Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->pin_display)
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124         struct intel_engine_cs *ring;
125         struct i915_vma *vma;
126         int pin_count = 0;
127         int i;
128
129         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
130                    &obj->base,
131                    obj->active ? "*" : " ",
132                    get_pin_flag(obj),
133                    get_tiling_flag(obj),
134                    get_global_flag(obj),
135                    obj->base.size / 1024,
136                    obj->base.read_domains,
137                    obj->base.write_domain);
138         for_each_ring(ring, dev_priv, i)
139                 seq_printf(m, "%x ",
140                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
141         seq_printf(m, "] %x %x%s%s%s",
142                    i915_gem_request_get_seqno(obj->last_write_req),
143                    i915_gem_request_get_seqno(obj->last_fenced_req),
144                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
145                    obj->dirty ? " dirty" : "",
146                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
147         if (obj->base.name)
148                 seq_printf(m, " (name: %d)", obj->base.name);
149         list_for_each_entry(vma, &obj->vma_list, vma_link) {
150                 if (vma->pin_count > 0)
151                         pin_count++;
152         }
153         seq_printf(m, " (pinned x %d)", pin_count);
154         if (obj->pin_display)
155                 seq_printf(m, " (display)");
156         if (obj->fence_reg != I915_FENCE_REG_NONE)
157                 seq_printf(m, " (fence: %d)", obj->fence_reg);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (!i915_is_ggtt(vma->vm))
160                         seq_puts(m, " (pp");
161                 else
162                         seq_puts(m, " (g");
163                 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
164                            vma->node.start, vma->node.size,
165                            vma->ggtt_view.type);
166         }
167         if (obj->stolen)
168                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
169         if (obj->pin_display || obj->fault_mappable) {
170                 char s[3], *t = s;
171                 if (obj->pin_display)
172                         *t++ = 'p';
173                 if (obj->fault_mappable)
174                         *t++ = 'f';
175                 *t = '\0';
176                 seq_printf(m, " (%s mappable)", s);
177         }
178         if (obj->last_write_req != NULL)
179                 seq_printf(m, " (%s)",
180                            i915_gem_request_get_ring(obj->last_write_req)->name);
181         if (obj->frontbuffer_bits)
182                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
183 }
184
185 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
186 {
187         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
188         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
189         seq_putc(m, ' ');
190 }
191
192 static int i915_gem_object_list_info(struct seq_file *m, void *data)
193 {
194         struct drm_info_node *node = m->private;
195         uintptr_t list = (uintptr_t) node->info_ent->data;
196         struct list_head *head;
197         struct drm_device *dev = node->minor->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct i915_address_space *vm = &dev_priv->gtt.base;
200         struct i915_vma *vma;
201         size_t total_obj_size, total_gtt_size;
202         int count, ret;
203
204         ret = mutex_lock_interruptible(&dev->struct_mutex);
205         if (ret)
206                 return ret;
207
208         /* FIXME: the user of this interface might want more than just GGTT */
209         switch (list) {
210         case ACTIVE_LIST:
211                 seq_puts(m, "Active:\n");
212                 head = &vm->active_list;
213                 break;
214         case INACTIVE_LIST:
215                 seq_puts(m, "Inactive:\n");
216                 head = &vm->inactive_list;
217                 break;
218         default:
219                 mutex_unlock(&dev->struct_mutex);
220                 return -EINVAL;
221         }
222
223         total_obj_size = total_gtt_size = count = 0;
224         list_for_each_entry(vma, head, mm_list) {
225                 seq_printf(m, "   ");
226                 describe_obj(m, vma->obj);
227                 seq_printf(m, "\n");
228                 total_obj_size += vma->obj->base.size;
229                 total_gtt_size += vma->node.size;
230                 count++;
231         }
232         mutex_unlock(&dev->struct_mutex);
233
234         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
235                    count, total_obj_size, total_gtt_size);
236         return 0;
237 }
238
239 static int obj_rank_by_stolen(void *priv,
240                               struct list_head *A, struct list_head *B)
241 {
242         struct drm_i915_gem_object *a =
243                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
244         struct drm_i915_gem_object *b =
245                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
246
247         return a->stolen->start - b->stolen->start;
248 }
249
250 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
251 {
252         struct drm_info_node *node = m->private;
253         struct drm_device *dev = node->minor->dev;
254         struct drm_i915_private *dev_priv = dev->dev_private;
255         struct drm_i915_gem_object *obj;
