xfs: remote attributes need to be considered data
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100         POSTING_READ(GEN8_##type##_IMR(which)); \
101         I915_WRITE(GEN8_##type##_IER(which), 0); \
102         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103         POSTING_READ(GEN8_##type##_IIR(which)); \
104         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105         POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107
108 #define GEN5_IRQ_RESET(type) do { \
109         I915_WRITE(type##IMR, 0xffffffff); \
110         POSTING_READ(type##IMR); \
111         I915_WRITE(type##IER, 0); \
112         I915_WRITE(type##IIR, 0xffffffff); \
113         POSTING_READ(type##IIR); \
114         I915_WRITE(type##IIR, 0xffffffff); \
115         POSTING_READ(type##IIR); \
116 } while (0)
117
118 /*
119  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120  */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122         u32 val = I915_READ(reg); \
123         if (val) { \
124                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125                      (reg), val); \
126                 I915_WRITE((reg), 0xffffffff); \
127                 POSTING_READ(reg); \
128                 I915_WRITE((reg), 0xffffffff); \
129                 POSTING_READ(reg); \
130         } \
131 } while (0)
132
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137         POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142         I915_WRITE(type##IER, (ier_val)); \
143         I915_WRITE(type##IMR, (imr_val)); \
144         POSTING_READ(type##IMR); \
145 } while (0)
146
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153         assert_spin_locked(&dev_priv->irq_lock);
154
155         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156                 return;
157
158         if ((dev_priv->irq_mask & mask) != 0) {
159                 dev_priv->irq_mask &= ~mask;
160                 I915_WRITE(DEIMR, dev_priv->irq_mask);
161                 POSTING_READ(DEIMR);
162         }
163 }
164
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168         assert_spin_locked(&dev_priv->irq_lock);
169
170         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171                 return;
172
173         if ((dev_priv->irq_mask & mask) != mask) {
174                 dev_priv->irq_mask |= mask;
175                 I915_WRITE(DEIMR, dev_priv->irq_mask);
176                 POSTING_READ(DEIMR);
177         }
178 }
179
180 /**
181  * ilk_update_gt_irq - update GTIMR
182  * @dev_priv: driver private
183  * @interrupt_mask: mask of interrupt bits to update
184  * @enabled_irq_mask: mask of interrupt bits to enable
185  */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187                               uint32_t interrupt_mask,
188                               uint32_t enabled_irq_mask)
189 {
190         assert_spin_locked(&dev_priv->irq_lock);
191
192         WARN_ON(enabled_irq_mask & ~interrupt_mask);
193
194         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195                 return;
196
197         dev_priv->gt_irq_mask &= ~interrupt_mask;
198         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200         POSTING_READ(GTIMR);
201 }
202
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205         ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210         ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227
228 /**
229   * snb_update_pm_irq - update GEN6_PMIMR
230   * @dev_priv: driver private
231   * @interrupt_mask: mask of interrupt bits to update
232   * @enabled_irq_mask: mask of interrupt bits to enable
233   */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235                               uint32_t interrupt_mask,
236                               uint32_t enabled_irq_mask)
237 {
238         uint32_t new_val;
239
240         WARN_ON(enabled_irq_mask & ~interrupt_mask);
241
242         assert_spin_locked(&dev_priv->irq_lock);
243
244         new_val = dev_priv->pm_irq_mask;
245         new_val &= ~interrupt_mask;
246         new_val |= (~enabled_irq_mask & interrupt_mask);
247
248         if (new_val != dev_priv->pm_irq_mask) {
249                 dev_priv->pm_irq_mask = new_val;
250                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251                 POSTING_READ(gen6_pm_imr(dev_priv));
252         }
253 }
254
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         snb_update_pm_irq(dev_priv, mask, mask);
261 }
262
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264                                   uint32_t mask)
265 {
266         snb_update_pm_irq(dev_priv, mask, 0);
267 }
268
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272                 return;
273
274         __gen6_disable_pm_irq(dev_priv, mask);
275 }
276
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         uint32_t reg = gen6_pm_iir(dev_priv);
281
282         spin_lock_irq(&dev_priv->irq_lock);
283         I915_WRITE(reg, dev_priv->pm_rps_events);
284         I915_WRITE(reg, dev_priv->pm_rps_events);
285         POSTING_READ(reg);
286         dev_priv->rps.pm_iir = 0;
287         spin_unlock_irq(&dev_priv->irq_lock);
288 }
289
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292         struct drm_i915_private *dev_priv = dev->dev_private;
293
294         spin_lock_irq(&dev_priv->irq_lock);
295
296         WARN_ON(dev_priv->rps.pm_iir);
297         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298         dev_priv->rps.interrupts_enabled = true;
299         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300                                 dev_priv->pm_rps_events);
301         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302
303         spin_unlock_irq(&dev_priv->irq_lock);
304 }
305
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308         /*
309          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310          * if GEN6_PM_UP_EI_EXPIRED is masked.
311          *
312          * TODO: verify if this can be reproduced on VLV,CHV.
313          */
314         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316
317         if (INTEL_INFO(dev_priv)->gen >= 8)
318                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319
320         return mask;
321 }
322
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325         struct drm_i915_private *dev_priv = dev->dev_private;
326
327         spin_lock_irq(&dev_priv->irq_lock);
328         dev_priv->rps.interrupts_enabled = false;
329         spin_unlock_irq(&dev_priv->irq_lock);
330
331         cancel_work_sync(&dev_priv->rps.work);
332
333         spin_lock_irq(&dev_priv->irq_lock);
334
335         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336
337         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339                                 ~dev_priv->pm_rps_events);
340
341         spin_unlock_irq(&dev_priv->irq_lock);
342
343         synchronize_irq(dev->irq);
344 }
345
346 /**
347  * ibx_display_interrupt_update - update SDEIMR
348  * @dev_priv: driver private
349  * @interrupt_mask: mask of interrupt bits to update
350  * @enabled_irq_mask: mask of interrupt bits to enable
351  */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353                                   uint32_t interrupt_mask,
354                                   uint32_t enabled_irq_mask)
355 {
356         uint32_t sdeimr = I915_READ(SDEIMR);
357         sdeimr &= ~interrupt_mask;
358         sdeimr |= (~enabled_irq_mask & interrupt_mask);
359
360         WARN_ON(enabled_irq_mask & ~interrupt_mask);
361
362         assert_spin_locked(&dev_priv->irq_lock);
363
364         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365                 return;
366
367         I915_WRITE(SDEIMR, sdeimr);
368         POSTING_READ(SDEIMR);
369 }
370
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373                        u32 enable_mask, u32 status_mask)
374 {
375         u32 reg = PIPESTAT(pipe);
376         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378         assert_spin_locked(&dev_priv->irq_lock);
379         WARN_ON(!intel_irqs_enabled(dev_priv));
380
381         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
383                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384                       pipe_name(pipe), enable_mask, status_mask))
385                 return;
386
387         if ((pipestat & enable_mask) == enable_mask)
388                 return;
389
390         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391
392         /* Enable the interrupt, clear any pending status */
393         pipestat |= enable_mask | status_mask;
394         I915_WRITE(reg, pipestat);
395         POSTING_READ(reg);
396 }
397
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400                         u32 enable_mask, u32 status_mask)
401 {
402         u32 reg = PIPESTAT(pipe);
403         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404
405         assert_spin_locked(&dev_priv->irq_lock);
406         WARN_ON(!intel_irqs_enabled(dev_priv));
407
408         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
410                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411                       pipe_name(pipe), enable_mask, status_mask))
412                 return;
413
414         if ((pipestat & enable_mask) == 0)
415                 return;
416
417         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418
419         pipestat &= ~enable_mask;
420         I915_WRITE(reg, pipestat);
421         POSTING_READ(reg);
422 }
423
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426         u32 enable_mask = status_mask << 16;
427
428         /*
429          * On pipe A we don't support the PSR interrupt yet,
430          * on pipe B and C the same bit MBZ.
431          */
432         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433                 return 0;
434         /*
435          * On pipe B and C we don't support the PSR interrupt yet, on pipe
436          * A the same bit is for perf counters which we don't use either.
437          */
438         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439                 return 0;
440
441         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442                          SPRITE0_FLIP_DONE_INT_EN_VLV |
443                          SPRITE1_FLIP_DONE_INT_EN_VLV);
444         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448
449         return enable_mask;
450 }
451
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454                      u32 status_mask)
455 {
456         u32 enable_mask;
457
458         if (IS_VALLEYVIEW(dev_priv->dev))
459                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460                                                            status_mask);
461         else
462                 enable_mask = status_mask << 16;
463         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468                       u32 status_mask)
469 {
470         u32 enable_mask;
471
472         if (IS_VALLEYVIEW(dev_priv->dev))
473                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474                                                            status_mask);
475         else
476                 enable_mask = status_mask << 16;
477         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479
480 /**
481  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482  */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485         struct drm_i915_private *dev_priv = dev->dev_private;
486
487         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488                 return;
489
490         spin_lock_irq(&dev_priv->irq_lock);
491
492         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493         if (INTEL_INFO(dev)->gen >= 4)
494                 i915_enable_pipestat(dev_priv, PIPE_A,
495                                      PIPE_LEGACY_BLC_EVENT_STATUS);
496
497         spin_unlock_irq(&dev_priv->irq_lock);
498 }
499
500 /*
501  * This timing diagram depicts the video signal in and
502  * around the vertical blanking period.
503  *
504  * Assumptions about the fictitious mode used in this example:
505  *  vblank_start >= 3
506  *  vsync_start = vblank_start + 1
507  *  vsync_end = vblank_start + 2
508  *  vtotal = vblank_start + 3
509  *
510  *           start of vblank:
511  *           latch double buffered registers
512  *           increment frame counter (ctg+)
513  *           generate start of vblank interrupt (gen4+)
514  *           |
515  *           |          frame start:
516  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
517  *           |          may be shifted forward 1-3 extra lines via PIPECONF
518  *           |          |
519  *           |          |  start of vsync:
520  *           |          |  generate vsync interrupt
521  *           |          |  |
522  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
523  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
524  * ----va---> <-----------------vb--------------------> <--------va-------------
525  *       |          |       <----vs----->                     |
526  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529  *       |          |                                         |
530  *       last visible pixel                                   first visible pixel
531  *                  |                                         increment frame counter (gen3/4)
532  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
533  *
534  * x  = horizontal active
535  * _  = horizontal blanking
536  * hs = horizontal sync
537  * va = vertical active
538  * vb = vertical blanking
539  * vs = vertical sync
540  * vbs = vblank_start (number)
541  *
542  * Summary:
543  * - most events happen at the start of horizontal sync
544  * - frame start happens at the start of horizontal blank, 1-4 lines
545  *   (depending on PIPECONF settings) after the start of vblank
546  * - gen3/4 pixel and frame counter are synchronized with the start
547  *   of horizontal active on the first line of vertical active
548  */
549
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552         /* Gen2 doesn't have a hardware frame counter */
553         return 0;
554 }
555
556 /* Called from drm generic code, passed a 'crtc', which
557  * we use as a pipe index
558  */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561         struct drm_i915_private *dev_priv = dev->dev_private;
562         unsigned long high_frame;
563         unsigned long low_frame;
564         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565         struct intel_crtc *intel_crtc =
566                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567         const struct drm_display_mode *mode =
568                 &intel_crtc->config->base.adjusted_mode;
569
570         htotal = mode->crtc_htotal;
571         hsync_start = mode->crtc_hsync_start;
572         vbl_start = mode->crtc_vblank_start;
573         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
574                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
575
576         /* Convert to pixel count */
577         vbl_start *= htotal;
578
579         /* Start of vblank event occurs at start of hsync */
580         vbl_start -= htotal - hsync_start;
581
582         high_frame = PIPEFRAME(pipe);
583         low_frame = PIPEFRAMEPIXEL(pipe);
584
585         /*
586          * High & low register fields aren't synchronized, so make sure
587          * we get a low value that's stable across two reads of the high
588          * register.
589          */
590         do {
591                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592                 low   = I915_READ(low_frame);
593                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
594         } while (high1 != high2);
595
596         high1 >>= PIPE_FRAME_HIGH_SHIFT;
597         pixel = low & PIPE_PIXEL_MASK;
598         low >>= PIPE_FRAME_LOW_SHIFT;
599
600         /*
601          * The frame counter increments at beginning of active.
602          * Cook up a vblank counter by also checking the pixel
603          * counter against vblank start.
604          */
605         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
606 }
607
608 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
609 {
610         struct drm_i915_private *dev_priv = dev->dev_private;
611         int reg = PIPE_FRMCOUNT_GM45(pipe);
612
613         return I915_READ(reg);
614 }
615
616 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
617 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
618
619 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
620 {
621         struct drm_device *dev = crtc->base.dev;
622         struct drm_i915_private *dev_priv = dev->dev_private;
623         const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
624         enum pipe pipe = crtc->pipe;
625         int position, vtotal;
626
627         vtotal = mode->crtc_vtotal;
628         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629                 vtotal /= 2;
630
631         if (IS_GEN2(dev))
632                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
633         else
634                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
635
636         /*
637          * See update_scanline_offset() for the details on the
638          * scanline_offset adjustment.
639          */
640         return (position + crtc->scanline_offset) % vtotal;
641 }
642
643 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
644                                     unsigned int flags, int *vpos, int *hpos,
645                                     ktime_t *stime, ktime_t *etime)
646 {
647         struct drm_i915_private *dev_priv = dev->dev_private;
648         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650         const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
651         int position;
652         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
653         bool in_vbl = true;
654         int ret = 0;
655         unsigned long irqflags;
656
657         if (!intel_crtc->active) {
658                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
659                                  "pipe %c\n", pipe_name(pipe));
660                 return 0;
661         }
662
663         htotal = mode->crtc_htotal;
664         hsync_start = mode->crtc_hsync_start;
665         vtotal = mode->crtc_vtotal;
666         vbl_start = mode->crtc_vblank_start;
667         vbl_end = mode->crtc_vblank_end;
668
669         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
670                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
671                 vbl_end /= 2;
672                 vtotal /= 2;
673         }
674
675         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
676
677         /*
678          * Lock uncore.lock, as we will do multiple timing critical raw
679          * register reads, potentially with preemption disabled, so the
680          * following code must not block on uncore.lock.
681          */
682         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683
684         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
685
686         /* Get optional system timestamp before query. */
687         if (stime)
688                 *stime = ktime_get();
689
690         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
691                 /* No obvious pixelcount register. Only query vertical
692                  * scanout position from Display scan line register.
693                  */
694                 position = __intel_get_crtc_scanline(intel_crtc);
695         } else {
696                 /* Have access to pixelcount since start of frame.
697                  * We can split this into vertical and horizontal
698                  * scanout position.
699                  */
700                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701
702                 /* convert to pixel counts */
703                 vbl_start *= htotal;
704                 vbl_end *= htotal;
705                 vtotal *= htotal;
706
707                 /*
708                  * In interlaced modes, the pixel counter counts all pixels,
709                  * so one field will have htotal more pixels. In order to avoid
710                  * the reported position from jumping backwards when the pixel
711                  * counter is beyond the length of the shorter field, just
712                  * clamp the position the length of the shorter field. This
713                  * matches how the scanline counter based position works since
714                  * the scanline counter doesn't count the two half lines.
715                  */
716                 if (position >= vtotal)
717                         position = vtotal - 1;
718
719                 /*
720                  * Start of vblank interrupt is triggered at start of hsync,
721                  * just prior to the first active line of vblank. However we
722                  * consider lines to start at the leading edge of horizontal
723                  * active. So, should we get here before we've crossed into
724                  * the horizontal active of the first line in vblank, we would
725                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
726                  * always add htotal-hsync_start to the current pixel position.
