if (enable)
4096                 dev_priv->display.crtc_enable(crtc);
4097         else
4098                 dev_priv->display.crtc_disable(crtc);
4099
4100         intel_crtc_update_sarea(crtc, enable);
4101 }
4102
4103 static void intel_crtc_disable(struct drm_crtc *crtc)
4104 {
4105         struct drm_device *dev = crtc->dev;
4106         struct drm_connector *connector;
4107         struct drm_i915_private *dev_priv = dev->dev_private;
4108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109
4110         /* crtc should still be enabled when we disable it. */
4111         WARN_ON(!crtc->enabled);
4112
4113         dev_priv->display.crtc_disable(crtc);
4114         intel_crtc->eld_vld = false;
4115         intel_crtc_update_sarea(crtc, false);
4116         dev_priv->display.off(crtc);
4117
4118         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4119         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4120         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4121
4122         if (crtc->fb) {
4123                 mutex_lock(&dev->struct_mutex);
4124                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4125                 mutex_unlock(&dev->struct_mutex);
4126                 crtc->fb = NULL;
4127         }
4128
4129         /* Update computed state. */
4130         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4131                 if (!connector->encoder || !connector->encoder->crtc)
4132                         continue;
4133
4134                 if (connector->encoder->crtc != crtc)
4135                         continue;
4136
4137                 connector->dpms = DRM_MODE_DPMS_OFF;
4138                 to_intel_encoder(connector->encoder)->connectors_active = false;
4139         }
4140 }
4141
4142 void intel_encoder_destroy(struct drm_encoder *encoder)
4143 {
4144         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4145
4146         drm_encoder_cleanup(encoder);
4147         kfree(intel_encoder);
4148 }
4149
4150 /* Simple dpms helper for encoders with just one connector, no cloning and only
4151  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4152  * state of the entire output pipe. */
4153 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4154 {
4155         if (mode == DRM_MODE_DPMS_ON) {
4156                 encoder->connectors_active = true;
4157
4158                 intel_crtc_update_dpms(encoder->base.crtc);
4159         } else {
4160                 encoder->connectors_active = false;
4161
4162                 intel_crtc_update_dpms(encoder->base.crtc);
4163         }
4164 }
4165
4166 /* Cross check the actual hw state with our own modeset state tracking (and it's
4167  * internal consistency). */
4168 static void intel_connector_check_state(struct intel_connector *connector)
4169 {
4170         if (connector->get_hw_state(connector)) {
4171                 struct intel_encoder *encoder = connector->encoder;
4172                 struct drm_crtc *crtc;
4173                 bool encoder_enabled;
4174                 enum pipe pipe;
4175
4176                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4177                               connector->base.base.id,
4178                               drm_get_connector_name(&connector->base));
4179
4180                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4181                      "wrong connector dpms state\n");
4182                 WARN(connector->base.encoder != &encoder->base,
4183                      "active connector not linked to encoder\n");
4184                 WARN(!encoder->connectors_active,
4185                      "encoder->connectors_active not set\n");
4186
4187                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4188                 WARN(!encoder_enabled, "encoder not enabled\n");
4189                 if (WARN_ON(!encoder->base.crtc))
4190                         return;
4191
4192                 crtc = encoder->base.crtc;
4193
4194                 WARN(!crtc->enabled, "crtc not enabled\n");
4195                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4196                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4197                      "encoder active on the wrong pipe\n");
4198         }
4199 }
4200
4201 /* Even simpler default implementation, if there's really no special case to
4202  * consider. */
4203 void intel_connector_dpms(struct drm_connector *connector, int mode)
4204 {
4205         /* All the simple cases only support two dpms states. */
4206         if (mode != DRM_MODE_DPMS_ON)
4207                 mode = DRM_MODE_DPMS_OFF;
4208
4209         if (mode == connector->dpms)
4210                 return;
4211
4212         connector->dpms = mode;
4213
4214         /* Only need to change hw state when actually enabled */
4215         if (connector->encoder)
4216                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4217
4218         intel_modeset_check_state(connector->dev);
4219 }
4220
4221 /* Simple connector->get_hw_state implementation for encoders that support only
4222  * one connector and no cloning and hence the encoder state determines the state
4223  * of the connector. */
4224 bool intel_connector_get_hw_state(struct intel_connector *connector)
4225 {
4226         enum pipe pipe = 0;
4227         struct intel_encoder *encoder = connector->encoder;
4228
4229         return encoder->get_hw_state(encoder, &pipe);
4230 }
4231
4232 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4233                                      struct intel_crtc_config *pipe_config)
4234 {
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         struct intel_crtc *pipe_B_crtc =
4237                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4238
4239         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4240                       pipe_name(pipe), pipe_config->fdi_lanes);
4241         if (pipe_config->fdi_lanes > 4) {
4242                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4243                               pipe_name(pipe), pipe_config->fdi_lanes);
4244                 return false;
4245         }
4246
4247         if (IS_HASWELL(dev)) {
4248                 if (pipe_config->fdi_lanes > 2) {
4249                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4250                                       pipe_config->fdi_lanes);
4251                         return false;
4252                 } else {
4253                         return true;
4254                 }
4255         }
4256
4257         if (INTEL_INFO(dev)->num_pipes == 2)
4258                 return true;
4259
4260         /* Ivybridge 3 pipe is really complicated */
4261         switch (pipe) {
4262         case PIPE_A:
4263                 return true;
4264         case PIPE_B:
4265                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4266                     pipe_config->fdi_lanes > 2) {
4267                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4268                                       pipe_name(pipe), pipe_config->fdi_lanes);
4269                         return false;
4270                 }
4271                 return true;
4272         case PIPE_C:
4273                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4274                     pipe_B_crtc->config.fdi_lanes <= 2) {
4275                         if (pipe_config->fdi_lanes > 2) {
4276                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4277                                               pipe_name(pipe), pipe_config->fdi_lanes);
4278                                 return false;
4279                         }
4280                 } else {
4281                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4282                         return false;
4283                 }
4284                 return true;
4285         default:
4286                 BUG();
4287         }
4288 }
4289
4290 #define RETRY 1
4291 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4292                                        struct intel_crtc_config *pipe_config)
4293 {
4294         struct drm_device *dev = intel_crtc->base.dev;
4295         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4296         int lane, link_bw, fdi_dotclock;
4297         bool setup_ok, needs_recompute = false;
4298
4299 retry:
4300         /* FDI is a binary signal running at ~2.7GHz, encoding
4301          * each output octet as 10 bits. The actual frequency
4302          * is stored as a divider into a 100MHz clock, and the
4303          * mode pixel clock is stored in units of 1KHz.
4304          * Hence the bw of each lane in terms of the mode signal
4305          * is:
4306          */
4307         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4308
4309         fdi_dotclock = adjusted_mode->crtc_clock;
4310
4311         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4312                                            pipe_config->pipe_bpp);
4313
4314         pipe_config->fdi_lanes = lane;
4315
4316         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4317                                link_bw, &pipe_config->fdi_m_n);
4318
4319         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4320                                             intel_crtc->pipe, pipe_config);
4321         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4322                 pipe_config->pipe_bpp -= 2*3;
4323                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4324                               pipe_config->pipe_bpp);
4325                 needs_recompute = true;
4326                 pipe_config->bw_constrained = true;
4327
4328                 goto retry;
4329         }
4330
4331         if (needs_recompute)
4332                 return RETRY;
4333
4334         return setup_ok ? 0 : -EINVAL;
4335 }
4336
4337 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4338                                    struct intel_crtc_config *pipe_config)
4339 {
4340         pipe_config->ips_enabled = i915_enable_ips &&
4341                                    hsw_crtc_supports_ips(crtc) &&
4342                                    pipe_config->pipe_bpp <= 24;
4343 }
4344
4345 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4346                                      struct intel_crtc_config *pipe_config)
4347 {
4348         struct drm_device *dev = crtc->base.dev;
4349         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4350
4351         /* FIXME should check pixel clock limits on all platforms */
4352         if (INTEL_INFO(dev)->gen < 4) {
4353                 struct drm_i915_private *dev_priv = dev->dev_private;
4354                 int clock_limit =
4355                         dev_priv->display.get_display_clock_speed(dev);
4356
4357                 /*
4358                  * Enable pixel doubling when the dot clock
4359                  * is > 90% of the (display) core speed.
4360                  *
4361                  * GDG double wide on either pipe,
4362                  * otherwise pipe A only.
4363                  */
4364                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4365                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4366                         clock_limit *= 2;
4367                         pipe_config->double_wide = true;
4368                 }
4369
4370                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4371                         return -EINVAL;
4372         }
4373
4374         /*
4375          * Pipe horizontal size must be even in:
4376          * - DVO ganged mode
4377          * - LVDS dual channel mode
4378          * - Double wide pipe
4379          */
4380         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4381              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4382                 pipe_config->pipe_src_w &= ~1;
4383
4384         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4385          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4386          */
4387         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4388                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4389                 return -EINVAL;
4390
4391         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4392                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4393         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4394                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4395                  * for lvds. */
4396                 pipe_config->pipe_bpp = 8*3;
4397         }
4398
4399         if (HAS_IPS(dev))
4400                 hsw_compute_ips_config(crtc, pipe_config);
4401
4402         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4403          * clock survives for now. */
4404         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4405                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4406
4407         if (pipe_config->has_pch_encoder)
4408                 return ironlake_fdi_compute_config(crtc, pipe_config);
4409
4410         return 0;
4411 }
4412
4413 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4414 {
4415         return 400000; /* FIXME */
4416 }
4417
4418 static int i945_get_display_clock_speed(struct drm_device *dev)
4419 {
4420         return 400000;
4421 }
4422
4423 static int i915_get_display_clock_speed(struct drm_device *dev)
4424 {
4425         return 333000;
4426 }
4427
4428 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4429 {
4430         return 200000;
4431 }
4432
4433 static int pnv_get_display_clock_speed(struct drm_device *dev)
4434 {
4435         u16 gcfgc = 0;
4436
4437         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4438
4439         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4440         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4441                 return 267000;
4442         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4443                 return 333000;
4444         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4445                 return 444000;
4446         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4447                 return 200000;
4448         default:
4449                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4450         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4451                 return 133000;
4452         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4453                 return 167000;
4454         }
4455 }
4456
4457 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4458 {
4459         u16 gcfgc = 0;
4460
4461         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4462
4463         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4464                 return 133000;
4465         else {
4466                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4467                 case GC_DISPLAY_CLOCK_333_MHZ:
4468                         return 333000;
4469                 default:
4470                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4471                         return 190000;
4472                 }
4473         }
4474 }
4475
4476 static int i865_get_display_clock_speed(struct drm_device *dev)
4477 {
4478         return 266000;
4479 }
4480
4481 static int i855_get_display_clock_speed(struct drm_device *dev)
4482 {
4483         u16 hpllcc = 0;
4484         /* Assume that the hardware is in the high speed state.  This
4485          * should be the default.
4486          */
4487         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4488         case GC_CLOCK_133_200:
4489         case GC_CLOCK_100_200:
4490                 return 200000;
4491         case GC_CLOCK_166_250:
4492                 return 250000;
4493         case GC_CLOCK_100_133:
4494                 return 133000;
4495         }
4496
4497         /* Shouldn't happen */
4498         return 0;
4499 }
4500
4501 static int i830_get_display_clock_speed(struct drm_device *dev)
4502 {
4503         return 133000;
4504 }
4505
4506 static void
4507 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4508 {
4509         while (*num > DATA_LINK_M_N_MASK ||
4510                *den > DATA_LINK_M_N_MASK) {
4511                 *num >>= 1;
4512                 *den >>= 1;
4513         }
4514 }
4515
4516 static void compute_m_n(unsigned int m, unsigned int n,
4517                         uint32_t *ret_m, uint32_t *ret_n)
4518 {
4519         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4520         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4521         intel_reduce_m_n_ratio(ret_m, ret_n);
4522 }
4523
4524 void
4525 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4526                        int pixel_clock, int link_clock,
4527                        struct intel_link_m_n *m_n)
4528 {
4529         m_n->tu = 64;
4530
4531         compute_m_n(bits_per_pixel * pixel_clock,
4532                     link_clock * nlanes * 8,
4533                     &m_n->gmch_m, &m_n->gmch_n);
4534
4535         compute_m_n(pixel_clock, link_clock,
4536                     &m_n->link_m, &m_n->link_n);
4537 }
4538
4539 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4540 {
4541         if (i915_panel_use_ssc >= 0)
4542                 return i915_panel_use_ssc != 0;
4543         return dev_priv->vbt.lvds_use_ssc
4544                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4545 }
4546
4547 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4548 {
4549         struct drm_device *dev = crtc->dev;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         int refclk;
4552
4553         if (IS_VALLEYVIEW(dev)) {
4554                 refclk = 100000;
4555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4556             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4557                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4558                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4559                               refclk / 1000);
4560         } else if (!IS_GEN2(dev)) {
4561                 refclk = 96000;
4562         } else {
4563                 refclk = 48000;
4564         }
4565
4566         return refclk;
4567 }
4568
4569 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4570 {
4571         return (1 << dpll->n) << 16 | dpll->m2;
4572 }
4573
4574 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4575 {
4576         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4577 }
4578
4579 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4580                                      intel_clock_t *reduced_clock)
4581 {
4582         struct drm_device *dev = crtc->base.dev;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584         int pipe = crtc->pipe;
4585         u32 fp, fp2 = 0;
4586
4587         if (IS_PINEVIEW(dev)) {
4588                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4589                 if (reduced_clock)
4590                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4591         } else {
4592                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4593                 if (reduced_clock)
4594                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4595         }
4596
4597         I915_WRITE(FP0(pipe), fp);
4598         crtc->config.dpll_hw_state.fp0 = fp;
4599
4600         crtc->lowfreq_avail = false;
4601         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4602             reduced_clock && i915_powersave) {
4603                 I915_WRITE(FP1(pipe), fp2);
4604                 crtc->config.dpll_hw_state.fp1 = fp2;
4605                 crtc->lowfreq_avail = true;
4606         } else {
4607                 I915_WRITE(FP1(pipe), fp);
4608                 crtc->config.dpll_hw_state.fp1 = fp;
4609         }
4610 }
4611
4612 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4613                 pipe)
4614 {
4615         u32 reg_val;
4616
4617         /*
4618          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4619          * and set it to a reasonable value instead.
4620          */
4621         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4622         reg_val &= 0xffffff00;
4623         reg_val |= 0x00000030;
4624         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4625
4626         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4627         reg_val &= 0x8cffffff;
4628         reg_val = 0x8c000000;
4629         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4630
4631         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4632         reg_val &= 0xffffff00;
4633         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4634
4635         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4636         reg_val &= 0x00ffffff;
4637         reg_val |= 0xb0000000;
4638         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4639 }
4640
4641 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4642                                          struct intel_link_m_n *m_n)
4643 {
4644         struct drm_device *dev = crtc->base.dev;
4645         struct drm_i915_private *dev_priv = dev->dev_private;
4646         int pipe = crtc->pipe;
4647
4648         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4649         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4650         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4651         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4652 }
4653
4654 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4655                                          struct intel_link_m_n *m_n)
4656 {
4657         struct drm_device *dev = crtc->base.dev;
4658         struct drm_i915_private *dev_priv = dev->dev_private;
4659         int pipe = crtc->pipe;
4660         enum transcoder transcoder = crtc->config.cpu_transcoder;
4661
4662         if (INTEL_INFO(dev)->gen >= 5) {
4663                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4664                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4665                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4666                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4667         } else {
4668                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4669                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4670                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4671                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4672         }
4673 }
4674
4675 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4676 {
4677         if (crtc->config.has_pch_encoder)
4678                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4679         else
4680                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4681 }
4682
4683 static void vlv_update_pll(struct intel_crtc *crtc)
4684 {
4685         struct drm_device *dev = crtc->base.dev;
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         int pipe = crtc->pipe;
4688         u32 dpll, mdiv;
4689         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4690         u32 coreclk, reg_val, dpll_md;
4691
4692         mutex_lock(&dev_priv->dpio_lock);
4693
4694         bestn = crtc->config.dpll.n;
4695         bestm1 = crtc->config.dpll.m1;
4696         bestm2 = crtc->config.dpll.m2;
4697         bestp1 = crtc->config.dpll.p1;
4698         bestp2 = crtc->config.dpll.p2;
4699
4700         /* See eDP HDMI DPIO driver vbios notes doc */
4701
4702         /* PLL B needs special handling */
4703         if (pipe)
4704                 vlv_pllb_recal_opamp(dev_priv, pipe);
4705
4706         /* Set up Tx target for periodic Rcomp update */
4707         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4708
4709         /* Disable target IRef on PLL */
4710         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4711         reg_val &= 0x00ffffff;
4712         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4713
4714         /* Disable fast lock */
4715         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4716
4717         /* Set idtafcrecal before PLL is enabled */
4718         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4719         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4720         mdiv |= ((bestn << DPIO_N_SHIFT));
4721         mdiv |= (1 << DPIO_K_SHIFT);
4722
4723         /*
4724          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4725          * but we don't support that).
4726          * Note: don't use the DAC post divider as it seems unstable.
4727          */
4728         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4729         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4730
4731         mdiv |= DPIO_ENABLE_CALIBRATION;
4732         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4733
4734         /* Set HBR and RBR LPF coefficients */
4735         if (crtc->config.port_clock == 162000 ||
4736             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4737             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4738                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4739                                  0x009f0003);
4740         else
4741                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4742                                  0x00d0000f);
4743
4744         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4745             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4746                 /* Use SSC source */
4747                 if (!pipe)
4748                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4749                                          0x0df40000);
4750                 else
4751                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4752                                          0x0df70000);
4753         } else { /* HDMI or VGA */
4754                 /* Use bend source */
4755                 if (!pipe)
4756                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4757                                          0x0df70000);
4758                 else
4759                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4760                                          0x0df40000);
4761         }
4762
4763         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4764         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4765         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4766             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4767                 coreclk |= 0x01000000;
4768         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4769
4770         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4771
4772         /* Enable DPIO clock input */
4773         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4774                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4775         /* We should never disable this, set it here for state tracking */
4776         if (pipe == PIPE_B)
4777                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4778         dpll |= DPLL_VCO_ENABLE;
4779         crtc->config.dpll_hw_state.dpll = dpll;
4780
4781         dpll_md = (crtc->config.pixel_multiplier - 1)
4782                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4783         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4784
4785         if (crtc->config.has_dp_encoder)
4786                 intel_dp_set_m_n(crtc);
4787
4788         mutex_unlock(&dev_priv->dpio_lock);
4789 }
4790
4791 static void i9xx_update_pll(struct intel_crtc *crtc,
4792                             intel_clock_t *reduced_clock,
4793                             int num_connectors)
4794 {
4795         struct drm_device *dev = crtc->base.dev;
4796         struct drm_i915_private *dev_priv = dev->dev_private;
4797         u32 dpll;
4798         bool is_sdvo;
4799         struct dpll *clock = &crtc->config.dpll;
4800
4801         i9xx_update_pll_dividers(crtc, reduced_clock);
4802
4803         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4804                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4805
4806         dpll = DPLL_VGA_MODE_DIS;
4807
4808         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4809                 dpll |= DPLLB_MODE_LVDS;
4810         else
4811                 dpll |= DPLLB_MODE_DAC_SERIAL;
4812
4813         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4814                 dpll |= (crtc->config.pixel_multiplier - 1)
4815                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4816         }
4817
4818         if (is_sdvo)
4819                 dpll |= DPLL_SDVO_HIGH_SPEED;
4820
4821         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4822                 dpll |= DPLL_SDVO_HIGH_SPEED;
4823
4824         /* compute bitmask from p1 value */
4825         if (IS_PINEVIEW(dev))
4826                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4827         else {
4828                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4829                 if (IS_G4X(dev) && reduced_clock)
4830                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4831         }
4832         switch (clock->p2) {
4833         case 5:
4834                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4835                 break;
4836         case 7:
4837                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4838                 break;
4839         case 10:
4840                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4841                 break;
4842         case 14:
4843                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4844                 break;
4845         }
4846         if (INTEL_INFO(dev)->gen >= 4)
4847                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4848
4849         if (crtc->config.sdvo_tv_clock)
4850                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4851         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4852                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4853                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4854         else
4855                 dpll |= PLL_REF_INPUT_DREFCLK;
4856
4857         dpll |= DPLL_VCO_ENABLE;
4858         crtc->config.dpll_hw_state.dpll = dpll;
4859
4860         if (INTEL_INFO(dev)->gen >= 4) {
4861                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4862                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4863                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4864         }
4865
4866         if (crtc->config.has_dp_encoder)
4867                 intel_dp_set_m_n(crtc);
4868 }
4869
4870 static void i8xx_update_pll(struct intel_crtc *crtc,
4871                             intel_clock_t *reduced_clock,
4872                             int num_connectors)
4873 {
4874         struct drm_device *dev = crtc->base.dev;
4875         struct drm_i915_private *dev_priv = dev->dev_private;
4876         u32 dpll;
4877         struct dpll *clock = &crtc->config.dpll;
4878
4879         i9xx_update_pll_dividers(crtc, reduced_clock);
4880
4881         dpll = DPLL_VGA_MODE_DIS;
4882
4883         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4884                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4885         } else {
4886                 if (clock->p1 == 2)
4887                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4888                 else
4889                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4890                 if (clock->p2 == 4)
4891                         dpll |= PLL_P2_DIVIDE_BY_4;
4892         }
4893
4894         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4895                 dpll |= DPLL_DVO_2X_MODE;
4896
4897         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4898                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4899                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4900         else
4901                 dpll |= PLL_REF_INPUT_DREFCLK;
4902
4903         dpll |= DPLL_VCO_ENABLE;
4904         crtc->config.dpll_hw_state.dpll = dpll;
4905 }
4906
4907 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4908 {
4909         struct drm_device *dev = intel_crtc->base.dev;
4910         struct drm_i915_private *dev_priv = dev->dev_private;
4911         enum pipe pipe = intel_crtc->pipe;
4912         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4913         struct drm_display_mode *adjusted_mode =
4914                 &intel_crtc->config.adjusted_mode;
4915         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4916
4917         /* We need to be careful not to changed the adjusted mode, for otherwise
4918          * the hw state checker will get angry at the mismatch. */
4919         crtc_vtotal = adjusted_mode->crtc_vtotal;
4920         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4921
4922         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4923                 /* the chip adds 2 halflines automatically */
4924                 crtc_vtotal -= 1;
4925                 crtc_vblank_end -= 1;
4926                 vsyncshift = adjusted_mode->crtc_hsync_start
4927                              - adjusted_mode->crtc_htotal / 2;
4928         } else {
4929                 vsyncshift = 0;
4930         }
4931
4932         if (INTEL_INFO(dev)->gen > 3)
4933                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4934
4935         I915_WRITE(HTOTAL(cpu_transcoder),
4936                    (adjusted_mode->crtc_hdisplay - 1) |
4937                    ((adjusted_mode->crtc_htotal - 1) << 16));
4938         I915_WRITE(HBLANK(cpu_transcoder),
4939                    (adjusted_mode->crtc_hblank_start - 1) |
4940                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4941         I915_WRITE(HSYNC(cpu_transcoder),
4942                    (adjusted_mode->crtc_hsync_start - 1) |
4943                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4944
4945         I915_WRITE(VTOTAL(cpu_transcoder),
4946                    (adjusted_mode->crtc_vdisplay - 1) |
4947                    ((crtc_vtotal - 1) << 16));
4948         I915_WRITE(VBLANK(cpu_transcoder),
4949                    (adjusted_mode->crtc_vblank_start - 1) |
4950                    ((crtc_vblank_end - 1) << 16));
4951         I915_WRITE(VSYNC(cpu_transcoder),
4952                    (adjusted_mode->crtc_vsync_start - 1) |
4953                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4954
4955         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4956          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4957          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4958          * bits. */
4959         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4960             (pipe == PIPE_B || pipe == PIPE_C))
4961                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4962
4963         /* pipesrc controls the size that is scaled from, which should
4964          * always be the user's requested size.