256         size_t total_obj_size, total_gtt_size;
257         LIST_HEAD(stolen);
258         int count, ret;
259
260         ret = mutex_lock_interruptible(&dev->struct_mutex);
261         if (ret)
262                 return ret;
263
264         total_obj_size = total_gtt_size = count = 0;
265         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
266                 if (obj->stolen == NULL)
267                         continue;
268
269                 list_add(&obj->obj_exec_link, &stolen);
270
271                 total_obj_size += obj->base.size;
272                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
273                 count++;
274         }
275         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
276                 if (obj->stolen == NULL)
277                         continue;
278
279                 list_add(&obj->obj_exec_link, &stolen);
280
281                 total_obj_size += obj->base.size;
282                 count++;
283         }
284         list_sort(NULL, &stolen, obj_rank_by_stolen);
285         seq_puts(m, "Stolen:\n");
286         while (!list_empty(&stolen)) {
287                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
288                 seq_puts(m, "   ");
289                 describe_obj(m, obj);
290                 seq_putc(m, '\n');
291                 list_del_init(&obj->obj_exec_link);
292         }
293         mutex_unlock(&dev->struct_mutex);
294
295         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
296                    count, total_obj_size, total_gtt_size);
297         return 0;
298 }
299
300 #define count_objects(list, member) do { \
301         list_for_each_entry(obj, list, member) { \
302                 size += i915_gem_obj_ggtt_size(obj); \
303                 ++count; \
304                 if (obj->map_and_fenceable) { \
305                         mappable_size += i915_gem_obj_ggtt_size(obj); \
306                         ++mappable_count; \
307                 } \
308         } \
309 } while (0)
310
311 struct file_stats {
312         struct drm_i915_file_private *file_priv;
313         int count;
314         size_t total, unbound;
315         size_t global, shared;
316         size_t active, inactive;
317 };
318
319 static int per_file_stats(int id, void *ptr, void *data)
320 {
321         struct drm_i915_gem_object *obj = ptr;
322         struct file_stats *stats = data;
323         struct i915_vma *vma;
324
325         stats->count++;
326         stats->total += obj->base.size;
327
328         if (obj->base.name || obj->base.dma_buf)
329                 stats->shared += obj->base.size;
330
331         if (USES_FULL_PPGTT(obj->base.dev)) {
332                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
333                         struct i915_hw_ppgtt *ppgtt;
334
335                         if (!drm_mm_node_allocated(&vma->node))
336                                 continue;
337
338                         if (i915_is_ggtt(vma->vm)) {
339                                 stats->global += obj->base.size;
340                                 continue;
341                         }
342
343                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
344                         if (ppgtt->file_priv != stats->file_priv)
345                                 continue;
346
347                         if (obj->active) /* XXX per-vma statistic */
348                                 stats->active += obj->base.size;
349                         else
350                                 stats->inactive += obj->base.size;
351
352                         return 0;
353                 }
354         } else {
355                 if (i915_gem_obj_ggtt_bound(obj)) {
356                         stats->global += obj->base.size;
357                         if (obj->active)
358                                 stats->active += obj->base.size;
359                         else
360                                 stats->inactive += obj->base.size;
361                         return 0;
362                 }
363         }
364
365         if (!list_empty(&obj->global_list))
366                 stats->unbound += obj->base.size;
367
368         return 0;
369 }
370
371 #define print_file_stats(m, name, stats) do { \
372         if (stats.count) \
373                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
374                            name, \
375                            stats.count, \
376                            stats.total, \
377                            stats.active, \
378                            stats.inactive, \
379                            stats.global, \
380                            stats.shared, \
381                            stats.unbound); \
382 } while (0)
383
384 static void print_batch_pool_stats(struct seq_file *m,
385                                    struct drm_i915_private *dev_priv)
386 {
387         struct drm_i915_gem_object *obj;
388         struct file_stats stats;
389         struct intel_engine_cs *ring;
390         int i, j;
391
392         memset(&stats, 0, sizeof(stats));
393
394         for_each_ring(ring, dev_priv, i) {
395                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
396                         list_for_each_entry(obj,
397                                             &ring->batch_pool.cache_list[j],
398                                             batch_pool_link)
399                                 per_file_stats(0, obj, &stats);
400                 }
401         }
402
403         print_file_stats(m, "[k]batch pool", stats);
404 }
405
406 #define count_vmas(list, member) do { \