727                  */
728                 position = (position + htotal - hsync_start) % vtotal;
729         }
730
731         /* Get optional system timestamp after query. */
732         if (etime)
733                 *etime = ktime_get();
734
735         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
736
737         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
738
739         in_vbl = position >= vbl_start && position < vbl_end;
740
741         /*
742          * While in vblank, position will be negative
743          * counting up towards 0 at vbl_end. And outside
744          * vblank, position will be positive counting
745          * up since vbl_end.
746          */
747         if (position >= vbl_start)
748                 position -= vbl_end;
749         else
750                 position += vtotal - vbl_end;
751
752         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
753                 *vpos = position;
754                 *hpos = 0;
755         } else {
756                 *vpos = position / htotal;
757                 *hpos = position - (*vpos * htotal);
758         }
759
760         /* In vblank? */
761         if (in_vbl)
762                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
763
764         return ret;
765 }
766
767 int intel_get_crtc_scanline(struct intel_crtc *crtc)
768 {
769         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
770         unsigned long irqflags;
771         int position;
772
773         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
774         position = __intel_get_crtc_scanline(crtc);
775         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776
777         return position;
778 }
779
780 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
781                               int *max_error,
782                               struct timeval *vblank_time,
783                               unsigned flags)
784 {
785         struct drm_crtc *crtc;
786
787         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
788                 DRM_ERROR("Invalid crtc %d\n", pipe);
789                 return -EINVAL;
790         }
791
792         /* Get drm_crtc to timestamp: */
793         crtc = intel_get_crtc_for_pipe(dev, pipe);
794         if (crtc == NULL) {
795                 DRM_ERROR("Invalid crtc %d\n", pipe);
796                 return -EINVAL;
797         }
798
799         if (!crtc->state->enable) {
800                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
801                 return -EBUSY;
802         }
803
804         /* Helper routine in DRM core does all the work: */
805         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
806                                                      vblank_time, flags,
807                                                      crtc,
808                                                      &to_intel_crtc(crtc)->config->base.adjusted_mode);
809 }
810
811 static bool intel_hpd_irq_event(struct drm_device *dev,
812                                 struct drm_connector *connector)
813 {
814         enum drm_connector_status old_status;
815
816         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
817         old_status = connector->status;
818
819         connector->status = connector->funcs->detect(connector, false);
820         if (old_status == connector->status)
821                 return false;
822
823         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
824                       connector->base.id,
825                       connector->name,
826                       drm_get_connector_status_name(old_status),
827                       drm_get_connector_status_name(connector->status));
828
829         return true;
830 }
831
832 static void i915_digport_work_func(struct work_struct *work)
833 {
834         struct drm_i915_private *dev_priv =
835                 container_of(work, struct drm_i915_private, dig_port_work);
836         u32 long_port_mask, short_port_mask;
837         struct intel_digital_port *intel_dig_port;
838         int i;
839         u32 old_bits = 0;
840
841         spin_lock_irq(&dev_priv->irq_lock);
842         long_port_mask = dev_priv->long_hpd_port_mask;
843         dev_priv->long_hpd_port_mask = 0;
844         short_port_mask = dev_priv->short_hpd_port_mask;
845         dev_priv->short_hpd_port_mask = 0;
846         spin_unlock_irq(&dev_priv->irq_lock);
847
848         for (i = 0; i < I915_MAX_PORTS; i++) {
849                 bool valid = false;
850                 bool long_hpd = false;
851                 intel_dig_port = dev_priv->hpd_irq_port[i];
852                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
853                         continue;
854
855                 if (long_port_mask & (1 << i))  {
856                         valid = true;
857                         long_hpd = true;
858                 } else if (short_port_mask & (1 << i))
859                         valid = true;
860
861                 if (valid) {
862                         enum irqreturn ret;
863
864                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865                         if (ret == IRQ_NONE) {
866                                 /* fall back to old school hpd */
867                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
868                         }
869                 }
870         }
871
872         if (old_bits) {
873                 spin_lock_irq(&dev_priv->irq_lock);
874                 dev_priv->hpd_event_bits |= old_bits;
875                 spin_unlock_irq(&dev_priv->irq_lock);
876                 schedule_work(&dev_priv->hotplug_work);
877         }
878 }
879
880 /*
881  * Handle hotplug events outside the interrupt handler proper.
882  */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887         struct drm_i915_private *dev_priv =
888                 container_of(work, struct drm_i915_private, hotplug_work);
889         struct drm_device *dev = dev_priv->dev;
890         struct drm_mode_config *mode_config = &dev->mode_config;
891         struct intel_connector *intel_connector;
892         struct intel_encoder *intel_encoder;
893         struct drm_connector *connector;
894         bool hpd_disabled = false;
895         bool changed = false;
896         u32 hpd_event_bits;
897
898         mutex_lock(&mode_config->mutex);
899         DRM_DEBUG_KMS("running encoder hotplug functions\n");
900
901         spin_lock_irq(&dev_priv->irq_lock);
902
903         hpd_event_bits = dev_priv->hpd_event_bits;
904         dev_priv->hpd_event_bits = 0;
905         list_for_each_entry(connector, &mode_config->connector_list, head) {
906                 intel_connector = to_intel_connector(connector);
907                 if (!intel_connector->encoder)
908                         continue;
909                 intel_encoder = intel_connector->encoder;
910                 if (intel_encoder->hpd_pin > HPD_NONE &&
911                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
912                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
913                         DRM_INFO("HPD interrupt storm detected on connector %s: "
914                                  "switching from hotplug detection to polling\n",
915                                 connector->name);
916                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
917                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
918                                 | DRM_CONNECTOR_POLL_DISCONNECT;
919                         hpd_disabled = true;
920                 }
921                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923                                       connector->name, intel_encoder->hpd_pin);
924                 }
925         }
926          /* if there were no outputs to poll, poll was disabled,
927           * therefore make sure it's enabled when disabling HPD on
928           * some connectors */
929         if (hpd_disabled) {
930                 drm_kms_helper_poll_enable(dev);
931                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
932                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933         }
934
935         spin_unlock_irq(&dev_priv->irq_lock);
936
937         list_for_each_entry(connector, &mode_config->connector_list, head) {
938                 intel_connector = to_intel_connector(connector);
939                 if (!intel_connector->encoder)
940                         continue;
941                 intel_encoder = intel_connector->encoder;
942                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943                         if (intel_encoder->hot_plug)
944                                 intel_encoder->hot_plug(intel_encoder);
945                         if (intel_hpd_irq_event(dev, connector))
946                                 changed = true;
947                 }
948         }
949         mutex_unlock(&mode_config->mutex);
950
951         if (changed)
952                 drm_kms_helper_hotplug_event(dev);
953 }
954
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957         struct drm_i915_private *dev_priv = dev->dev_private;
958         u32 busy_up, busy_down, max_avg, min_avg;
959         u8 new_delay;
960
961         spin_lock(&mchdev_lock);
962
963         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964
965         new_delay = dev_priv->ips.cur_delay;
966
967         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968         busy_up = I915_READ(RCPREVBSYTUPAVG);
969         busy_down = I915_READ(RCPREVBSYTDNAVG);
970         max_avg = I915_READ(RCBMAXAVG);
971         min_avg = I915_READ(RCBMINAVG);
972
973         /* Handle RCS change request from hw */
974         if (busy_up > max_avg) {
975                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976                         new_delay = dev_priv->ips.cur_delay - 1;
977                 if (new_delay < dev_priv->ips.max_delay)
978                         new_delay = dev_priv->ips.max_delay;
979         } else if (busy_down < min_avg) {
980                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981                         new_delay = dev_priv->ips.cur_delay + 1;
982                 if (new_delay > dev_priv->ips.min_delay)
983                         new_delay = dev_priv->ips.min_delay;
984         }
985
986         if (ironlake_set_drps(dev, new_delay))
987                 dev_priv->ips.cur_delay = new_delay;
988
989         spin_unlock(&mchdev_lock);
990
991         return;
992 }
993
994 static void notify_ring(struct intel_engine_cs *ring)
995 {
996         if (!intel_ring_initialized(ring))
997                 return;
998
999         trace_i915_gem_request_notify(ring);
1000
1001         wake_up_all(&ring->irq_queue);
1002 }
1003
1004 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1005                         struct intel_rps_ei *ei)
1006 {
1007         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1008         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1009         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1010 }
1011
1012 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1013                          const struct intel_rps_ei *old,
1014                          const struct intel_rps_ei *now,
1015                          int threshold)
1016 {
1017         u64 time, c0;
1018
1019         if (old->cz_clock == 0)
1020                 return false;
1021
1022         time = now->cz_clock - old->cz_clock;
1023         time *= threshold * dev_priv->mem_freq;
1024
1025         /* Workload can be split between render + media, e.g. SwapBuffers
1026          * being blitted in X after being rendered in mesa. To account for
1027          * this we need to combine both engines into our activity counter.
1028          */
1029         c0 = now->render_c0 - old->render_c0;
1030         c0 += now->media_c0 - old->media_c0;
1031         c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1032
1033         return c0 >= time;
1034 }
1035
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044         struct intel_rps_ei now;
1045         u32 events = 0;
1046
1047         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048                 return 0;
1049
1050         vlv_c0_read(dev_priv, &now);
1051         if (now.cz_clock == 0)
1052                 return 0;
1053
1054         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055                 if (!vlv_c0_above(dev_priv,
1056                                   &dev_priv->rps.down_ei, &now,
1057                                   dev_priv->rps.down_threshold))
1058                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059                 dev_priv->rps.down_ei = now;
1060         }
1061
1062         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063                 if (vlv_c0_above(dev_priv,
1064                                  &dev_priv->rps.up_ei, &now,
1065                                  dev_priv->rps.up_threshold))
1066                         events |= GEN6_PM_RP_UP_THRESHOLD;
1067                 dev_priv->rps.up_ei = now;
1068         }
1069
1070         return events;
1071 }
1072
1073 static bool any_waiters(struct drm_i915_private *dev_priv)
1074 {
1075         struct intel_engine_cs *ring;
1076         int i;
1077
1078         for_each_ring(ring, dev_priv, i)
1079                 if (ring->irq_refcount)
1080                         return true;
1081
1082         return false;
1083 }
1084
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087         struct drm_i915_private *dev_priv =
1088                 container_of(work, struct drm_i915_private, rps.work);
1089         bool client_boost;
1090         int new_delay, adj, min, max;
1091         u32 pm_iir;
1092
1093         spin_lock_irq(&dev_priv->irq_lock);
1094         /* Speed up work cancelation during disabling rps interrupts. */
1095         if (!dev_priv->rps.interrupts_enabled) {
1096                 spin_unlock_irq(&dev_priv->irq_lock);
1097                 return;
1098         }
1099         pm_iir = dev_priv->rps.pm_iir;
1100         dev_priv->rps.pm_iir = 0;
1101         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1102         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1103         client_boost = dev_priv->rps.client_boost;
1104         dev_priv->rps.client_boost = false;
1105         spin_unlock_irq(&dev_priv->irq_lock);
1106
1107         /* Make sure we didn't queue anything we're not going to process. */
1108         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1109
1110         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1111                 return;
1112
1113         mutex_lock(&dev_priv->rps.hw_lock);
1114
1115         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1116
1117         adj = dev_priv->rps.last_adj;
1118         new_delay = dev_priv->rps.cur_freq;
1119         min = dev_priv->rps.min_freq_softlimit;
1120         max = dev_priv->rps.max_freq_softlimit;
1121
1122         if (client_boost) {
1123                 new_delay = dev_priv->rps.max_freq_softlimit;
1124                 adj = 0;
1125         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1126                 if (adj > 0)
1127                         adj *= 2;
1128                 else /* CHV needs even encode values */
1129                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1130                 /*
1131                  * For better performance, jump directly
1132                  * to RPe if we're below it.
1133                  */
1134                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1135                         new_delay = dev_priv->rps.efficient_freq;
1136                         adj = 0;
1137                 }
1138         } else if (any_waiters(dev_priv)) {
1139                 adj = 0;
1140         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1141                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1142                         new_delay = dev_priv->rps.efficient_freq;
1143                 else
1144                         new_delay = dev_priv->rps.min_freq_softlimit;
1145                 adj = 0;
1146         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1147                 if (adj < 0)
1148                         adj *= 2;
1149                 else /* CHV needs even encode values */
1150                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1151         } else { /* unknown event */
1152                 adj = 0;
1153         }
1154
1155         dev_priv->rps.last_adj = adj;
1156
1157         /* sysfs frequency interfaces may have snuck in while servicing the
1158          * interrupt
1159          */
1160         new_delay += adj;
1161         new_delay = clamp_t(int, new_delay, min, max);
1162
1163         intel_set_rps(dev_priv->dev, new_delay);
1164
1165         mutex_unlock(&dev_priv->rps.hw_lock);
1166 }
1167
1168
1169 /**
1170  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1171  * occurred.
1172  * @work: workqueue struct
1173  *
1174  * Doesn't actually do anything except notify userspace. As a consequence of
1175  * this event, userspace should try to remap the bad rows since statistically
1176  * it is likely the same row is more likely to go bad again.
1177  */
1178 static void ivybridge_parity_work(struct work_struct *work)
1179 {
1180         struct drm_i915_private *dev_priv =
1181                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1182         u32 error_status, row, bank, subbank;
1183         char *parity_event[6];
1184         uint32_t misccpctl;
1185         uint8_t slice = 0;
1186
1187         /* We must turn off DOP level clock gating to access the L3 registers.
1188          * In order to prevent a get/put style interface, acquire struct mutex
1189          * any time we access those registers.