4965          */
4966         I915_WRITE(PIPESRC(pipe),
4967                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4968                    (intel_crtc->config.pipe_src_h - 1));
4969 }
4970
4971 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4972                                    struct intel_crtc_config *pipe_config)
4973 {
4974         struct drm_device *dev = crtc->base.dev;
4975         struct drm_i915_private *dev_priv = dev->dev_private;
4976         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4977         uint32_t tmp;
4978
4979         tmp = I915_READ(HTOTAL(cpu_transcoder));
4980         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4981         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4982         tmp = I915_READ(HBLANK(cpu_transcoder));
4983         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4984         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4985         tmp = I915_READ(HSYNC(cpu_transcoder));
4986         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4987         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4988
4989         tmp = I915_READ(VTOTAL(cpu_transcoder));
4990         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4991         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4992         tmp = I915_READ(VBLANK(cpu_transcoder));
4993         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4994         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4995         tmp = I915_READ(VSYNC(cpu_transcoder));
4996         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4997         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4998
4999         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5000                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5001                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5002                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5003         }
5004
5005         tmp = I915_READ(PIPESRC(crtc->pipe));
5006         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5007         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5008
5009         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5010         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5011 }
5012
5013 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5014                                              struct intel_crtc_config *pipe_config)
5015 {
5016         struct drm_crtc *crtc = &intel_crtc->base;
5017
5018         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5019         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5020         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5021         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5022
5023         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5024         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5025         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5026         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5027
5028         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5029
5030         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5031         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5032 }
5033
5034 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5035 {
5036         struct drm_device *dev = intel_crtc->base.dev;
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         uint32_t pipeconf;
5039
5040         pipeconf = 0;
5041
5042         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5043             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5044                 pipeconf |= PIPECONF_ENABLE;
5045
5046         if (intel_crtc->config.double_wide)
5047                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5048
5049         /* only g4x and later have fancy bpc/dither controls */
5050         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5051                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5052                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5053                         pipeconf |= PIPECONF_DITHER_EN |
5054                                     PIPECONF_DITHER_TYPE_SP;
5055
5056                 switch (intel_crtc->config.pipe_bpp) {
5057                 case 18:
5058                         pipeconf |= PIPECONF_6BPC;
5059                         break;
5060                 case 24:
5061                         pipeconf |= PIPECONF_8BPC;
5062                         break;
5063                 case 30:
5064                         pipeconf |= PIPECONF_10BPC;
5065                         break;
5066                 default:
5067                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5068                         BUG();
5069                 }
5070         }
5071
5072         if (HAS_PIPE_CXSR(dev)) {
5073                 if (intel_crtc->lowfreq_avail) {
5074                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5075                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5076                 } else {
5077                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5078                 }
5079         }
5080
5081         if (!IS_GEN2(dev) &&
5082             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5083                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5084         else
5085                 pipeconf |= PIPECONF_PROGRESSIVE;
5086
5087         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5088                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5089
5090         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5091         POSTING_READ(PIPECONF(intel_crtc->pipe));
5092 }
5093
5094 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5095                               int x, int y,
5096                               struct drm_framebuffer *fb)
5097 {
5098         struct drm_device *dev = crtc->dev;
5099         struct drm_i915_private *dev_priv = dev->dev_private;
5100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5101         int pipe = intel_crtc->pipe;
5102         int plane = intel_crtc->plane;
5103         int refclk, num_connectors = 0;
5104         intel_clock_t clock, reduced_clock;
5105         u32 dspcntr;
5106         bool ok, has_reduced_clock = false;
5107         bool is_lvds = false, is_dsi = false;
5108         struct intel_encoder *encoder;
5109         const intel_limit_t *limit;
5110         int ret;
5111
5112         for_each_encoder_on_crtc(dev, crtc, encoder) {
5113                 switch (encoder->type) {
5114                 case INTEL_OUTPUT_LVDS:
5115                         is_lvds = true;
5116                         break;
5117                 case INTEL_OUTPUT_DSI:
5118                         is_dsi = true;
5119                         break;
5120                 }
5121
5122                 num_connectors++;
5123         }
5124
5125         if (is_dsi)
5126                 goto skip_dpll;
5127
5128         if (!intel_crtc->config.clock_set) {
5129                 refclk = i9xx_get_refclk(crtc, num_connectors);
5130
5131                 /*
5132                  * Returns a set of divisors for the desired target clock with
5133                  * the given refclk, or FALSE.  The returned values represent
5134                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5135                  * 2) / p1 / p2.
5136                  */
5137                 limit = intel_limit(crtc, refclk);
5138                 ok = dev_priv->display.find_dpll(limit, crtc,
5139                                                  intel_crtc->config.port_clock,
5140                                                  refclk, NULL, &clock);
5141                 if (!ok) {
5142                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5143                         return -EINVAL;
5144                 }
5145
5146                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5147                         /*
5148                          * Ensure we match the reduced clock's P to the target
5149                          * clock.  If the clocks don't match, we can't switch
5150                          * the display clock by using the FP0/FP1. In such case
5151                          * we will disable the LVDS downclock feature.
5152                          */
5153                         has_reduced_clock =
5154                                 dev_priv->display.find_dpll(limit, crtc,
5155                                                             dev_priv->lvds_downclock,
5156                                                             refclk, &clock,
5157                                                             &reduced_clock);
5158                 }
5159                 /* Compat-code for transition, will disappear. */
5160                 intel_crtc->config.dpll.n = clock.n;
5161                 intel_crtc->config.dpll.m1 = clock.m1;
5162                 intel_crtc->config.dpll.m2 = clock.m2;
5163                 intel_crtc->config.dpll.p1 = clock.p1;
5164                 intel_crtc->config.dpll.p2 = clock.p2;
5165         }
5166
5167         if (IS_GEN2(dev)) {
5168                 i8xx_update_pll(intel_crtc,
5169                                 has_reduced_clock ? &reduced_clock : NULL,
5170                                 num_connectors);
5171         } else if (IS_VALLEYVIEW(dev)) {
5172                 vlv_update_pll(intel_crtc);
5173         } else {
5174                 i9xx_update_pll(intel_crtc,
5175                                 has_reduced_clock ? &reduced_clock : NULL,
5176                                 num_connectors);
5177         }
5178
5179 skip_dpll:
5180         /* Set up the display plane register */
5181         dspcntr = DISPPLANE_GAMMA_ENABLE;
5182
5183         if (!IS_VALLEYVIEW(dev)) {
5184                 if (pipe == 0)
5185                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5186                 else
5187                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5188         }
5189
5190         intel_set_pipe_timings(intel_crtc);
5191
5192         /* pipesrc and dspsize control the size that is scaled from,
5193          * which should always be the user's requested size.
5194          */
5195         I915_WRITE(DSPSIZE(plane),
5196                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5197                    (intel_crtc->config.pipe_src_w - 1));
5198         I915_WRITE(DSPPOS(plane), 0);
5199
5200         i9xx_set_pipeconf(intel_crtc);
5201
5202         I915_WRITE(DSPCNTR(plane), dspcntr);
5203         POSTING_READ(DSPCNTR(plane));
5204
5205         ret = intel_pipe_set_base(crtc, x, y, fb);
5206
5207         return ret;
5208 }
5209
5210 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5211                                  struct intel_crtc_config *pipe_config)
5212 {
5213         struct drm_device *dev = crtc->base.dev;
5214         struct drm_i915_private *dev_priv = dev->dev_private;
5215         uint32_t tmp;
5216
5217         tmp = I915_READ(PFIT_CONTROL);
5218         if (!(tmp & PFIT_ENABLE))
5219                 return;
5220
5221         /* Check whether the pfit is attached to our pipe. */
5222         if (INTEL_INFO(dev)->gen < 4) {
5223                 if (crtc->pipe != PIPE_B)
5224                         return;
5225         } else {
5226                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5227                         return;
5228         }
5229
5230         pipe_config->gmch_pfit.control = tmp;
5231         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5232         if (INTEL_INFO(dev)->gen < 5)
5233                 pipe_config->gmch_pfit.lvds_border_bits =
5234                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5235 }
5236
5237 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5238                                struct intel_crtc_config *pipe_config)
5239 {
5240         struct drm_device *dev = crtc->base.dev;
5241         struct drm_i915_private *dev_priv = dev->dev_private;
5242         int pipe = pipe_config->cpu_transcoder;
5243         intel_clock_t clock;
5244         u32 mdiv;
5245         int refclk = 100000;
5246
5247         mutex_lock(&dev_priv->dpio_lock);
5248         mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5249         mutex_unlock(&dev_priv->dpio_lock);
5250
5251         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5252         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5253         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5254         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5255         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5256
5257         vlv_clock(refclk, &clock);
5258
5259         /* clock.dot is the fast clock */
5260         pipe_config->port_clock = clock.dot / 5;
5261 }
5262
5263 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5264                                  struct intel_crtc_config *pipe_config)
5265 {
5266         struct drm_device *dev = crtc->base.dev;
5267         struct drm_i915_private *dev_priv = dev->dev_private;
5268         uint32_t tmp;
5269
5270         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5271         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5272
5273         tmp = I915_READ(PIPECONF(crtc->pipe));
5274         if (!(tmp & PIPECONF_ENABLE))
5275                 return false;
5276
5277         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5278                 switch (tmp & PIPECONF_BPC_MASK) {
5279                 case PIPECONF_6BPC:
5280                         pipe_config->pipe_bpp = 18;
5281                         break;
5282                 case PIPECONF_8BPC:
5283                         pipe_config->pipe_bpp = 24;
5284                         break;
5285                 case PIPECONF_10BPC:
5286                         pipe_config->pipe_bpp = 30;
5287                         break;
5288                 default:
5289                         break;
5290                 }
5291         }
5292
5293         if (INTEL_INFO(dev)->gen < 4)
5294                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5295
5296         intel_get_pipe_timings(crtc, pipe_config);
5297
5298         i9xx_get_pfit_config(crtc, pipe_config);
5299
5300         if (INTEL_INFO(dev)->gen >= 4) {
5301                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5302                 pipe_config->pixel_multiplier =
5303                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5304                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5305                 pipe_config->dpll_hw_state.dpll_md = tmp;
5306         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5307                 tmp = I915_READ(DPLL(crtc->pipe));
5308                 pipe_config->pixel_multiplier =
5309                         ((tmp & SDVO_MULTIPLIER_MASK)
5310                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5311         } else {
5312                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5313                  * port and will be fixed up in the encoder->get_config
5314                  * function. */
5315                 pipe_config->pixel_multiplier = 1;
5316         }
5317         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5318         if (!IS_VALLEYVIEW(dev)) {
5319                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5320                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5321         } else {
5322                 /* Mask out read-only status bits. */
5323                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5324                                                      DPLL_PORTC_READY_MASK |
5325                                                      DPLL_PORTB_READY_MASK);
5326         }
5327
5328         if (IS_VALLEYVIEW(dev))
5329                 vlv_crtc_clock_get(crtc, pipe_config);
5330         else
5331                 i9xx_crtc_clock_get(crtc, pipe_config);
5332
5333         return true;
5334 }
5335
5336 static void ironlake_init_pch_refclk(struct drm_device *dev)
5337 {
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         struct drm_mode_config *mode_config = &dev->mode_config;
5340         struct intel_encoder *encoder;
5341         u32 val, final;
5342         bool has_lvds = false;
5343         bool has_cpu_edp = false;
5344         bool has_panel = false;
5345         bool has_ck505 = false;
5346         bool can_ssc = false;
5347
5348         /* We need to take the global config into account */
5349         list_for_each_entry(encoder, &mode_config->encoder_list,
5350                             base.head) {
5351                 switch (encoder->type) {
5352                 case INTEL_OUTPUT_LVDS:
5353                         has_panel = true;
5354                         has_lvds = true;
5355                         break;
5356                 case INTEL_OUTPUT_EDP:
5357                         has_panel = true;
5358                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5359                                 has_cpu_edp = true;
5360                         break;
5361                 }
5362         }
5363
5364         if (HAS_PCH_IBX(dev)) {
5365                 has_ck505 = dev_priv->vbt.display_clock_mode;
5366                 can_ssc = has_ck505;
5367         } else {
5368                 has_ck505 = false;
5369                 can_ssc = true;
5370         }
5371
5372         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5373                       has_panel, has_lvds, has_ck505);
5374
5375         /* Ironlake: try to setup display ref clock before DPLL
5376          * enabling. This is only under driver's control after
5377          * PCH B stepping, previous chipset stepping should be
5378          * ignoring this setting.
5379          */
5380         val = I915_READ(PCH_DREF_CONTROL);
5381
5382         /* As we must carefully and slowly disable/enable each source in turn,
5383          * compute the final state we want first and check if we need to
5384          * make any changes at all.
5385          */
5386         final = val;
5387         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5388         if (has_ck505)
5389                 final |= DREF_NONSPREAD_CK505_ENABLE;
5390         else
5391                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5392
5393         final &= ~DREF_SSC_SOURCE_MASK;
5394         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5395         final &= ~DREF_SSC1_ENABLE;
5396
5397         if (has_panel) {
5398                 final |= DREF_SSC_SOURCE_ENABLE;
5399
5400                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5401                         final |= DREF_SSC1_ENABLE;
5402
5403                 if (has_cpu_edp) {
5404                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5405                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5406                         else
5407                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5408                 } else
5409                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5410         } else {
5411                 final |= DREF_SSC_SOURCE_DISABLE;
5412                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5413         }
5414
5415         if (final == val)
5416                 return;
5417
5418         /* Always enable nonspread source */
5419         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5420
5421         if (has_ck505)
5422                 val |= DREF_NONSPREAD_CK505_ENABLE;
5423         else
5424                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5425
5426         if (has_panel) {
5427                 val &= ~DREF_SSC_SOURCE_MASK;
5428                 val |= DREF_SSC_SOURCE_ENABLE;
5429
5430                 /* SSC must be turned on before enabling the CPU output  */
5431                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5432                         DRM_DEBUG_KMS("Using SSC on panel\n");
5433                         val |= DREF_SSC1_ENABLE;
5434                 } else
5435                         val &= ~DREF_SSC1_ENABLE;
5436
5437                 /* Get SSC going before enabling the outputs */
5438                 I915_WRITE(PCH_DREF_CONTROL, val);
5439                 POSTING_READ(PCH_DREF_CONTROL);
5440                 udelay(200);
5441
5442                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5443
5444                 /* Enable CPU source on CPU attached eDP */
5445                 if (has_cpu_edp) {
5446                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5447                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5448                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5449                         }
5450                         else
5451                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5452                 } else
5453                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5454
5455                 I915_WRITE(PCH_DREF_CONTROL, val);
5456                 POSTING_READ(PCH_DREF_CONTROL);
5457                 udelay(200);
5458         } else {
5459                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5460
5461                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5462
5463                 /* Turn off CPU output */
5464                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5465
5466                 I915_WRITE(PCH_DREF_CONTROL, val);
5467                 POSTING_READ(PCH_DREF_CONTROL);
5468                 udelay(200);
5469
5470                 /* Turn off the SSC source */
5471                 val &= ~DREF_SSC_SOURCE_MASK;
5472                 val |= DREF_SSC_SOURCE_DISABLE;
5473
5474                 /* Turn off SSC1 */
5475                 val &= ~DREF_SSC1_ENABLE;
5476
5477                 I915_WRITE(PCH_DREF_CONTROL, val);
5478                 POSTING_READ(PCH_DREF_CONTROL);
5479                 udelay(200);
5480         }
5481
5482         BUG_ON(val != final);
5483 }
5484
5485 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5486 {
5487         uint32_t tmp;
5488
5489         tmp = I915_READ(SOUTH_CHICKEN2);
5490         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5491         I915_WRITE(SOUTH_CHICKEN2, tmp);
5492
5493         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5494                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5495                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5496
5497         tmp = I915_READ(SOUTH_CHICKEN2);
5498         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5499         I915_WRITE(SOUTH_CHICKEN2, tmp);
5500
5501         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5502                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5503                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5504 }
5505
5506 /* WaMPhyProgramming:hsw */
5507 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5508 {
5509         uint32_t tmp;
5510
5511         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5512         tmp &= ~(0xFF << 24);
5513         tmp |= (0x12 << 24);
5514         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5515
5516         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5517         tmp |= (1 << 11);
5518         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5519
5520         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5521         tmp |= (1 << 11);
5522         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5523
5524         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5525         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5526         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5527
5528         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5529         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5530         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5531
5532         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5533         tmp &= ~(7 << 13);
5534         tmp |= (5 << 13);
5535         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5536
5537         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5538         tmp &= ~(7 << 13);
5539         tmp |= (5 << 13);
5540         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5541
5542         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5543         tmp &= ~0xFF;
5544         tmp |= 0x1C;
5545         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5546
5547         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5548         tmp &= ~0xFF;
5549         tmp |= 0x1C;
5550         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5551
5552         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5553         tmp &= ~(0xFF << 16);
5554         tmp |= (0x1C << 16);
5555         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5556
5557         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5558         tmp &= ~(0xFF << 16);
5559         tmp |= (0x1C << 16);
5560         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5561
5562         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5563         tmp |= (1 << 27);
5564         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5565
5566         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5567         tmp |= (1 << 27);
5568         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5569
5570         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5571         tmp &= ~(0xF << 28);
5572         tmp |= (4 << 28);
5573         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5574
5575         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5576         tmp &= ~(0xF << 28);
5577         tmp |= (4 << 28);
5578         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5579 }
5580
5581 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5582  * Programming" based on the parameters passed:
5583  * - Sequence to enable CLKOUT_DP
5584  * - Sequence to enable CLKOUT_DP without spread
5585  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5586  */
5587 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5588                                  bool with_fdi)
5589 {
5590         struct drm_i915_private *dev_priv = dev->dev_private;
5591         uint32_t reg, tmp;
5592
5593         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5594                 with_spread = true;
5595         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5596                  with_fdi, "LP PCH doesn't have FDI\n"))
5597                 with_fdi = false;
5598
5599         mutex_lock(&dev_priv->dpio_lock);
5600
5601         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5602         tmp &= ~SBI_SSCCTL_DISABLE;
5603         tmp |= SBI_SSCCTL_PATHALT;
5604         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5605
5606         udelay(24);
5607
5608         if (with_spread) {
5609                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5610                 tmp &= ~SBI_SSCCTL_PATHALT;
5611                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5612
5613                 if (with_fdi) {
5614                         lpt_reset_fdi_mphy(dev_priv);
5615                         lpt_program_fdi_mphy(dev_priv);
5616                 }
5617         }
5618
5619         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5620                SBI_GEN0 : SBI_DBUFF0;
5621         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5622         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5623         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5624
5625         mutex_unlock(&dev_priv->dpio_lock);
5626 }
5627
5628 /* Sequence to disable CLKOUT_DP */
5629 static void lpt_disable_clkout_dp(struct drm_device *dev)
5630 {
5631         struct drm_i915_private *dev_priv = dev->dev_private;
5632         uint32_t reg, tmp;
5633
5634         mutex_lock(&dev_priv->dpio_lock);
5635
5636         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5637                SBI_GEN0 : SBI_DBUFF0;
5638         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5639         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5640         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5641
5642         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5643         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5644                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5645                         tmp |= SBI_SSCCTL_PATHALT;
5646                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5647                         udelay(32);
5648                 }
5649                 tmp |= SBI_SSCCTL_DISABLE;
5650                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5651         }
5652
5653         mutex_unlock(&dev_priv->dpio_lock);
5654 }
5655
5656 static void lpt_init_pch_refclk(struct drm_device *dev)
5657 {
5658         struct drm_mode_config *mode_config = &dev->mode_config;
5659         struct intel_encoder *encoder;
5660         bool has_vga = false;
5661
5662         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5663                 switch (encoder->type) {
5664                 case INTEL_OUTPUT_ANALOG:
5665                         has_vga = true;
5666                         break;
5667                 }
5668         }
5669
5670         if (has_vga)
5671                 lpt_enable_clkout_dp(dev, true, true);
5672         else
5673                 lpt_disable_clkout_dp(dev);
5674 }
5675
5676 /*
5677  * Initialize reference clocks when the driver loads
5678  */
5679 void intel_init_pch_refclk(struct drm_device *dev)
5680 {
5681         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5682                 ironlake_init_pch_refclk(dev);
5683         else if (HAS_PCH_LPT(dev))
5684                 lpt_init_pch_refclk(dev);
5685 }
5686
5687 static int ironlake_get_refclk(struct drm_crtc *crtc)
5688 {
5689         struct drm_device *dev = crtc->dev;
5690         struct drm_i915_private *dev_priv = dev->dev_private;
5691         struct intel_encoder *encoder;
5692         int num_connectors = 0;
5693         bool is_lvds = false;
5694
5695         for_each_encoder_on_crtc(dev, crtc, encoder) {
5696                 switch (encoder->type) {
5697                 case INTEL_OUTPUT_LVDS:
5698                         is_lvds = true;
5699                         break;
5700                 }
5701                 num_connectors++;
5702         }
5703
5704         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5705                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5706                               dev_priv->vbt.lvds_ssc_freq);
5707                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5708         }
5709
5710         return 120000;
5711 }
5712
5713 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5714 {
5715         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5716         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5717         int pipe = intel_crtc->pipe;
5718         uint32_t val;
5719
5720         val = 0;
5721
5722         switch (intel_crtc->config.pipe_bpp) {
5723         case 18:
5724                 val |= PIPECONF_6BPC;
5725                 break;
5726         case 24:
5727                 val |= PIPECONF_8BPC;
5728                 break;
5729         case 30:
5730                 val |= PIPECONF_10BPC;
5731                 break;
5732         case 36:
5733                 val |= PIPECONF_12BPC;
5734                 break;
5735         default:
5736                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5737                 BUG();
5738         }
5739
5740         if (intel_crtc->config.dither)
5741                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5742
5743         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5744                 val |= PIPECONF_INTERLACED_ILK;
5745         else
5746                 val |= PIPECONF_PROGRESSIVE;
5747
5748         if (intel_crtc->config.limited_color_range)
5749                 val |= PIPECONF_COLOR_RANGE_SELECT;
5750
5751         I915_WRITE(PIPECONF(pipe), val);
5752         POSTING_READ(PIPECONF(pipe));
5753 }
5754
5755 /*
5756  * Set up the pipe CSC unit.
5757  *
5758  * Currently only full range RGB to limited range RGB conversion
5759  * is supported, but eventually this should handle various
5760  * RGB<->YCbCr scenarios as well.
5761  */
5762 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5763 {
5764         struct drm_device *dev = crtc->dev;
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5767         int pipe = intel_crtc->pipe;
5768         uint16_t coeff = 0x7800; /* 1.0 */
5769
5770         /*
5771          * TODO: Check what kind of values actually come out of the pipe
5772          * with these coeff/postoff values and adjust to get the best
5773          * accuracy. Perhaps we even need to take the bpc value into
5774          * consideration.
5775          */
5776
5777         if (intel_crtc->config.limited_color_range)
5778                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5779
5780         /*
5781          * GY/GU and RY/RU should be the other way around according
5782          * to BSpec, but reality doesn't agree. Just set them up in
5783          * a way that results in the correct picture.
5784          */
5785         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5786         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5787
5788         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5789         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5790
5791         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5792         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5793
5794         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5795         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5796         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5797
5798         if (INTEL_INFO(dev)->gen > 6) {
5799                 uint16_t postoff = 0;
5800
5801                 if (intel_crtc->config.limited_color_range)
5802                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5803
5804                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5805                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5806                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5807
5808                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5809         } else {
5810                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5811
5812                 if (intel_crtc->config.limited_color_range)
5813                         mode |= CSC_BLACK_SCREEN_OFFSET;
5814
5815                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5816         }
5817 }
5818
5819 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5820 {
5821         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5823         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5824         uint32_t val;
5825
5826         val = 0;
5827
5828         if (intel_crtc->config.dither)
5829                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5830
5831         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5832                 val |= PIPECONF_INTERLACED_ILK;
5833         else
5834                 val |= PIPECONF_PROGRESSIVE;
5835
5836         I915_WRITE(PIPECONF(cpu_transcoder), val);
5837         POSTING_READ(PIPECONF(cpu_transcoder));
5838
5839         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5840         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5841 }
5842
5843 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5844                                     intel_clock_t *clock,
5845                                     bool *has_reduced_clock,
5846                                     intel_clock_t *reduced_clock)
5847 {
5848         struct drm_device *dev = crtc->dev;
5849         struct drm_i915_private *dev_priv = dev->dev_private;
5850         struct intel_encoder *intel_encoder;
5851         int refclk;
5852         const intel_limit_t *limit;
5853         bool ret, is_lvds = false;
5854
5855         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5856                 switch (intel_encoder->type) {
5857                 case INTEL_OUTPUT_LVDS:
5858                         is_lvds = true;
5859                         break;
5860                 }
5861         }
5862
5863         refclk = ironlake_get_refclk(crtc);
5864
5865         /*
5866          * Returns a set of divisors for the desired target clock with the given
5867          * refclk, or FALSE.  The returned values represent the clock equation:
5868          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5869          */
5870         limit = intel_limit(crtc, refclk);
5871         ret = dev_priv->display.find_dpll(limit, crtc,
5872                                           to_intel_crtc(crtc)->config.port_clock,
5873                                           refclk, NULL, clock);
5874         if (!ret)
5875                 return false;
5876
5877         if (is_lvds && dev_priv->lvds_downclock_avail) {
5878                 /*
5879                  * Ensure we match the reduced clock's P to the target clock.
5880                  * If the clocks don't match, we can't switch the display clock
5881                  * by using the FP0/FP1. In such case we will disable the LVDS
5882                  * downclock feature.
5883                 */
5884                 *has_reduced_clock =
5885                         dev_priv->display.find_dpll(limit, crtc,
5886                                                     dev_priv->lvds_downclock,
5887                                                     refclk, clock,
5888                                                     reduced_clock);
5889         }
5890
5891         return true;
5892 }
5893
5894 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5895 {
5896         /*
5897          * Account for spread spectrum to avoid
5898          * oversubscribing the link. Max center spread
5899          * is 2.5%; use 5% for safety's sake.