1190          */
1191         mutex_lock(&dev_priv->dev->struct_mutex);
1192
1193         /* If we've screwed up tracking, just let the interrupt fire again */
1194         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1195                 goto out;
1196
1197         misccpctl = I915_READ(GEN7_MISCCPCTL);
1198         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1199         POSTING_READ(GEN7_MISCCPCTL);
1200
1201         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1202                 u32 reg;
1203
1204                 slice--;
1205                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1206                         break;
1207
1208                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1209
1210                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1211
1212                 error_status = I915_READ(reg);
1213                 row = GEN7_PARITY_ERROR_ROW(error_status);
1214                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1215                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1216
1217                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1218                 POSTING_READ(reg);
1219
1220                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1221                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1222                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1223                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1224                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1225                 parity_event[5] = NULL;
1226
1227                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1228                                    KOBJ_CHANGE, parity_event);
1229
1230                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1231                           slice, row, bank, subbank);
1232
1233                 kfree(parity_event[4]);
1234                 kfree(parity_event[3]);
1235                 kfree(parity_event[2]);
1236                 kfree(parity_event[1]);
1237         }
1238
1239         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1240
1241 out:
1242         WARN_ON(dev_priv->l3_parity.which_slice);
1243         spin_lock_irq(&dev_priv->irq_lock);
1244         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1245         spin_unlock_irq(&dev_priv->irq_lock);
1246
1247         mutex_unlock(&dev_priv->dev->struct_mutex);
1248 }
1249
1250 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1251 {
1252         struct drm_i915_private *dev_priv = dev->dev_private;
1253
1254         if (!HAS_L3_DPF(dev))
1255                 return;
1256
1257         spin_lock(&dev_priv->irq_lock);
1258         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1259         spin_unlock(&dev_priv->irq_lock);
1260
1261         iir &= GT_PARITY_ERROR(dev);
1262         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1263                 dev_priv->l3_parity.which_slice |= 1 << 1;
1264
1265         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1266                 dev_priv->l3_parity.which_slice |= 1 << 0;
1267
1268         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1269 }
1270
1271 static void ilk_gt_irq_handler(struct drm_device *dev,
1272                                struct drm_i915_private *dev_priv,
1273                                u32 gt_iir)
1274 {
1275         if (gt_iir &
1276             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1277                 notify_ring(&dev_priv->ring[RCS]);
1278         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1279                 notify_ring(&dev_priv->ring[VCS]);
1280 }
1281
1282 static void snb_gt_irq_handler(struct drm_device *dev,
1283                                struct drm_i915_private *dev_priv,
1284                                u32 gt_iir)
1285 {
1286
1287         if (gt_iir &
1288             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1289                 notify_ring(&dev_priv->ring[RCS]);
1290         if (gt_iir & GT_BSD_USER_INTERRUPT)
1291                 notify_ring(&dev_priv->ring[VCS]);
1292         if (gt_iir & GT_BLT_USER_INTERRUPT)
1293                 notify_ring(&dev_priv->ring[BCS]);
1294
1295         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1296                       GT_BSD_CS_ERROR_INTERRUPT |
1297                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1298                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1299
1300         if (gt_iir & GT_PARITY_ERROR(dev))
1301                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1302 }
1303
1304 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1305                                        u32 master_ctl)
1306 {
1307         irqreturn_t ret = IRQ_NONE;
1308
1309         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1310                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1311                 if (tmp) {
1312                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1313                         ret = IRQ_HANDLED;
1314
1315                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1316                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1317                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1318                                 notify_ring(&dev_priv->ring[RCS]);
1319
1320                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1321                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1322                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1323                                 notify_ring(&dev_priv->ring[BCS]);
1324                 } else
1325                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1326         }
1327
1328         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1329                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1330                 if (tmp) {
1331                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1332                         ret = IRQ_HANDLED;
1333
1334                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1335                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1336                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1337                                 notify_ring(&dev_priv->ring[VCS]);
1338
1339                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1340                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1341                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1342                                 notify_ring(&dev_priv->ring[VCS2]);
1343                 } else
1344                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1345         }
1346
1347         if (master_ctl & GEN8_GT_VECS_IRQ) {
1348                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1349                 if (tmp) {
1350                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1351                         ret = IRQ_HANDLED;
1352
1353                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1354                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1355                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1356                                 notify_ring(&dev_priv->ring[VECS]);
1357                 } else
1358                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1359         }
1360
1361         if (master_ctl & GEN8_GT_PM_IRQ) {
1362                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1363                 if (tmp & dev_priv->pm_rps_events) {
1364                         I915_WRITE_FW(GEN8_GT_IIR(2),
1365                                       tmp & dev_priv->pm_rps_events);
1366                         ret = IRQ_HANDLED;
1367                         gen6_rps_irq_handler(dev_priv, tmp);
1368                 } else
1369                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1370         }
1371
1372         return ret;
1373 }
1374
1375 #define HPD_STORM_DETECT_PERIOD 1000
1376 #define HPD_STORM_THRESHOLD 5
1377
1378 static int pch_port_to_hotplug_shift(enum port port)
1379 {
1380         switch (port) {
1381         case PORT_A:
1382         case PORT_E:
1383         default:
1384                 return -1;
1385         case PORT_B:
1386                 return 0;
1387         case PORT_C:
1388                 return 8;
1389         case PORT_D:
1390                 return 16;
1391         }
1392 }
1393
1394 static int i915_port_to_hotplug_shift(enum port port)
1395 {
1396         switch (port) {
1397         case PORT_A:
1398         case PORT_E:
1399         default:
1400                 return -1;
1401         case PORT_B:
1402                 return 17;
1403         case PORT_C:
1404                 return 19;
1405         case PORT_D:
1406                 return 21;
1407         }
1408 }
1409
1410 static enum port get_port_from_pin(enum hpd_pin pin)
1411 {
1412         switch (pin) {
1413         case HPD_PORT_B:
1414                 return PORT_B;
1415         case HPD_PORT_C:
1416                 return PORT_C;
1417         case HPD_PORT_D:
1418                 return PORT_D;
1419         default:
1420                 return PORT_A; /* no hpd */
1421         }
1422 }
1423
1424 static void intel_hpd_irq_handler(struct drm_device *dev,
1425                                   u32 hotplug_trigger,
1426                                   u32 dig_hotplug_reg,
1427                                   const u32 hpd[HPD_NUM_PINS])
1428 {
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430         int i;
1431         enum port port;
1432         bool storm_detected = false;
1433         bool queue_dig = false, queue_hp = false;
1434         u32 dig_shift;
1435         u32 dig_port_mask = 0;
1436
1437         if (!hotplug_trigger)
1438                 return;
1439
1440         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1441                          hotplug_trigger, dig_hotplug_reg);
1442
1443         spin_lock(&dev_priv->irq_lock);
1444         for (i = 1; i < HPD_NUM_PINS; i++) {
1445                 if (!(hpd[i] & hotplug_trigger))
1446                         continue;
1447
1448                 port = get_port_from_pin(i);
1449                 if (port && dev_priv->hpd_irq_port[port]) {
1450                         bool long_hpd;
1451
1452                         if (!HAS_GMCH_DISPLAY(dev_priv)) {
1453                                 dig_shift = pch_port_to_hotplug_shift(port);
1454                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1455                         } else {
1456                                 dig_shift = i915_port_to_hotplug_shift(port);
1457                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1458                         }
1459
1460                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1461                                          port_name(port),
1462                                          long_hpd ? "long" : "short");
1463                         /* for long HPD pulses we want to have the digital queue happen,
1464                            but we still want HPD storm detection to function. */
1465                         if (long_hpd) {
1466                                 dev_priv->long_hpd_port_mask |= (1 << port);
1467                                 dig_port_mask |= hpd[i];
1468                         } else {
1469                                 /* for short HPD just trigger the digital queue */
1470                                 dev_priv->short_hpd_port_mask |= (1 << port);
1471                                 hotplug_trigger &= ~hpd[i];
1472                         }
1473                         queue_dig = true;
1474                 }
1475         }
1476
1477         for (i = 1; i < HPD_NUM_PINS; i++) {
1478                 if (hpd[i] & hotplug_trigger &&
1479                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1480                         /*
1481                          * On GMCH platforms the interrupt mask bits only
1482                          * prevent irq generation, not the setting of the
1483                          * hotplug bits itself. So only WARN about unexpected
1484                          * interrupts on saner platforms.
1485                          */
1486                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1487                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1488                                   hotplug_trigger, i, hpd[i]);
1489
1490                         continue;
1491                 }
1492
1493                 if (!(hpd[i] & hotplug_trigger) ||
1494                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1495                         continue;
1496
1497                 if (!(dig_port_mask & hpd[i])) {
1498                         dev_priv->hpd_event_bits |= (1 << i);
1499                         queue_hp = true;
1500                 }
1501
1502                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1503                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1504                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1505                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1506                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1507                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1508                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1509                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1510                         dev_priv->hpd_event_bits &= ~(1 << i);
1511                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1512                         storm_detected = true;
1513                 } else {
1514                         dev_priv->hpd_stats[i].hpd_cnt++;
1515                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1516                                       dev_priv->hpd_stats[i].hpd_cnt);
1517                 }
1518         }
1519
1520         if (storm_detected)
1521                 dev_priv->display.hpd_irq_setup(dev);
1522         spin_unlock(&dev_priv->irq_lock);
1523
1524         /*
1525          * Our hotplug handler can grab modeset locks (by calling down into the
1526          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1527          * queue for otherwise the flush_work in the pageflip code will
1528          * deadlock.
1529          */
1530         if (queue_dig)
1531                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1532         if (queue_hp)
1533                 schedule_work(&dev_priv->hotplug_work);
1534 }
1535
1536 static void gmbus_irq_handler(struct drm_device *dev)
1537 {
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539
1540         wake_up_all(&dev_priv->gmbus_wait_queue);
1541 }
1542
1543 static void dp_aux_irq_handler(struct drm_device *dev)
1544 {
1545         struct drm_i915_private *dev_priv = dev->dev_private;
1546
1547         wake_up_all(&dev_priv->gmbus_wait_queue);
1548 }
1549
1550 #if defined(CONFIG_DEBUG_FS)
1551 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1552                                          uint32_t crc0, uint32_t crc1,
1553                                          uint32_t crc2, uint32_t crc3,
1554                                          uint32_t crc4)
1555 {
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1558         struct intel_pipe_crc_entry *entry;
1559         int head, tail;
1560
1561         spin_lock(&pipe_crc->lock);
1562
1563         if (!pipe_crc->entries) {
1564                 spin_unlock(&pipe_crc->lock);
1565                 DRM_DEBUG_KMS("spurious interrupt\n");
1566                 return;
1567         }
1568
1569         head = pipe_crc->head;
1570         tail = pipe_crc->tail;
1571
1572         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1573                 spin_unlock(&pipe_crc->lock);
1574                 DRM_ERROR("CRC buffer overflowing\n");
1575                 return;
1576         }
1577
1578         entry = &pipe_crc->entries[head];
1579
1580         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1581         entry->crc[0] = crc0;
1582         entry->crc[1] = crc1;
1583         entry->crc[2] = crc2;
1584         entry->crc[3] = crc3;
1585         entry->crc[4] = crc4;
1586
1587         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1588         pipe_crc->head = head;
1589
1590         spin_unlock(&pipe_crc->lock);
1591
1592         wake_up_interruptible(&pipe_crc->wq);
1593 }
1594 #else
1595 static inline void
1596 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1597                              uint32_t crc0, uint32_t crc1,
1598                              uint32_t crc2, uint32_t crc3,
1599                              uint32_t crc4) {}
1600 #endif
1601
1602
1603 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607         display_pipe_crc_irq_handler(dev, pipe,
1608                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609                                      0, 0, 0, 0);
1610 }
1611
1612 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1613 {
1614         struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616         display_pipe_crc_irq_handler(dev, pipe,
1617                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1618                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1619                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1620                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1621                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1622 }
1623
1624 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1625 {
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         uint32_t res1, res2;
1628
1629         if (INTEL_INFO(dev)->gen >= 3)
1630                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1631         else
1632                 res1 = 0;
1633
1634         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1635                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1636         else
1637                 res2 = 0;
1638
1639         display_pipe_crc_irq_handler(dev, pipe,
1640                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1641                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1642                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1643                                      res1, res2);
1644 }
1645
1646 /* The RPS events need forcewake, so we add them to a work queue and mask their
1647  * IMR bits until the work is done. Other interrupts can be processed without
1648  * the work queue. */
1649 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1650 {
1651         if (pm_iir & dev_priv->pm_rps_events) {
1652                 spin_lock(&dev_priv->irq_lock);
1653                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1654                 if (dev_priv->rps.interrupts_enabled) {
1655                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1656                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1657                 }
1658                 spin_unlock(&dev_priv->irq_lock);
1659         }
1660
1661         if (INTEL_INFO(dev_priv)->gen >= 8)
1662                 return;
1663
1664         if (HAS_VEBOX(dev_priv->dev)) {
1665                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1666                         notify_ring(&dev_priv->ring[VECS]);
1667
1668                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1669                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1670         }
1671 }
1672
1673 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1674 {
1675         if (!drm_handle_vblank(dev, pipe))
1676                 return false;
1677
1678         return true;
1679 }
1680
1681 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1682 {
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684         u32 pipe_stats[I915_MAX_PIPES] = { };
1685         int pipe;
1686
1687         spin_lock(&dev_priv->irq_lock);
1688         for_each_pipe(dev_priv, pipe) {
1689                 int reg;
1690                 u32 mask, iir_bit = 0;
1691
1692                 /*
1693                  * PIPESTAT bits get signalled even when the interrupt is
1694                  * disabled with the mask bits, and some of the status bits do
1695                  * not generate interrupts at all (like the underrun bit). Hence
1696                  * we need to be careful that we only handle what we want to
1697                  * handle.
1698                  */
1699
1700                 /* fifo underruns are filterered in the underrun handler. */
1701                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1702
1703                 switch (pipe) {
1704                 case PIPE_A:
1705                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1706                         break;
1707                 case PIPE_B:
1708                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1709                         break;
1710                 case PIPE_C:
1711                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1712                         break;
1713                 }
1714                 if (iir & iir_bit)
1715                         mask |= dev_priv->pipestat_irq_mask[pipe];
1716
1717                 if (!mask)
1718                         continue;
1719
1720                 reg = PIPESTAT(pipe);
1721                 mask |= PIPESTAT_INT_ENABLE_MASK;
1722                 pipe_stats[pipe] = I915_READ(reg) & mask;
1723
1724                 /*
1725                  * Clear the PIPE*STAT regs before the IIR
1726                  */
1727                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1728                                         PIPESTAT_INT_STATUS_MASK))
1729                         I915_WRITE(reg, pipe_stats[pipe]);
1730         }
1731         spin_unlock(&dev_priv->irq_lock);
1732
1733         for_each_pipe(dev_priv, pipe) {
1734                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1735                     intel_pipe_handle_vblank(dev, pipe))
1736                         intel_check_page_flip(dev, pipe);
1737
1738                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1739                         intel_prepare_page_flip(dev, pipe);
1740                         intel_finish_page_flip(dev, pipe);
1741                 }
1742
1743                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1744                         i9xx_pipe_crc_irq_handler(dev, pipe);
1745
1746                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1747                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1748         }
1749
1750         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1751                 gmbus_irq_handler(dev);
1752 }
1753
1754 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1755 {
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1758
1759         if (hotplug_status) {
1760                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1761                 /*
1762                  * Make sure hotplug status is cleared before we clear IIR, or else we
1763                  * may miss hotplug events.