5900          */
5901         u32 bps = target_clock * bpp * 21 / 20;
5902         return bps / (link_bw * 8) + 1;
5903 }
5904
5905 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5906 {
5907         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5908 }
5909
5910 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5911                                       u32 *fp,
5912                                       intel_clock_t *reduced_clock, u32 *fp2)
5913 {
5914         struct drm_crtc *crtc = &intel_crtc->base;
5915         struct drm_device *dev = crtc->dev;
5916         struct drm_i915_private *dev_priv = dev->dev_private;
5917         struct intel_encoder *intel_encoder;
5918         uint32_t dpll;
5919         int factor, num_connectors = 0;
5920         bool is_lvds = false, is_sdvo = false;
5921
5922         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5923                 switch (intel_encoder->type) {
5924                 case INTEL_OUTPUT_LVDS:
5925                         is_lvds = true;
5926                         break;
5927                 case INTEL_OUTPUT_SDVO:
5928                 case INTEL_OUTPUT_HDMI:
5929                         is_sdvo = true;
5930                         break;
5931                 }
5932
5933                 num_connectors++;
5934         }
5935
5936         /* Enable autotuning of the PLL clock (if permissible) */
5937         factor = 21;
5938         if (is_lvds) {
5939                 if ((intel_panel_use_ssc(dev_priv) &&
5940                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5941                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5942                         factor = 25;
5943         } else if (intel_crtc->config.sdvo_tv_clock)
5944                 factor = 20;
5945
5946         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5947                 *fp |= FP_CB_TUNE;
5948
5949         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5950                 *fp2 |= FP_CB_TUNE;
5951
5952         dpll = 0;
5953
5954         if (is_lvds)
5955                 dpll |= DPLLB_MODE_LVDS;
5956         else
5957                 dpll |= DPLLB_MODE_DAC_SERIAL;
5958
5959         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5960                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5961
5962         if (is_sdvo)
5963                 dpll |= DPLL_SDVO_HIGH_SPEED;
5964         if (intel_crtc->config.has_dp_encoder)
5965                 dpll |= DPLL_SDVO_HIGH_SPEED;
5966
5967         /* compute bitmask from p1 value */
5968         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5969         /* also FPA1 */
5970         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5971
5972         switch (intel_crtc->config.dpll.p2) {
5973         case 5:
5974                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5975                 break;
5976         case 7:
5977                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5978                 break;
5979         case 10:
5980                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5981                 break;
5982         case 14:
5983                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5984                 break;
5985         }
5986
5987         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5988                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5989         else
5990                 dpll |= PLL_REF_INPUT_DREFCLK;
5991
5992         return dpll | DPLL_VCO_ENABLE;
5993 }
5994
5995 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5996                                   int x, int y,
5997                                   struct drm_framebuffer *fb)
5998 {
5999         struct drm_device *dev = crtc->dev;
6000         struct drm_i915_private *dev_priv = dev->dev_private;
6001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6002         int pipe = intel_crtc->pipe;
6003         int plane = intel_crtc->plane;
6004         int num_connectors = 0;
6005         intel_clock_t clock, reduced_clock;
6006         u32 dpll = 0, fp = 0, fp2 = 0;
6007         bool ok, has_reduced_clock = false;
6008         bool is_lvds = false;
6009         struct intel_encoder *encoder;
6010         struct intel_shared_dpll *pll;
6011         int ret;
6012
6013         for_each_encoder_on_crtc(dev, crtc, encoder) {
6014                 switch (encoder->type) {
6015                 case INTEL_OUTPUT_LVDS:
6016                         is_lvds = true;
6017                         break;
6018                 }
6019
6020                 num_connectors++;
6021         }
6022
6023         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6024              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6025
6026         ok = ironlake_compute_clocks(crtc, &clock,
6027                                      &has_reduced_clock, &reduced_clock);
6028         if (!ok && !intel_crtc->config.clock_set) {
6029                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6030                 return -EINVAL;
6031         }
6032         /* Compat-code for transition, will disappear. */
6033         if (!intel_crtc->config.clock_set) {
6034                 intel_crtc->config.dpll.n = clock.n;
6035                 intel_crtc->config.dpll.m1 = clock.m1;
6036                 intel_crtc->config.dpll.m2 = clock.m2;
6037                 intel_crtc->config.dpll.p1 = clock.p1;
6038                 intel_crtc->config.dpll.p2 = clock.p2;
6039         }
6040
6041         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6042         if (intel_crtc->config.has_pch_encoder) {
6043                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6044                 if (has_reduced_clock)
6045                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6046
6047                 dpll = ironlake_compute_dpll(intel_crtc,
6048                                              &fp, &reduced_clock,
6049                                              has_reduced_clock ? &fp2 : NULL);
6050
6051                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6052                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6053                 if (has_reduced_clock)
6054                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6055                 else
6056                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6057
6058                 pll = intel_get_shared_dpll(intel_crtc);
6059                 if (pll == NULL) {
6060                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6061                                          pipe_name(pipe));
6062                         return -EINVAL;
6063                 }
6064         } else
6065                 intel_put_shared_dpll(intel_crtc);
6066
6067         if (intel_crtc->config.has_dp_encoder)
6068                 intel_dp_set_m_n(intel_crtc);
6069
6070         if (is_lvds && has_reduced_clock && i915_powersave)
6071                 intel_crtc->lowfreq_avail = true;
6072         else
6073                 intel_crtc->lowfreq_avail = false;
6074
6075         intel_set_pipe_timings(intel_crtc);
6076
6077         if (intel_crtc->config.has_pch_encoder) {
6078                 intel_cpu_transcoder_set_m_n(intel_crtc,
6079                                              &intel_crtc->config.fdi_m_n);
6080         }
6081
6082         ironlake_set_pipeconf(crtc);
6083
6084         /* Set up the display plane register */
6085         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6086         POSTING_READ(DSPCNTR(plane));
6087
6088         ret = intel_pipe_set_base(crtc, x, y, fb);
6089
6090         return ret;
6091 }
6092
6093 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6094                                          struct intel_link_m_n *m_n)
6095 {
6096         struct drm_device *dev = crtc->base.dev;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098         enum pipe pipe = crtc->pipe;
6099
6100         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6101         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6102         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6103                 & ~TU_SIZE_MASK;
6104         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6105         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6106                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6107 }
6108
6109 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6110                                          enum transcoder transcoder,
6111                                          struct intel_link_m_n *m_n)
6112 {
6113         struct drm_device *dev = crtc->base.dev;
6114         struct drm_i915_private *dev_priv = dev->dev_private;
6115         enum pipe pipe = crtc->pipe;
6116
6117         if (INTEL_INFO(dev)->gen >= 5) {
6118                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6119                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6120                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6121                         & ~TU_SIZE_MASK;
6122                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6123                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6124                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6125         } else {
6126                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6127                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6128                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6129                         & ~TU_SIZE_MASK;
6130                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6131                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6132                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6133         }
6134 }
6135
6136 void intel_dp_get_m_n(struct intel_crtc *crtc,
6137                       struct intel_crtc_config *pipe_config)
6138 {
6139         if (crtc->config.has_pch_encoder)
6140                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6141         else
6142                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6143                                              &pipe_config->dp_m_n);
6144 }
6145
6146 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6147                                         struct intel_crtc_config *pipe_config)
6148 {
6149         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6150                                      &pipe_config->fdi_m_n);
6151 }
6152
6153 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6154                                      struct intel_crtc_config *pipe_config)
6155 {
6156         struct drm_device *dev = crtc->base.dev;
6157         struct drm_i915_private *dev_priv = dev->dev_private;
6158         uint32_t tmp;
6159
6160         tmp = I915_READ(PF_CTL(crtc->pipe));
6161
6162         if (tmp & PF_ENABLE) {
6163                 pipe_config->pch_pfit.enabled = true;
6164                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6165                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6166
6167                 /* We currently do not free assignements of panel fitters on
6168                  * ivb/hsw (since we don't use the higher upscaling modes which
6169                  * differentiates them) so just WARN about this case for now. */
6170                 if (IS_GEN7(dev)) {
6171                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6172                                 PF_PIPE_SEL_IVB(crtc->pipe));
6173                 }
6174         }
6175 }
6176
6177 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6178                                      struct intel_crtc_config *pipe_config)
6179 {
6180         struct drm_device *dev = crtc->base.dev;
6181         struct drm_i915_private *dev_priv = dev->dev_private;
6182         uint32_t tmp;
6183
6184         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6185         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6186
6187         tmp = I915_READ(PIPECONF(crtc->pipe));
6188         if (!(tmp & PIPECONF_ENABLE))
6189                 return false;
6190
6191         switch (tmp & PIPECONF_BPC_MASK) {
6192         case PIPECONF_6BPC:
6193                 pipe_config->pipe_bpp = 18;
6194                 break;
6195         case PIPECONF_8BPC:
6196                 pipe_config->pipe_bpp = 24;
6197                 break;
6198         case PIPECONF_10BPC:
6199                 pipe_config->pipe_bpp = 30;
6200                 break;
6201         case PIPECONF_12BPC:
6202                 pipe_config->pipe_bpp = 36;
6203                 break;
6204         default:
6205                 break;
6206         }
6207
6208         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6209                 struct intel_shared_dpll *pll;
6210
6211                 pipe_config->has_pch_encoder = true;
6212
6213                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6214                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6215                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6216
6217                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6218
6219                 if (HAS_PCH_IBX(dev_priv->dev)) {
6220                         pipe_config->shared_dpll =
6221                                 (enum intel_dpll_id) crtc->pipe;
6222                 } else {
6223                         tmp = I915_READ(PCH_DPLL_SEL);
6224                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6225                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6226                         else
6227                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6228                 }
6229
6230                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6231
6232                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6233                                            &pipe_config->dpll_hw_state));
6234
6235                 tmp = pipe_config->dpll_hw_state.dpll;
6236                 pipe_config->pixel_multiplier =
6237                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6238                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6239
6240                 ironlake_pch_clock_get(crtc, pipe_config);
6241         } else {
6242                 pipe_config->pixel_multiplier = 1;
6243         }
6244
6245         intel_get_pipe_timings(crtc, pipe_config);
6246
6247         ironlake_get_pfit_config(crtc, pipe_config);
6248
6249         return true;
6250 }
6251
6252 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6253 {
6254         struct drm_device *dev = dev_priv->dev;
6255         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6256         struct intel_crtc *crtc;
6257         unsigned long irqflags;
6258         uint32_t val;
6259
6260         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6261                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6262                      pipe_name(crtc->pipe));
6263
6264         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6265         WARN(plls->spll_refcount, "SPLL enabled\n");
6266         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6267         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6268         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6269         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6270              "CPU PWM1 enabled\n");
6271         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6272              "CPU PWM2 enabled\n");
6273         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6274              "PCH PWM1 enabled\n");
6275         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6276              "Utility pin enabled\n");
6277         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6278
6279         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6280         val = I915_READ(DEIMR);
6281         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6282              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6283         val = I915_READ(SDEIMR);
6284         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6285              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6286         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6287 }
6288
6289 /*
6290  * This function implements pieces of two sequences from BSpec:
6291  * - Sequence for display software to disable LCPLL
6292  * - Sequence for display software to allow package C8+
6293  * The steps implemented here are just the steps that actually touch the LCPLL
6294  * register. Callers should take care of disabling all the display engine
6295  * functions, doing the mode unset, fixing interrupts, etc.
6296  */
6297 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6298                               bool switch_to_fclk, bool allow_power_down)
6299 {
6300         uint32_t val;
6301
6302         assert_can_disable_lcpll(dev_priv);
6303
6304         val = I915_READ(LCPLL_CTL);
6305
6306         if (switch_to_fclk) {
6307                 val |= LCPLL_CD_SOURCE_FCLK;
6308                 I915_WRITE(LCPLL_CTL, val);
6309
6310                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6311                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6312                         DRM_ERROR("Switching to FCLK failed\n");
6313
6314                 val = I915_READ(LCPLL_CTL);
6315         }
6316
6317         val |= LCPLL_PLL_DISABLE;
6318         I915_WRITE(LCPLL_CTL, val);
6319         POSTING_READ(LCPLL_CTL);
6320
6321         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6322                 DRM_ERROR("LCPLL still locked\n");
6323
6324         val = I915_READ(D_COMP);
6325         val |= D_COMP_COMP_DISABLE;
6326         mutex_lock(&dev_priv->rps.hw_lock);
6327         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6328                 DRM_ERROR("Failed to disable D_COMP\n");
6329         mutex_unlock(&dev_priv->rps.hw_lock);
6330         POSTING_READ(D_COMP);
6331         ndelay(100);
6332
6333         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6334                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6335
6336         if (allow_power_down) {
6337                 val = I915_READ(LCPLL_CTL);
6338                 val |= LCPLL_POWER_DOWN_ALLOW;
6339                 I915_WRITE(LCPLL_CTL, val);
6340                 POSTING_READ(LCPLL_CTL);
6341         }
6342 }
6343
6344 /*
6345  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6346  * source.
6347  */
6348 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6349 {
6350         uint32_t val;
6351
6352         val = I915_READ(LCPLL_CTL);
6353
6354         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6355                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6356                 return;
6357
6358         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6359          * we'll hang the machine! */
6360         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6361
6362         if (val & LCPLL_POWER_DOWN_ALLOW) {
6363                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6364                 I915_WRITE(LCPLL_CTL, val);
6365                 POSTING_READ(LCPLL_CTL);
6366         }
6367
6368         val = I915_READ(D_COMP);
6369         val |= D_COMP_COMP_FORCE;
6370         val &= ~D_COMP_COMP_DISABLE;
6371         mutex_lock(&dev_priv->rps.hw_lock);
6372         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6373                 DRM_ERROR("Failed to enable D_COMP\n");
6374         mutex_unlock(&dev_priv->rps.hw_lock);
6375         POSTING_READ(D_COMP);
6376
6377         val = I915_READ(LCPLL_CTL);
6378         val &= ~LCPLL_PLL_DISABLE;
6379         I915_WRITE(LCPLL_CTL, val);
6380
6381         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6382                 DRM_ERROR("LCPLL not locked yet\n");
6383
6384         if (val & LCPLL_CD_SOURCE_FCLK) {
6385                 val = I915_READ(LCPLL_CTL);
6386                 val &= ~LCPLL_CD_SOURCE_FCLK;
6387                 I915_WRITE(LCPLL_CTL, val);
6388
6389                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6390                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6391                         DRM_ERROR("Switching back to LCPLL failed\n");
6392         }
6393
6394         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6395 }
6396
6397 void hsw_enable_pc8_work(struct work_struct *__work)
6398 {
6399         struct drm_i915_private *dev_priv =
6400                 container_of(to_delayed_work(__work), struct drm_i915_private,
6401                              pc8.enable_work);
6402         struct drm_device *dev = dev_priv->dev;
6403         uint32_t val;
6404
6405         if (dev_priv->pc8.enabled)
6406                 return;
6407
6408         DRM_DEBUG_KMS("Enabling package C8+\n");
6409
6410         dev_priv->pc8.enabled = true;
6411
6412         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6413                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6414                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6415                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6416         }
6417
6418         lpt_disable_clkout_dp(dev);
6419         hsw_pc8_disable_interrupts(dev);
6420         hsw_disable_lcpll(dev_priv, true, true);
6421 }
6422
6423 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6424 {
6425         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6426         WARN(dev_priv->pc8.disable_count < 1,
6427              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6428
6429         dev_priv->pc8.disable_count--;
6430         if (dev_priv->pc8.disable_count != 0)
6431                 return;
6432
6433         schedule_delayed_work(&dev_priv->pc8.enable_work,
6434                               msecs_to_jiffies(i915_pc8_timeout));
6435 }
6436
6437 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6438 {
6439         struct drm_device *dev = dev_priv->dev;
6440         uint32_t val;
6441
6442         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6443         WARN(dev_priv->pc8.disable_count < 0,
6444              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6445
6446         dev_priv->pc8.disable_count++;
6447         if (dev_priv->pc8.disable_count != 1)
6448                 return;
6449
6450         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6451         if (!dev_priv->pc8.enabled)
6452                 return;
6453
6454         DRM_DEBUG_KMS("Disabling package C8+\n");
6455
6456         hsw_restore_lcpll(dev_priv);
6457         hsw_pc8_restore_interrupts(dev);
6458         lpt_init_pch_refclk(dev);
6459
6460         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6461                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6462                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6463                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6464         }
6465
6466         intel_prepare_ddi(dev);
6467         i915_gem_init_swizzling(dev);
6468         mutex_lock(&dev_priv->rps.hw_lock);
6469         gen6_update_ring_freq(dev);
6470         mutex_unlock(&dev_priv->rps.hw_lock);
6471         dev_priv->pc8.enabled = false;
6472 }
6473
6474 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6475 {
6476         mutex_lock(&dev_priv->pc8.lock);
6477         __hsw_enable_package_c8(dev_priv);
6478         mutex_unlock(&dev_priv->pc8.lock);
6479 }
6480
6481 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6482 {
6483         mutex_lock(&dev_priv->pc8.lock);
6484         __hsw_disable_package_c8(dev_priv);
6485         mutex_unlock(&dev_priv->pc8.lock);
6486 }
6487
6488 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6489 {
6490         struct drm_device *dev = dev_priv->dev;
6491         struct intel_crtc *crtc;
6492         uint32_t val;
6493
6494         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6495                 if (crtc->base.enabled)
6496                         return false;
6497
6498         /* This case is still possible since we have the i915.disable_power_well
6499          * parameter and also the KVMr or something else might be requesting the
6500          * power well. */
6501         val = I915_READ(HSW_PWR_WELL_DRIVER);
6502         if (val != 0) {
6503                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6504                 return false;
6505         }
6506
6507         return true;
6508 }
6509
6510 /* Since we're called from modeset_global_resources there's no way to
6511  * symmetrically increase and decrease the refcount, so we use
6512  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6513  * or not.
6514  */
6515 static void hsw_update_package_c8(struct drm_device *dev)
6516 {
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         bool allow;
6519
6520         if (!i915_enable_pc8)
6521                 return;
6522
6523         mutex_lock(&dev_priv->pc8.lock);
6524
6525         allow = hsw_can_enable_package_c8(dev_priv);
6526
6527         if (allow == dev_priv->pc8.requirements_met)
6528                 goto done;
6529
6530         dev_priv->pc8.requirements_met = allow;
6531
6532         if (allow)
6533                 __hsw_enable_package_c8(dev_priv);
6534         else
6535                 __hsw_disable_package_c8(dev_priv);
6536
6537 done:
6538         mutex_unlock(&dev_priv->pc8.lock);
6539 }
6540
6541 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6542 {
6543         if (!dev_priv->pc8.gpu_idle) {
6544                 dev_priv->pc8.gpu_idle = true;
6545                 hsw_enable_package_c8(dev_priv);
6546         }
6547 }
6548
6549 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6550 {
6551         if (dev_priv->pc8.gpu_idle) {
6552                 dev_priv->pc8.gpu_idle = false;
6553                 hsw_disable_package_c8(dev_priv);
6554         }
6555 }
6556
6557 #define for_each_power_domain(domain, mask)                             \
6558         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6559                 if ((1 << (domain)) & (mask))
6560
6561 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6562                                             enum pipe pipe, bool pfit_enabled)
6563 {
6564         unsigned long mask;
6565         enum transcoder transcoder;
6566
6567         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6568
6569         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6570         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6571         if (pfit_enabled)
6572                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6573
6574         return mask;
6575 }
6576
6577 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6578 {
6579         struct drm_i915_private *dev_priv = dev->dev_private;
6580
6581         if (dev_priv->power_domains.init_power_on == enable)
6582                 return;
6583
6584         if (enable)
6585                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6586         else
6587                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6588
6589         dev_priv->power_domains.init_power_on = enable;
6590 }
6591
6592 static void modeset_update_power_wells(struct drm_device *dev)
6593 {
6594         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6595         struct intel_crtc *crtc;
6596
6597         /*
6598          * First get all needed power domains, then put all unneeded, to avoid
6599          * any unnecessary toggling of the power wells.
6600          */
6601         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6602                 enum intel_display_power_domain domain;
6603
6604                 if (!crtc->base.enabled)
6605                         continue;
6606
6607                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6608                                                 crtc->pipe,
6609                                                 crtc->config.pch_pfit.enabled);
6610
6611                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6612                         intel_display_power_get(dev, domain);
6613         }
6614
6615         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6616                 enum intel_display_power_domain domain;
6617
6618                 for_each_power_domain(domain, crtc->enabled_power_domains)
6619                         intel_display_power_put(dev, domain);
6620
6621                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6622         }
6623
6624         intel_display_set_init_power(dev, false);
6625 }
6626
6627 static void haswell_modeset_global_resources(struct drm_device *dev)
6628 {
6629         modeset_update_power_wells(dev);
6630         hsw_update_package_c8(dev);
6631 }
6632
6633 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6634                                  int x, int y,
6635                                  struct drm_framebuffer *fb)
6636 {
6637         struct drm_device *dev = crtc->dev;
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6640         int plane = intel_crtc->plane;
6641         int ret;
6642
6643         if (!intel_ddi_pll_mode_set(crtc))
6644                 return -EINVAL;
6645
6646         if (intel_crtc->config.has_dp_encoder)
6647                 intel_dp_set_m_n(intel_crtc);
6648
6649         intel_crtc->lowfreq_avail = false;
6650
6651         intel_set_pipe_timings(intel_crtc);
6652
6653         if (intel_crtc->config.has_pch_encoder) {
6654                 intel_cpu_transcoder_set_m_n(intel_crtc,
6655                                              &intel_crtc->config.fdi_m_n);
6656         }
6657
6658         haswell_set_pipeconf(crtc);
6659
6660         intel_set_pipe_csc(crtc);
6661
6662         /* Set up the display plane register */
6663         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6664         POSTING_READ(DSPCNTR(plane));
6665
6666         ret = intel_pipe_set_base(crtc, x, y, fb);
6667
6668         return ret;
6669 }
6670
6671 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6672                                     struct intel_crtc_config *pipe_config)
6673 {
6674         struct drm_device *dev = crtc->base.dev;
6675         struct drm_i915_private *dev_priv = dev->dev_private;
6676         enum intel_display_power_domain pfit_domain;
6677         uint32_t tmp;
6678
6679         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6680         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6681
6682         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6683         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6684                 enum pipe trans_edp_pipe;
6685                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6686                 default:
6687                         WARN(1, "unknown pipe linked to edp transcoder\n");
6688                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6689                 case TRANS_DDI_EDP_INPUT_A_ON:
6690                         trans_edp_pipe = PIPE_A;
6691                         break;
6692                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6693                         trans_edp_pipe = PIPE_B;
6694                         break;
6695                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6696                         trans_edp_pipe = PIPE_C;
6697                         break;
6698                 }
6699
6700                 if (trans_edp_pipe == crtc->pipe)
6701                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6702         }
6703
6704         if (!intel_display_power_enabled(dev,
6705                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6706                 return false;
6707
6708         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6709         if (!(tmp & PIPECONF_ENABLE))
6710                 return false;
6711
6712         /*
6713          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6714          * DDI E. So just check whether this pipe is wired to DDI E and whether
6715          * the PCH transcoder is on.