1764                  */
1765                 POSTING_READ(PORT_HOTPLUG_STAT);
1766
1767                 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1768                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1769
1770                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1771                 } else {
1772                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1773
1774                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1775                 }
1776
1777                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1778                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1779                         dp_aux_irq_handler(dev);
1780         }
1781 }
1782
1783 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1784 {
1785         struct drm_device *dev = arg;
1786         struct drm_i915_private *dev_priv = dev->dev_private;
1787         u32 iir, gt_iir, pm_iir;
1788         irqreturn_t ret = IRQ_NONE;
1789
1790         if (!intel_irqs_enabled(dev_priv))
1791                 return IRQ_NONE;
1792
1793         while (true) {
1794                 /* Find, clear, then process each source of interrupt */
1795
1796                 gt_iir = I915_READ(GTIIR);
1797                 if (gt_iir)
1798                         I915_WRITE(GTIIR, gt_iir);
1799
1800                 pm_iir = I915_READ(GEN6_PMIIR);
1801                 if (pm_iir)
1802                         I915_WRITE(GEN6_PMIIR, pm_iir);
1803
1804                 iir = I915_READ(VLV_IIR);
1805                 if (iir) {
1806                         /* Consume port before clearing IIR or we'll miss events */
1807                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1808                                 i9xx_hpd_irq_handler(dev);
1809                         I915_WRITE(VLV_IIR, iir);
1810                 }
1811
1812                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1813                         goto out;
1814
1815                 ret = IRQ_HANDLED;
1816
1817                 if (gt_iir)
1818                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1819                 if (pm_iir)
1820                         gen6_rps_irq_handler(dev_priv, pm_iir);
1821                 /* Call regardless, as some status bits might not be
1822                  * signalled in iir */
1823                 valleyview_pipestat_irq_handler(dev, iir);
1824         }
1825
1826 out:
1827         return ret;
1828 }
1829
1830 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1831 {
1832         struct drm_device *dev = arg;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         u32 master_ctl, iir;
1835         irqreturn_t ret = IRQ_NONE;
1836
1837         if (!intel_irqs_enabled(dev_priv))
1838                 return IRQ_NONE;
1839
1840         for (;;) {
1841                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1842                 iir = I915_READ(VLV_IIR);
1843
1844                 if (master_ctl == 0 && iir == 0)
1845                         break;
1846
1847                 ret = IRQ_HANDLED;
1848
1849                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1850
1851                 /* Find, clear, then process each source of interrupt */
1852
1853                 if (iir) {
1854                         /* Consume port before clearing IIR or we'll miss events */
1855                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1856                                 i9xx_hpd_irq_handler(dev);
1857                         I915_WRITE(VLV_IIR, iir);
1858                 }
1859
1860                 gen8_gt_irq_handler(dev_priv, master_ctl);
1861
1862                 /* Call regardless, as some status bits might not be
1863                  * signalled in iir */
1864                 valleyview_pipestat_irq_handler(dev, iir);
1865
1866                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1867                 POSTING_READ(GEN8_MASTER_IRQ);
1868         }
1869
1870         return ret;
1871 }
1872
1873 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1874 {
1875         struct drm_i915_private *dev_priv = dev->dev_private;
1876         int pipe;
1877         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1878         u32 dig_hotplug_reg;
1879
1880         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1881         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1882
1883         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1884
1885         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1886                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1887                                SDE_AUDIO_POWER_SHIFT);
1888                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1889                                  port_name(port));
1890         }
1891
1892         if (pch_iir & SDE_AUX_MASK)
1893                 dp_aux_irq_handler(dev);
1894
1895         if (pch_iir & SDE_GMBUS)
1896                 gmbus_irq_handler(dev);
1897
1898         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1899                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1900
1901         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1902                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1903
1904         if (pch_iir & SDE_POISON)
1905                 DRM_ERROR("PCH poison interrupt\n");
1906
1907         if (pch_iir & SDE_FDI_MASK)
1908                 for_each_pipe(dev_priv, pipe)
1909                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1910                                          pipe_name(pipe),
1911                                          I915_READ(FDI_RX_IIR(pipe)));
1912
1913         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1914                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1915
1916         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1917                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1918
1919         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1920                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1921
1922         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1923                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1924 }
1925
1926 static void ivb_err_int_handler(struct drm_device *dev)
1927 {
1928         struct drm_i915_private *dev_priv = dev->dev_private;
1929         u32 err_int = I915_READ(GEN7_ERR_INT);
1930         enum pipe pipe;
1931
1932         if (err_int & ERR_INT_POISON)
1933                 DRM_ERROR("Poison interrupt\n");
1934
1935         for_each_pipe(dev_priv, pipe) {
1936                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1937                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1938
1939                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1940                         if (IS_IVYBRIDGE(dev))
1941                                 ivb_pipe_crc_irq_handler(dev, pipe);
1942                         else
1943                                 hsw_pipe_crc_irq_handler(dev, pipe);
1944                 }
1945         }
1946
1947         I915_WRITE(GEN7_ERR_INT, err_int);
1948 }
1949
1950 static void cpt_serr_int_handler(struct drm_device *dev)
1951 {
1952         struct drm_i915_private *dev_priv = dev->dev_private;
1953         u32 serr_int = I915_READ(SERR_INT);
1954
1955         if (serr_int & SERR_INT_POISON)
1956                 DRM_ERROR("PCH poison interrupt\n");
1957
1958         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1959                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1960
1961         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1962                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1963
1964         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1965                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1966
1967         I915_WRITE(SERR_INT, serr_int);
1968 }
1969
1970 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         int pipe;
1974         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1975         u32 dig_hotplug_reg;
1976
1977         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979
1980         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1981
1982         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1983                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1984                                SDE_AUDIO_POWER_SHIFT_CPT);
1985                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1986                                  port_name(port));
1987         }
1988
1989         if (pch_iir & SDE_AUX_MASK_CPT)
1990                 dp_aux_irq_handler(dev);
1991
1992         if (pch_iir & SDE_GMBUS_CPT)
1993                 gmbus_irq_handler(dev);
1994
1995         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1996                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1997
1998         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1999                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2000
2001         if (pch_iir & SDE_FDI_MASK_CPT)
2002                 for_each_pipe(dev_priv, pipe)
2003                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2004                                          pipe_name(pipe),
2005                                          I915_READ(FDI_RX_IIR(pipe)));
2006
2007         if (pch_iir & SDE_ERROR_CPT)
2008                 cpt_serr_int_handler(dev);
2009 }
2010
2011 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2012 {
2013         struct drm_i915_private *dev_priv = dev->dev_private;
2014         enum pipe pipe;
2015
2016         if (de_iir & DE_AUX_CHANNEL_A)
2017                 dp_aux_irq_handler(dev);
2018
2019         if (de_iir & DE_GSE)
2020                 intel_opregion_asle_intr(dev);
2021
2022         if (de_iir & DE_POISON)
2023                 DRM_ERROR("Poison interrupt\n");
2024
2025         for_each_pipe(dev_priv, pipe) {
2026                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2027                     intel_pipe_handle_vblank(dev, pipe))
2028                         intel_check_page_flip(dev, pipe);
2029
2030                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2031                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2032
2033                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2034                         i9xx_pipe_crc_irq_handler(dev, pipe);
2035
2036                 /* plane/pipes map 1:1 on ilk+ */
2037                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2038                         intel_prepare_page_flip(dev, pipe);
2039                         intel_finish_page_flip_plane(dev, pipe);
2040                 }
2041         }
2042
2043         /* check event from PCH */
2044         if (de_iir & DE_PCH_EVENT) {
2045                 u32 pch_iir = I915_READ(SDEIIR);
2046
2047                 if (HAS_PCH_CPT(dev))
2048                         cpt_irq_handler(dev, pch_iir);
2049                 else
2050                         ibx_irq_handler(dev, pch_iir);
2051
2052                 /* should clear PCH hotplug event before clear CPU irq */
2053                 I915_WRITE(SDEIIR, pch_iir);
2054         }
2055
2056         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2057                 ironlake_rps_change_irq_handler(dev);
2058 }
2059
2060 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2061 {
2062         struct drm_i915_private *dev_priv = dev->dev_private;
2063         enum pipe pipe;
2064
2065         if (de_iir & DE_ERR_INT_IVB)
2066                 ivb_err_int_handler(dev);
2067
2068         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069                 dp_aux_irq_handler(dev);
2070
2071         if (de_iir & DE_GSE_IVB)
2072                 intel_opregion_asle_intr(dev);
2073
2074         for_each_pipe(dev_priv, pipe) {
2075                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2076                     intel_pipe_handle_vblank(dev, pipe))
2077                         intel_check_page_flip(dev, pipe);
2078
2079                 /* plane/pipes map 1:1 on ilk+ */
2080                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2081                         intel_prepare_page_flip(dev, pipe);
2082                         intel_finish_page_flip_plane(dev, pipe);
2083                 }
2084         }
2085
2086         /* check event from PCH */
2087         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2088                 u32 pch_iir = I915_READ(SDEIIR);
2089
2090                 cpt_irq_handler(dev, pch_iir);
2091
2092                 /* clear PCH hotplug event before clear CPU irq */
2093                 I915_WRITE(SDEIIR, pch_iir);
2094         }
2095 }
2096
2097 /*
2098  * To handle irqs with the minimum potential races with fresh interrupts, we:
2099  * 1 - Disable Master Interrupt Control.
2100  * 2 - Find the source(s) of the interrupt.
2101  * 3 - Clear the Interrupt Identity bits (IIR).
2102  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2103  * 5 - Re-enable Master Interrupt Control.
2104  */
2105 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2106 {
2107         struct drm_device *dev = arg;
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2110         irqreturn_t ret = IRQ_NONE;
2111
2112         if (!intel_irqs_enabled(dev_priv))
2113                 return IRQ_NONE;
2114
2115         /* We get interrupts on unclaimed registers, so check for this before we
2116          * do any I915_{READ,WRITE}. */
2117         intel_uncore_check_errors(dev);
2118
2119         /* disable master interrupt before clearing iir  */
2120         de_ier = I915_READ(DEIER);
2121         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2122         POSTING_READ(DEIER);
2123
2124         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2125          * interrupts will will be stored on its back queue, and then we'll be
2126          * able to process them after we restore SDEIER (as soon as we restore
2127          * it, we'll get an interrupt if SDEIIR still has something to process
2128          * due to its back queue). */
2129         if (!HAS_PCH_NOP(dev)) {
2130                 sde_ier = I915_READ(SDEIER);
2131                 I915_WRITE(SDEIER, 0);
2132                 POSTING_READ(SDEIER);
2133         }
2134
2135         /* Find, clear, then process each source of interrupt */
2136
2137         gt_iir = I915_READ(GTIIR);
2138         if (gt_iir) {
2139                 I915_WRITE(GTIIR, gt_iir);
2140                 ret = IRQ_HANDLED;
2141                 if (INTEL_INFO(dev)->gen >= 6)
2142                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2143                 else
2144                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2145         }
2146
2147         de_iir = I915_READ(DEIIR);
2148         if (de_iir) {
2149                 I915_WRITE(DEIIR, de_iir);
2150                 ret = IRQ_HANDLED;
2151                 if (INTEL_INFO(dev)->gen >= 7)
2152                         ivb_display_irq_handler(dev, de_iir);
2153                 else
2154                         ilk_display_irq_handler(dev, de_iir);
2155         }
2156
2157         if (INTEL_INFO(dev)->gen >= 6) {
2158                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2159                 if (pm_iir) {
2160                         I915_WRITE(GEN6_PMIIR, pm_iir);
2161                         ret = IRQ_HANDLED;
2162                         gen6_rps_irq_handler(dev_priv, pm_iir);
2163                 }
2164         }
2165
2166         I915_WRITE(DEIER, de_ier);
2167         POSTING_READ(DEIER);
2168         if (!HAS_PCH_NOP(dev)) {
2169                 I915_WRITE(SDEIER, sde_ier);
2170                 POSTING_READ(SDEIER);
2171         }
2172
2173         return ret;
2174 }
2175
2176 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2177 {
2178         struct drm_i915_private *dev_priv = dev->dev_private;
2179         uint32_t hp_control;
2180         uint32_t hp_trigger;
2181
2182         /* Get the status */
2183         hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2184         hp_control = I915_READ(BXT_HOTPLUG_CTL);
2185
2186         /* Hotplug not enabled ? */
2187         if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2188                 DRM_ERROR("Interrupt when HPD disabled\n");
2189                 return;
2190         }
2191
2192         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2193                 hp_control & BXT_HOTPLUG_CTL_MASK);
2194
2195         /* Check for HPD storm and schedule bottom half */
2196         intel_hpd_irq_handler(dev, hp_trigger, hp_control, hpd_bxt);
2197
2198         /*
2199          * FIXME: Save the hot plug status for bottom half before
2200          * clearing the sticky status bits, else the status will be
2201          * lost.
2202          */
2203
2204         /* Clear sticky bits in hpd status */
2205         I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2206 }
2207
2208 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2209 {
2210         struct drm_device *dev = arg;
2211         struct drm_i915_private *dev_priv = dev->dev_private;
2212         u32 master_ctl;
2213         irqreturn_t ret = IRQ_NONE;
2214         uint32_t tmp = 0;
2215         enum pipe pipe;
2216         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2217
2218         if (!intel_irqs_enabled(dev_priv))
2219                 return IRQ_NONE;
2220
2221         if (IS_GEN9(dev))
2222                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2223                         GEN9_AUX_CHANNEL_D;
2224
2225         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2226         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2227         if (!master_ctl)
2228                 return IRQ_NONE;
2229
2230         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2231
2232         /* Find, clear, then process each source of interrupt */
2233
2234         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2235
2236         if (master_ctl & GEN8_DE_MISC_IRQ) {
2237                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2238                 if (tmp) {
2239                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2240                         ret = IRQ_HANDLED;
2241                         if (tmp & GEN8_DE_MISC_GSE)
2242                                 intel_opregion_asle_intr(dev);
2243                         else
2244                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2245                 }
2246                 else
2247                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2248         }
2249
2250         if (master_ctl & GEN8_DE_PORT_IRQ) {
2251                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2252                 if (tmp) {
2253                         bool found = false;
2254
2255                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2256                         ret = IRQ_HANDLED;
2257
2258                         if (tmp & aux_mask) {
2259                                 dp_aux_irq_handler(dev);
2260                                 found = true;
2261                         }
2262
2263                         if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2264                                 bxt_hpd_handler(dev, tmp);
2265                                 found = true;
2266                         }
2267
2268                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2269                                 gmbus_irq_handler(dev);
2270                                 found = true;
2271                         }
2272
2273                         if (!found)
2274                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2275                 }
2276                 else
2277                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2278         }
2279
2280         for_each_pipe(dev_priv, pipe) {
2281                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2282
2283                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2284                         continue;
2285
2286                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2287                 if (pipe_iir) {
2288                         ret = IRQ_HANDLED;
2289                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2290
2291                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2292                             intel_pipe_handle_vblank(dev, pipe))
2293                                 intel_check_page_flip(dev, pipe);
2294
2295                         if (IS_GEN9(dev))
2296                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2297                         else
2298                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2299
2300                         if (flip_done) {
2301                                 intel_prepare_page_flip(dev, pipe);
2302                                 intel_finish_page_flip_plane(dev, pipe);
2303                         }
2304
2305                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2306                                 hsw_pipe_crc_irq_handler(dev, pipe);
2307
2308                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2309                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2310                                                                     pipe);
2311
2312
2313                         if (IS_GEN9(dev))
2314                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2315                         else
2316                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2317
2318                         if (fault_errors)
2319                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2320                                           pipe_name(pipe),
2321                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2322                 } else
2323                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2324         }
2325
2326         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2327             master_ctl & GEN8_DE_PCH_IRQ) {
2328                 /*
2329                  * FIXME(BDW): Assume for now that the new interrupt handling
2330                  * scheme also closed the SDE interrupt handling race we've seen
2331                  * on older pch-split platforms. But this needs testing.
2332                  */
2333                 u32 pch_iir = I915_READ(SDEIIR);
2334                 if (pch_iir) {
2335                         I915_WRITE(SDEIIR, pch_iir);
2336                         ret = IRQ_HANDLED;
2337                         cpt_irq_handler(dev, pch_iir);
2338                 } else
2339                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2340
2341         }
2342
2343         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2344         POSTING_READ_FW(GEN8_MASTER_IRQ);
2345
2346         return ret;
2347 }
2348
2349 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2350                                bool reset_completed)
2351 {
2352         struct intel_engine_cs *ring;
2353         int i;
2354
2355         /*
2356          * Notify all waiters for GPU completion events that reset state has
2357          * been changed, and that they need to restart their wait after
2358          * checking for potential errors (and bail out to drop locks if there is
2359          * a gpu reset pending so that i915_error_work_func can acquire them).
2360          */
2361
2362         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2363         for_each_ring(ring, dev_priv, i)
2364                 wake_up_all(&ring->irq_queue);
2365
2366         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2367         wake_up_all(&dev_priv->pending_flip_queue);
2368
2369         /*
2370          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2371          * reset state is cleared.
2372          */
2373         if (reset_completed)
2374                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2375 }
2376
2377 /**
2378  * i915_reset_and_wakeup - do process context error handling work
2379  *
2380  * Fire an error uevent so userspace can see that a hang or error
2381  * was detected.
2382  */
2383 static void i915_reset_and_wakeup(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = to_i915(dev);
2386         struct i915_gpu_error *error = &dev_priv->gpu_error;
2387         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2388         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2389         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2390         int ret;
2391
2392         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2393
2394         /*
2395          * Note that there's only one work item which does gpu resets, so we
2396          * need not worry about concurrent gpu resets potentially incrementing
2397          * error->reset_counter twice. We only need to take care of another
2398          * racing irq/hangcheck declaring the gpu dead for a second time. A
2399          * quick check for that is good enough: schedule_work ensures the
2400          * correct ordering between hang detection and this work item, and since
2401          * the reset in-progress bit is only ever set by code outside of this
2402          * work we don't need to worry about any other races.
2403          */
2404         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2405                 DRM_DEBUG_DRIVER("resetting chip\n");
2406                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2407                                    reset_event);
2408
2409                 /*
2410                  * In most cases it's guaranteed that we get here with an RPM
2411                  * reference held, for example because there is a pending GPU
2412                  * request that won't finish until the reset is done. This
2413                  * isn't the case at least when we get here by doing a
2414                  * simulated reset via debugs, so get an RPM reference.
2415                  */
2416                 intel_runtime_pm_get(dev_priv);
2417
2418                 intel_prepare_reset(dev);
2419
2420                 /*
2421                  * All state reset _must_ be completed before we update the
2422                  * reset counter, for otherwise waiters might miss the reset
2423                  * pending state and not properly drop locks, resulting in
2424                  * deadlocks with the reset work.
2425                  */
2426                 ret = i915_reset(dev);
2427
2428                 intel_finish_reset(dev);
2429
2430                 intel_runtime_pm_put(dev_priv);
2431
2432                 if (ret == 0) {
2433                         /*
2434                          * After all the gem state is reset, increment the reset
2435                          * counter and wake up everyone waiting for the reset to
2436                          * complete.
2437                          *
2438                          * Since unlock operations are a one-sided barrier only,
2439                          * we need to insert a barrier here to order any seqno
2440                          * updates before
2441                          * the counter increment.
2442                          */
2443                         smp_mb__before_atomic();
2444                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2445
2446                         kobject_uevent_env(&dev->primary->kdev->kobj,
2447                                            KOBJ_CHANGE, reset_done_event);
2448                 } else {
2449                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2450                 }
2451
2452                 /*
2453                  * Note: The wake_up also serves as a memory barrier so that
2454                  * waiters see the update value of the reset counter atomic_t.
2455                  */
2456                 i915_error_wake_up(dev_priv, true);
2457         }
2458 }
2459
2460 static void i915_report_and_clear_eir(struct drm_device *dev)
2461 {
2462         struct drm_i915_private *dev_priv = dev->dev_private;
2463         uint32_t instdone[I915_NUM_INSTDONE_REG];
2464         u32 eir = I915_READ(EIR);
2465         int pipe, i;
2466
2467         if (!eir)
2468                 return;
2469
2470         pr_err("render error detected, EIR: 0x%08x\n", eir);
2471
2472         i915_get_extra_instdone(dev, instdone);
2473
2474         if (IS_G4X(dev)) {
2475                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2476                         u32 ipeir = I915_READ(IPEIR_I965);
2477
2478                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2479                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2480                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2481                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2482                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2483                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2484                         I915_WRITE(IPEIR_I965, ipeir);
2485                         POSTING_READ(IPEIR_I965);
2486                 }
2487                 if (eir & GM45_ERROR_PAGE_TABLE) {
2488                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2489                         pr_err("page table error\n");
2490                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2491                         I915_WRITE(PGTBL_ER, pgtbl_err);
2492                         POSTING_READ(PGTBL_ER);
2493                 }
2494         }
2495
2496         if (!IS_GEN2(dev)) {
2497                 if (eir & I915_ERROR_PAGE_TABLE) {
2498                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2499                         pr_err("page table error\n");
2500                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2501                         I915_WRITE(PGTBL_ER, pgtbl_err);
2502                         POSTING_READ(PGTBL_ER);
2503                 }
2504         }
2505
2506         if (eir & I915_ERROR_MEMORY_REFRESH) {
2507                 pr_err("memory refresh error:\n");
2508                 for_each_pipe(dev_priv, pipe)
2509                         pr_err("pipe %c stat: 0x%08x\n",
2510                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2511                 /* pipestat has already been acked */
2512         }
2513         if (eir & I915_ERROR_INSTRUCTION) {
2514                 pr_err("instruction error\n");
2515                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2516                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2517                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2518                 if (INTEL_INFO(dev)->gen < 4) {
2519                         u32 ipeir = I915_READ(IPEIR);
2520
2521                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2522                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2523                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2524                         I915_WRITE(IPEIR, ipeir);
2525                         POSTING_READ(IPEIR);
2526                 } else {
2527                         u32 ipeir = I915_READ(IPEIR_I965);
2528
2529                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2530                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2531                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2532                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2533                         I915_WRITE(IPEIR_I965, ipeir);
2534                         POSTING_READ(IPEIR_I965);
2535                 }
2536         }
2537
2538         I915_WRITE(EIR, eir);
2539         POSTING_READ(EIR);
2540         eir = I915_READ(EIR);
2541         if (eir) {
2542                 /*
2543                  * some errors might have become stuck,
2544                  * mask them.
2545                  */
2546                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2547                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2548                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2549         }
2550 }
2551
2552 /**
2553  * i915_handle_error - handle a gpu error
2554  * @dev: drm device
2555  *
2556  * Do some basic checking of regsiter state at error time and
2557  * dump it to the syslog.  Also call i915_capture_error_state() to make
2558  * sure we get a record and make it available in debugfs.  Fire a uevent
2559  * so userspace knows something bad happened (should trigger collection
2560  * of a ring dump etc.).
2561  */
2562 void i915_handle_error(struct drm_device *dev, bool wedged,
2563                        const char *fmt, ...)
2564 {
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         va_list args;
2567         char error_msg[80];
2568
2569         va_start(args, fmt);
2570         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2571         va_end(args);
2572
2573         i915_capture_error_state(dev, wedged, error_msg);
2574         i915_report_and_clear_eir(dev);
2575
2576         if (wedged) {
2577                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2578                                 &dev_priv->gpu_error.reset_counter);
2579
2580                 /*
2581                  * Wakeup waiting processes so that the reset function
2582                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2583                  * various locks. By bumping the reset counter first, the woken
2584                  * processes will see a reset in progress and back off,
2585                  * releasing their locks and then wait for the reset completion.
2586                  * We must do this for _all_ gpu waiters that might hold locks
2587                  * that the reset work needs to acquire.
2588                  *
2589                  * Note: The wake_up serves as the required memory barrier to
2590                  * ensure that the waiters see the updated value of the reset
2591                  * counter atomic_t.
2592                  */
2593                 i915_error_wake_up(dev_priv, false);
2594         }
2595
2596         i915_reset_and_wakeup(dev);
2597 }
2598
2599 /* Called from drm generic code, passed 'crtc' which
2600  * we use as a pipe index
2601  */
2602 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2603 {
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         unsigned long irqflags;
2606
2607         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2608         if (INTEL_INFO(dev)->gen >= 4)
2609                 i915_enable_pipestat(dev_priv, pipe,
2610                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2611         else
2612                 i915_enable_pipestat(dev_priv, pipe,
2613                                      PIPE_VBLANK_INTERRUPT_STATUS);
2614         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2615
2616         return 0;
2617 }
2618
2619 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2620 {
2621         struct drm_i915_private *dev_priv = dev->dev_private;
2622         unsigned long irqflags;
2623         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2624                                                      DE_PIPE_VBLANK(pipe);
2625
2626         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627         ironlake_enable_display_irq(dev_priv, bit);
2628         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629
2630         return 0;
2631 }
2632
2633 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2634 {
2635         struct drm_i915_private *dev_priv = dev->dev_private;
2636         unsigned long irqflags;
2637
2638         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639         i915_enable_pipestat(dev_priv, pipe,
2640                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2641         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2642
2643         return 0;
2644 }
2645
2646 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2647 {
2648         struct drm_i915_private *dev_priv = dev->dev_private;
2649         unsigned long irqflags;
2650
2651         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2652         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2653         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2654         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2655         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2656         return 0;
2657 }
2658
2659 /* Called from drm generic code, passed 'crtc' which
2660  * we use as a pipe index
2661  */
2662 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2663 {
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         unsigned long irqflags;
2666
2667         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2668         i915_disable_pipestat(dev_priv, pipe,
2669                               PIPE_VBLANK_INTERRUPT_STATUS |
2670                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2671         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672 }
2673
2674 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2675 {
2676         struct drm_i915_private *dev_priv = dev->dev_private;
2677         unsigned long irqflags;
2678         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2679                                                      DE_PIPE_VBLANK(pipe);
2680
2681         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682         ironlake_disable_display_irq(dev_priv, bit);
2683         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684 }
2685
2686 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2687 {
2688         struct drm_i915_private *dev_priv = dev->dev_private;
2689         unsigned long irqflags;
2690
2691         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692         i915_disable_pipestat(dev_priv, pipe,
2693                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2694         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2695 }
2696
2697 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2698 {
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         unsigned long irqflags;
2701
2702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2704         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2705         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2706         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2707 }
2708
2709 static struct drm_i915_gem_request *
2710 ring_last_request(struct intel_engine_cs *ring)
2711 {
2712         return list_entry(ring->request_list.prev,
2713                           struct drm_i915_gem_request, list);
2714 }
2715
2716 static bool
2717 ring_idle(struct intel_engine_cs *ring)
2718 {
2719         return (list_empty(&ring->request_list) ||
2720                 i915_gem_request_completed(ring_last_request(ring), false));
2721 }
2722
2723 static bool
2724 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2725 {
2726         if (INTEL_INFO(dev)->gen >= 8) {
2727                 return (ipehr >> 23) == 0x1c;
2728         } else {
2729                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2730                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2731                                  MI_SEMAPHORE_REGISTER);
2732         }
2733 }
2734
2735 static struct intel_engine_cs *
2736 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2737 {
2738         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2739         struct intel_engine_cs *signaller;
2740         int i;
2741
2742         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2743                 for_each_ring(signaller, dev_priv, i) {
2744                         if (ring == signaller)
2745                                 continue;
2746
2747                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2748                                 return signaller;
2749                 }
2750         } else {
2751                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2752
2753                 for_each_ring(signaller, dev_priv, i) {
2754                         if(ring == signaller)
2755                                 continue;
2756
2757                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2758                                 return signaller;
2759                 }
2760         }
2761
2762         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2763                   ring->id, ipehr, offset);
2764
2765         return NULL;
2766 }
2767
2768 static struct intel_engine_cs *
2769 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2770 {
2771         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2772         u32 cmd, ipehr, head;
2773         u64 offset = 0;
2774         int i, backwards;
2775
2776         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2777         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2778                 return NULL;
2779
2780         /*
2781          * HEAD is likely pointing to the dword after the actual command,
2782          * so scan backwards until we find the MBOX. But limit it to just 3
2783          * or 4 dwords depending on the semaphore wait command size.
2784          * Note that we don't care about ACTHD here since that might
2785          * point at at batch, and semaphores are always emitted into the
2786          * ringbuffer itself.
2787          */
2788         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2789         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2790
2791         for (i = backwards; i; --i) {
2792                 /*
2793                  * Be paranoid and presume the hw has gone off into the wild -
2794                  * our ring is smaller than what the hardware (and hence
2795                  * HEAD_ADDR) allows. Also handles wrap-around.
2796                  */
2797                 head &= ring->buffer->size - 1;
2798
2799                 /* This here seems to blow up */
2800                 cmd = ioread32(ring->buffer->virtual_start + head);
2801                 if (cmd == ipehr)
2802                         break;
2803
2804                 head -= 4;
2805         }
2806
2807         if (!i)
2808                 return NULL;
2809
2810         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2811         if (INTEL_INFO(ring->dev)->gen >= 8) {
2812                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2813                 offset <<= 32;
2814                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2815         }
2816         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2817 }
2818
2819 static int semaphore_passed(struct intel_engine_cs *ring)
2820 {
2821         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2822         struct intel_engine_cs *signaller;
2823         u32 seqno;
2824
2825         ring->hangcheck.deadlock++;
2826
2827         signaller = semaphore_waits_for(ring, &seqno);
2828         if (signaller == NULL)
2829                 return -1;
2830
2831         /* Prevent pathological recursion due to driver bugs */
2832         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2833                 return -1;
2834
2835         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2836                 return 1;
2837
2838         /* cursory check for an unkickable deadlock */
2839         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2840             semaphore_passed(signaller) < 0)
2841                 return -1;
2842
2843         return 0;
2844 }
2845
2846 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2847 {
2848         struct intel_engine_cs *ring;
2849         int i;
2850
2851         for_each_ring(ring, dev_priv, i)
2852                 ring->hangcheck.deadlock = 0;
2853 }
2854
2855 static enum intel_ring_hangcheck_action
2856 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2857 {
2858         struct drm_device *dev = ring->dev;
2859         struct drm_i915_private *dev_priv = dev->dev_private;
2860         u32 tmp;
2861
2862         if (acthd != ring->hangcheck.acthd) {
2863                 if (acthd > ring->hangcheck.max_acthd) {
2864                         ring->hangcheck.max_acthd = acthd;
2865                         return HANGCHECK_ACTIVE;
2866                 }
2867
2868                 return HANGCHECK_ACTIVE_LOOP;
2869         }
2870
2871         if (IS_GEN2(dev))
2872                 return HANGCHECK_HUNG;
2873
2874         /* Is the chip hanging on a WAIT_FOR_EVENT?
2875          * If so we can simply poke the RB_WAIT bit
2876          * and break the hang. This should work on
2877          * all but the second generation chipsets.
2878          */
2879         tmp = I915_READ_CTL(ring);
2880         if (tmp & RING_WAIT) {
2881                 i915_handle_error(dev, false,
2882                                   "Kicking stuck wait on %s",
2883                                   ring->name);
2884                 I915_WRITE_CTL(ring, tmp);
2885                 return HANGCHECK_KICK;
2886         }
2887
2888         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2889                 switch (semaphore_passed(ring)) {
2890                 default:
2891                         return HANGCHECK_HUNG;
2892                 case 1:
2893                         i915_handle_error(dev, false,
2894                                           "Kicking stuck semaphore on %s",
2895                                           ring->name);
2896                         I915_WRITE_CTL(ring, tmp);
2897                         return HANGCHECK_KICK;
2898                 case 0:
2899                         return HANGCHECK_WAIT;
2900                 }
2901         }
2902
2903         return HANGCHECK_HUNG;
2904 }
2905
2906 /*
2907  * This is called when the chip hasn't reported back with completed
2908  * batchbuffers in a long time. We keep track per ring seqno progress and
2909  * if there are no progress, hangcheck score for that ring is increased.
2910  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2911  * we kick the ring. If we see no progress on three subsequent calls
2912  * we assume chip is wedged and try to fix it by resetting the chip.
2913  */
2914 static void i915_hangcheck_elapsed(struct work_struct *work)
2915 {
2916         struct drm_i915_private *dev_priv =
2917                 container_of(work, typeof(*dev_priv),
2918                              gpu_error.hangcheck_work.work);
2919         struct drm_device *dev = dev_priv->dev;
2920         struct intel_engine_cs *ring;
2921         int i;
2922         int busy_count = 0, rings_hung = 0;
2923         bool stuck[I915_NUM_RINGS] = { 0 };
2924 #define BUSY 1
2925 #define KICK 5
2926 #define HUNG 20
2927
2928         if (!i915.enable_hangcheck)
2929                 return;
2930
2931         for_each_ring(ring, dev_priv, i) {
2932                 u64 acthd;
2933                 u32 seqno;
2934                 bool busy = true;
2935
2936                 semaphore_clear_deadlocks(dev_priv);
2937
2938                 seqno = ring->get_seqno(ring, false);
2939                 acthd = intel_ring_get_active_head(ring);
2940
2941                 if (ring->hangcheck.seqno == seqno) {
2942                         if (ring_idle(ring)) {
2943                                 ring->hangcheck.action = HANGCHECK_IDLE;
2944
2945                                 if (waitqueue_active(&ring->irq_queue)) {
2946                                         /* Issue a wake-up to catch stuck h/w. */
2947                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2948                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2949                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2950                                                                   ring->name);
2951                                                 else
2952                                                         DRM_INFO("Fake missed irq on %s\n",
2953                                                                  ring->name);
2954                                                 wake_up_all(&ring->irq_queue);
2955                                         }
2956                                         /* Safeguard against driver failure */
2957                                         ring->hangcheck.score += BUSY;
2958                                 } else
2959                                         busy = false;
2960                         } else {
2961                                 /* We always increment the hangcheck score
2962                                  * if the ring is busy and still processing
2963                                  * the same request, so that no single request
2964                                  * can run indefinitely (such as a chain of
2965                                  * batches). The only time we do not increment
2966                                  * the hangcheck score on this ring, if this
2967                                  * ring is in a legitimate wait for another
2968                                  * ring. In that case the waiting ring is a
2969                                  * victim and we want to be sure we catch the
2970                                  * right culprit. Then every time we do kick
2971                                  * the ring, add a small increment to the
2972                                  * score so that we can catch a batch that is
2973                                  * being repeatedly kicked and so responsible
2974                                  * for stalling the machine.