6716          */
6717         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6718         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6719             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6720                 pipe_config->has_pch_encoder = true;
6721
6722                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6723                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6724                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6725
6726                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6727         }
6728
6729         intel_get_pipe_timings(crtc, pipe_config);
6730
6731         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6732         if (intel_display_power_enabled(dev, pfit_domain))
6733                 ironlake_get_pfit_config(crtc, pipe_config);
6734
6735         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6736                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6737
6738         pipe_config->pixel_multiplier = 1;
6739
6740         return true;
6741 }
6742
6743 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6744                                int x, int y,
6745                                struct drm_framebuffer *fb)
6746 {
6747         struct drm_device *dev = crtc->dev;
6748         struct drm_i915_private *dev_priv = dev->dev_private;
6749         struct intel_encoder *encoder;
6750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6751         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6752         int pipe = intel_crtc->pipe;
6753         int ret;
6754
6755         drm_vblank_pre_modeset(dev, pipe);
6756
6757         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6758
6759         drm_vblank_post_modeset(dev, pipe);
6760
6761         if (ret != 0)
6762                 return ret;
6763
6764         for_each_encoder_on_crtc(dev, crtc, encoder) {
6765                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6766                         encoder->base.base.id,
6767                         drm_get_encoder_name(&encoder->base),
6768                         mode->base.id, mode->name);
6769                 encoder->mode_set(encoder);
6770         }
6771
6772         return 0;
6773 }
6774
6775 static struct {
6776         int clock;
6777         u32 config;
6778 } hdmi_audio_clock[] = {
6779         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6780         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6781         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6782         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6783         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6784         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6785         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6786         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6787         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6788         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6789 };
6790
6791 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6792 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6793 {
6794         int i;
6795
6796         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6797                 if (mode->clock == hdmi_audio_clock[i].clock)
6798                         break;
6799         }
6800
6801         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6802                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6803                 i = 1;
6804         }
6805
6806         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6807                       hdmi_audio_clock[i].clock,
6808                       hdmi_audio_clock[i].config);
6809
6810         return hdmi_audio_clock[i].config;
6811 }
6812
6813 static bool intel_eld_uptodate(struct drm_connector *connector,
6814                                int reg_eldv, uint32_t bits_eldv,
6815                                int reg_elda, uint32_t bits_elda,
6816                                int reg_edid)
6817 {
6818         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6819         uint8_t *eld = connector->eld;
6820         uint32_t i;
6821
6822         i = I915_READ(reg_eldv);
6823         i &= bits_eldv;
6824
6825         if (!eld[0])
6826                 return !i;
6827
6828         if (!i)
6829                 return false;
6830
6831         i = I915_READ(reg_elda);
6832         i &= ~bits_elda;
6833         I915_WRITE(reg_elda, i);
6834
6835         for (i = 0; i < eld[2]; i++)
6836                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6837                         return false;
6838
6839         return true;
6840 }
6841
6842 static void g4x_write_eld(struct drm_connector *connector,
6843                           struct drm_crtc *crtc,
6844                           struct drm_display_mode *mode)
6845 {
6846         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6847         uint8_t *eld = connector->eld;
6848         uint32_t eldv;
6849         uint32_t len;
6850         uint32_t i;
6851
6852         i = I915_READ(G4X_AUD_VID_DID);
6853
6854         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6855                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6856         else
6857                 eldv = G4X_ELDV_DEVCTG;
6858
6859         if (intel_eld_uptodate(connector,
6860                                G4X_AUD_CNTL_ST, eldv,
6861                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6862                                G4X_HDMIW_HDMIEDID))
6863                 return;
6864
6865         i = I915_READ(G4X_AUD_CNTL_ST);
6866         i &= ~(eldv | G4X_ELD_ADDR);
6867         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6868         I915_WRITE(G4X_AUD_CNTL_ST, i);
6869
6870         if (!eld[0])
6871                 return;
6872
6873         len = min_t(uint8_t, eld[2], len);
6874         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6875         for (i = 0; i < len; i++)
6876                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6877
6878         i = I915_READ(G4X_AUD_CNTL_ST);
6879         i |= eldv;
6880         I915_WRITE(G4X_AUD_CNTL_ST, i);
6881 }
6882
6883 static void haswell_write_eld(struct drm_connector *connector,
6884                               struct drm_crtc *crtc,
6885                               struct drm_display_mode *mode)
6886 {
6887         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6888         uint8_t *eld = connector->eld;
6889         struct drm_device *dev = crtc->dev;
6890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6891         uint32_t eldv;
6892         uint32_t i;
6893         int len;
6894         int pipe = to_intel_crtc(crtc)->pipe;
6895         int tmp;
6896
6897         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6898         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6899         int aud_config = HSW_AUD_CFG(pipe);
6900         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6901
6902
6903         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6904
6905         /* Audio output enable */
6906         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6907         tmp = I915_READ(aud_cntrl_st2);
6908         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6909         I915_WRITE(aud_cntrl_st2, tmp);
6910
6911         /* Wait for 1 vertical blank */
6912         intel_wait_for_vblank(dev, pipe);
6913
6914         /* Set ELD valid state */
6915         tmp = I915_READ(aud_cntrl_st2);
6916         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6917         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6918         I915_WRITE(aud_cntrl_st2, tmp);
6919         tmp = I915_READ(aud_cntrl_st2);
6920         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6921
6922         /* Enable HDMI mode */
6923         tmp = I915_READ(aud_config);
6924         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6925         /* clear N_programing_enable and N_value_index */
6926         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6927         I915_WRITE(aud_config, tmp);
6928
6929         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6930
6931         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6932         intel_crtc->eld_vld = true;
6933
6934         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6935                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6936                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6937                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6938         } else {
6939                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
6940         }
6941
6942         if (intel_eld_uptodate(connector,
6943                                aud_cntrl_st2, eldv,
6944                                aud_cntl_st, IBX_ELD_ADDRESS,
6945                                hdmiw_hdmiedid))
6946                 return;
6947
6948         i = I915_READ(aud_cntrl_st2);
6949         i &= ~eldv;
6950         I915_WRITE(aud_cntrl_st2, i);
6951
6952         if (!eld[0])
6953                 return;
6954
6955         i = I915_READ(aud_cntl_st);
6956         i &= ~IBX_ELD_ADDRESS;
6957         I915_WRITE(aud_cntl_st, i);
6958         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6959         DRM_DEBUG_DRIVER("port num:%d\n", i);
6960
6961         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6962         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6963         for (i = 0; i < len; i++)
6964                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6965
6966         i = I915_READ(aud_cntrl_st2);
6967         i |= eldv;
6968         I915_WRITE(aud_cntrl_st2, i);
6969
6970 }
6971
6972 static void ironlake_write_eld(struct drm_connector *connector,
6973                                struct drm_crtc *crtc,
6974                                struct drm_display_mode *mode)
6975 {
6976         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6977         uint8_t *eld = connector->eld;
6978         uint32_t eldv;
6979         uint32_t i;
6980         int len;
6981         int hdmiw_hdmiedid;
6982         int aud_config;
6983         int aud_cntl_st;
6984         int aud_cntrl_st2;
6985         int pipe = to_intel_crtc(crtc)->pipe;
6986
6987         if (HAS_PCH_IBX(connector->dev)) {
6988                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6989                 aud_config = IBX_AUD_CFG(pipe);
6990                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6991                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6992         } else if (IS_VALLEYVIEW(connector->dev)) {
6993                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
6994                 aud_config = VLV_AUD_CFG(pipe);
6995                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
6996                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
6997         } else {
6998                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6999                 aud_config = CPT_AUD_CFG(pipe);
7000                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7001                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7002         }
7003
7004         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7005
7006         if (IS_VALLEYVIEW(connector->dev))  {
7007                 struct intel_encoder *intel_encoder;
7008                 struct intel_digital_port *intel_dig_port;
7009
7010                 intel_encoder = intel_attached_encoder(connector);
7011                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7012                 i = intel_dig_port->port;
7013         } else {
7014                 i = I915_READ(aud_cntl_st);
7015                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7016                 /* DIP_Port_Select, 0x1 = PortB */
7017         }
7018
7019         if (!i) {
7020                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7021                 /* operate blindly on all ports */
7022                 eldv = IBX_ELD_VALIDB;
7023                 eldv |= IBX_ELD_VALIDB << 4;
7024                 eldv |= IBX_ELD_VALIDB << 8;
7025         } else {
7026                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7027                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7028         }
7029
7030         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7031                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7032                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7033                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7034         } else {
7035                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7036         }
7037
7038         if (intel_eld_uptodate(connector,
7039                                aud_cntrl_st2, eldv,
7040                                aud_cntl_st, IBX_ELD_ADDRESS,
7041                                hdmiw_hdmiedid))
7042                 return;
7043
7044         i = I915_READ(aud_cntrl_st2);
7045         i &= ~eldv;
7046         I915_WRITE(aud_cntrl_st2, i);
7047
7048         if (!eld[0])
7049                 return;
7050
7051         i = I915_READ(aud_cntl_st);
7052         i &= ~IBX_ELD_ADDRESS;
7053         I915_WRITE(aud_cntl_st, i);
7054
7055         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7056         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7057         for (i = 0; i < len; i++)
7058                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7059
7060         i = I915_READ(aud_cntrl_st2);
7061         i |= eldv;
7062         I915_WRITE(aud_cntrl_st2, i);
7063 }
7064
7065 void intel_write_eld(struct drm_encoder *encoder,
7066                      struct drm_display_mode *mode)
7067 {
7068         struct drm_crtc *crtc = encoder->crtc;
7069         struct drm_connector *connector;
7070         struct drm_device *dev = encoder->dev;
7071         struct drm_i915_private *dev_priv = dev->dev_private;
7072
7073         connector = drm_select_eld(encoder, mode);
7074         if (!connector)
7075                 return;
7076
7077         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7078                          connector->base.id,
7079                          drm_get_connector_name(connector),
7080                          connector->encoder->base.id,
7081                          drm_get_encoder_name(connector->encoder));
7082
7083         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7084
7085         if (dev_priv->display.write_eld)
7086                 dev_priv->display.write_eld(connector, crtc, mode);
7087 }
7088
7089 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7090 {
7091         struct drm_device *dev = crtc->dev;
7092         struct drm_i915_private *dev_priv = dev->dev_private;
7093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7094         bool visible = base != 0;
7095         u32 cntl;
7096
7097         if (intel_crtc->cursor_visible == visible)
7098                 return;
7099
7100         cntl = I915_READ(_CURACNTR);
7101         if (visible) {
7102                 /* On these chipsets we can only modify the base whilst
7103                  * the cursor is disabled.
7104                  */
7105                 I915_WRITE(_CURABASE, base);
7106
7107                 cntl &= ~(CURSOR_FORMAT_MASK);
7108                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7109                 cntl |= CURSOR_ENABLE |
7110                         CURSOR_GAMMA_ENABLE |
7111                         CURSOR_FORMAT_ARGB;
7112         } else
7113                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7114         I915_WRITE(_CURACNTR, cntl);
7115
7116         intel_crtc->cursor_visible = visible;
7117 }
7118
7119 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7120 {
7121         struct drm_device *dev = crtc->dev;
7122         struct drm_i915_private *dev_priv = dev->dev_private;
7123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7124         int pipe = intel_crtc->pipe;
7125         bool visible = base != 0;
7126
7127         if (intel_crtc->cursor_visible != visible) {
7128                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7129                 if (base) {
7130                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7131                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7132                         cntl |= pipe << 28; /* Connect to correct pipe */
7133                 } else {
7134                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7135                         cntl |= CURSOR_MODE_DISABLE;
7136                 }
7137                 I915_WRITE(CURCNTR(pipe), cntl);
7138
7139                 intel_crtc->cursor_visible = visible;
7140         }
7141         /* and commit changes on next vblank */
7142         I915_WRITE(CURBASE(pipe), base);
7143 }
7144
7145 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7146 {
7147         struct drm_device *dev = crtc->dev;
7148         struct drm_i915_private *dev_priv = dev->dev_private;
7149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7150         int pipe = intel_crtc->pipe;
7151         bool visible = base != 0;
7152
7153         if (intel_crtc->cursor_visible != visible) {
7154                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7155                 if (base) {
7156                         cntl &= ~CURSOR_MODE;
7157                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7158                 } else {
7159                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7160                         cntl |= CURSOR_MODE_DISABLE;
7161                 }
7162                 if (IS_HASWELL(dev)) {
7163                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7164                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7165                 }
7166                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7167
7168                 intel_crtc->cursor_visible = visible;
7169         }
7170         /* and commit changes on next vblank */
7171         I915_WRITE(CURBASE_IVB(pipe), base);
7172 }
7173
7174 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7175 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7176                                      bool on)
7177 {
7178         struct drm_device *dev = crtc->dev;
7179         struct drm_i915_private *dev_priv = dev->dev_private;
7180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7181         int pipe = intel_crtc->pipe;
7182         int x = intel_crtc->cursor_x;
7183         int y = intel_crtc->cursor_y;
7184         u32 base = 0, pos = 0;
7185         bool visible;
7186
7187         if (on)
7188                 base = intel_crtc->cursor_addr;
7189
7190         if (x >= intel_crtc->config.pipe_src_w)
7191                 base = 0;
7192
7193         if (y >= intel_crtc->config.pipe_src_h)
7194                 base = 0;
7195
7196         if (x < 0) {
7197                 if (x + intel_crtc->cursor_width <= 0)
7198                         base = 0;
7199
7200                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7201                 x = -x;
7202         }
7203         pos |= x << CURSOR_X_SHIFT;
7204
7205         if (y < 0) {
7206                 if (y + intel_crtc->cursor_height <= 0)
7207                         base = 0;
7208
7209                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7210                 y = -y;
7211         }
7212         pos |= y << CURSOR_Y_SHIFT;
7213
7214         visible = base != 0;
7215         if (!visible && !intel_crtc->cursor_visible)
7216                 return;
7217
7218         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
7219                 I915_WRITE(CURPOS_IVB(pipe), pos);
7220                 ivb_update_cursor(crtc, base);
7221         } else {
7222                 I915_WRITE(CURPOS(pipe), pos);
7223                 if (IS_845G(dev) || IS_I865G(dev))
7224                         i845_update_cursor(crtc, base);
7225                 else
7226                         i9xx_update_cursor(crtc, base);
7227         }
7228 }
7229
7230 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7231                                  struct drm_file *file,
7232                                  uint32_t handle,
7233                                  uint32_t width, uint32_t height)
7234 {
7235         struct drm_device *dev = crtc->dev;
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7238         struct drm_i915_gem_object *obj;
7239         uint32_t addr;
7240         int ret;
7241
7242         /* if we want to turn off the cursor ignore width and height */
7243         if (!handle) {
7244                 DRM_DEBUG_KMS("cursor off\n");
7245                 addr = 0;
7246                 obj = NULL;
7247                 mutex_lock(&dev->struct_mutex);
7248                 goto finish;
7249         }
7250
7251         /* Currently we only support 64x64 cursors */
7252         if (width != 64 || height != 64) {
7253                 DRM_ERROR("we currently only support 64x64 cursors\n");
7254                 return -EINVAL;
7255         }
7256
7257         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7258         if (&obj->base == NULL)
7259                 return -ENOENT;
7260
7261         if (obj->base.size < width * height * 4) {
7262                 DRM_ERROR("buffer is to small\n");
7263                 ret = -ENOMEM;
7264                 goto fail;
7265         }
7266
7267         /* we only need to pin inside GTT if cursor is non-phy */
7268         mutex_lock(&dev->struct_mutex);
7269         if (!dev_priv->info->cursor_needs_physical) {
7270                 unsigned alignment;
7271
7272                 if (obj->tiling_mode) {
7273                         DRM_ERROR("cursor cannot be tiled\n");
7274                         ret = -EINVAL;
7275                         goto fail_locked;
7276                 }
7277
7278                 /* Note that the w/a also requires 2 PTE of padding following
7279                  * the bo. We currently fill all unused PTE with the shadow
7280                  * page and so we should always have valid PTE following the
7281                  * cursor preventing the VT-d warning.
7282                  */
7283                 alignment = 0;
7284                 if (need_vtd_wa(dev))
7285                         alignment = 64*1024;
7286
7287                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7288                 if (ret) {
7289                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7290                         goto fail_locked;
7291                 }
7292
7293                 ret = i915_gem_object_put_fence(obj);
7294                 if (ret) {
7295                         DRM_ERROR("failed to release fence for cursor");
7296                         goto fail_unpin;
7297                 }
7298
7299                 addr = i915_gem_obj_ggtt_offset(obj);
7300         } else {
7301                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7302                 ret = i915_gem_attach_phys_object(dev, obj,
7303                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7304                                                   align);
7305                 if (ret) {
7306                         DRM_ERROR("failed to attach phys object\n");
7307                         goto fail_locked;
7308                 }
7309                 addr = obj->phys_obj->handle->busaddr;
7310         }
7311
7312         if (IS_GEN2(dev))
7313                 I915_WRITE(CURSIZE, (height << 12) | width);
7314
7315  finish:
7316         if (intel_crtc->cursor_bo) {
7317                 if (dev_priv->info->cursor_needs_physical) {
7318                         if (intel_crtc->cursor_bo != obj)
7319                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7320                 } else
7321                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7322                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7323         }
7324
7325         mutex_unlock(&dev->struct_mutex);
7326
7327         intel_crtc->cursor_addr = addr;
7328         intel_crtc->cursor_bo = obj;
7329         intel_crtc->cursor_width = width;
7330         intel_crtc->cursor_height = height;
7331
7332         if (intel_crtc->active)
7333                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7334
7335         return 0;
7336 fail_unpin:
7337         i915_gem_object_unpin_from_display_plane(obj);
7338 fail_locked:
7339         mutex_unlock(&dev->struct_mutex);
7340 fail:
7341         drm_gem_object_unreference_unlocked(&obj->base);
7342         return ret;
7343 }
7344
7345 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7346 {
7347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7348
7349         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7350         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7351
7352         if (intel_crtc->active)
7353                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7354
7355         return 0;
7356 }
7357
7358 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7359                                  u16 *blue, uint32_t start, uint32_t size)
7360 {
7361         int end = (start + size > 256) ? 256 : start + size, i;
7362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7363
7364         for (i = start; i < end; i++) {
7365                 intel_crtc->lut_r[i] = red[i] >> 8;
7366                 intel_crtc->lut_g[i] = green[i] >> 8;
7367                 intel_crtc->lut_b[i] = blue[i] >> 8;
7368         }
7369
7370         intel_crtc_load_lut(crtc);
7371 }
7372
7373 /* VESA 640x480x72Hz mode to set on the pipe */
7374 static struct drm_display_mode load_detect_mode = {
7375         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7376                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7377 };
7378
7379 static struct drm_framebuffer *
7380 intel_framebuffer_create(struct drm_device *dev,
7381                          struct drm_mode_fb_cmd2 *mode_cmd,
7382                          struct drm_i915_gem_object *obj)
7383 {
7384         struct intel_framebuffer *intel_fb;
7385         int ret;
7386
7387         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7388         if (!intel_fb) {
7389                 drm_gem_object_unreference_unlocked(&obj->base);
7390                 return ERR_PTR(-ENOMEM);
7391         }
7392
7393         ret = i915_mutex_lock_interruptible(dev);
7394         if (ret)
7395                 goto err;
7396
7397         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7398         mutex_unlock(&dev->struct_mutex);
7399         if (ret)
7400                 goto err;
7401
7402         return &intel_fb->base;
7403 err:
7404         drm_gem_object_unreference_unlocked(&obj->base);
7405         kfree(intel_fb);
7406
7407         return ERR_PTR(ret);
7408 }
7409
7410 static u32
7411 intel_framebuffer_pitch_for_width(int width, int bpp)
7412 {
7413         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7414         return ALIGN(pitch, 64);
7415 }
7416
7417 static u32
7418 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7419 {
7420         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7421         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7422 }
7423
7424 static struct drm_framebuffer *
7425 intel_framebuffer_create_for_mode(struct drm_device *dev,
7426                                   struct drm_display_mode *mode,
7427                                   int depth, int bpp)
7428 {
7429         struct drm_i915_gem_object *obj;
7430         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7431
7432         obj = i915_gem_alloc_object(dev,
7433                                     intel_framebuffer_size_for_mode(mode, bpp));
7434         if (obj == NULL)
7435                 return ERR_PTR(-ENOMEM);
7436
7437         mode_cmd.width = mode->hdisplay;
7438         mode_cmd.height = mode->vdisplay;
7439         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7440                                                                 bpp);
7441         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7442
7443         return intel_framebuffer_create(dev, &mode_cmd, obj);
7444 }
7445
7446 static struct drm_framebuffer *
7447 mode_fits_in_fbdev(struct drm_device *dev,
7448                    struct drm_display_mode *mode)
7449 {
7450 #ifdef CONFIG_DRM_I915_FBDEV
7451         struct drm_i915_private *dev_priv = dev->dev_private;
7452         struct drm_i915_gem_object *obj;
7453         struct drm_framebuffer *fb;
7454
7455         if (dev_priv->fbdev == NULL)
7456                 return NULL;
7457
7458         obj = dev_priv->fbdev->ifb.obj;
7459         if (obj == NULL)
7460                 return NULL;
7461
7462         fb = &dev_priv->fbdev->ifb.base;
7463         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7464                                                                fb->bits_per_pixel))
7465                 return NULL;
7466
7467         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7468                 return NULL;
7469
7470         return fb;
7471 #else
7472         return NULL;
7473 #endif
7474 }
7475
7476 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7477                                 struct drm_display_mode *mode,
7478                                 struct intel_load_detect_pipe *old)
7479 {
7480         struct intel_crtc *intel_crtc;
7481         struct intel_encoder *intel_encoder =
7482                 intel_attached_encoder(connector);
7483         struct drm_crtc *possible_crtc;
7484         struct drm_encoder *encoder = &intel_encoder->base;
7485         struct drm_crtc *crtc = NULL;
7486         struct drm_device *dev = encoder->dev;
7487         struct drm_framebuffer *fb;
7488         int i = -1;
7489
7490         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7491                       connector->base.id, drm_get_connector_name(connector),
7492                       encoder->base.id, drm_get_encoder_name(encoder));
7493
7494         /*
7495          * Algorithm gets a little messy:
7496          *
7497          *   - if the connector already has an assigned crtc, use it (but make
7498          *     sure it's on first)
7499          *
7500          *   - try to find the first unused crtc that can drive this connector,
7501          *     and use that if we find one
7502          */
7503
7504         /* See if we already have a CRTC for this connector */
7505         if (encoder->crtc) {
7506                 crtc = encoder->crtc;
7507
7508                 mutex_lock(&crtc->mutex);
7509
7510                 old->dpms_mode = connector->dpms;
7511                 old->load_detect_temp = false;
7512
7513                 /* Make sure the crtc and connector are running */
7514                 if (connector->dpms != DRM_MODE_DPMS_ON)
7515                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7516
7517                 return true;
7518         }
7519
7520         /* Find an unused one (if possible) */
7521         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7522                 i++;
7523                 if (!(encoder->possible_crtcs & (1 << i)))
7524                         continue;
7525                 if (!possible_crtc->enabled) {
7526                         crtc = possible_crtc;
7527                         break;
7528                 }
7529         }
7530
7531         /*
7532          * If we didn't find an unused CRTC, don't use any.
7533          */
7534         if (!crtc) {
7535                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7536                 return false;
7537         }
7538
7539         mutex_lock(&crtc->mutex);
7540         intel_encoder->new_crtc = to_intel_crtc(crtc);
7541         to_intel_connector(connector)->new_encoder = intel_encoder;
7542
7543         intel_crtc = to_intel_crtc(crtc);
7544         old->dpms_mode = connector->dpms;
7545         old->load_detect_temp = true;
7546         old->release_fb = NULL;
7547
7548         if (!mode)
7549                 mode = &load_detect_mode;
7550
7551         /* We need a framebuffer large enough to accommodate all accesses
7552          * that the plane may generate whilst we perform load detection.
7553          * We can not rely on the fbcon either being present (we get called
7554          * during its initialisation to detect all boot displays, or it may
7555          * not even exist) or that it is large enough to satisfy the
7556          * requested mode.
7557          */
7558         fb = mode_fits_in_fbdev(dev, mode);
7559         if (fb == NULL) {
7560                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7561                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7562                 old->release_fb = fb;
7563         } else
7564                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7565         if (IS_ERR(fb)) {
7566                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7567                 mutex_unlock(&crtc->mutex);
7568                 return false;
7569         }
7570
7571         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7572                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7573                 if (old->release_fb)
7574                         old->release_fb->funcs->destroy(old->release_fb);
7575                 mutex_unlock(&crtc->mutex);
7576                 return false;
7577         }
7578
7579         /* let the connector get through one full cycle before testing */
7580         intel_wait_for_vblank(dev, intel_crtc->pipe);
7581         return true;
7582 }
7583
7584 void intel_release_load_detect_pipe(struct drm_connector *connector,
7585                                     struct intel_load_detect_pipe *old)
7586 {
7587         struct intel_encoder *intel_encoder =
7588                 intel_attached_encoder(connector);
7589         struct drm_encoder *encoder = &intel_encoder->base;
7590         struct drm_crtc *crtc = encoder->crtc;
7591
7592         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7593                       connector->base.id, drm_get_connector_name(connector),
7594                       encoder->base.id, drm_get_encoder_name(encoder));
7595
7596         if (old->load_detect_temp) {
7597                 to_intel_connector(connector)->new_encoder = NULL;
7598                 intel_encoder->new_crtc = NULL;
7599                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7600
7601                 if (old->release_fb) {
7602                         drm_framebuffer_unregister_private(old->release_fb);
7603                         drm_framebuffer_unreference(old->release_fb);
7604                 }
7605
7606                 mutex_unlock(&crtc->mutex);
7607                 return;
7608         }
7609
7610         /* Switch crtc and encoder back off if necessary */
7611         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7612                 connector->funcs->dpms(connector, old->dpms_mode);
7613
7614         mutex_unlock(&crtc->mutex);
7615 }
7616
7617 static int i9xx_pll_refclk(struct drm_device *dev,
7618                            const struct intel_crtc_config *pipe_config)
7619 {
7620         struct drm_i915_private *dev_priv = dev->dev_private;
7621         u32 dpll = pipe_config->dpll_hw_state.dpll;
7622
7623         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7624                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7625         else if (HAS_PCH_SPLIT(dev))
7626                 return 120000;
7627         else if (!IS_GEN2(dev))
7628                 return 96000;
7629         else
7630                 return 48000;
7631 }
7632
7633 /* Returns the clock of the currently programmed mode of the given pipe. */
7634 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7635                                 struct intel_crtc_config *pipe_config)
7636 {
7637         struct drm_device *dev = crtc->base.dev;
7638         struct drm_i915_private *dev_priv = dev->dev_private;
7639         int pipe = pipe_config->cpu_transcoder;
7640         u32 dpll = pipe_config->dpll_hw_state.dpll;
7641         u32 fp;
7642         intel_clock_t clock;
7643         int refclk = i9xx_pll_refclk(dev, pipe_config);
7644
7645         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7646                 fp = pipe_config->dpll_hw_state.fp0;
7647         else
7648                 fp = pipe_config->dpll_hw_state.fp1;
7649
7650         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7651         if (IS_PINEVIEW(dev)) {
7652                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7653                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7654         } else {
7655                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7656                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7657         }
7658
7659         if (!IS_GEN2(dev)) {
7660                 if (IS_PINEVIEW(dev))
7661                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7662                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7663                 else
7664                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7665                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7666
7667                 switch (dpll & DPLL_MODE_MASK) {
7668                 case DPLLB_MODE_DAC_SERIAL:
7669                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7670                                 5 : 10;
7671                         break;
7672                 case DPLLB_MODE_LVDS:
7673                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7674                                 7 : 14;
7675                         break;
7676                 default:
7677                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7678                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7679                         return;
7680                 }
7681
7682                 if (IS_PINEVIEW(dev))
7683                         pineview_clock(refclk, &clock);
7684                 else
7685                         i9xx_clock(refclk, &clock);
7686         } else {
7687                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7688
7689                 if (is_lvds) {
7690                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7691                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7692                         clock.p2 = 14;
7693                 } else {
7694                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7695                                 clock.p1 = 2;
7696                         else {
7697                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7698                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7699                         }
7700                         if (dpll & PLL_P2_DIVIDE_BY_4)
7701                                 clock.p2 = 4;
7702                         else
7703                                 clock.p2 = 2;
7704                 }
7705
7706                 i9xx_clock(refclk, &clock);
7707         }
7708
7709         /*
7710          * This value includes pixel_multiplier. We will use
7711          * port_clock to compute adjusted_mode.crtc_clock in the
7712          * encoder's get_config() function.
7713          */
7714         pipe_config->port_clock = clock.dot;
7715 }
7716
7717 int intel_dotclock_calculate(int link_freq,
7718                              const struct intel_link_m_n *m_n)
7719 {
7720         /*
7721          * The calculation for the data clock is:
7722          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7723          * But we want to avoid losing precison if possible, so:
7724          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7725          *
7726          * and the link clock is simpler:
7727          * link_clock = (m * link_clock) / n
7728          */
7729
7730         if (!m_n->link_n)
7731                 return 0;
7732
7733         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7734 }
7735
7736 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7737                                    struct intel_crtc_config *pipe_config)
7738 {
7739         struct drm_device *dev = crtc->base.dev;
7740
7741         /* read out port_clock from the DPLL */
7742         i9xx_crtc_clock_get(crtc, pipe_config);
7743
7744         /*
7745          * This value does not include pixel_multiplier.
7746          * We will check that port_clock and adjusted_mode.crtc_clock
7747          * agree once we know their relationship in the encoder's
7748          * get_config() function.
7749          */
7750         pipe_config->adjusted_mode.crtc_clock =
7751                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7752                                          &pipe_config->fdi_m_n);
7753 }
7754
7755 /** Returns the currently programmed mode of the given pipe. */
7756 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7757                                              struct drm_crtc *crtc)
7758 {
7759         struct drm_i915_private *dev_priv = dev->dev_private;
7760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7761         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7762         struct drm_display_mode *mode;
7763         struct intel_crtc_config pipe_config;
7764         int htot = I915_READ(HTOTAL(cpu_transcoder));
7765         int hsync = I915_READ(HSYNC(cpu_transcoder));
7766         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7767         int vsync = I915_READ(VSYNC(cpu_transcoder));
7768         enum pipe pipe = intel_crtc->pipe;
7769
7770         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7771         if (!mode)
7772                 return NULL;
7773
7774         /*
7775          * Construct a pipe_config sufficient for getting the clock info
7776          * back out of crtc_clock_get.