2975                                  */
2976                                 ring->hangcheck.action = ring_stuck(ring,
2977                                                                     acthd);
2978
2979                                 switch (ring->hangcheck.action) {
2980                                 case HANGCHECK_IDLE:
2981                                 case HANGCHECK_WAIT:
2982                                 case HANGCHECK_ACTIVE:
2983                                         break;
2984                                 case HANGCHECK_ACTIVE_LOOP:
2985                                         ring->hangcheck.score += BUSY;
2986                                         break;
2987                                 case HANGCHECK_KICK:
2988                                         ring->hangcheck.score += KICK;
2989                                         break;
2990                                 case HANGCHECK_HUNG:
2991                                         ring->hangcheck.score += HUNG;
2992                                         stuck[i] = true;
2993                                         break;
2994                                 }
2995                         }
2996                 } else {
2997                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2998
2999                         /* Gradually reduce the count so that we catch DoS
3000                          * attempts across multiple batches.
3001                          */
3002                         if (ring->hangcheck.score > 0)
3003                                 ring->hangcheck.score--;
3004
3005                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3006                 }
3007
3008                 ring->hangcheck.seqno = seqno;
3009                 ring->hangcheck.acthd = acthd;
3010                 busy_count += busy;
3011         }
3012
3013         for_each_ring(ring, dev_priv, i) {
3014                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3015                         DRM_INFO("%s on %s\n",
3016                                  stuck[i] ? "stuck" : "no progress",
3017                                  ring->name);
3018                         rings_hung++;
3019                 }
3020         }
3021
3022         if (rings_hung)
3023                 return i915_handle_error(dev, true, "Ring hung");
3024
3025         if (busy_count)
3026                 /* Reset timer case chip hangs without another request
3027                  * being added */
3028                 i915_queue_hangcheck(dev);
3029 }
3030
3031 void i915_queue_hangcheck(struct drm_device *dev)
3032 {
3033         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3034
3035         if (!i915.enable_hangcheck)
3036                 return;
3037
3038         /* Don't continually defer the hangcheck so that it is always run at
3039          * least once after work has been scheduled on any ring. Otherwise,
3040          * we will ignore a hung ring if a second ring is kept busy.
3041          */
3042
3043         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3044                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3045 }
3046
3047 static void ibx_irq_reset(struct drm_device *dev)
3048 {
3049         struct drm_i915_private *dev_priv = dev->dev_private;
3050
3051         if (HAS_PCH_NOP(dev))
3052                 return;
3053
3054         GEN5_IRQ_RESET(SDE);
3055
3056         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3057                 I915_WRITE(SERR_INT, 0xffffffff);
3058 }
3059
3060 /*
3061  * SDEIER is also touched by the interrupt handler to work around missed PCH
3062  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3063  * instead we unconditionally enable all PCH interrupt sources here, but then
3064  * only unmask them as needed with SDEIMR.
3065  *
3066  * This function needs to be called before interrupts are enabled.
3067  */
3068 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3069 {
3070         struct drm_i915_private *dev_priv = dev->dev_private;
3071
3072         if (HAS_PCH_NOP(dev))
3073                 return;
3074
3075         WARN_ON(I915_READ(SDEIER) != 0);
3076         I915_WRITE(SDEIER, 0xffffffff);
3077         POSTING_READ(SDEIER);
3078 }
3079
3080 static void gen5_gt_irq_reset(struct drm_device *dev)
3081 {
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083
3084         GEN5_IRQ_RESET(GT);
3085         if (INTEL_INFO(dev)->gen >= 6)
3086                 GEN5_IRQ_RESET(GEN6_PM);
3087 }
3088
3089 /* drm_dma.h hooks
3090 */
3091 static void ironlake_irq_reset(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095         I915_WRITE(HWSTAM, 0xffffffff);
3096
3097         GEN5_IRQ_RESET(DE);
3098         if (IS_GEN7(dev))
3099                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3100
3101         gen5_gt_irq_reset(dev);
3102
3103         ibx_irq_reset(dev);
3104 }
3105
3106 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3107 {
3108         enum pipe pipe;
3109
3110         I915_WRITE(PORT_HOTPLUG_EN, 0);
3111         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3112
3113         for_each_pipe(dev_priv, pipe)
3114                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3115
3116         GEN5_IRQ_RESET(VLV_);
3117 }
3118
3119 static void valleyview_irq_preinstall(struct drm_device *dev)
3120 {
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122
3123         /* VLV magic */
3124         I915_WRITE(VLV_IMR, 0);
3125         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3126         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3127         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3128
3129         gen5_gt_irq_reset(dev);
3130
3131         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3132
3133         vlv_display_irq_reset(dev_priv);
3134 }
3135
3136 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3137 {
3138         GEN8_IRQ_RESET_NDX(GT, 0);
3139         GEN8_IRQ_RESET_NDX(GT, 1);
3140         GEN8_IRQ_RESET_NDX(GT, 2);
3141         GEN8_IRQ_RESET_NDX(GT, 3);
3142 }
3143
3144 static void gen8_irq_reset(struct drm_device *dev)
3145 {
3146         struct drm_i915_private *dev_priv = dev->dev_private;
3147         int pipe;
3148
3149         I915_WRITE(GEN8_MASTER_IRQ, 0);
3150         POSTING_READ(GEN8_MASTER_IRQ);
3151
3152         gen8_gt_irq_reset(dev_priv);
3153
3154         for_each_pipe(dev_priv, pipe)
3155                 if (intel_display_power_is_enabled(dev_priv,
3156                                                    POWER_DOMAIN_PIPE(pipe)))
3157                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3158
3159         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3160         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3161         GEN5_IRQ_RESET(GEN8_PCU_);
3162
3163         if (HAS_PCH_SPLIT(dev))
3164                 ibx_irq_reset(dev);
3165 }
3166
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3168                                      unsigned int pipe_mask)
3169 {
3170         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3171
3172         spin_lock_irq(&dev_priv->irq_lock);
3173         if (pipe_mask & 1 << PIPE_A)
3174                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3175                                   dev_priv->de_irq_mask[PIPE_A],
3176                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3177         if (pipe_mask & 1 << PIPE_B)
3178                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3179                                   dev_priv->de_irq_mask[PIPE_B],
3180                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3181         if (pipe_mask & 1 << PIPE_C)
3182                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3183                                   dev_priv->de_irq_mask[PIPE_C],
3184                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3185         spin_unlock_irq(&dev_priv->irq_lock);
3186 }
3187
3188 static void cherryview_irq_preinstall(struct drm_device *dev)
3189 {
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191
3192         I915_WRITE(GEN8_MASTER_IRQ, 0);
3193         POSTING_READ(GEN8_MASTER_IRQ);
3194
3195         gen8_gt_irq_reset(dev_priv);
3196
3197         GEN5_IRQ_RESET(GEN8_PCU_);
3198
3199         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3200
3201         vlv_display_irq_reset(dev_priv);
3202 }
3203
3204 static void ibx_hpd_irq_setup(struct drm_device *dev)
3205 {
3206         struct drm_i915_private *dev_priv = dev->dev_private;
3207         struct intel_encoder *intel_encoder;
3208         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3209
3210         if (HAS_PCH_IBX(dev)) {
3211                 hotplug_irqs = SDE_HOTPLUG_MASK;
3212                 for_each_intel_encoder(dev, intel_encoder)
3213                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3214                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3215         } else {
3216                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3217                 for_each_intel_encoder(dev, intel_encoder)
3218                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3219                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3220         }
3221
3222         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3223
3224         /*
3225          * Enable digital hotplug on the PCH, and configure the DP short pulse
3226          * duration to 2ms (which is the minimum in the Display Port spec)
3227          *
3228          * This register is the same on all known PCH chips.
3229          */
3230         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3231         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3232         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3233         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3234         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3235         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3236 }
3237
3238 static void bxt_hpd_irq_setup(struct drm_device *dev)
3239 {
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         struct intel_encoder *intel_encoder;
3242         u32 hotplug_port = 0;
3243         u32 hotplug_ctrl;
3244
3245         /* Now, enable HPD */
3246         for_each_intel_encoder(dev, intel_encoder) {
3247                 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark
3248                                 == HPD_ENABLED)
3249                         hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3250         }
3251
3252         /* Mask all HPD control bits */
3253         hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3254
3255         /* Enable requested port in hotplug control */
3256         /* TODO: implement (short) HPD support on port A */
3257         WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3258         if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3259                 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3260         if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3261                 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3262         I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3263
3264         /* Unmask DDI hotplug in IMR */
3265         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3266         I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3267
3268         /* Enable DDI hotplug in IER */
3269         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3270         I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3271         POSTING_READ(GEN8_DE_PORT_IER);
3272 }
3273
3274 static void ibx_irq_postinstall(struct drm_device *dev)
3275 {
3276         struct drm_i915_private *dev_priv = dev->dev_private;
3277         u32 mask;
3278
3279         if (HAS_PCH_NOP(dev))
3280                 return;
3281
3282         if (HAS_PCH_IBX(dev))
3283                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3284         else
3285                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3286
3287         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3288         I915_WRITE(SDEIMR, ~mask);
3289 }
3290
3291 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3292 {
3293         struct drm_i915_private *dev_priv = dev->dev_private;
3294         u32 pm_irqs, gt_irqs;
3295
3296         pm_irqs = gt_irqs = 0;
3297
3298         dev_priv->gt_irq_mask = ~0;
3299         if (HAS_L3_DPF(dev)) {
3300                 /* L3 parity interrupt is always unmasked. */
3301                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3302                 gt_irqs |= GT_PARITY_ERROR(dev);
3303         }
3304
3305         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3306         if (IS_GEN5(dev)) {
3307                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3308                            ILK_BSD_USER_INTERRUPT;
3309         } else {
3310                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3311         }
3312
3313         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3314
3315         if (INTEL_INFO(dev)->gen >= 6) {
3316                 /*
3317                  * RPS interrupts will get enabled/disabled on demand when RPS
3318                  * itself is enabled/disabled.
3319                  */
3320                 if (HAS_VEBOX(dev))
3321                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3322
3323                 dev_priv->pm_irq_mask = 0xffffffff;
3324                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3325         }
3326 }
3327
3328 static int ironlake_irq_postinstall(struct drm_device *dev)
3329 {
3330         struct drm_i915_private *dev_priv = dev->dev_private;
3331         u32 display_mask, extra_mask;
3332
3333         if (INTEL_INFO(dev)->gen >= 7) {
3334                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3335                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3336                                 DE_PLANEB_FLIP_DONE_IVB |
3337                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3338                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3339                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3340         } else {
3341                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3342                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3343                                 DE_AUX_CHANNEL_A |
3344                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3345                                 DE_POISON);
3346                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3347                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3348         }
3349
3350         dev_priv->irq_mask = ~display_mask;
3351
3352         I915_WRITE(HWSTAM, 0xeffe);
3353
3354         ibx_irq_pre_postinstall(dev);
3355
3356         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3357
3358         gen5_gt_irq_postinstall(dev);
3359
3360         ibx_irq_postinstall(dev);
3361
3362         if (IS_IRONLAKE_M(dev)) {
3363                 /* Enable PCU event interrupts
3364                  *
3365                  * spinlocking not required here for correctness since interrupt
3366                  * setup is guaranteed to run in single-threaded context. But we
3367                  * need it to make the assert_spin_locked happy. */
3368                 spin_lock_irq(&dev_priv->irq_lock);
3369                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3370                 spin_unlock_irq(&dev_priv->irq_lock);
3371         }
3372
3373         return 0;
3374 }
3375
3376 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3377 {
3378         u32 pipestat_mask;
3379         u32 iir_mask;
3380         enum pipe pipe;
3381
3382         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3383                         PIPE_FIFO_UNDERRUN_STATUS;
3384
3385         for_each_pipe(dev_priv, pipe)
3386                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3387         POSTING_READ(PIPESTAT(PIPE_A));
3388
3389         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3390                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3391
3392         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3393         for_each_pipe(dev_priv, pipe)
3394                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3395
3396         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3397                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3398                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3399         if (IS_CHERRYVIEW(dev_priv))
3400                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3401         dev_priv->irq_mask &= ~iir_mask;
3402
3403         I915_WRITE(VLV_IIR, iir_mask);
3404         I915_WRITE(VLV_IIR, iir_mask);
3405         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3406         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3407         POSTING_READ(VLV_IMR);
3408 }
3409
3410 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3411 {
3412         u32 pipestat_mask;
3413         u32 iir_mask;
3414         enum pipe pipe;
3415
3416         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419         if (IS_CHERRYVIEW(dev_priv))
3420                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421
3422         dev_priv->irq_mask |= iir_mask;
3423         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3424         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3425         I915_WRITE(VLV_IIR, iir_mask);
3426         I915_WRITE(VLV_IIR, iir_mask);
3427         POSTING_READ(VLV_IIR);
3428
3429         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3430                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3431
3432         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3433         for_each_pipe(dev_priv, pipe)
3434                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3435
3436         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3437                         PIPE_FIFO_UNDERRUN_STATUS;
3438
3439         for_each_pipe(dev_priv, pipe)
3440                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3441         POSTING_READ(PIPESTAT(PIPE_A));
3442 }
3443
3444 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3445 {
3446         assert_spin_locked(&dev_priv->irq_lock);
3447
3448         if (dev_priv->display_irqs_enabled)
3449                 return;
3450
3451         dev_priv->display_irqs_enabled = true;
3452
3453         if (intel_irqs_enabled(dev_priv))
3454                 valleyview_display_irqs_install(dev_priv);
3455 }
3456
3457 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3458 {
3459         assert_spin_locked(&dev_priv->irq_lock);
3460
3461         if (!dev_priv->display_irqs_enabled)
3462                 return;
3463
3464         dev_priv->display_irqs_enabled = false;
3465
3466         if (intel_irqs_enabled(dev_priv))
3467                 valleyview_display_irqs_uninstall(dev_priv);
3468 }
3469
3470 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3471 {
3472         dev_priv->irq_mask = ~0;
3473
3474         I915_WRITE(PORT_HOTPLUG_EN, 0);
3475         POSTING_READ(PORT_HOTPLUG_EN);
3476
3477         I915_WRITE(VLV_IIR, 0xffffffff);
3478         I915_WRITE(VLV_IIR, 0xffffffff);
3479         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3480         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3481         POSTING_READ(VLV_IMR);
3482
3483         /* Interrupt setup is already guaranteed to be single-threaded, this is
3484          * just to make the assert_spin_locked check happy. */
3485         spin_lock_irq(&dev_priv->irq_lock);
3486         if (dev_priv->display_irqs_enabled)
3487                 valleyview_display_irqs_install(dev_priv);
3488         spin_unlock_irq(&dev_priv->irq_lock);
3489 }
3490
3491 static int valleyview_irq_postinstall(struct drm_device *dev)
3492 {
3493         struct drm_i915_private *dev_priv = dev->dev_private;
3494
3495         vlv_display_irq_postinstall(dev_priv);
3496
3497         gen5_gt_irq_postinstall(dev);
3498
3499         /* ack & enable invalid PTE error interrupts */
3500 #if 0 /* FIXME: add support to irq handler for checking these bits */
3501         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3502         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3503 #endif
3504
3505         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3506
3507         return 0;
3508 }
3509
3510 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3511 {
3512         /* These are interrupts we'll toggle with the ring mask register */
3513         uint32_t gt_interrupts[] = {
3514                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3515                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3516                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3517                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3518                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3519                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3520                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3521                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3522                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3523                 0,
3524                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3525                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3526                 };
3527
3528         dev_priv->pm_irq_mask = 0xffffffff;
3529         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3530         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3531         /*
3532          * RPS interrupts will get enabled/disabled on demand when RPS itself
3533          * is enabled/disabled.
3534          */
3535         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3536         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3537 }
3538
3539 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3540 {
3541         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3542         uint32_t de_pipe_enables;
3543         int pipe;
3544         u32 de_port_en = GEN8_AUX_CHANNEL_A;
3545
3546         if (IS_GEN9(dev_priv)) {
3547                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3548                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3549                 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3550                         GEN9_AUX_CHANNEL_D;
3551
3552                 if (IS_BROXTON(dev_priv))
3553                         de_port_en |= BXT_DE_PORT_GMBUS;
3554         } else
3555                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3556                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3557
3558         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3559                                            GEN8_PIPE_FIFO_UNDERRUN;
3560
3561         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3562         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3563         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3564
3565         for_each_pipe(dev_priv, pipe)
3566                 if (intel_display_power_is_enabled(dev_priv,
3567                                 POWER_DOMAIN_PIPE(pipe)))
3568                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3569                                           dev_priv->de_irq_mask[pipe],
3570                                           de_pipe_enables);
3571
3572         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3573 }
3574
3575 static int gen8_irq_postinstall(struct drm_device *dev)
3576 {
3577         struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579         if (HAS_PCH_SPLIT(dev))
3580                 ibx_irq_pre_postinstall(dev);
3581
3582         gen8_gt_irq_postinstall(dev_priv);
3583         gen8_de_irq_postinstall(dev_priv);
3584
3585         if (HAS_PCH_SPLIT(dev))
3586                 ibx_irq_postinstall(dev);
3587
3588         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3589         POSTING_READ(GEN8_MASTER_IRQ);
3590
3591         return 0;
3592 }
3593
3594 static int cherryview_irq_postinstall(struct drm_device *dev)
3595 {
3596         struct drm_i915_private *dev_priv = dev->dev_private;
3597
3598         vlv_display_irq_postinstall(dev_priv);
3599
3600         gen8_gt_irq_postinstall(dev_priv);
3601
3602         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3603         POSTING_READ(GEN8_MASTER_IRQ);
3604
3605         return 0;
3606 }
3607
3608 static void gen8_irq_uninstall(struct drm_device *dev)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611
3612         if (!dev_priv)
3613                 return;
3614
3615         gen8_irq_reset(dev);
3616 }
3617
3618 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3619 {
3620         /* Interrupt setup is already guaranteed to be single-threaded, this is
3621          * just to make the assert_spin_locked check happy. */
3622         spin_lock_irq(&dev_priv->irq_lock);
3623         if (dev_priv->display_irqs_enabled)
3624                 valleyview_display_irqs_uninstall(dev_priv);
3625         spin_unlock_irq(&dev_priv->irq_lock);
3626
3627         vlv_display_irq_reset(dev_priv);
3628
3629         dev_priv->irq_mask = ~0;
3630 }
3631
3632 static void valleyview_irq_uninstall(struct drm_device *dev)
3633 {
3634         struct drm_i915_private *dev_priv = dev->dev_private;
3635
3636         if (!dev_priv)
3637                 return;
3638
3639         I915_WRITE(VLV_MASTER_IER, 0);
3640
3641         gen5_gt_irq_reset(dev);
3642
3643         I915_WRITE(HWSTAM, 0xffffffff);
3644
3645         vlv_display_irq_uninstall(dev_priv);
3646 }
3647
3648 static void cherryview_irq_uninstall(struct drm_device *dev)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652         if (!dev_priv)
3653                 return;
3654
3655         I915_WRITE(GEN8_MASTER_IRQ, 0);
3656         POSTING_READ(GEN8_MASTER_IRQ);
3657
3658         gen8_gt_irq_reset(dev_priv);
3659
3660         GEN5_IRQ_RESET(GEN8_PCU_);
3661
3662         vlv_display_irq_uninstall(dev_priv);
3663 }
3664
3665 static void ironlake_irq_uninstall(struct drm_device *dev)
3666 {
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668
3669         if (!dev_priv)
3670                 return;
3671
3672         ironlake_irq_reset(dev);
3673 }
3674
3675 static void i8xx_irq_preinstall(struct drm_device * dev)
3676 {
3677         struct drm_i915_private *dev_priv = dev->dev_private;
3678         int pipe;
3679
3680         for_each_pipe(dev_priv, pipe)
3681                 I915_WRITE(PIPESTAT(pipe), 0);
3682         I915_WRITE16(IMR, 0xffff);
3683         I915_WRITE16(IER, 0x0);
3684         POSTING_READ16(IER);
3685 }
3686
3687 static int i8xx_irq_postinstall(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691         I915_WRITE16(EMR,
3692                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3693
3694         /* Unmask the interrupts that we always want on. */
3695         dev_priv->irq_mask =
3696                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3697                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3698                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3699                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3700         I915_WRITE16(IMR, dev_priv->irq_mask);
3701
3702         I915_WRITE16(IER,
3703                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3704                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3705                      I915_USER_INTERRUPT);
3706         POSTING_READ16(IER);
3707
3708         /* Interrupt setup is already guaranteed to be single-threaded, this is
3709          * just to make the assert_spin_locked check happy. */
3710         spin_lock_irq(&dev_priv->irq_lock);
3711         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3712         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713         spin_unlock_irq(&dev_priv->irq_lock);
3714
3715         return 0;
3716 }
3717
3718 /*
3719  * Returns true when a page flip has completed.
3720  */
3721 static bool i8xx_handle_vblank(struct drm_device *dev,
3722                                int plane, int pipe, u32 iir)
3723 {
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3726
3727         if (!intel_pipe_handle_vblank(dev, pipe))
3728                 return false;
3729
3730         if ((iir & flip_pending) == 0)
3731                 goto check_page_flip;
3732
3733         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3734          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3735          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3736          * the flip is completed (no longer pending). Since this doesn't raise
3737          * an interrupt per se, we watch for the change at vblank.
3738          */
3739         if (I915_READ16(ISR) & flip_pending)
3740                 goto check_page_flip;
3741
3742         intel_prepare_page_flip(dev, plane);
3743         intel_finish_page_flip(dev, pipe);
3744         return true;
3745
3746 check_page_flip:
3747         intel_check_page_flip(dev, pipe);
3748         return false;
3749 }
3750
3751 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3752 {
3753         struct drm_device *dev = arg;
3754         struct drm_i915_private *dev_priv = dev->dev_private;
3755         u16 iir, new_iir;
3756         u32 pipe_stats[2];
3757         int pipe;
3758         u16 flip_mask =
3759                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3760                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3761
3762         if (!intel_irqs_enabled(dev_priv))
3763                 return IRQ_NONE;
3764
3765         iir = I915_READ16(IIR);
3766         if (iir == 0)
3767                 return IRQ_NONE;
3768
3769         while (iir & ~flip_mask) {
3770                 /* Can't rely on pipestat interrupt bit in iir as it might
3771                  * have been cleared after the pipestat interrupt was received.
3772                  * It doesn't set the bit in iir again, but it still produces
3773                  * interrupts (for non-MSI).
3774                  */
3775                 spin_lock(&dev_priv->irq_lock);
3776                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3777                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3778
3779                 for_each_pipe(dev_priv, pipe) {
3780                         int reg = PIPESTAT(pipe);
3781                         pipe_stats[pipe] = I915_READ(reg);
3782
3783                         /*
3784                          * Clear the PIPE*STAT regs before the IIR
3785                          */
3786                         if (pipe_stats[pipe] & 0x8000ffff)
3787                                 I915_WRITE(reg, pipe_stats[pipe]);
3788                 }
3789                 spin_unlock(&dev_priv->irq_lock);
3790
3791                 I915_WRITE16(IIR, iir & ~flip_mask);
3792                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3793
3794                 if (iir & I915_USER_INTERRUPT)
3795                         notify_ring(&dev_priv->ring[RCS]);
3796
3797                 for_each_pipe(dev_priv, pipe) {
3798                         int plane = pipe;
3799                         if (HAS_FBC(dev))
3800                                 plane = !plane;
3801
3802                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3803                             i8xx_handle_vblank(dev, plane, pipe, iir))
3804                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3805
3806                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3807                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3808
3809                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3810                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3811                                                                     pipe);
3812                 }
3813
3814                 iir = new_iir;
3815         }
3816
3817         return IRQ_HANDLED;
3818 }
3819
3820 static void i8xx_irq_uninstall(struct drm_device * dev)
3821 {
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823         int pipe;
3824
3825         for_each_pipe(dev_priv, pipe) {
3826                 /* Clear enable bits; then clear status bits */
3827                 I915_WRITE(PIPESTAT(pipe), 0);
3828                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3829         }
3830         I915_WRITE16(IMR, 0xffff);
3831         I915_WRITE16(IER, 0x0);
3832         I915_WRITE16(IIR, I915_READ16(IIR));
3833 }
3834
3835 static void i915_irq_preinstall(struct drm_device * dev)
3836 {
3837         struct drm_i915_private *dev_priv = dev->dev_private;
3838         int pipe;
3839
3840         if (I915_HAS_HOTPLUG(dev)) {
3841                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3842                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3843         }
3844
3845         I915_WRITE16(HWSTAM, 0xeffe);
3846         for_each_pipe(dev_priv, pipe)
3847                 I915_WRITE(PIPESTAT(pipe), 0);
3848         I915_WRITE(IMR, 0xffffffff);
3849         I915_WRITE(IER, 0x0);
3850         POSTING_READ(IER);
3851 }
3852
3853 static int i915_irq_postinstall(struct drm_device *dev)
3854 {
3855         struct drm_i915_private *dev_priv = dev->dev_private;
3856         u32 enable_mask;
3857
3858         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3859
3860         /* Unmask the interrupts that we always want on. */
3861         dev_priv->irq_mask =
3862                 ~(I915_ASLE_INTERRUPT |
3863                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3864                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3865                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3866                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3867
3868         enable_mask =
3869                 I915_ASLE_INTERRUPT |
3870                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3871                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3872                 I915_USER_INTERRUPT;
3873
3874         if (I915_HAS_HOTPLUG(dev)) {
3875                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3876                 POSTING_READ(PORT_HOTPLUG_EN);
3877
3878                 /* Enable in IER... */
3879                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3880                 /* and unmask in IMR */
3881                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3882         }
3883
3884         I915_WRITE(IMR, dev_priv->irq_mask);
3885         I915_WRITE(IER, enable_mask);
3886         POSTING_READ(IER);
3887
3888         i915_enable_asle_pipestat(dev);
3889
3890         /* Interrupt setup is already guaranteed to be single-threaded, this is
3891          * just to make the assert_spin_locked check happy. */
3892         spin_lock_irq(&dev_priv->irq_lock);
3893         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3894         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3895         spin_unlock_irq(&dev_priv->irq_lock);
3896
3897         return 0;
3898 }
3899
3900 /*
3901  * Returns true when a page flip has completed.
3902  */
3903 static bool i915_handle_vblank(struct drm_device *dev,
3904                                int plane, int pipe, u32 iir)
3905 {
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3908
3909         if (!intel_pipe_handle_vblank(dev, pipe))
3910                 return false;
3911
3912         if ((iir & flip_pending) == 0)
3913                 goto check_page_flip;
3914
3915         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3916          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3917          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3918          * the flip is completed (no longer pending). Since this doesn't raise
3919          * an interrupt per se, we watch for the change at vblank.
3920          */
3921         if (I915_READ(ISR) & flip_pending)
3922                 goto check_page_flip;
3923
3924         intel_prepare_page_flip(dev, plane);
3925         intel_finish_page_flip(dev, pipe);
3926         return true;
3927
3928 check_page_flip:
3929         intel_check_page_flip(dev, pipe);
3930         return false;
3931 }
3932
3933 static irqreturn_t i915_irq_handler(int irq, void *arg)
3934 {
3935         struct drm_device *dev = arg;
3936         struct drm_i915_private *dev_priv = dev->dev_private;
3937         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3938         u32 flip_mask =
3939                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3940                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3941         int pipe, ret = IRQ_NONE;
3942
3943         if (!intel_irqs_enabled(dev_priv))
3944                 return IRQ_NONE;
3945
3946         iir = I915_READ(IIR);
3947         do {
3948                 bool irq_received = (iir & ~flip_mask) != 0;
3949                 bool blc_event = false;
3950
3951                 /* Can't rely on pipestat interrupt bit in iir as it might
3952                  * have been cleared after the pipestat interrupt was received.
3953                  * It doesn't set the bit in iir again, but it still produces
3954                  * interrupts (for non-MSI).
3955                  */
3956                 spin_lock(&dev_priv->irq_lock);
3957                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3958                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3959
3960                 for_each_pipe(dev_priv, pipe) {
3961                         int reg = PIPESTAT(pipe);
3962                         pipe_stats[pipe] = I915_READ(reg);
3963
3964                         /* Clear the PIPE*STAT regs before the IIR */
3965                         if (pipe_stats[pipe] & 0x8000ffff) {
3966                                 I915_WRITE(reg, pipe_stats[pipe]);
3967                                 irq_received = true;
3968                         }
3969                 }
3970                 spin_unlock(&dev_priv->irq_lock);
3971
3972                 if (!irq_received)
3973                         break;
3974
3975                 /* Consume port.  Then clear IIR or we'll miss events */
3976                 if (I915_HAS_HOTPLUG(dev) &&
3977                     iir & I915_DISPLAY_PORT_INTERRUPT)
3978                         i9xx_hpd_irq_handler(dev);
3979
3980                 I915_WRITE(IIR, iir & ~flip_mask);
3981                 new_iir = I915_READ(IIR); /* Flush posted writes */
3982
3983                 if (iir & I915_USER_INTERRUPT)
3984                         notify_ring(&dev_priv->ring[RCS]);
3985
3986                 for_each_pipe(dev_priv, pipe) {
3987                         int plane = pipe;
3988                         if (HAS_FBC(dev))
3989                                 plane = !plane;
3990
3991                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3992                             i915_handle_vblank(dev, plane, pipe, iir))
3993                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3994
3995                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3996                                 blc_event = true;
3997
3998                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3999                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4000
4001                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4002                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4003                                                                     pipe);
4004                 }
4005
4006                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4007                         intel_opregion_asle_intr(dev);
4008
4009                 /* With MSI, interrupts are only generated when iir
4010                  * transitions from zero to nonzero.  If another bit got
4011                  * set while we were handling the existing iir bits, then
4012                  * we would never get another interrupt.
4013                  *
4014                  * This is fine on non-MSI as well, as if we hit this path
4015                  * we avoid exiting the interrupt handler only to generate
4016                  * another one.
4017                  *
4018                  * Note that for MSI this could cause a stray interrupt report
4019                  * if an interrupt landed in the time between writing IIR and
4020                  * the posting read.  This should be rare enough to never
4021                  * trigger the 99% of 100,000 interrupts test for disabling
4022                  * stray interrupts.