7777          *
7778          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7779          * to use a real value here instead.
7780          */
7781         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7782         pipe_config.pixel_multiplier = 1;
7783         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7784         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7785         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7786         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7787
7788         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7789         mode->hdisplay = (htot & 0xffff) + 1;
7790         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7791         mode->hsync_start = (hsync & 0xffff) + 1;
7792         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7793         mode->vdisplay = (vtot & 0xffff) + 1;
7794         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7795         mode->vsync_start = (vsync & 0xffff) + 1;
7796         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7797
7798         drm_mode_set_name(mode);
7799
7800         return mode;
7801 }
7802
7803 static void intel_increase_pllclock(struct drm_crtc *crtc)
7804 {
7805         struct drm_device *dev = crtc->dev;
7806         drm_i915_private_t *dev_priv = dev->dev_private;
7807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7808         int pipe = intel_crtc->pipe;
7809         int dpll_reg = DPLL(pipe);
7810         int dpll;
7811
7812         if (HAS_PCH_SPLIT(dev))
7813                 return;
7814
7815         if (!dev_priv->lvds_downclock_avail)
7816                 return;
7817
7818         dpll = I915_READ(dpll_reg);
7819         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7820                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7821
7822                 assert_panel_unlocked(dev_priv, pipe);
7823
7824                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7825                 I915_WRITE(dpll_reg, dpll);
7826                 intel_wait_for_vblank(dev, pipe);
7827
7828                 dpll = I915_READ(dpll_reg);
7829                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7830                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7831         }
7832 }
7833
7834 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7835 {
7836         struct drm_device *dev = crtc->dev;
7837         drm_i915_private_t *dev_priv = dev->dev_private;
7838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7839
7840         if (HAS_PCH_SPLIT(dev))
7841                 return;
7842
7843         if (!dev_priv->lvds_downclock_avail)
7844                 return;
7845
7846         /*
7847          * Since this is called by a timer, we should never get here in
7848          * the manual case.
7849          */
7850         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7851                 int pipe = intel_crtc->pipe;
7852                 int dpll_reg = DPLL(pipe);
7853                 int dpll;
7854
7855                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7856
7857                 assert_panel_unlocked(dev_priv, pipe);
7858
7859                 dpll = I915_READ(dpll_reg);
7860                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7861                 I915_WRITE(dpll_reg, dpll);
7862                 intel_wait_for_vblank(dev, pipe);
7863                 dpll = I915_READ(dpll_reg);
7864                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7865                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7866         }
7867
7868 }
7869
7870 void intel_mark_busy(struct drm_device *dev)
7871 {
7872         struct drm_i915_private *dev_priv = dev->dev_private;
7873
7874         hsw_package_c8_gpu_busy(dev_priv);
7875         i915_update_gfx_val(dev_priv);
7876 }
7877
7878 void intel_mark_idle(struct drm_device *dev)
7879 {
7880         struct drm_i915_private *dev_priv = dev->dev_private;
7881         struct drm_crtc *crtc;
7882
7883         hsw_package_c8_gpu_idle(dev_priv);
7884
7885         if (!i915_powersave)
7886                 return;
7887
7888         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7889                 if (!crtc->fb)
7890                         continue;
7891
7892                 intel_decrease_pllclock(crtc);
7893         }
7894
7895         if (dev_priv->info->gen >= 6)
7896                 gen6_rps_idle(dev->dev_private);
7897 }
7898
7899 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7900                         struct intel_ring_buffer *ring)
7901 {
7902         struct drm_device *dev = obj->base.dev;
7903         struct drm_crtc *crtc;
7904
7905         if (!i915_powersave)
7906                 return;
7907
7908         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7909                 if (!crtc->fb)
7910                         continue;
7911
7912                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7913                         continue;
7914
7915                 intel_increase_pllclock(crtc);
7916                 if (ring && intel_fbc_enabled(dev))
7917                         ring->fbc_dirty = true;
7918         }
7919 }
7920
7921 static void intel_crtc_destroy(struct drm_crtc *crtc)
7922 {
7923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7924         struct drm_device *dev = crtc->dev;
7925         struct intel_unpin_work *work;
7926         unsigned long flags;
7927
7928         spin_lock_irqsave(&dev->event_lock, flags);
7929         work = intel_crtc->unpin_work;
7930         intel_crtc->unpin_work = NULL;
7931         spin_unlock_irqrestore(&dev->event_lock, flags);
7932
7933         if (work) {
7934                 cancel_work_sync(&work->work);
7935                 kfree(work);
7936         }
7937
7938         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7939
7940         drm_crtc_cleanup(crtc);
7941
7942         kfree(intel_crtc);
7943 }
7944
7945 static void intel_unpin_work_fn(struct work_struct *__work)
7946 {
7947         struct intel_unpin_work *work =
7948                 container_of(__work, struct intel_unpin_work, work);
7949         struct drm_device *dev = work->crtc->dev;
7950
7951         mutex_lock(&dev->struct_mutex);
7952         intel_unpin_fb_obj(work->old_fb_obj);
7953         drm_gem_object_unreference(&work->pending_flip_obj->base);
7954         drm_gem_object_unreference(&work->old_fb_obj->base);
7955
7956         intel_update_fbc(dev);
7957         mutex_unlock(&dev->struct_mutex);
7958
7959         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7960         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7961
7962         kfree(work);
7963 }
7964
7965 static void do_intel_finish_page_flip(struct drm_device *dev,
7966                                       struct drm_crtc *crtc)
7967 {
7968         drm_i915_private_t *dev_priv = dev->dev_private;
7969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7970         struct intel_unpin_work *work;
7971         unsigned long flags;
7972
7973         /* Ignore early vblank irqs */
7974         if (intel_crtc == NULL)
7975                 return;
7976
7977         spin_lock_irqsave(&dev->event_lock, flags);
7978         work = intel_crtc->unpin_work;
7979
7980         /* Ensure we don't miss a work->pending update ... */
7981         smp_rmb();
7982
7983         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7984                 spin_unlock_irqrestore(&dev->event_lock, flags);
7985                 return;
7986         }
7987
7988         /* and that the unpin work is consistent wrt ->pending. */
7989         smp_rmb();
7990
7991         intel_crtc->unpin_work = NULL;
7992
7993         if (work->event)
7994                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7995
7996         drm_vblank_put(dev, intel_crtc->pipe);
7997
7998         spin_unlock_irqrestore(&dev->event_lock, flags);
7999
8000         wake_up_all(&dev_priv->pending_flip_queue);
8001
8002         queue_work(dev_priv->wq, &work->work);
8003
8004         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8005 }
8006
8007 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8008 {
8009         drm_i915_private_t *dev_priv = dev->dev_private;
8010         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8011
8012         do_intel_finish_page_flip(dev, crtc);
8013 }
8014
8015 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8016 {
8017         drm_i915_private_t *dev_priv = dev->dev_private;
8018         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8019
8020         do_intel_finish_page_flip(dev, crtc);
8021 }
8022
8023 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8024 {
8025         drm_i915_private_t *dev_priv = dev->dev_private;
8026         struct intel_crtc *intel_crtc =
8027                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8028         unsigned long flags;
8029
8030         /* NB: An MMIO update of the plane base pointer will also
8031          * generate a page-flip completion irq, i.e. every modeset
8032          * is also accompanied by a spurious intel_prepare_page_flip().
8033          */
8034         spin_lock_irqsave(&dev->event_lock, flags);
8035         if (intel_crtc->unpin_work)
8036                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8037         spin_unlock_irqrestore(&dev->event_lock, flags);
8038 }
8039
8040 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8041 {
8042         /* Ensure that the work item is consistent when activating it ... */
8043         smp_wmb();
8044         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8045         /* and that it is marked active as soon as the irq could fire. */
8046         smp_wmb();
8047 }
8048
8049 static int intel_gen2_queue_flip(struct drm_device *dev,
8050                                  struct drm_crtc *crtc,
8051                                  struct drm_framebuffer *fb,
8052                                  struct drm_i915_gem_object *obj,
8053                                  uint32_t flags)
8054 {
8055         struct drm_i915_private *dev_priv = dev->dev_private;
8056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8057         u32 flip_mask;
8058         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8059         int ret;
8060
8061         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8062         if (ret)
8063                 goto err;
8064
8065         ret = intel_ring_begin(ring, 6);
8066         if (ret)
8067                 goto err_unpin;
8068
8069         /* Can't queue multiple flips, so wait for the previous
8070          * one to finish before executing the next.
8071          */
8072         if (intel_crtc->plane)
8073                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8074         else
8075                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8076         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8077         intel_ring_emit(ring, MI_NOOP);
8078         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8079                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8080         intel_ring_emit(ring, fb->pitches[0]);
8081         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8082         intel_ring_emit(ring, 0); /* aux display base address, unused */
8083
8084         intel_mark_page_flip_active(intel_crtc);
8085         __intel_ring_advance(ring);
8086         return 0;
8087
8088 err_unpin:
8089         intel_unpin_fb_obj(obj);
8090 err:
8091         return ret;
8092 }
8093
8094 static int intel_gen3_queue_flip(struct drm_device *dev,
8095                                  struct drm_crtc *crtc,
8096                                  struct drm_framebuffer *fb,
8097                                  struct drm_i915_gem_object *obj,
8098                                  uint32_t flags)
8099 {
8100         struct drm_i915_private *dev_priv = dev->dev_private;
8101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8102         u32 flip_mask;
8103         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8104         int ret;
8105
8106         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8107         if (ret)
8108                 goto err;
8109
8110         ret = intel_ring_begin(ring, 6);
8111         if (ret)
8112                 goto err_unpin;
8113
8114         if (intel_crtc->plane)
8115                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8116         else
8117                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8118         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8119         intel_ring_emit(ring, MI_NOOP);
8120         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8121                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8122         intel_ring_emit(ring, fb->pitches[0]);
8123         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8124         intel_ring_emit(ring, MI_NOOP);
8125
8126         intel_mark_page_flip_active(intel_crtc);
8127         __intel_ring_advance(ring);
8128         return 0;
8129
8130 err_unpin:
8131         intel_unpin_fb_obj(obj);
8132 err:
8133         return ret;
8134 }
8135
8136 static int intel_gen4_queue_flip(struct drm_device *dev,
8137                                  struct drm_crtc *crtc,
8138                                  struct drm_framebuffer *fb,
8139                                  struct drm_i915_gem_object *obj,
8140                                  uint32_t flags)
8141 {
8142         struct drm_i915_private *dev_priv = dev->dev_private;
8143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8144         uint32_t pf, pipesrc;
8145         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8146         int ret;
8147
8148         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8149         if (ret)
8150                 goto err;
8151
8152         ret = intel_ring_begin(ring, 4);
8153         if (ret)
8154                 goto err_unpin;
8155
8156         /* i965+ uses the linear or tiled offsets from the
8157          * Display Registers (which do not change across a page-flip)
8158          * so we need only reprogram the base address.
8159          */
8160         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8161                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8162         intel_ring_emit(ring, fb->pitches[0]);
8163         intel_ring_emit(ring,
8164                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8165                         obj->tiling_mode);
8166
8167         /* XXX Enabling the panel-fitter across page-flip is so far
8168          * untested on non-native modes, so ignore it for now.
8169          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8170          */
8171         pf = 0;
8172         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8173         intel_ring_emit(ring, pf | pipesrc);
8174
8175         intel_mark_page_flip_active(intel_crtc);
8176         __intel_ring_advance(ring);
8177         return 0;
8178
8179 err_unpin:
8180         intel_unpin_fb_obj(obj);
8181 err:
8182         return ret;
8183 }
8184
8185 static int intel_gen6_queue_flip(struct drm_device *dev,
8186                                  struct drm_crtc *crtc,
8187                                  struct drm_framebuffer *fb,
8188                                  struct drm_i915_gem_object *obj,
8189                                  uint32_t flags)
8190 {
8191         struct drm_i915_private *dev_priv = dev->dev_private;
8192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8193         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8194         uint32_t pf, pipesrc;
8195         int ret;
8196
8197         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8198         if (ret)
8199                 goto err;
8200
8201         ret = intel_ring_begin(ring, 4);
8202         if (ret)
8203                 goto err_unpin;
8204
8205         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8206                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8207         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8208         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8209
8210         /* Contrary to the suggestions in the documentation,
8211          * "Enable Panel Fitter" does not seem to be required when page
8212          * flipping with a non-native mode, and worse causes a normal
8213          * modeset to fail.
8214          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8215          */
8216         pf = 0;
8217         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8218         intel_ring_emit(ring, pf | pipesrc);
8219
8220         intel_mark_page_flip_active(intel_crtc);
8221         __intel_ring_advance(ring);
8222         return 0;
8223
8224 err_unpin:
8225         intel_unpin_fb_obj(obj);
8226 err:
8227         return ret;
8228 }
8229
8230 static int intel_gen7_queue_flip(struct drm_device *dev,
8231                                  struct drm_crtc *crtc,
8232                                  struct drm_framebuffer *fb,
8233                                  struct drm_i915_gem_object *obj,
8234                                  uint32_t flags)
8235 {
8236         struct drm_i915_private *dev_priv = dev->dev_private;
8237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8238         struct intel_ring_buffer *ring;
8239         uint32_t plane_bit = 0;
8240         int len, ret;
8241
8242         ring = obj->ring;
8243         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8244                 ring = &dev_priv->ring[BCS];
8245
8246         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8247         if (ret)
8248                 goto err;
8249
8250         switch(intel_crtc->plane) {
8251         case PLANE_A:
8252                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8253                 break;
8254         case PLANE_B:
8255                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8256                 break;
8257         case PLANE_C:
8258                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8259                 break;
8260         default:
8261                 WARN_ONCE(1, "unknown plane in flip command\n");
8262                 ret = -ENODEV;
8263                 goto err_unpin;
8264         }
8265
8266         len = 4;
8267         if (ring->id == RCS)
8268                 len += 6;
8269
8270         ret = intel_ring_begin(ring, len);
8271         if (ret)
8272                 goto err_unpin;
8273
8274         /* Unmask the flip-done completion message. Note that the bspec says that
8275          * we should do this for both the BCS and RCS, and that we must not unmask
8276          * more than one flip event at any time (or ensure that one flip message
8277          * can be sent by waiting for flip-done prior to queueing new flips).
8278          * Experimentation says that BCS works despite DERRMR masking all
8279          * flip-done completion events and that unmasking all planes at once
8280          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8281          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8282          */
8283         if (ring->id == RCS) {
8284                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8285                 intel_ring_emit(ring, DERRMR);
8286                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8287                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8288                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8289                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8290                 intel_ring_emit(ring, DERRMR);
8291                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8292         }
8293
8294         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8295         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8296         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8297         intel_ring_emit(ring, (MI_NOOP));
8298
8299         intel_mark_page_flip_active(intel_crtc);
8300         __intel_ring_advance(ring);
8301         return 0;
8302
8303 err_unpin:
8304         intel_unpin_fb_obj(obj);
8305 err:
8306         return ret;
8307 }
8308
8309 static int intel_default_queue_flip(struct drm_device *dev,
8310                                     struct drm_crtc *crtc,
8311                                     struct drm_framebuffer *fb,
8312                                     struct drm_i915_gem_object *obj,
8313                                     uint32_t flags)
8314 {
8315         return -ENODEV;
8316 }
8317
8318 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8319                                 struct drm_framebuffer *fb,
8320                                 struct drm_pending_vblank_event *event,
8321                                 uint32_t page_flip_flags)
8322 {
8323         struct drm_device *dev = crtc->dev;
8324         struct drm_i915_private *dev_priv = dev->dev_private;
8325         struct drm_framebuffer *old_fb = crtc->fb;
8326         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8328         struct intel_unpin_work *work;
8329         unsigned long flags;
8330         int ret;
8331
8332         /* Can't change pixel format via MI display flips. */
8333         if (fb->pixel_format != crtc->fb->pixel_format)
8334                 return -EINVAL;
8335
8336         /*
8337          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8338          * Note that pitch changes could also affect these register.
8339          */
8340         if (INTEL_INFO(dev)->gen > 3 &&
8341             (fb->offsets[0] != crtc->fb->offsets[0] ||
8342              fb->pitches[0] != crtc->fb->pitches[0]))
8343                 return -EINVAL;
8344
8345         work = kzalloc(sizeof(*work), GFP_KERNEL);
8346         if (work == NULL)
8347                 return -ENOMEM;
8348
8349         work->event = event;
8350         work->crtc = crtc;
8351         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8352         INIT_WORK(&work->work, intel_unpin_work_fn);
8353
8354         ret = drm_vblank_get(dev, intel_crtc->pipe);
8355         if (ret)
8356                 goto free_work;
8357
8358         /* We borrow the event spin lock for protecting unpin_work */
8359         spin_lock_irqsave(&dev->event_lock, flags);
8360         if (intel_crtc->unpin_work) {
8361                 spin_unlock_irqrestore(&dev->event_lock, flags);
8362                 kfree(work);
8363                 drm_vblank_put(dev, intel_crtc->pipe);
8364
8365                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8366                 return -EBUSY;
8367         }
8368         intel_crtc->unpin_work = work;
8369         spin_unlock_irqrestore(&dev->event_lock, flags);
8370
8371         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8372                 flush_workqueue(dev_priv->wq);
8373
8374         ret = i915_mutex_lock_interruptible(dev);
8375         if (ret)
8376                 goto cleanup;
8377
8378         /* Reference the objects for the scheduled work. */
8379         drm_gem_object_reference(&work->old_fb_obj->base);
8380         drm_gem_object_reference(&obj->base);
8381
8382         crtc->fb = fb;
8383
8384         work->pending_flip_obj = obj;
8385
8386         work->enable_stall_check = true;
8387
8388         atomic_inc(&intel_crtc->unpin_work_count);
8389         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8390
8391         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8392         if (ret)
8393                 goto cleanup_pending;
8394
8395         intel_disable_fbc(dev);
8396         intel_mark_fb_busy(obj, NULL);
8397         mutex_unlock(&dev->struct_mutex);
8398
8399         trace_i915_flip_request(intel_crtc->plane, obj);
8400
8401         return 0;
8402
8403 cleanup_pending:
8404         atomic_dec(&intel_crtc->unpin_work_count);
8405         crtc->fb = old_fb;
8406         drm_gem_object_unreference(&work->old_fb_obj->base);
8407         drm_gem_object_unreference(&obj->base);
8408         mutex_unlock(&dev->struct_mutex);
8409
8410 cleanup:
8411         spin_lock_irqsave(&dev->event_lock, flags);
8412         intel_crtc->unpin_work = NULL;
8413         spin_unlock_irqrestore(&dev->event_lock, flags);
8414
8415         drm_vblank_put(dev, intel_crtc->pipe);
8416 free_work:
8417         kfree(work);
8418
8419         return ret;
8420 }
8421
8422 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8423         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8424         .load_lut = intel_crtc_load_lut,
8425 };
8426
8427 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8428                                   struct drm_crtc *crtc)
8429 {
8430         struct drm_device *dev;
8431         struct drm_crtc *tmp;
8432         int crtc_mask = 1;
8433
8434         WARN(!crtc, "checking null crtc?\n");
8435
8436         dev = crtc->dev;
8437
8438         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8439                 if (tmp == crtc)
8440                         break;
8441                 crtc_mask <<= 1;
8442         }
8443
8444         if (encoder->possible_crtcs & crtc_mask)
8445                 return true;
8446         return false;
8447 }
8448
8449 /**
8450  * intel_modeset_update_staged_output_state
8451  *
8452  * Updates the staged output configuration state, e.g. after we've read out the
8453  * current hw state.
8454  */
8455 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8456 {
8457         struct intel_encoder *encoder;
8458         struct intel_connector *connector;
8459
8460         list_for_each_entry(connector, &dev->mode_config.connector_list,
8461                             base.head) {
8462                 connector->new_encoder =
8463                         to_intel_encoder(connector->base.encoder);
8464         }
8465
8466         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8467                             base.head) {
8468                 encoder->new_crtc =
8469                         to_intel_crtc(encoder->base.crtc);
8470         }
8471 }
8472
8473 /**
8474  * intel_modeset_commit_output_state
8475  *
8476  * This function copies the stage display pipe configuration to the real one.
8477  */
8478 static void intel_modeset_commit_output_state(struct drm_device *dev)
8479 {
8480         struct intel_encoder *encoder;
8481         struct intel_connector *connector;
8482
8483         list_for_each_entry(connector, &dev->mode_config.connector_list,
8484                             base.head) {
8485                 connector->base.encoder = &connector->new_encoder->base;
8486         }
8487
8488         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8489                             base.head) {
8490                 encoder->base.crtc = &encoder->new_crtc->base;
8491         }
8492 }
8493
8494 static void
8495 connected_sink_compute_bpp(struct intel_connector * connector,
8496                            struct intel_crtc_config *pipe_config)
8497 {
8498         int bpp = pipe_config->pipe_bpp;
8499
8500         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8501                 connector->base.base.id,
8502                 drm_get_connector_name(&connector->base));
8503
8504         /* Don't use an invalid EDID bpc value */
8505         if (connector->base.display_info.bpc &&
8506             connector->base.display_info.bpc * 3 < bpp) {
8507                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8508                               bpp, connector->base.display_info.bpc*3);
8509                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8510         }
8511
8512         /* Clamp bpp to 8 on screens without EDID 1.4 */
8513         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8514                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8515                               bpp);
8516                 pipe_config->pipe_bpp = 24;
8517         }
8518 }
8519
8520 static int
8521 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8522                           struct drm_framebuffer *fb,
8523                           struct intel_crtc_config *pipe_config)
8524 {
8525         struct drm_device *dev = crtc->base.dev;
8526         struct intel_connector *connector;
8527         int bpp;
8528
8529         switch (fb->pixel_format) {
8530         case DRM_FORMAT_C8:
8531                 bpp = 8*3; /* since we go through a colormap */
8532                 break;
8533         case DRM_FORMAT_XRGB1555:
8534         case DRM_FORMAT_ARGB1555:
8535                 /* checked in intel_framebuffer_init already */
8536                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8537                         return -EINVAL;
8538         case DRM_FORMAT_RGB565:
8539                 bpp = 6*3; /* min is 18bpp */
8540                 break;
8541         case DRM_FORMAT_XBGR8888:
8542         case DRM_FORMAT_ABGR8888:
8543                 /* checked in intel_framebuffer_init already */
8544                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8545                         return -EINVAL;
8546         case DRM_FORMAT_XRGB8888:
8547         case DRM_FORMAT_ARGB8888:
8548                 bpp = 8*3;
8549                 break;
8550         case DRM_FORMAT_XRGB2101010:
8551         case DRM_FORMAT_ARGB2101010:
8552         case DRM_FORMAT_XBGR2101010:
8553         case DRM_FORMAT_ABGR2101010:
8554                 /* checked in intel_framebuffer_init already */
8555                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8556                         return -EINVAL;
8557                 bpp = 10*3;
8558                 break;
8559         /* TODO: gen4+ supports 16 bpc floating point, too. */
8560         default:
8561                 DRM_DEBUG_KMS("unsupported depth\n");
8562                 return -EINVAL;
8563         }
8564
8565         pipe_config->pipe_bpp = bpp;
8566
8567         /* Clamp display bpp to EDID value */
8568         list_for_each_entry(connector, &dev->mode_config.connector_list,
8569                             base.head) {
8570                 if (!connector->new_encoder ||
8571                     connector->new_encoder->new_crtc != crtc)
8572                         continue;
8573
8574                 connected_sink_compute_bpp(connector, pipe_config);
8575         }
8576
8577         return bpp;
8578 }
8579
8580 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8581 {
8582         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8583                         "type: 0x%x flags: 0x%x\n",
8584                 mode->crtc_clock,
8585                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8586                 mode->crtc_hsync_end, mode->crtc_htotal,
8587                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8588                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8589 }
8590
8591 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8592                                    struct intel_crtc_config *pipe_config,
8593                                    const char *context)
8594 {
8595         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8596                       context, pipe_name(crtc->pipe));
8597
8598         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8599         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8600                       pipe_config->pipe_bpp, pipe_config->dither);
8601         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8602                       pipe_config->has_pch_encoder,
8603                       pipe_config->fdi_lanes,
8604                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8605                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8606                       pipe_config->fdi_m_n.tu);
8607         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8608                       pipe_config->has_dp_encoder,
8609                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8610                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8611                       pipe_config->dp_m_n.tu);
8612         DRM_DEBUG_KMS("requested mode:\n");
8613         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8614         DRM_DEBUG_KMS("adjusted mode:\n");
8615         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8616         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8617         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8618         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8619                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8620         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8621                       pipe_config->gmch_pfit.control,
8622                       pipe_config->gmch_pfit.pgm_ratios,
8623                       pipe_config->gmch_pfit.lvds_border_bits);
8624         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8625                       pipe_config->pch_pfit.pos,
8626                       pipe_config->pch_pfit.size,
8627                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8628         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8629         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8630 }
8631
8632 static bool check_encoder_cloning(struct drm_crtc *crtc)
8633 {
8634         int num_encoders = 0;
8635         bool uncloneable_encoders = false;
8636         struct intel_encoder *encoder;
8637
8638         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8639                             base.head) {
8640                 if (&encoder->new_crtc->base != crtc)
8641                         continue;
8642
8643                 num_encoders++;
8644                 if (!encoder->cloneable)
8645                         uncloneable_encoders = true;
8646         }
8647
8648         return !(num_encoders > 1 && uncloneable_encoders);
8649 }
8650
8651 static struct intel_crtc_config *
8652 intel_modeset_pipe_config(struct drm_crtc *crtc,
8653                           struct drm_framebuffer *fb,
8654                           struct drm_display_mode *mode)
8655 {
8656         struct drm_device *dev = crtc->dev;
8657         struct intel_encoder *encoder;
8658         struct intel_crtc_config *pipe_config;
8659         int plane_bpp, ret = -EINVAL;
8660         bool retry = true;
8661
8662         if (!check_encoder_cloning(crtc)) {
8663                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8664                 return ERR_PTR(-EINVAL);
8665         }
8666
8667         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8668         if (!pipe_config)
8669                 return ERR_PTR(-ENOMEM);
8670
8671         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8672         drm_mode_copy(&pipe_config->requested_mode, mode);
8673
8674         pipe_config->cpu_transcoder =
8675                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8676         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8677
8678         /*
8679          * Sanitize sync polarity flags based on requested ones. If neither
8680          * positive or negative polarity is requested, treat this as meaning
8681          * negative polarity.