4023                  */
4024                 ret = IRQ_HANDLED;
4025                 iir = new_iir;
4026         } while (iir & ~flip_mask);
4027
4028         return ret;
4029 }
4030
4031 static void i915_irq_uninstall(struct drm_device * dev)
4032 {
4033         struct drm_i915_private *dev_priv = dev->dev_private;
4034         int pipe;
4035
4036         if (I915_HAS_HOTPLUG(dev)) {
4037                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4038                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039         }
4040
4041         I915_WRITE16(HWSTAM, 0xffff);
4042         for_each_pipe(dev_priv, pipe) {
4043                 /* Clear enable bits; then clear status bits */
4044                 I915_WRITE(PIPESTAT(pipe), 0);
4045                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4046         }
4047         I915_WRITE(IMR, 0xffffffff);
4048         I915_WRITE(IER, 0x0);
4049
4050         I915_WRITE(IIR, I915_READ(IIR));
4051 }
4052
4053 static void i965_irq_preinstall(struct drm_device * dev)
4054 {
4055         struct drm_i915_private *dev_priv = dev->dev_private;
4056         int pipe;
4057
4058         I915_WRITE(PORT_HOTPLUG_EN, 0);
4059         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4060
4061         I915_WRITE(HWSTAM, 0xeffe);
4062         for_each_pipe(dev_priv, pipe)
4063                 I915_WRITE(PIPESTAT(pipe), 0);
4064         I915_WRITE(IMR, 0xffffffff);
4065         I915_WRITE(IER, 0x0);
4066         POSTING_READ(IER);
4067 }
4068
4069 static int i965_irq_postinstall(struct drm_device *dev)
4070 {
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072         u32 enable_mask;
4073         u32 error_mask;
4074
4075         /* Unmask the interrupts that we always want on. */
4076         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4077                                I915_DISPLAY_PORT_INTERRUPT |
4078                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4079                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4080                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4081                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4082                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4083
4084         enable_mask = ~dev_priv->irq_mask;
4085         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4086                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4087         enable_mask |= I915_USER_INTERRUPT;
4088
4089         if (IS_G4X(dev))
4090                 enable_mask |= I915_BSD_USER_INTERRUPT;
4091
4092         /* Interrupt setup is already guaranteed to be single-threaded, this is
4093          * just to make the assert_spin_locked check happy. */
4094         spin_lock_irq(&dev_priv->irq_lock);
4095         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4096         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4098         spin_unlock_irq(&dev_priv->irq_lock);
4099
4100         /*
4101          * Enable some error detection, note the instruction error mask
4102          * bit is reserved, so we leave it masked.
4103          */
4104         if (IS_G4X(dev)) {
4105                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4106                                GM45_ERROR_MEM_PRIV |
4107                                GM45_ERROR_CP_PRIV |
4108                                I915_ERROR_MEMORY_REFRESH);
4109         } else {
4110                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4111                                I915_ERROR_MEMORY_REFRESH);
4112         }
4113         I915_WRITE(EMR, error_mask);
4114
4115         I915_WRITE(IMR, dev_priv->irq_mask);
4116         I915_WRITE(IER, enable_mask);
4117         POSTING_READ(IER);
4118
4119         I915_WRITE(PORT_HOTPLUG_EN, 0);
4120         POSTING_READ(PORT_HOTPLUG_EN);
4121
4122         i915_enable_asle_pipestat(dev);
4123
4124         return 0;
4125 }
4126
4127 static void i915_hpd_irq_setup(struct drm_device *dev)
4128 {
4129         struct drm_i915_private *dev_priv = dev->dev_private;
4130         struct intel_encoder *intel_encoder;
4131         u32 hotplug_en;
4132
4133         assert_spin_locked(&dev_priv->irq_lock);
4134
4135         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4136         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4137         /* Note HDMI and DP share hotplug bits */
4138         /* enable bits are the same for all generations */
4139         for_each_intel_encoder(dev, intel_encoder)
4140                 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4141                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4142         /* Programming the CRT detection parameters tends
4143            to generate a spurious hotplug event about three
4144            seconds later.  So just do it once.
4145         */
4146         if (IS_G4X(dev))
4147                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4148         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4149         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4150
4151         /* Ignore TV since it's buggy */
4152         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4153 }
4154
4155 static irqreturn_t i965_irq_handler(int irq, void *arg)
4156 {
4157         struct drm_device *dev = arg;
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159         u32 iir, new_iir;
4160         u32 pipe_stats[I915_MAX_PIPES];
4161         int ret = IRQ_NONE, pipe;
4162         u32 flip_mask =
4163                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4164                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4165
4166         if (!intel_irqs_enabled(dev_priv))
4167                 return IRQ_NONE;
4168
4169         iir = I915_READ(IIR);
4170
4171         for (;;) {
4172                 bool irq_received = (iir & ~flip_mask) != 0;
4173                 bool blc_event = false;
4174
4175                 /* Can't rely on pipestat interrupt bit in iir as it might
4176                  * have been cleared after the pipestat interrupt was received.
4177                  * It doesn't set the bit in iir again, but it still produces
4178                  * interrupts (for non-MSI).
4179                  */
4180                 spin_lock(&dev_priv->irq_lock);
4181                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4182                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4183
4184                 for_each_pipe(dev_priv, pipe) {
4185                         int reg = PIPESTAT(pipe);
4186                         pipe_stats[pipe] = I915_READ(reg);
4187
4188                         /*
4189                          * Clear the PIPE*STAT regs before the IIR
4190                          */
4191                         if (pipe_stats[pipe] & 0x8000ffff) {
4192                                 I915_WRITE(reg, pipe_stats[pipe]);
4193                                 irq_received = true;
4194                         }
4195                 }
4196                 spin_unlock(&dev_priv->irq_lock);
4197
4198                 if (!irq_received)
4199                         break;
4200
4201                 ret = IRQ_HANDLED;
4202
4203                 /* Consume port.  Then clear IIR or we'll miss events */
4204                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4205                         i9xx_hpd_irq_handler(dev);
4206
4207                 I915_WRITE(IIR, iir & ~flip_mask);
4208                 new_iir = I915_READ(IIR); /* Flush posted writes */
4209
4210                 if (iir & I915_USER_INTERRUPT)
4211                         notify_ring(&dev_priv->ring[RCS]);
4212                 if (iir & I915_BSD_USER_INTERRUPT)
4213                         notify_ring(&dev_priv->ring[VCS]);
4214
4215                 for_each_pipe(dev_priv, pipe) {
4216                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4217                             i915_handle_vblank(dev, pipe, pipe, iir))
4218                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4219
4220                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4221                                 blc_event = true;
4222
4223                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4224                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4225
4226                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4227                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4228                 }
4229
4230                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4231                         intel_opregion_asle_intr(dev);
4232
4233                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4234                         gmbus_irq_handler(dev);
4235
4236                 /* With MSI, interrupts are only generated when iir
4237                  * transitions from zero to nonzero.  If another bit got
4238                  * set while we were handling the existing iir bits, then
4239                  * we would never get another interrupt.
4240                  *
4241                  * This is fine on non-MSI as well, as if we hit this path
4242                  * we avoid exiting the interrupt handler only to generate
4243                  * another one.
4244                  *
4245                  * Note that for MSI this could cause a stray interrupt report
4246                  * if an interrupt landed in the time between writing IIR and
4247                  * the posting read.  This should be rare enough to never
4248                  * trigger the 99% of 100,000 interrupts test for disabling
4249                  * stray interrupts.
4250                  */
4251                 iir = new_iir;
4252         }
4253
4254         return ret;
4255 }
4256
4257 static void i965_irq_uninstall(struct drm_device * dev)
4258 {
4259         struct drm_i915_private *dev_priv = dev->dev_private;
4260         int pipe;
4261
4262         if (!dev_priv)
4263                 return;
4264
4265         I915_WRITE(PORT_HOTPLUG_EN, 0);
4266         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4267
4268         I915_WRITE(HWSTAM, 0xffffffff);
4269         for_each_pipe(dev_priv, pipe)
4270                 I915_WRITE(PIPESTAT(pipe), 0);
4271         I915_WRITE(IMR, 0xffffffff);
4272         I915_WRITE(IER, 0x0);
4273
4274         for_each_pipe(dev_priv, pipe)
4275                 I915_WRITE(PIPESTAT(pipe),
4276                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4277         I915_WRITE(IIR, I915_READ(IIR));
4278 }
4279
4280 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4281 {
4282         struct drm_i915_private *dev_priv =
4283                 container_of(work, typeof(*dev_priv),
4284                              hotplug_reenable_work.work);
4285         struct drm_device *dev = dev_priv->dev;
4286         struct drm_mode_config *mode_config = &dev->mode_config;
4287         int i;
4288
4289         intel_runtime_pm_get(dev_priv);
4290
4291         spin_lock_irq(&dev_priv->irq_lock);
4292         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4293                 struct drm_connector *connector;
4294
4295                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4296                         continue;
4297
4298                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4299
4300                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4301                         struct intel_connector *intel_connector = to_intel_connector(connector);
4302
4303                         if (intel_connector->encoder->hpd_pin == i) {
4304                                 if (connector->polled != intel_connector->polled)
4305                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4306                                                          connector->name);
4307                                 connector->polled = intel_connector->polled;
4308                                 if (!connector->polled)
4309                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4310                         }
4311                 }
4312         }
4313         if (dev_priv->display.hpd_irq_setup)
4314                 dev_priv->display.hpd_irq_setup(dev);
4315         spin_unlock_irq(&dev_priv->irq_lock);
4316
4317         intel_runtime_pm_put(dev_priv);
4318 }
4319
4320 /**
4321  * intel_irq_init - initializes irq support
4322  * @dev_priv: i915 device instance
4323  *
4324  * This function initializes all the irq support including work items, timers
4325  * and all the vtables. It does not setup the interrupt itself though.
4326  */
4327 void intel_irq_init(struct drm_i915_private *dev_priv)
4328 {
4329         struct drm_device *dev = dev_priv->dev;
4330
4331         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4332         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4333         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4334         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4335
4336         /* Let's track the enabled rps events */
4337         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4338                 /* WaGsvRC0ResidencyMethod:vlv */
4339                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4340         else
4341                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4342
4343         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4344                           i915_hangcheck_elapsed);
4345         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4346                           intel_hpd_irq_reenable_work);
4347
4348         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4349
4350         if (IS_GEN2(dev_priv)) {
4351                 dev->max_vblank_count = 0;
4352                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4353         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4354                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4355                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4356         } else {
4357                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4358                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4359         }
4360
4361         /*
4362          * Opt out of the vblank disable timer on everything except gen2.
4363          * Gen2 doesn't have a hardware frame counter and so depends on
4364          * vblank interrupts to produce sane vblank seuquence numbers.
4365          */
4366         if (!IS_GEN2(dev_priv))
4367                 dev->vblank_disable_immediate = true;
4368
4369         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4370         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4371
4372         if (IS_CHERRYVIEW(dev_priv)) {
4373                 dev->driver->irq_handler = cherryview_irq_handler;
4374                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4375                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4376                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4377                 dev->driver->enable_vblank = valleyview_enable_vblank;
4378                 dev->driver->disable_vblank = valleyview_disable_vblank;
4379                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4380         } else if (IS_VALLEYVIEW(dev_priv)) {
4381                 dev->driver->irq_handler = valleyview_irq_handler;
4382                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4383                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4384                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4385                 dev->driver->enable_vblank = valleyview_enable_vblank;
4386                 dev->driver->disable_vblank = valleyview_disable_vblank;
4387                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4388         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4389                 dev->driver->irq_handler = gen8_irq_handler;
4390                 dev->driver->irq_preinstall = gen8_irq_reset;
4391                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4392                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4393                 dev->driver->enable_vblank = gen8_enable_vblank;
4394                 dev->driver->disable_vblank = gen8_disable_vblank;
4395                 if (HAS_PCH_SPLIT(dev))
4396                         dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4397                 else
4398                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4399         } else if (HAS_PCH_SPLIT(dev)) {
4400                 dev->driver->irq_handler = ironlake_irq_handler;
4401                 dev->driver->irq_preinstall = ironlake_irq_reset;
4402                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4403                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4404                 dev->driver->enable_vblank = ironlake_enable_vblank;
4405                 dev->driver->disable_vblank = ironlake_disable_vblank;
4406                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4407         } else {
4408                 if (INTEL_INFO(dev_priv)->gen == 2) {
4409                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4410                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4411                         dev->driver->irq_handler = i8xx_irq_handler;
4412                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4413                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4414                         dev->driver->irq_preinstall = i915_irq_preinstall;
4415                         dev->driver->irq_postinstall = i915_irq_postinstall;
4416                         dev->driver->irq_uninstall = i915_irq_uninstall;
4417                         dev->driver->irq_handler = i915_irq_handler;
4418                 } else {
4419                         dev->driver->irq_preinstall = i965_irq_preinstall;
4420                         dev->driver->irq_postinstall = i965_irq_postinstall;
4421                         dev->driver->irq_uninstall = i965_irq_uninstall;
4422                         dev->driver->irq_handler = i965_irq_handler;
4423                 }
4424                 if (I915_HAS_HOTPLUG(dev_priv))
4425                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4426                 dev->driver->enable_vblank = i915_enable_vblank;
4427                 dev->driver->disable_vblank = i915_disable_vblank;
4428         }
4429 }
4430
4431 /**
4432  * intel_hpd_init - initializes and enables hpd support
4433  * @dev_priv: i915 device instance
4434  *
4435  * This function enables the hotplug support. It requires that interrupts have
4436  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4437  * poll request can run concurrently to other code, so locking rules must be
4438  * obeyed.
4439  *
4440  * This is a separate step from interrupt enabling to simplify the locking rules
4441  * in the driver load and resume code.
4442  */
4443 void intel_hpd_init(struct drm_i915_private *dev_priv)
4444 {
4445         struct drm_device *dev = dev_priv->dev;
4446         struct drm_mode_config *mode_config = &dev->mode_config;
4447         struct drm_connector *connector;
4448         int i;
4449
4450         for (i = 1; i < HPD_NUM_PINS; i++) {
4451                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4452                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4453         }
4454         list_for_each_entry(connector, &mode_config->connector_list, head) {
4455                 struct intel_connector *intel_connector = to_intel_connector(connector);
4456                 connector->polled = intel_connector->polled;
4457                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4458                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4459                 if (intel_connector->mst_port)
4460                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4461         }
4462
4463         /* Interrupt setup is already guaranteed to be single-threaded, this is
4464          * just to make the assert_spin_locked checks happy. */
4465         spin_lock_irq(&dev_priv->irq_lock);
4466         if (dev_priv->display.hpd_irq_setup)
4467                 dev_priv->display.hpd_irq_setup(dev);
4468         spin_unlock_irq(&dev_priv->irq_lock);
4469 }
4470
4471 /**
4472  * intel_irq_install - enables the hardware interrupt
4473  * @dev_priv: i915 device instance
4474  *
4475  * This function enables the hardware interrupt handling, but leaves the hotplug
4476  * handling still disabled. It is called after intel_irq_init().
4477  *
4478  * In the driver load and resume code we need working interrupts in a few places
4479  * but don't want to deal with the hassle of concurrent probe and hotplug
4480  * workers. Hence the split into this two-stage approach.
4481  */
4482 int intel_irq_install(struct drm_i915_private *dev_priv)
4483 {
4484         /*
4485          * We enable some interrupt sources in our postinstall hooks, so mark
4486          * interrupts as enabled _before_ actually enabling them to avoid
4487          * special cases in our ordering checks.
4488          */
4489         dev_priv->pm.irqs_enabled = true;
4490
4491         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4492 }
4493
4494 /**
4495  * intel_irq_uninstall - finilizes all irq handling
4496  * @dev_priv: i915 device instance
4497  *
4498  * This stops interrupt and hotplug handling and unregisters and frees all
4499  * resources acquired in the init functions.
4500  */
4501 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4502 {
4503         drm_irq_uninstall(dev_priv->dev);
4504         intel_hpd_cancel_work(dev_priv);
4505         dev_priv->pm.irqs_enabled = false;
4506 }
4507
4508 /**
4509  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4510  * @dev_priv: i915 device instance
4511  *
4512  * This function is used to disable interrupts at runtime, both in the runtime
4513  * pm and the system suspend/resume code.
4514  */
4515 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4516 {
4517         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4518         dev_priv->pm.irqs_enabled = false;
4519         synchronize_irq(dev_priv->dev->irq);
4520 }
4521
4522 /**
4523  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4524  * @dev_priv: i915 device instance
4525  *
4526  * This function is used to enable interrupts at runtime, both in the runtime
4527  * pm and the system suspend/resume code.
4528  */
4529 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4530 {
4531         dev_priv->pm.irqs_enabled = true;
4532         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4533         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4534 }