8682          */
8683         if (!(pipe_config->adjusted_mode.flags &
8684               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8685                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8686
8687         if (!(pipe_config->adjusted_mode.flags &
8688               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8689                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8690
8691         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8692          * plane pixel format and any sink constraints into account. Returns the
8693          * source plane bpp so that dithering can be selected on mismatches
8694          * after encoders and crtc also have had their say. */
8695         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8696                                               fb, pipe_config);
8697         if (plane_bpp < 0)
8698                 goto fail;
8699
8700         /*
8701          * Determine the real pipe dimensions. Note that stereo modes can
8702          * increase the actual pipe size due to the frame doubling and
8703          * insertion of additional space for blanks between the frame. This
8704          * is stored in the crtc timings. We use the requested mode to do this
8705          * computation to clearly distinguish it from the adjusted mode, which
8706          * can be changed by the connectors in the below retry loop.
8707          */
8708         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8709         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8710         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8711
8712 encoder_retry:
8713         /* Ensure the port clock defaults are reset when retrying. */
8714         pipe_config->port_clock = 0;
8715         pipe_config->pixel_multiplier = 1;
8716
8717         /* Fill in default crtc timings, allow encoders to overwrite them. */
8718         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8719
8720         /* Pass our mode to the connectors and the CRTC to give them a chance to
8721          * adjust it according to limitations or connector properties, and also
8722          * a chance to reject the mode entirely.
8723          */
8724         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8725                             base.head) {
8726
8727                 if (&encoder->new_crtc->base != crtc)
8728                         continue;
8729
8730                 if (!(encoder->compute_config(encoder, pipe_config))) {
8731                         DRM_DEBUG_KMS("Encoder config failure\n");
8732                         goto fail;
8733                 }
8734         }
8735
8736         /* Set default port clock if not overwritten by the encoder. Needs to be
8737          * done afterwards in case the encoder adjusts the mode. */
8738         if (!pipe_config->port_clock)
8739                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8740                         * pipe_config->pixel_multiplier;
8741
8742         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8743         if (ret < 0) {
8744                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8745                 goto fail;
8746         }
8747
8748         if (ret == RETRY) {
8749                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8750                         ret = -EINVAL;
8751                         goto fail;
8752                 }
8753
8754                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8755                 retry = false;
8756                 goto encoder_retry;
8757         }
8758
8759         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8760         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8761                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8762
8763         return pipe_config;
8764 fail:
8765         kfree(pipe_config);
8766         return ERR_PTR(ret);
8767 }
8768
8769 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8770  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8771 static void
8772 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8773                              unsigned *prepare_pipes, unsigned *disable_pipes)
8774 {
8775         struct intel_crtc *intel_crtc;
8776         struct drm_device *dev = crtc->dev;
8777         struct intel_encoder *encoder;
8778         struct intel_connector *connector;
8779         struct drm_crtc *tmp_crtc;
8780
8781         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8782
8783         /* Check which crtcs have changed outputs connected to them, these need
8784          * to be part of the prepare_pipes mask. We don't (yet) support global
8785          * modeset across multiple crtcs, so modeset_pipes will only have one
8786          * bit set at most. */
8787         list_for_each_entry(connector, &dev->mode_config.connector_list,
8788                             base.head) {
8789                 if (connector->base.encoder == &connector->new_encoder->base)
8790                         continue;
8791
8792                 if (connector->base.encoder) {
8793                         tmp_crtc = connector->base.encoder->crtc;
8794
8795                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8796                 }
8797
8798                 if (connector->new_encoder)
8799                         *prepare_pipes |=
8800                                 1 << connector->new_encoder->new_crtc->pipe;
8801         }
8802
8803         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8804                             base.head) {
8805                 if (encoder->base.crtc == &encoder->new_crtc->base)
8806                         continue;
8807
8808                 if (encoder->base.crtc) {
8809                         tmp_crtc = encoder->base.crtc;
8810
8811                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8812                 }
8813
8814                 if (encoder->new_crtc)
8815                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8816         }
8817
8818         /* Check for any pipes that will be fully disabled ... */
8819         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8820                             base.head) {
8821                 bool used = false;
8822
8823                 /* Don't try to disable disabled crtcs. */
8824                 if (!intel_crtc->base.enabled)
8825                         continue;
8826
8827                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8828                                     base.head) {
8829                         if (encoder->new_crtc == intel_crtc)
8830                                 used = true;
8831                 }
8832
8833                 if (!used)
8834                         *disable_pipes |= 1 << intel_crtc->pipe;
8835         }
8836
8837
8838         /* set_mode is also used to update properties on life display pipes. */
8839         intel_crtc = to_intel_crtc(crtc);
8840         if (crtc->enabled)
8841                 *prepare_pipes |= 1 << intel_crtc->pipe;
8842
8843         /*
8844          * For simplicity do a full modeset on any pipe where the output routing
8845          * changed. We could be more clever, but that would require us to be
8846          * more careful with calling the relevant encoder->mode_set functions.
8847          */
8848         if (*prepare_pipes)
8849                 *modeset_pipes = *prepare_pipes;
8850
8851         /* ... and mask these out. */
8852         *modeset_pipes &= ~(*disable_pipes);
8853         *prepare_pipes &= ~(*disable_pipes);
8854
8855         /*
8856          * HACK: We don't (yet) fully support global modesets. intel_set_config
8857          * obies this rule, but the modeset restore mode of
8858          * intel_modeset_setup_hw_state does not.
8859          */
8860         *modeset_pipes &= 1 << intel_crtc->pipe;
8861         *prepare_pipes &= 1 << intel_crtc->pipe;
8862
8863         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8864                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8865 }
8866
8867 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8868 {
8869         struct drm_encoder *encoder;
8870         struct drm_device *dev = crtc->dev;
8871
8872         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8873                 if (encoder->crtc == crtc)
8874                         return true;
8875
8876         return false;
8877 }
8878
8879 static void
8880 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8881 {
8882         struct intel_encoder *intel_encoder;
8883         struct intel_crtc *intel_crtc;
8884         struct drm_connector *connector;
8885
8886         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8887                             base.head) {
8888                 if (!intel_encoder->base.crtc)
8889                         continue;
8890
8891                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8892
8893                 if (prepare_pipes & (1 << intel_crtc->pipe))
8894                         intel_encoder->connectors_active = false;
8895         }
8896
8897         intel_modeset_commit_output_state(dev);
8898
8899         /* Update computed state. */
8900         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8901                             base.head) {
8902                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8903         }
8904
8905         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8906                 if (!connector->encoder || !connector->encoder->crtc)
8907                         continue;
8908
8909                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8910
8911                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8912                         struct drm_property *dpms_property =
8913                                 dev->mode_config.dpms_property;
8914
8915                         connector->dpms = DRM_MODE_DPMS_ON;
8916                         drm_object_property_set_value(&connector->base,
8917                                                          dpms_property,
8918                                                          DRM_MODE_DPMS_ON);
8919
8920                         intel_encoder = to_intel_encoder(connector->encoder);
8921                         intel_encoder->connectors_active = true;
8922                 }
8923         }
8924
8925 }
8926
8927 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8928 {
8929         int diff;
8930
8931         if (clock1 == clock2)
8932                 return true;
8933
8934         if (!clock1 || !clock2)
8935                 return false;
8936
8937         diff = abs(clock1 - clock2);
8938
8939         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8940                 return true;
8941
8942         return false;
8943 }
8944
8945 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8946         list_for_each_entry((intel_crtc), \
8947                             &(dev)->mode_config.crtc_list, \
8948                             base.head) \
8949                 if (mask & (1 <<(intel_crtc)->pipe))
8950
8951 static bool
8952 intel_pipe_config_compare(struct drm_device *dev,
8953                           struct intel_crtc_config *current_config,
8954                           struct intel_crtc_config *pipe_config)
8955 {
8956 #define PIPE_CONF_CHECK_X(name) \
8957         if (current_config->name != pipe_config->name) { \
8958                 DRM_ERROR("mismatch in " #name " " \
8959                           "(expected 0x%08x, found 0x%08x)\n", \
8960                           current_config->name, \
8961                           pipe_config->name); \
8962                 return false; \
8963         }
8964
8965 #define PIPE_CONF_CHECK_I(name) \
8966         if (current_config->name != pipe_config->name) { \
8967                 DRM_ERROR("mismatch in " #name " " \
8968                           "(expected %i, found %i)\n", \
8969                           current_config->name, \
8970                           pipe_config->name); \
8971                 return false; \
8972         }
8973
8974 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8975         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8976                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8977                           "(expected %i, found %i)\n", \
8978                           current_config->name & (mask), \
8979                           pipe_config->name & (mask)); \
8980                 return false; \
8981         }
8982
8983 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8984         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8985                 DRM_ERROR("mismatch in " #name " " \
8986                           "(expected %i, found %i)\n", \
8987                           current_config->name, \
8988                           pipe_config->name); \
8989                 return false; \
8990         }
8991
8992 #define PIPE_CONF_QUIRK(quirk)  \
8993         ((current_config->quirks | pipe_config->quirks) & (quirk))
8994
8995         PIPE_CONF_CHECK_I(cpu_transcoder);
8996
8997         PIPE_CONF_CHECK_I(has_pch_encoder);
8998         PIPE_CONF_CHECK_I(fdi_lanes);
8999         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9000         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9001         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9002         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9003         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9004
9005         PIPE_CONF_CHECK_I(has_dp_encoder);
9006         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9007         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9008         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9009         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9010         PIPE_CONF_CHECK_I(dp_m_n.tu);
9011
9012         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9013         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9014         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9015         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9016         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9017         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9018
9019         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9020         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9021         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9022         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9023         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9024         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9025
9026         PIPE_CONF_CHECK_I(pixel_multiplier);
9027
9028         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9029                               DRM_MODE_FLAG_INTERLACE);
9030
9031         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9032                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9033                                       DRM_MODE_FLAG_PHSYNC);
9034                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9035                                       DRM_MODE_FLAG_NHSYNC);
9036                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9037                                       DRM_MODE_FLAG_PVSYNC);
9038                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9039                                       DRM_MODE_FLAG_NVSYNC);
9040         }
9041
9042         PIPE_CONF_CHECK_I(pipe_src_w);
9043         PIPE_CONF_CHECK_I(pipe_src_h);
9044
9045         PIPE_CONF_CHECK_I(gmch_pfit.control);
9046         /* pfit ratios are autocomputed by the hw on gen4+ */
9047         if (INTEL_INFO(dev)->gen < 4)
9048                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9049         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9050         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9051         if (current_config->pch_pfit.enabled) {
9052                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9053                 PIPE_CONF_CHECK_I(pch_pfit.size);
9054         }
9055
9056         PIPE_CONF_CHECK_I(ips_enabled);
9057
9058         PIPE_CONF_CHECK_I(double_wide);
9059
9060         PIPE_CONF_CHECK_I(shared_dpll);
9061         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9062         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9063         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9064         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9065
9066         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9067                 PIPE_CONF_CHECK_I(pipe_bpp);
9068
9069         if (!IS_HASWELL(dev)) {
9070                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9071                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9072         }
9073
9074 #undef PIPE_CONF_CHECK_X
9075 #undef PIPE_CONF_CHECK_I
9076 #undef PIPE_CONF_CHECK_FLAGS
9077 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9078 #undef PIPE_CONF_QUIRK
9079
9080         return true;
9081 }
9082
9083 static void
9084 check_connector_state(struct drm_device *dev)
9085 {
9086         struct intel_connector *connector;
9087
9088         list_for_each_entry(connector, &dev->mode_config.connector_list,
9089                             base.head) {
9090                 /* This also checks the encoder/connector hw state with the
9091                  * ->get_hw_state callbacks. */
9092                 intel_connector_check_state(connector);
9093
9094                 WARN(&connector->new_encoder->base != connector->base.encoder,
9095                      "connector's staged encoder doesn't match current encoder\n");
9096         }
9097 }
9098
9099 static void
9100 check_encoder_state(struct drm_device *dev)
9101 {
9102         struct intel_encoder *encoder;
9103         struct intel_connector *connector;
9104
9105         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9106                             base.head) {
9107                 bool enabled = false;
9108                 bool active = false;
9109                 enum pipe pipe, tracked_pipe;
9110
9111                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9112                               encoder->base.base.id,
9113                               drm_get_encoder_name(&encoder->base));
9114
9115                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9116                      "encoder's stage crtc doesn't match current crtc\n");
9117                 WARN(encoder->connectors_active && !encoder->base.crtc,
9118                      "encoder's active_connectors set, but no crtc\n");
9119
9120                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9121                                     base.head) {
9122                         if (connector->base.encoder != &encoder->base)
9123                                 continue;
9124                         enabled = true;
9125                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9126                                 active = true;
9127                 }
9128                 WARN(!!encoder->base.crtc != enabled,
9129                      "encoder's enabled state mismatch "
9130                      "(expected %i, found %i)\n",
9131                      !!encoder->base.crtc, enabled);
9132                 WARN(active && !encoder->base.crtc,
9133                      "active encoder with no crtc\n");
9134
9135                 WARN(encoder->connectors_active != active,
9136                      "encoder's computed active state doesn't match tracked active state "
9137                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9138
9139                 active = encoder->get_hw_state(encoder, &pipe);
9140                 WARN(active != encoder->connectors_active,
9141                      "encoder's hw state doesn't match sw tracking "
9142                      "(expected %i, found %i)\n",
9143                      encoder->connectors_active, active);
9144
9145                 if (!encoder->base.crtc)
9146                         continue;
9147
9148                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9149                 WARN(active && pipe != tracked_pipe,
9150                      "active encoder's pipe doesn't match"
9151                      "(expected %i, found %i)\n",
9152                      tracked_pipe, pipe);
9153
9154         }
9155 }
9156
9157 static void
9158 check_crtc_state(struct drm_device *dev)
9159 {
9160         drm_i915_private_t *dev_priv = dev->dev_private;
9161         struct intel_crtc *crtc;
9162         struct intel_encoder *encoder;
9163         struct intel_crtc_config pipe_config;
9164
9165         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9166                             base.head) {
9167                 bool enabled = false;
9168                 bool active = false;
9169
9170                 memset(&pipe_config, 0, sizeof(pipe_config));
9171
9172                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9173                               crtc->base.base.id);
9174
9175                 WARN(crtc->active && !crtc->base.enabled,
9176                      "active crtc, but not enabled in sw tracking\n");
9177
9178                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9179                                     base.head) {
9180                         if (encoder->base.crtc != &crtc->base)
9181                                 continue;
9182                         enabled = true;
9183                         if (encoder->connectors_active)
9184                                 active = true;
9185                 }
9186
9187                 WARN(active != crtc->active,
9188                      "crtc's computed active state doesn't match tracked active state "
9189                      "(expected %i, found %i)\n", active, crtc->active);
9190                 WARN(enabled != crtc->base.enabled,
9191                      "crtc's computed enabled state doesn't match tracked enabled state "
9192                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9193
9194                 active = dev_priv->display.get_pipe_config(crtc,
9195                                                            &pipe_config);
9196
9197                 /* hw state is inconsistent with the pipe A quirk */
9198                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9199                         active = crtc->active;
9200
9201                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9202                                     base.head) {
9203                         enum pipe pipe;
9204                         if (encoder->base.crtc != &crtc->base)
9205                                 continue;
9206                         if (encoder->get_config &&
9207                             encoder->get_hw_state(encoder, &pipe))
9208                                 encoder->get_config(encoder, &pipe_config);
9209                 }
9210
9211                 WARN(crtc->active != active,
9212                      "crtc active state doesn't match with hw state "
9213                      "(expected %i, found %i)\n", crtc->active, active);
9214
9215                 if (active &&
9216                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9217                         WARN(1, "pipe state doesn't match!\n");
9218                         intel_dump_pipe_config(crtc, &pipe_config,
9219                                                "[hw state]");
9220                         intel_dump_pipe_config(crtc, &crtc->config,
9221                                                "[sw state]");
9222                 }
9223         }
9224 }
9225
9226 static void
9227 check_shared_dpll_state(struct drm_device *dev)
9228 {
9229         drm_i915_private_t *dev_priv = dev->dev_private;
9230         struct intel_crtc *crtc;
9231         struct intel_dpll_hw_state dpll_hw_state;
9232         int i;
9233
9234         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9235                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9236                 int enabled_crtcs = 0, active_crtcs = 0;
9237                 bool active;
9238
9239                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9240
9241                 DRM_DEBUG_KMS("%s\n", pll->name);
9242
9243                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9244
9245                 WARN(pll->active > pll->refcount,
9246                      "more active pll users than references: %i vs %i\n",
9247                      pll->active, pll->refcount);
9248                 WARN(pll->active && !pll->on,
9249                      "pll in active use but not on in sw tracking\n");
9250                 WARN(pll->on && !pll->active,
9251                      "pll in on but not on in use in sw tracking\n");
9252                 WARN(pll->on != active,
9253                      "pll on state mismatch (expected %i, found %i)\n",
9254                      pll->on, active);
9255
9256                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9257                                     base.head) {
9258                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9259                                 enabled_crtcs++;
9260                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9261                                 active_crtcs++;
9262                 }
9263                 WARN(pll->active != active_crtcs,
9264                      "pll active crtcs mismatch (expected %i, found %i)\n",
9265                      pll->active, active_crtcs);
9266                 WARN(pll->refcount != enabled_crtcs,
9267                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9268                      pll->refcount, enabled_crtcs);
9269
9270                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9271                                        sizeof(dpll_hw_state)),
9272                      "pll hw state mismatch\n");
9273         }
9274 }
9275
9276 void
9277 intel_modeset_check_state(struct drm_device *dev)
9278 {
9279         check_connector_state(dev);
9280         check_encoder_state(dev);
9281         check_crtc_state(dev);
9282         check_shared_dpll_state(dev);
9283 }
9284
9285 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9286                                      int dotclock)
9287 {
9288         /*
9289          * FDI already provided one idea for the dotclock.
9290          * Yell if the encoder disagrees.
9291          */
9292         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9293              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9294              pipe_config->adjusted_mode.crtc_clock, dotclock);
9295 }
9296
9297 static int __intel_set_mode(struct drm_crtc *crtc,
9298                             struct drm_display_mode *mode,
9299                             int x, int y, struct drm_framebuffer *fb)
9300 {
9301         struct drm_device *dev = crtc->dev;
9302         drm_i915_private_t *dev_priv = dev->dev_private;
9303         struct drm_display_mode *saved_mode, *saved_hwmode;
9304         struct intel_crtc_config *pipe_config = NULL;
9305         struct intel_crtc *intel_crtc;
9306         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9307         int ret = 0;
9308
9309         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9310         if (!saved_mode)
9311                 return -ENOMEM;
9312         saved_hwmode = saved_mode + 1;
9313
9314         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9315                                      &prepare_pipes, &disable_pipes);
9316
9317         *saved_hwmode = crtc->hwmode;
9318         *saved_mode = crtc->mode;
9319
9320         /* Hack: Because we don't (yet) support global modeset on multiple
9321          * crtcs, we don't keep track of the new mode for more than one crtc.
9322          * Hence simply check whether any bit is set in modeset_pipes in all the
9323          * pieces of code that are not yet converted to deal with mutliple crtcs
9324          * changing their mode at the same time. */
9325         if (modeset_pipes) {
9326                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9327                 if (IS_ERR(pipe_config)) {
9328                         ret = PTR_ERR(pipe_config);
9329                         pipe_config = NULL;
9330
9331                         goto out;
9332                 }
9333                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9334                                        "[modeset]");
9335         }
9336
9337         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9338                 intel_crtc_disable(&intel_crtc->base);
9339
9340         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9341                 if (intel_crtc->base.enabled)
9342                         dev_priv->display.crtc_disable(&intel_crtc->base);
9343         }
9344
9345         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9346          * to set it here already despite that we pass it down the callchain.
9347          */
9348         if (modeset_pipes) {
9349                 crtc->mode = *mode;
9350                 /* mode_set/enable/disable functions rely on a correct pipe
9351                  * config. */
9352                 to_intel_crtc(crtc)->config = *pipe_config;
9353         }
9354
9355         /* Only after disabling all output pipelines that will be changed can we
9356          * update the the output configuration. */
9357         intel_modeset_update_state(dev, prepare_pipes);
9358
9359         if (dev_priv->display.modeset_global_resources)
9360                 dev_priv->display.modeset_global_resources(dev);
9361
9362         /* Set up the DPLL and any encoders state that needs to adjust or depend
9363          * on the DPLL.
9364          */
9365         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9366                 ret = intel_crtc_mode_set(&intel_crtc->base,
9367                                           x, y, fb);
9368                 if (ret)
9369                         goto done;
9370         }
9371
9372         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9373         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9374                 dev_priv->display.crtc_enable(&intel_crtc->base);
9375
9376         if (modeset_pipes) {
9377                 /* Store real post-adjustment hardware mode. */
9378                 crtc->hwmode = pipe_config->adjusted_mode;
9379
9380                 /* Calculate and store various constants which
9381                  * are later needed by vblank and swap-completion
9382                  * timestamping. They are derived from true hwmode.
9383                  */
9384                 drm_calc_timestamping_constants(crtc);
9385         }
9386
9387         /* FIXME: add subpixel order */
9388 done:
9389         if (ret && crtc->enabled) {
9390                 crtc->hwmode = *saved_hwmode;
9391                 crtc->mode = *saved_mode;
9392         }
9393
9394 out:
9395         kfree(pipe_config);
9396         kfree(saved_mode);
9397         return ret;
9398 }
9399
9400 static int intel_set_mode(struct drm_crtc *crtc,
9401                           struct drm_display_mode *mode,
9402                           int x, int y, struct drm_framebuffer *fb)
9403 {
9404         int ret;
9405
9406         ret = __intel_set_mode(crtc, mode, x, y, fb);
9407
9408         if (ret == 0)
9409                 intel_modeset_check_state(crtc->dev);
9410
9411         return ret;
9412 }
9413
9414 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9415 {
9416         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9417 }
9418
9419 #undef for_each_intel_crtc_masked
9420
9421 static void intel_set_config_free(struct intel_set_config *config)
9422 {
9423         if (!config)
9424                 return;
9425
9426         kfree(config->save_connector_encoders);
9427         kfree(config->save_encoder_crtcs);
9428         kfree(config);
9429 }
9430
9431 static int intel_set_config_save_state(struct drm_device *dev,
9432                                        struct intel_set_config *config)
9433 {
9434         struct drm_encoder *encoder;
9435         struct drm_connector *connector;
9436         int count;
9437
9438         config->save_encoder_crtcs =
9439                 kcalloc(dev->mode_config.num_encoder,
9440                         sizeof(struct drm_crtc *), GFP_KERNEL);
9441         if (!config->save_encoder_crtcs)
9442                 return -ENOMEM;
9443
9444         config->save_connector_encoders =
9445                 kcalloc(dev->mode_config.num_connector,
9446                         sizeof(struct drm_encoder *), GFP_KERNEL);
9447         if (!config->save_connector_encoders)
9448                 return -ENOMEM;
9449
9450         /* Copy data. Note that driver private data is not affected.
9451          * Should anything bad happen only the expected state is
9452          * restored, not the drivers personal bookkeeping.
9453          */
9454         count = 0;
9455         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9456                 config->save_encoder_crtcs[count++] = encoder->crtc;
9457         }
9458
9459         count = 0;
9460         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9461                 config->save_connector_encoders[count++] = connector->encoder;
9462         }
9463
9464         return 0;
9465 }
9466
9467 static void intel_set_config_restore_state(struct drm_device *dev,
9468                                            struct intel_set_config *config)
9469 {
9470         struct intel_encoder *encoder;
9471         struct intel_connector *connector;
9472         int count;
9473
9474         count = 0;
9475         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9476                 encoder->new_crtc =
9477                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9478         }
9479
9480         count = 0;
9481         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9482                 connector->new_encoder =
9483                         to_intel_encoder(config->save_connector_encoders[count++]);
9484         }
9485 }
9486
9487 static bool
9488 is_crtc_connector_off(struct drm_mode_set *set)
9489 {
9490         int i;
9491
9492         if (set->num_connectors == 0)
9493                 return false;
9494
9495         if (WARN_ON(set->connectors == NULL))
9496                 return false;
9497
9498         for (i = 0; i < set->num_connectors; i++)
9499                 if (set->connectors[i]->encoder &&
9500                     set->connectors[i]->encoder->crtc == set->crtc &&
9501                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9502                         return true;
9503
9504         return false;
9505 }
9506
9507 static void
9508 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9509                                       struct intel_set_config *config)
9510 {
9511
9512         /* We should be able to check here if the fb has the same properties
9513          * and then just flip_or_move it */
9514         if (is_crtc_connector_off(set)) {
9515                 config->mode_changed = true;
9516         } else if (set->crtc->fb != set->fb) {
9517                 /* If we have no fb then treat it as a full mode set */
9518                 if (set->crtc->fb == NULL) {
9519                         struct intel_crtc *intel_crtc =
9520                                 to_intel_crtc(set->crtc);
9521
9522                         if (intel_crtc->active && i915_fastboot) {
9523                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9524                                 config->fb_changed = true;
9525                         } else {
9526                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9527                                 config->mode_changed = true;
9528                         }
9529                 } else if (set->fb == NULL) {
9530                         config->mode_changed = true;
9531                 } else if (set->fb->pixel_format !=
9532                            set->crtc->fb->pixel_format) {
9533                         config->mode_changed = true;
9534                 } else {
9535                         config->fb_changed = true;
9536                 }
9537         }
9538
9539         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9540                 config->fb_changed = true;
9541
9542         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9543                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9544                 drm_mode_debug_printmodeline(&set->crtc->mode);
9545                 drm_mode_debug_printmodeline(set->mode);
9546                 config->mode_changed = true;
9547         }
9548
9549         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9550                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9551 }
9552
9553 static int
9554 intel_modeset_stage_output_state(struct drm_device *dev,
9555                                  struct drm_mode_set *set,
9556                                  struct intel_set_config *config)
9557 {
9558         struct drm_crtc *new_crtc;
9559         struct intel_connector *connector;
9560         struct intel_encoder *encoder;
9561         int ro;
9562
9563         /* The upper layers ensure that we either disable a crtc or have a list
9564          * of connectors. For paranoia, double-check this. */
9565         WARN_ON(!set->fb && (set->num_connectors != 0));
9566         WARN_ON(set->fb && (set->num_connectors == 0));
9567
9568         list_for_each_entry(connector, &dev->mode_config.connector_list,
9569                             base.head) {
9570                 /* Otherwise traverse passed in connector list and get encoders
9571                  * for them. */
9572                 for (ro = 0; ro < set->num_connectors; ro++) {
9573                         if (set->connectors[ro] == &connector->base) {
9574                                 connector->new_encoder = connector->encoder;
9575                                 break;
9576                         }
9577                 }
9578
9579                 /* If we disable the crtc, disable all its connectors. Also, if
9580                  * the connector is on the changing crtc but not on the new
9581                  * connector list, disable it. */
9582                 if ((!set->fb || ro == set->num_connectors) &&
9583                     connector->base.encoder &&
9584                     connector->base.encoder->crtc == set->crtc) {
9585                         connector->new_encoder = NULL;
9586
9587                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9588                                 connector->base.base.id,
9589                                 drm_get_connector_name(&connector->base));
9590                 }
9591
9592
9593                 if (&connector->new_encoder->base != connector->base.encoder) {
9594                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9595                         config->mode_changed = true;
9596                 }
9597         }
9598         /* connector->new_encoder is now updated for all connectors. */
9599
9600         /* Update crtc of enabled connectors. */
9601         list_for_each_entry(connector, &dev->mode_config.connector_list,
9602                             base.head) {
9603                 if (!connector->new_encoder)
9604                         continue;
9605
9606                 new_crtc = connector->new_encoder->base.crtc;
9607
9608                 for (ro = 0; ro < set->num_connectors; ro++) {
9609                         if (set->connectors[ro] == &connector->base)
9610                                 new_crtc = set->crtc;
9611                 }
9612
9613                 /* Make sure the new CRTC will work with the encoder */
9614                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9615                                            new_crtc)) {
9616                         return -EINVAL;
9617                 }
9618                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9619
9620                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9621                         connector->base.base.id,
9622                         drm_get_connector_name(&connector->base),
9623                         new_crtc->base.id);
9624         }
9625
9626         /* Check for any encoders that needs to be disabled. */
9627         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9628                             base.head) {
9629                 list_for_each_entry(connector,
9630                                     &dev->mode_config.connector_list,
9631                                     base.head) {
9632                         if (connector->new_encoder == encoder) {
9633                                 WARN_ON(!connector->new_encoder->new_crtc);
9634
9635                                 goto next_encoder;
9636                         }
9637                 }
9638                 encoder->new_crtc = NULL;
9639 next_encoder:
9640                 /* Only now check for crtc changes so we don't miss encoders
9641                  * that will be disabled. */
9642                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9643                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9644                         config->mode_changed = true;
9645                 }
9646         }
9647         /* Now we've also updated encoder->new_crtc for all encoders. */
9648
9649         return 0;
9650 }
9651
9652 static int intel_crtc_set_config(struct drm_mode_set *set)
9653 {
9654         struct drm_device *dev;
9655         struct drm_mode_set save_set;
9656         struct intel_set_config *config;
9657         int ret;
9658
9659         BUG_ON(!set);
9660         BUG_ON(!set->crtc);
9661         BUG_ON(!set->crtc->helper_private);
9662
9663         /* Enforce sane interface api - has been abused by the fb helper. */
9664         BUG_ON(!set->mode && set->fb);
9665         BUG_ON(set->fb && set->num_connectors == 0);
9666
9667         if (set->fb) {
9668                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9669                                 set->crtc->base.id, set->fb->base.id,
9670                                 (int)set->num_connectors, set->x, set->y);
9671         } else {
9672                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9673         }
9674
9675         dev = set->crtc->dev;
9676
9677         ret = -ENOMEM;
9678         config = kzalloc(sizeof(*config), GFP_KERNEL);
9679         if (!config)
9680                 goto out_config;
9681
9682         ret = intel_set_config_save_state(dev, config);
9683         if (ret)
9684                 goto out_config;
9685
9686         save_set.crtc = set->crtc;
9687         save_set.mode = &set->crtc->mode;
9688         save_set.x = set->crtc->x;
9689         save_set.y = set->crtc->y;
9690         save_set.fb = set->crtc->fb;
9691
9692         /* Compute whether we need a full modeset, only an fb base update or no
9693          * change at all. In the future we might also check whether only the
9694          * mode changed, e.g. for LVDS where we only change the panel fitter in
9695          * such cases. */
9696         intel_set_config_compute_mode_changes(set, config);
9697
9698         ret = intel_modeset_stage_output_state(dev, set, config);
9699         if (ret)
9700                 goto fail;
9701
9702         if (config->mode_changed) {
9703                 ret = intel_set_mode(set->crtc, set->mode,
9704                                      set->x, set->y, set->fb);
9705         } else if (config->fb_changed) {
9706                 intel_crtc_wait_for_pending_flips(set->crtc);
9707
9708                 ret = intel_pipe_set_base(set->crtc,
9709                                           set->x, set->y, set->fb);
9710         }
9711
9712         if (ret) {
9713                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9714                               set->crtc->base.id, ret);
9715 fail:
9716                 intel_set_config_restore_state(dev, config);
9717
9718                 /* Try to restore the config */
9719                 if (config->mode_changed &&
9720                     intel_set_mode(save_set.crtc, save_set.mode,
9721                                    save_set.x, save_set.y, save_set.fb))
9722                         DRM_ERROR("failed to restore config after modeset failure\n");
9723         }
9724
9725 out_config:
9726         intel_set_config_free(config);
9727         return ret;
9728 }
9729
9730 static const struct drm_crtc_funcs intel_crtc_funcs = {
9731         .cursor_set = intel_crtc_cursor_set,
9732         .cursor_move = intel_crtc_cursor_move,
9733         .gamma_set = intel_crtc_gamma_set,
9734         .set_config = intel_crtc_set_config,
9735         .destroy = intel_crtc_destroy,
9736         .page_flip = intel_crtc_page_flip,
9737 };
9738
9739 static void intel_cpu_pll_init(struct drm_device *dev)
9740 {
9741         if (HAS_DDI(dev))
9742                 intel_ddi_pll_init(dev);
9743 }
9744
9745 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9746                                       struct intel_shared_dpll *pll,
9747                                       struct intel_dpll_hw_state *hw_state)
9748 {
9749         uint32_t val;
9750
9751         val = I915_READ(PCH_DPLL(pll->id));
9752         hw_state->dpll = val;
9753         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9754         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9755
9756         return val & DPLL_VCO_ENABLE;
9757 }
9758
9759 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9760                                   struct intel_shared_dpll *pll)
9761 {
9762         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9763         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9764 }
9765
9766 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9767                                 struct intel_shared_dpll *pll)
9768 {
9769         /* PCH refclock must be enabled first */
9770         assert_pch_refclk_enabled(dev_priv);
9771
9772         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9773
9774         /* Wait for the clocks to stabilize. */
9775         POSTING_READ(PCH_DPLL(pll->id));
9776         udelay(150);
9777
9778         /* The pixel multiplier can only be updated once the
9779          * DPLL is enabled and the clocks are stable.
9780          *
9781          * So write it again.
9782          */
9783         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9784         POSTING_READ(PCH_DPLL(pll->id));
9785         udelay(200);
9786 }
9787
9788 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9789                                  struct intel_shared_dpll *pll)
9790 {
9791         struct drm_device *dev = dev_priv->dev;
9792         struct intel_crtc *crtc;
9793
9794         /* Make sure no transcoder isn't still depending on us. */
9795         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9796                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9797                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9798         }
9799
9800         I915_WRITE(PCH_DPLL(pll->id), 0);
9801         POSTING_READ(PCH_DPLL(pll->id));
9802         udelay(200);
9803 }
9804
9805 static char *ibx_pch_dpll_names[] = {
9806         "PCH DPLL A",
9807         "PCH DPLL B",
9808 };
9809
9810 static void ibx_pch_dpll_init(struct drm_device *dev)
9811 {
9812         struct drm_i915_private *dev_priv = dev->dev_private;
9813         int i;
9814
9815         dev_priv->num_shared_dpll = 2;
9816
9817         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9818                 dev_priv->shared_dplls[i].id = i;
9819                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9820                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9821                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9822                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9823                 dev_priv->shared_dplls[i].get_hw_state =
9824                         ibx_pch_dpll_get_hw_state;
9825         }
9826 }
9827
9828 static void intel_shared_dpll_init(struct drm_device *dev)
9829 {
9830         struct drm_i915_private *dev_priv = dev->dev_private;
9831
9832         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9833                 ibx_pch_dpll_init(dev);
9834         else
9835                 dev_priv->num_shared_dpll = 0;
9836
9837         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9838         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9839                       dev_priv->num_shared_dpll);
9840 }
9841
9842 static void intel_crtc_init(struct drm_device *dev, int pipe)
9843 {
9844         drm_i915_private_t *dev_priv = dev->dev_private;
9845         struct intel_crtc *intel_crtc;
9846         int i;
9847
9848         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9849         if (intel_crtc == NULL)
9850                 return;
9851
9852         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9853
9854         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9855         for (i = 0; i < 256; i++) {
9856                 intel_crtc->lut_r[i] = i;
9857                 intel_crtc->lut_g[i] = i;
9858                 intel_crtc->lut_b[i] = i;
9859         }
9860
9861         /* Swap pipes & planes for FBC on pre-965 */
9862         intel_crtc->pipe = pipe;
9863         intel_crtc->plane = pipe;
9864         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9865                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9866                 intel_crtc->plane = !pipe;
9867         }
9868
9869         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9870                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9871         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9872         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9873
9874         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9875 }
9876
9877 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
9878 {
9879         struct drm_encoder *encoder = connector->base.encoder;
9880
9881         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
9882
9883         if (!encoder)
9884                 return INVALID_PIPE;
9885
9886         return to_intel_crtc(encoder->crtc)->pipe;
9887 }
9888
9889 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9890                                 struct drm_file *file)
9891 {
9892         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9893         struct drm_mode_object *drmmode_obj;
9894         struct intel_crtc *crtc;
9895
9896         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9897                 return -ENODEV;
9898
9899         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9900                         DRM_MODE_OBJECT_CRTC);
9901
9902         if (!drmmode_obj) {
9903                 DRM_ERROR("no such CRTC id\n");
9904                 return -ENOENT;
9905         }
9906
9907         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9908         pipe_from_crtc_id->pipe = crtc->pipe;
9909
9910         return 0;
9911 }
9912
9913 static int intel_encoder_clones(struct intel_encoder *encoder)
9914 {
9915         struct drm_device *dev = encoder->base.dev;
9916         struct intel_encoder *source_encoder;
9917         int index_mask = 0;
9918         int entry = 0;
9919
9920         list_for_each_entry(source_encoder,
9921                             &dev->mode_config.encoder_list, base.head) {
9922
9923                 if (encoder == source_encoder)
9924                         index_mask |= (1 << entry);
9925
9926                 /* Intel hw has only one MUX where enocoders could be cloned. */
9927                 if (encoder->cloneable && source_encoder->cloneable)
9928                         index_mask |= (1 << entry);
9929
9930                 entry++;
9931         }
9932
9933         return index_mask;
9934 }
9935
9936 static bool has_edp_a(struct drm_device *dev)
9937 {
9938         struct drm_i915_private *dev_priv = dev->dev_private;
9939
9940         if (!IS_MOBILE(dev))
9941                 return false;
9942
9943         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9944                 return false;
9945
9946         if (IS_GEN5(dev) &&
9947             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9948                 return false;
9949
9950         return true;
9951 }
9952
9953 static void intel_setup_outputs(struct drm_device *dev)
9954 {
9955         struct drm_i915_private *dev_priv = dev->dev_private;
9956         struct intel_encoder *encoder;
9957         bool dpd_is_edp = false;
9958
9959         intel_lvds_init(dev);
9960
9961         if (!IS_ULT(dev))
9962                 intel_crt_init(dev);
9963
9964         if (HAS_DDI(dev)) {
9965                 int found;
9966
9967                 /* Haswell uses DDI functions to detect digital outputs */
9968                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9969                 /* DDI A only supports eDP */
9970                 if (found)
9971                         intel_ddi_init(dev, PORT_A);
9972
9973                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9974                  * register */
9975                 found = I915_READ(SFUSE_STRAP);
9976
9977                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9978                         intel_ddi_init(dev, PORT_B);
9979                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9980                         intel_ddi_init(dev, PORT_C);
9981                 if (found & SFUSE_STRAP_DDID_DETECTED)
9982                         intel_ddi_init(dev, PORT_D);
9983         } else if (HAS_PCH_SPLIT(dev)) {
9984                 int found;
9985                 dpd_is_edp = intel_dpd_is_edp(dev);
9986
9987                 if (has_edp_a(dev))
9988                         intel_dp_init(dev, DP_A, PORT_A);
9989
9990                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9991                         /* PCH SDVOB multiplex with HDMIB */
9992                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9993                         if (!found)
9994                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9995                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9996                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9997                 }
9998
9999                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10000                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10001
10002                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10003                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10004
10005                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10006                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10007
10008                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10009                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10010         } else if (IS_VALLEYVIEW(dev)) {
10011                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10012                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10013                                         PORT_B);
10014                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10015                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10016                 }
10017
10018                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10019                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10020                                         PORT_C);
10021                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10022                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10023                                               PORT_C);
10024                 }
10025
10026                 intel_dsi_init(dev);
10027         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10028                 bool found = false;
10029
10030                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10031                         DRM_DEBUG_KMS("probing SDVOB\n");
10032                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10033                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10034                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10035                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10036                         }
10037
10038                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10039                                 intel_dp_init(dev, DP_B, PORT_B);
10040                 }
10041
10042                 /* Before G4X SDVOC doesn't have its own detect register */
10043
10044                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10045                         DRM_DEBUG_KMS("probing SDVOC\n");
10046                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10047                 }
10048
10049                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10050
10051                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10052                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10053                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10054                         }
10055                         if (SUPPORTS_INTEGRATED_DP(dev))
10056                                 intel_dp_init(dev, DP_C, PORT_C);
10057                 }
10058
10059                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10060                     (I915_READ(DP_D) & DP_DETECTED))
10061                         intel_dp_init(dev, DP_D, PORT_D);
10062         } else if (IS_GEN2(dev))
10063                 intel_dvo_init(dev);
10064
10065         if (SUPPORTS_TV(dev))
10066                 intel_tv_init(dev);
10067
10068         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10069                 encoder->base.possible_crtcs = encoder->crtc_mask;
10070                 encoder->base.possible_clones =
10071                         intel_encoder_clones(encoder);
10072         }
10073
10074         intel_init_pch_refclk(dev);
10075
10076         drm_helper_move_panel_connectors_to_head(dev);
10077 }
10078
10079 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10080 {
10081         drm_framebuffer_cleanup(&fb->base);
10082         WARN_ON(!fb->obj->framebuffer_references--);
10083         drm_gem_object_unreference_unlocked(&fb->obj->base);
10084 }
10085
10086 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10087 {
10088         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10089
10090         intel_framebuffer_fini(intel_fb);
10091         kfree(intel_fb);
10092 }
10093
10094 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10095                                                 struct drm_file *file,
10096                                                 unsigned int *handle)
10097 {
10098         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10099         struct drm_i915_gem_object *obj = intel_fb->obj;
10100
10101         return drm_gem_handle_create(file, &obj->base, handle);
10102 }
10103
10104 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10105         .destroy = intel_user_framebuffer_destroy,
10106         .create_handle = intel_user_framebuffer_create_handle,
10107 };
10108
10109 int intel_framebuffer_init(struct drm_device *dev,
10110                            struct intel_framebuffer *intel_fb,
10111                            struct drm_mode_fb_cmd2 *mode_cmd,
10112                            struct drm_i915_gem_object *obj)
10113 {
10114         int aligned_height, tile_height;
10115         int pitch_limit;
10116         int ret;
10117
10118         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10119
10120         if (obj->tiling_mode == I915_TILING_Y) {
10121                 DRM_DEBUG("hardware does not support tiling Y\n");
10122                 return -EINVAL;
10123         }
10124
10125         if (mode_cmd->pitches[0] & 63) {
10126                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10127                           mode_cmd->pitches[0]);
10128                 return -EINVAL;
10129         }
10130
10131         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10132                 pitch_limit = 32*1024;
10133         } else if (INTEL_INFO(dev)->gen >= 4) {
10134                 if (obj->tiling_mode)
10135                         pitch_limit = 16*1024;
10136                 else
10137                         pitch_limit = 32*1024;
10138         } else if (INTEL_INFO(dev)->gen >= 3) {
10139                 if (obj->tiling_mode)
10140                         pitch_limit = 8*1024;
10141                 else
10142                         pitch_limit = 16*1024;
10143         } else
10144                 /* XXX DSPC is limited to 4k tiled */
10145                 pitch_limit = 8*1024;
10146
10147         if (mode_cmd->pitches[0] > pitch_limit) {
10148                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10149                           obj->tiling_mode ? "tiled" : "linear",
10150                           mode_cmd->pitches[0], pitch_limit);
10151                 return -EINVAL;
10152         }
10153
10154         if (obj->tiling_mode != I915_TILING_NONE &&
10155             mode_cmd->pitches[0] != obj->stride) {
10156                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10157                           mode_cmd->pitches[0], obj->stride);
10158                 return -EINVAL;
10159         }
10160
10161         /* Reject formats not supported by any plane early. */
10162         switch (mode_cmd->pixel_format) {
10163         case DRM_FORMAT_C8:
10164         case DRM_FORMAT_RGB565:
10165         case DRM_FORMAT_XRGB8888:
10166         case DRM_FORMAT_ARGB8888:
10167                 break;
10168         case DRM_FORMAT_XRGB1555:
10169         case DRM_FORMAT_ARGB1555:
10170                 if (INTEL_INFO(dev)->gen > 3) {
10171                         DRM_DEBUG("unsupported pixel format: %s\n",
10172                                   drm_get_format_name(mode_cmd->pixel_format));
10173                         return -EINVAL;
10174                 }
10175                 break;
10176         case DRM_FORMAT_XBGR8888:
10177         case DRM_FORMAT_ABGR8888:
10178         case DRM_FORMAT_XRGB2101010:
10179         case DRM_FORMAT_ARGB2101010:
10180         case DRM_FORMAT_XBGR2101010:
10181         case DRM_FORMAT_ABGR2101010:
10182                 if (INTEL_INFO(dev)->gen < 4) {
10183                         DRM_DEBUG("unsupported pixel format: %s\n",
10184                                   drm_get_format_name(mode_cmd->pixel_format));
10185                         return -EINVAL;
10186                 }
10187                 break;
10188         case DRM_FORMAT_YUYV:
10189         case DRM_FORMAT_UYVY:
10190         case DRM_FORMAT_YVYU:
10191         case DRM_FORMAT_VYUY:
10192                 if (INTEL_INFO(dev)->gen < 5) {
10193                         DRM_DEBUG("unsupported pixel format: %s\n",
10194                                   drm_get_format_name(mode_cmd->pixel_format));
10195                         return -EINVAL;
10196                 }
10197                 break;
10198         default:
10199                 DRM_DEBUG("unsupported pixel format: %s\n",
10200                           drm_get_format_name(mode_cmd->pixel_format));
10201                 return -EINVAL;
10202         }
10203
10204         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10205         if (mode_cmd->offsets[0] != 0)
10206                 return -EINVAL;
10207
10208         tile_height = IS_GEN2(dev) ? 16 : 8;
10209         aligned_height = ALIGN(mode_cmd->height,
10210                                obj->tiling_mode ? tile_height : 1);
10211         /* FIXME drm helper for size checks (especially planar formats)? */
10212         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10213                 return -EINVAL;
10214
10215         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10216         intel_fb->obj = obj;
10217         intel_fb->obj->framebuffer_references++;
10218
10219         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10220         if (ret) {
10221                 DRM_ERROR("framebuffer init failed %d\n", ret);
10222                 return ret;
10223         }
10224
10225         return 0;
10226 }
10227
10228 static struct drm_framebuffer *
10229 intel_user_framebuffer_create(struct drm_device *dev,
10230                               struct drm_file *filp,
10231                               struct drm_mode_fb_cmd2 *mode_cmd)
10232 {
10233         struct drm_i915_gem_object *obj;
10234
10235         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10236                                                 mode_cmd->handles[0]));
10237         if (&obj->base == NULL)
10238                 return ERR_PTR(-ENOENT);
10239
10240         return intel_framebuffer_create(dev, mode_cmd, obj);
10241 }
10242
10243 #ifndef CONFIG_DRM_I915_FBDEV
10244 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10245 {
10246 }
10247 #endif
10248
10249 static const struct drm_mode_config_funcs intel_mode_funcs = {
10250         .fb_create = intel_user_framebuffer_create,
10251         .output_poll_changed = intel_fbdev_output_poll_changed,
10252 };
10253
10254 /* Set up chip specific display functions */
10255 static void intel_init_display(struct drm_device *dev)
10256 {
10257         struct drm_i915_private *dev_priv = dev->dev_private;
10258
10259         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10260                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10261         else if (IS_VALLEYVIEW(dev))
10262                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10263         else if (IS_PINEVIEW(dev))
10264                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10265         else
10266                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10267
10268         if (HAS_DDI(dev)) {
10269                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10270                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10271                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10272                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10273                 dev_priv->display.off = haswell_crtc_off;
10274                 dev_priv->display.update_plane = ironlake_update_plane;
10275         } else if (HAS_PCH_SPLIT(dev)) {
10276                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10277                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10278                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10279                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10280                 dev_priv->display.off = ironlake_crtc_off;
10281                 dev_priv->display.update_plane = ironlake_update_plane;
10282         } else if (IS_VALLEYVIEW(dev)) {
10283                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10284                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10285                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10286                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10287                 dev_priv->display.off = i9xx_crtc_off;
10288                 dev_priv->display.update_plane = i9xx_update_plane;
10289         } else {
10290                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10291                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10292                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10293                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10294                 dev_priv->display.off = i9xx_crtc_off;
10295                 dev_priv->display.update_plane = i9xx_update_plane;
10296         }
10297
10298         /* Returns the core display clock speed */
10299         if (IS_VALLEYVIEW(dev))
10300                 dev_priv->display.get_display_clock_speed =
10301                         valleyview_get_display_clock_speed;
10302         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10303                 dev_priv->display.get_display_clock_speed =
10304                         i945_get_display_clock_speed;
10305         else if (IS_I915G(dev))
10306                 dev_priv->display.get_display_clock_speed =
10307                         i915_get_display_clock_speed;
10308         else if (IS_I945GM(dev) || IS_845G(dev))
10309                 dev_priv->display.get_display_clock_speed =
10310                         i9xx_misc_get_display_clock_speed;
10311         else if (IS_PINEVIEW(dev))
10312                 dev_priv->display.get_display_clock_speed =
10313                         pnv_get_display_clock_speed;
10314         else if (IS_I915GM(dev))
10315                 dev_priv->display.get_display_clock_speed =
10316                         i915gm_get_display_clock_speed;
10317         else if (IS_I865G(dev))
10318                 dev_priv->display.get_display_clock_speed =
10319                         i865_get_display_clock_speed;
10320         else if (IS_I85X(dev))
10321                 dev_priv->display.get_display_clock_speed =
10322                         i855_get_display_clock_speed;
10323         else /* 852, 830 */
10324                 dev_priv->display.get_display_clock_speed =
10325                         i830_get_display_clock_speed;
10326
10327         if (HAS_PCH_SPLIT(dev)) {
10328                 if (IS_GEN5(dev)) {
10329                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10330                         dev_priv->display.write_eld = ironlake_write_eld;
10331                 } else if (IS_GEN6(dev)) {
10332                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10333                         dev_priv->display.write_eld = ironlake_write_eld;
10334                 } else if (IS_IVYBRIDGE(dev)) {
10335                         /* FIXME: detect B0+ stepping and use auto training */
10336                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10337                         dev_priv->display.write_eld = ironlake_write_eld;
10338                         dev_priv->display.modeset_global_resources =
10339                                 ivb_modeset_global_resources;
10340                 } else if (IS_HASWELL(dev)) {
10341                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10342                         dev_priv->display.write_eld = haswell_write_eld;
10343                         dev_priv->display.modeset_global_resources =
10344                                 haswell_modeset_global_resources;
10345                 }
10346         } else if (IS_G4X(dev)) {
10347                 dev_priv->display.write_eld = g4x_write_eld;
10348         } else if (IS_VALLEYVIEW(dev))
10349                 dev_priv->display.write_eld = ironlake_write_eld;
10350
10351         /* Default just returns -ENODEV to indicate unsupported */
10352         dev_priv->display.queue_flip = intel_default_queue_flip;
10353
10354         switch (INTEL_INFO(dev)->gen) {
10355         case 2:
10356                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10357                 break;
10358
10359         case 3:
10360                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10361                 break;
10362
10363         case 4:
10364         case 5:
10365                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10366                 break;
10367
10368         case 6:
10369                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10370                 break;
10371         case 7:
10372                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10373                 break;
10374         }
10375 }
10376
10377 /*
10378  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10379  * resume, or other times.  This quirk makes sure that's the case for
10380  * affected systems.
10381  */
10382 static void quirk_pipea_force(struct drm_device *dev)
10383 {
10384         struct drm_i915_private *dev_priv = dev->dev_private;
10385
10386         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10387         DRM_INFO("applying pipe a force quirk\n");
10388 }
10389
10390 /*
10391  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10392  */
10393 static void quirk_ssc_force_disable(struct drm_device *dev)
10394 {
10395         struct drm_i915_private *dev_priv = dev->dev_private;
10396         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10397         DRM_INFO("applying lvds SSC disable quirk\n");
10398 }
10399
10400 /*
10401  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10402  * brightness value
10403  */
10404 static void quirk_invert_brightness(struct drm_device *dev)
10405 {
10406         struct drm_i915_private *dev_priv = dev->dev_private;
10407         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10408         DRM_INFO("applying inverted panel brightness quirk\n");
10409 }
10410
10411 /*
10412  * Some machines (Dell XPS13) suffer broken backlight controls if
10413  * BLM_PCH_PWM_ENABLE is set.
10414  */
10415 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10416 {
10417         struct drm_i915_private *dev_priv = dev->dev_private;
10418         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10419         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10420 }
10421
10422 struct intel_quirk {
10423         int device;
10424         int subsystem_vendor;
10425         int subsystem_device;
10426         void (*hook)(struct drm_device *dev);
10427 };
10428
10429 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10430 struct intel_dmi_quirk {
10431         void (*hook)(struct drm_device *dev);
10432         const struct dmi_system_id (*dmi_id_list)[];
10433 };
10434
10435 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10436 {
10437         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10438         return 1;
10439 }
10440
10441 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10442         {
10443                 .dmi_id_list = &(const struct dmi_system_id[]) {
10444                         {
10445                                 .callback = intel_dmi_reverse_brightness,
10446                                 .ident = "NCR Corporation",
10447                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10448                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10449                                 },
10450                         },
10451                         { }  /* terminating entry */
10452                 },
10453                 .hook = quirk_invert_brightness,
10454         },
10455 };
10456
10457 static struct intel_quirk intel_quirks[] = {
10458         /* HP Mini needs pipe A force quirk (LP: #322104) */
10459         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10460
10461         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10462         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10463
10464         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10465         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10466
10467         /* 830 needs to leave pipe A & dpll A up */
10468         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10469
10470         /* Lenovo U160 cannot use SSC on LVDS */
10471         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10472
10473         /* Sony Vaio Y cannot use SSC on LVDS */
10474         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10475
10476         /*
10477          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10478          * seem to use inverted backlight PWM.
10479          */
10480         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10481
10482         /* Dell XPS13 HD Sandy Bridge */
10483         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10484         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10485         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10486 };
10487
10488 static void intel_init_quirks(struct drm_device *dev)
10489 {
10490         struct pci_dev *d = dev->pdev;
10491         int i;
10492
10493         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10494                 struct intel_quirk *q = &intel_quirks[i];
10495
10496                 if (d->device == q->device &&
10497                     (d->subsystem_vendor == q->subsystem_vendor ||
10498                      q->subsystem_vendor == PCI_ANY_ID) &&
10499                     (d->subsystem_device == q->subsystem_device ||
10500                      q->subsystem_device == PCI_ANY_ID))
10501                         q->hook(dev);
10502         }
10503         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10504                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10505                         intel_dmi_quirks[i].hook(dev);
10506         }
10507 }
10508
10509 /* Disable the VGA plane that we never use */
10510 static void i915_disable_vga(struct drm_device *dev)
10511 {
10512         struct drm_i915_private *dev_priv = dev->dev_private;
10513         u8 sr1;
10514         u32 vga_reg = i915_vgacntrl_reg(dev);
10515
10516         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10517         outb(SR01, VGA_SR_INDEX);
10518         sr1 = inb(VGA_SR_DATA);
10519         outb(sr1 | 1<<5, VGA_SR_DATA);
10520         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10521         udelay(300);
10522
10523         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10524         POSTING_READ(vga_reg);
10525 }
10526
10527 void intel_modeset_init_hw(struct drm_device *dev)
10528 {
10529         struct drm_i915_private *dev_priv = dev->dev_private;
10530
10531         intel_prepare_ddi(dev);
10532
10533         intel_init_clock_gating(dev);
10534
10535         /* Enable the CRI clock source so we can get at the display */
10536         if (IS_VALLEYVIEW(dev))
10537                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10538                            DPLL_INTEGRATED_CRI_CLK_VLV);
10539
10540         intel_init_dpio(dev);
10541
10542         mutex_lock(&dev->struct_mutex);
10543         intel_enable_gt_powersave(dev);
10544         mutex_unlock(&dev->struct_mutex);
10545 }
10546
10547 void intel_modeset_suspend_hw(struct drm_device *dev)
10548 {
10549         intel_suspend_hw(dev);
10550 }
10551
10552 void intel_modeset_init(struct drm_device *dev)
10553 {
10554         struct drm_i915_private *dev_priv = dev->dev_private;
10555         int i, j, ret;
10556
10557         drm_mode_config_init(dev);
10558
10559         dev->mode_config.min_width = 0;
10560         dev->mode_config.min_height = 0;
10561
10562         dev->mode_config.preferred_depth = 24;
10563         dev->mode_config.prefer_shadow = 1;
10564
10565         dev->mode_config.funcs = &intel_mode_funcs;
10566
10567         intel_init_quirks(dev);
10568
10569         intel_init_pm(dev);
10570
10571         if (INTEL_INFO(dev)->num_pipes == 0)
10572                 return;
10573
10574         intel_init_display(dev);
10575
10576         if (IS_GEN2(dev)) {
10577                 dev->mode_config.max_width = 2048;
10578                 dev->mode_config.max_height = 2048;
10579         } else if (IS_GEN3(dev)) {
10580                 dev->mode_config.max_width = 4096;
10581                 dev->mode_config.max_height = 4096;
10582         } else {
10583                 dev->mode_config.max_width = 8192;
10584                 dev->mode_config.max_height = 8192;
10585         }
10586         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10587
10588         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10589                       INTEL_INFO(dev)->num_pipes,
10590                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10591
10592         for_each_pipe(i) {
10593                 intel_crtc_init(dev, i);
10594                 for (j = 0; j < dev_priv->num_plane; j++) {
10595                         ret = intel_plane_init(dev, i, j);
10596                         if (ret)
10597                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10598                                               pipe_name(i), sprite_name(i, j), ret);
10599                 }
10600         }
10601
10602         intel_cpu_pll_init(dev);
10603         intel_shared_dpll_init(dev);
10604
10605         /* Just disable it once at startup */
10606         i915_disable_vga(dev);
10607         intel_setup_outputs(dev);
10608
10609         /* Just in case the BIOS is doing something questionable. */
10610         intel_disable_fbc(dev);
10611 }
10612
10613 static void
10614 intel_connector_break_all_links(struct intel_connector *connector)
10615 {
10616         connector->base.dpms = DRM_MODE_DPMS_OFF;
10617         connector->base.encoder = NULL;
10618         connector->encoder->connectors_active = false;
10619         connector->encoder->base.crtc = NULL;
10620 }
10621
10622 static void intel_enable_pipe_a(struct drm_device *dev)
10623 {
10624         struct intel_connector *connector;
10625         struct drm_connector *crt = NULL;
10626         struct intel_load_detect_pipe load_detect_temp;
10627
10628         /* We can't just switch on the pipe A, we need to set things up with a
10629          * proper mode and output configuration. As a gross hack, enable pipe A
10630          * by enabling the load detect pipe once. */
10631         list_for_each_entry(connector,
10632                             &dev->mode_config.connector_list,
10633                             base.head) {
10634                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10635                         crt = &connector->base;
10636                         break;
10637                 }
10638         }
10639
10640         if (!crt)
10641                 return;
10642
10643         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10644                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10645
10646
10647 }
10648
10649 static bool
10650 intel_check_plane_mapping(struct intel_crtc *crtc)
10651 {
10652         struct drm_device *dev = crtc->base.dev;
10653         struct drm_i915_private *dev_priv = dev->dev_private;
10654         u32 reg, val;
10655
10656         if (INTEL_INFO(dev)->num_pipes == 1)
10657                 return true;
10658
10659         reg = DSPCNTR(!crtc->plane);
10660         val = I915_READ(reg);
10661
10662         if ((val & DISPLAY_PLANE_ENABLE) &&
10663             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10664                 return false;
10665
10666         return true;
10667 }
10668
10669 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10670 {
10671         struct drm_device *dev = crtc->base.dev;
10672         struct drm_i915_private *dev_priv = dev->dev_private;
10673         u32 reg;
10674
10675         /* Clear any frame start delays used for debugging left by the BIOS */
10676         reg = PIPECONF(crtc->config.cpu_transcoder);
10677         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10678
10679         /* We need to sanitize the plane -> pipe mapping first because this will
10680          * disable the crtc (and hence change the state) if it is wrong. Note
10681          * that gen4+ has a fixed plane -> pipe mapping.  */
10682         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10683                 struct intel_connector *connector;
10684                 bool plane;
10685
10686                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10687                               crtc->base.base.id);
10688
10689                 /* Pipe has the wrong plane attached and the plane is active.
10690                  * Temporarily change the plane mapping and disable everything
10691                  * ...  */
10692                 plane = crtc->plane;
10693                 crtc->plane = !plane;
10694                 dev_priv->display.crtc_disable(&crtc->base);
10695                 crtc->plane = plane;
10696
10697                 /* ... and break all links. */
10698                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10699                                     base.head) {
10700                         if (connector->encoder->base.crtc != &crtc->base)
10701                                 continue;
10702
10703                         intel_connector_break_all_links(connector);
10704                 }
10705
10706                 WARN_ON(crtc->active);
10707                 crtc->base.enabled = false;
10708         }
10709
10710         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10711             crtc->pipe == PIPE_A && !crtc->active) {
10712                 /* BIOS forgot to enable pipe A, this mostly happens after
10713                  * resume. Force-enable the pipe to fix this, the update_dpms
10714                  * call below we restore the pipe to the right state, but leave
10715                  * the required bits on. */
10716                 intel_enable_pipe_a(dev);
10717         }
10718
10719         /* Adjust the state of the output pipe according to whether we
10720          * have active connectors/encoders. */
10721         intel_crtc_update_dpms(&crtc->base);
10722
10723         if (crtc->active != crtc->base.enabled) {
10724                 struct intel_encoder *encoder;
10725
10726                 /* This can happen either due to bugs in the get_hw_state
10727                  * functions or because the pipe is force-enabled due to the
10728                  * pipe A quirk. */
10729                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10730                               crtc->base.base.id,
10731                               crtc->base.enabled ? "enabled" : "disabled",
10732                               crtc->active ? "enabled" : "disabled");
10733
10734                 crtc->base.enabled = crtc->active;
10735
10736                 /* Because we only establish the connector -> encoder ->
10737                  * crtc links if something is active, this means the
10738                  * crtc is now deactivated. Break the links. connector
10739                  * -> encoder links are only establish when things are
10740                  *  actually up, hence no need to break them. */
10741                 WARN_ON(crtc->active);
10742
10743                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10744                         WARN_ON(encoder->connectors_active);
10745                         encoder->base.crtc = NULL;
10746                 }
10747         }
10748 }
10749
10750 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10751 {
10752         struct intel_connector *connector;
10753         struct drm_device *dev = encoder->base.dev;
10754
10755         /* We need to check both for a crtc link (meaning that the
10756          * encoder is active and trying to read from a pipe) and the
10757          * pipe itself being active. */
10758         bool has_active_crtc = encoder->base.crtc &&
10759                 to_intel_crtc(encoder->base.crtc)->active;
10760
10761         if (encoder->connectors_active && !has_active_crtc) {
10762                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10763                               encoder->base.base.id,
10764                               drm_get_encoder_name(&encoder->base));
10765
10766                 /* Connector is active, but has no active pipe. This is
10767                  * fallout from our resume register restoring. Disable
10768                  * the encoder manually again. */
10769                 if (encoder->base.crtc) {
10770                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10771                                       encoder->base.base.id,
10772                                       drm_get_encoder_name(&encoder->base));
10773                         encoder->disable(encoder);
10774                 }
10775
10776                 /* Inconsistent output/port/pipe state happens presumably due to
10777                  * a bug in one of the get_hw_state functions. Or someplace else
10778                  * in our code, like the register restore mess on resume. Clamp
10779                  * things to off as a safer default. */
10780                 list_for_each_entry(connector,
10781                                     &dev->mode_config.connector_list,
10782                                     base.head) {
10783                         if (connector->encoder != encoder)
10784                                 continue;
10785
10786                         intel_connector_break_all_links(connector);
10787                 }
10788         }
10789         /* Enabled encoders without active connectors will be fixed in
10790          * the crtc fixup. */
10791 }
10792
10793 void i915_redisable_vga(struct drm_device *dev)
10794 {
10795         struct drm_i915_private *dev_priv = dev->dev_private;
10796         u32 vga_reg = i915_vgacntrl_reg(dev);
10797
10798         /* This function can be called both from intel_modeset_setup_hw_state or
10799          * at a very early point in our resume sequence, where the power well
10800          * structures are not yet restored. Since this function is at a very
10801          * paranoid "someone might have enabled VGA while we were not looking"
10802          * level, just check if the power well is enabled instead of trying to
10803          * follow the "don't touch the power well if we don't need it" policy
10804          * the rest of the driver uses. */
10805         if (HAS_POWER_WELL(dev) &&
10806             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10807                 return;
10808
10809         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10810                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10811                 i915_disable_vga(dev);
10812         }
10813 }
10814
10815 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10816 {
10817         struct drm_i915_private *dev_priv = dev->dev_private;
10818         enum pipe pipe;
10819         struct intel_crtc *crtc;
10820         struct intel_encoder *encoder;
10821         struct intel_connector *connector;
10822         int i;
10823
10824         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10825                             base.head) {
10826                 memset(&crtc->config, 0, sizeof(crtc->config));
10827
10828                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10829                                                                  &crtc->config);
10830
10831                 crtc->base.enabled = crtc->active;
10832                 crtc->primary_enabled = crtc->active;
10833
10834                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10835                               crtc->base.base.id,
10836                               crtc->active ? "enabled" : "disabled");
10837         }
10838
10839         /* FIXME: Smash this into the new shared dpll infrastructure. */
10840         if (HAS_DDI(dev))
10841                 intel_ddi_setup_hw_pll_state(dev);
10842
10843         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10844                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10845
10846                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10847                 pll->active = 0;
10848                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10849                                     base.head) {
10850                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10851                                 pll->active++;
10852                 }
10853                 pll->refcount = pll->active;
10854
10855                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10856                               pll->name, pll->refcount, pll->on);
10857         }
10858
10859         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10860                             base.head) {
10861                 pipe = 0;
10862
10863                 if (encoder->get_hw_state(encoder, &pipe)) {
10864                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10865                         encoder->base.crtc = &crtc->base;
10866                         if (encoder->get_config)
10867                                 encoder->get_config(encoder, &crtc->config);
10868                 } else {
10869                         encoder->base.crtc = NULL;
10870                 }
10871
10872                 encoder->connectors_active = false;
10873                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
10874                               encoder->base.base.id,
10875                               drm_get_encoder_name(&encoder->base),
10876                               encoder->base.crtc ? "enabled" : "disabled",
10877                               pipe_name(pipe));
10878         }
10879
10880         list_for_each_entry(connector, &dev->mode_config.connector_list,
10881                             base.head) {
10882                 if (connector->get_hw_state(connector)) {
10883                         connector->base.dpms = DRM_MODE_DPMS_ON;
10884                         connector->encoder->connectors_active = true;
10885                         connector->base.encoder = &connector->encoder->base;
10886                 } else {
10887                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10888                         connector->base.encoder = NULL;
10889                 }
10890                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10891                               connector->base.base.id,
10892                               drm_get_connector_name(&connector->base),
10893                               connector->base.encoder ? "enabled" : "disabled");
10894         }
10895 }
10896
10897 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10898  * and i915 state tracking structures. */
10899 void intel_modeset_setup_hw_state(struct drm_device *dev,
10900                                   bool force_restore)
10901 {
10902         struct drm_i915_private *dev_priv = dev->dev_private;
10903         enum pipe pipe;
10904         struct intel_crtc *crtc;
10905         struct intel_encoder *encoder;
10906         int i;
10907
10908         intel_modeset_readout_hw_state(dev);
10909
10910         /*
10911          * Now that we have the config, copy it to each CRTC struct
10912          * Note that this could go away if we move to using crtc_config
10913          * checking everywhere.
10914          */
10915         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10916                             base.head) {
10917                 if (crtc->active && i915_fastboot) {
10918                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10919
10920                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10921                                       crtc->base.base.id);
10922                         drm_mode_debug_printmodeline(&crtc->base.mode);
10923                 }
10924         }
10925
10926         /* HW state is read out, now we need to sanitize this mess. */
10927         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10928                             base.head) {
10929                 intel_sanitize_encoder(encoder);
10930         }
10931
10932         for_each_pipe(pipe) {
10933                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10934                 intel_sanitize_crtc(crtc);
10935                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10936         }
10937
10938         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10939                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10940
10941                 if (!pll->on || pll->active)
10942                         continue;
10943
10944                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10945
10946                 pll->disable(dev_priv, pll);
10947                 pll->on = false;
10948         }
10949
10950         if (IS_HASWELL(dev))
10951                 ilk_wm_get_hw_state(dev);
10952
10953         if (force_restore) {
10954                 i915_redisable_vga(dev);
10955
10956                 /*
10957                  * We need to use raw interfaces for restoring state to avoid
10958                  * checking (bogus) intermediate states.
10959                  */
10960                 for_each_pipe(pipe) {
10961                         struct drm_crtc *crtc =
10962                                 dev_priv->pipe_to_crtc_mapping[pipe];
10963
10964                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10965                                          crtc->fb);
10966                 }
10967         } else {
10968                 intel_modeset_update_staged_output_state(dev);
10969         }
10970
10971         intel_modeset_check_state(dev);
10972
10973         drm_mode_config_reset(dev);
10974 }
10975
10976 void intel_modeset_gem_init(struct drm_device *dev)
10977 {
10978         intel_modeset_init_hw(dev);
10979
10980         intel_setup_overlay(dev);
10981
10982         intel_modeset_setup_hw_state(dev, false);
10983 }
10984
10985 void intel_modeset_cleanup(struct drm_device *dev)
10986 {
10987         struct drm_i915_private *dev_priv = dev->dev_private;
10988         struct drm_crtc *crtc;
10989         struct drm_connector *connector;
10990
10991         /*
10992          * Interrupts and polling as the first thing to avoid creating havoc.
10993          * Too much stuff here (turning of rps, connectors, ...) would
10994          * experience fancy races otherwise.
10995          */
10996         drm_irq_uninstall(dev);
10997         cancel_work_sync(&dev_priv->hotplug_work);
10998         /*
10999          * Due to the hpd irq storm handling the hotplug work can re-arm the
11000          * poll handlers. Hence disable polling after hpd handling is shut down.
11001          */
11002         drm_kms_helper_poll_fini(dev);
11003
11004         mutex_lock(&dev->struct_mutex);
11005
11006         intel_unregister_dsm_handler();
11007
11008         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11009                 /* Skip inactive CRTCs */
11010                 if (!crtc->fb)
11011                         continue;
11012
11013                 intel_increase_pllclock(crtc);
11014         }
11015
11016         intel_disable_fbc(dev);
11017
11018         intel_disable_gt_powersave(dev);
11019
11020         ironlake_teardown_rc6(dev);
11021
11022         mutex_unlock(&dev->struct_mutex);
11023
11024         /* flush any delayed tasks or pending work */
11025         flush_scheduled_work();
11026
11027         /* destroy backlight, if any, before the connectors */
11028         intel_panel_destroy_backlight(dev);
11029
11030         /* destroy the sysfs files before encoders/connectors */
11031         list_for_each_entry(connector, &dev->mode_config.connector_list, head)
11032                 drm_sysfs_connector_remove(connector);
11033
11034         drm_mode_config_cleanup(dev);
11035
11036         intel_cleanup_overlay(dev);
11037 }
11038
11039 /*
11040  * Return which encoder is currently attached for connector.
11041  */
11042 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11043 {
11044         return &intel_attached_encoder(connector)->base;
11045 }
11046
11047 void intel_connector_attach_encoder(struct intel_connector *connector,
11048                                     struct intel_encoder *encoder)
11049 {
11050         connector->encoder = encoder;
11051         drm_mode_connector_attach_encoder(&connector->base,
11052                                           &encoder->base);
11053 }
11054
11055 /*
11056  * set vga decode state - true == enable VGA decode
11057  */
11058 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11059 {
11060         struct drm_i915_private *dev_priv = dev->dev_private;
11061         u16 gmch_ctrl;
11062
11063         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11064         if (state)
11065                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11066         else
11067                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11068         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11069         return 0;
11070 }
11071
11072 struct intel_display_error_state {
11073
11074         u32 power_well_driver;
11075
11076         int num_transcoders;
11077
11078         struct intel_cursor_error_state {
11079                 u32 control;
11080                 u32 position;
11081                 u32 base;
11082                 u32 size;
11083         } cursor[I915_MAX_PIPES];
11084
11085         struct intel_pipe_error_state {
11086                 u32 source;
11087         } pipe[I915_MAX_PIPES];
11088
11089         struct intel_plane_error_state {
11090                 u32 control;
11091                 u32 stride;
11092                 u32 size;
11093                 u32 pos;
11094                 u32 addr;
11095                 u32 surface;
11096                 u32 tile_offset;
11097         } plane[I915_MAX_PIPES];
11098
11099         struct intel_transcoder_error_state {
11100                 enum transcoder cpu_transcoder;
11101
11102                 u32 conf;
11103
11104                 u32 htotal;
11105                 u32 hblank;
11106                 u32 hsync;
11107                 u32 vtotal;
11108                 u32 vblank;
11109                 u32 vsync;
11110         } transcoder[4];
11111 };
11112
11113 struct intel_display_error_state *
11114 intel_display_capture_error_state(struct drm_device *dev)
11115 {
11116         drm_i915_private_t *dev_priv = dev->dev_private;
11117         struct intel_display_error_state *error;
11118         int transcoders[] = {
11119                 TRANSCODER_A,
11120                 TRANSCODER_B,
11121                 TRANSCODER_C,
11122                 TRANSCODER_EDP,
11123         };
11124         int i;
11125
11126         if (INTEL_INFO(dev)->num_pipes == 0)
11127                 return NULL;
11128
11129         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11130         if (error == NULL)
11131                 return NULL;
11132
11133         if (HAS_POWER_WELL(dev))
11134                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11135
11136         for_each_pipe(i) {
11137                 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11138                         continue;
11139
11140                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11141                         error->cursor[i].control = I915_READ(CURCNTR(i));
11142                         error->cursor[i].position = I915_READ(CURPOS(i));
11143                         error->cursor[i].base = I915_READ(CURBASE(i));
11144                 } else {
11145                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11146                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11147                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11148                 }
11149
11150                 error->plane[i].control = I915_READ(DSPCNTR(i));
11151                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11152                 if (INTEL_INFO(dev)->gen <= 3) {
11153                         error->plane[i].size = I915_READ(DSPSIZE(i));
11154                         error->plane[i].pos = I915_READ(DSPPOS(i));
11155                 }
11156                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11157                         error->plane[i].addr = I915_READ(DSPADDR(i));
11158                 if (INTEL_INFO(dev)->gen >= 4) {
11159                         error->plane[i].surface = I915_READ(DSPSURF(i));
11160                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11161                 }
11162
11163                 error->pipe[i].source = I915_READ(PIPESRC(i));
11164         }
11165
11166         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11167         if (HAS_DDI(dev_priv->dev))
11168                 error->num_transcoders++; /* Account for eDP. */
11169
11170         for (i = 0; i < error->num_transcoders; i++) {
11171                 enum transcoder cpu_transcoder = transcoders[i];
11172
11173                 if (!intel_display_power_enabled(dev,
11174                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11175                         continue;
11176
11177                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11178
11179                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11180                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11181                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11182                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11183                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11184                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11185                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11186         }
11187
11188         return error;
11189 }
11190
11191 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11192
11193 void
11194 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11195                                 struct drm_device *dev,
11196                                 struct intel_display_error_state *error)
11197 {
11198         int i;
11199
11200         if (!error)
11201                 return;
11202
11203         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11204         if (HAS_POWER_WELL(dev))
11205                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11206                            error->power_well_driver);
11207         for_each_pipe(i) {
11208                 err_printf(m, "Pipe [%d]:\n", i);
11209                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11210
11211                 err_printf(m, "Plane [%d]:\n", i);
11212                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11213                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11214                 if (INTEL_INFO(dev)->gen <= 3) {
11215                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11216                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11217                 }
11218                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11219                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11220                 if (INTEL_INFO(dev)->gen >= 4) {
11221                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11222                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11223                 }
11224
11225                 err_printf(m, "Cursor [%d]:\n", i);
11226                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11227                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11228                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11229         }
11230
11231         for (i = 0; i < error->num_transcoders; i++) {
11232                 err_printf(m, "CPU transcoder: %c\n",
11233                            transcoder_name(error->transcoder[i].cpu_transcoder));
11234                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11235                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11236                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11237                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11238                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11239                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11240                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11241         }
11242 }