407         list_for_each_entry(vma, list, member) { \
408                 size += i915_gem_obj_ggtt_size(vma->obj); \
409                 ++count; \
410                 if (vma->obj->map_and_fenceable) { \
411                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
412                         ++mappable_count; \
413                 } \
414         } \
415 } while (0)
416
417 static int i915_gem_object_info(struct seq_file *m, void* data)
418 {
419         struct drm_info_node *node = m->private;
420         struct drm_device *dev = node->minor->dev;
421         struct drm_i915_private *dev_priv = dev->dev_private;
422         u32 count, mappable_count, purgeable_count;
423         size_t size, mappable_size, purgeable_size;
424         struct drm_i915_gem_object *obj;
425         struct i915_address_space *vm = &dev_priv->gtt.base;
426         struct drm_file *file;
427         struct i915_vma *vma;
428         int ret;
429
430         ret = mutex_lock_interruptible(&dev->struct_mutex);
431         if (ret)
432                 return ret;
433
434         seq_printf(m, "%u objects, %zu bytes\n",
435                    dev_priv->mm.object_count,
436                    dev_priv->mm.object_memory);
437
438         size = count = mappable_size = mappable_count = 0;
439         count_objects(&dev_priv->mm.bound_list, global_list);
440         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
441                    count, mappable_count, size, mappable_size);
442
443         size = count = mappable_size = mappable_count = 0;
444         count_vmas(&vm->active_list, mm_list);
445         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
446                    count, mappable_count, size, mappable_size);
447
448         size = count = mappable_size = mappable_count = 0;
449         count_vmas(&vm->inactive_list, mm_list);
450         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
451                    count, mappable_count, size, mappable_size);
452
453         size = count = purgeable_size = purgeable_count = 0;
454         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
455                 size += obj->base.size, ++count;
456                 if (obj->madv == I915_MADV_DONTNEED)
457                         purgeable_size += obj->base.size, ++purgeable_count;
458         }
459         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
460
461         size = count = mappable_size = mappable_count = 0;
462         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
463                 if (obj->fault_mappable) {
464                         size += i915_gem_obj_ggtt_size(obj);
465                         ++count;
466                 }
467                 if (obj->pin_display) {
468                         mappable_size += i915_gem_obj_ggtt_size(obj);
469                         ++mappable_count;
470                 }
471                 if (obj->madv == I915_MADV_DONTNEED) {
472                         purgeable_size += obj->base.size;
473                         ++purgeable_count;
474                 }
475         }
476         seq_printf(m, "%u purgeable objects, %zu bytes\n",
477                    purgeable_count, purgeable_size);
478         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
479                    mappable_count, mappable_size);
480         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
481                    count, size);
482
483         seq_printf(m, "%zu [%lu] gtt total\n",
484                    dev_priv->gtt.base.total,
485                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
486
487         seq_putc(m, '\n');
488         print_batch_pool_stats(m, dev_priv);
489         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
490                 struct file_stats stats;
491                 struct task_struct *task;
492
493                 memset(&stats, 0, sizeof(stats));
494                 stats.file_priv = file->driver_priv;
495                 spin_lock(&file->table_lock);
496                 idr_for_each(&file->object_idr, per_file_stats, &stats);
497                 spin_unlock(&file->table_lock);
498                 /*
499                  * Although we have a valid reference on file->pid, that does
500                  * not guarantee that the task_struct who called get_pid() is
501                  * still alive (e.g. get_pid(current) => fork() => exit()).
502                  * Therefore, we need to protect this ->comm access using RCU.
503                  */
504                 rcu_read_lock();
505                 task = pid_task(file->pid, PIDTYPE_PID);
506                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
507                 rcu_read_unlock();
508         }
509
510         mutex_unlock(&dev->struct_mutex);
511
512         return 0;
513 }
514
515 static int i915_gem_gtt_info(struct seq_file *m, void *data)
516 {
517         struct drm_info_node *node = m->private;
518         struct drm_device *dev = node->minor->dev;
519         uintptr_t list = (uintptr_t) node->info_ent->data;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         struct drm_i915_gem_object *obj;
522         size_t total_obj_size, total_gtt_size;
523         int count, ret;
524
525         ret = mutex_lock_interruptible(&dev->struct_mutex);
526         if (ret)
527                 return ret;
528
529         total_obj_size = total_gtt_size = count = 0;
530         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
531                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
532                         continue;
533
534                 seq_puts(m, "   ");
535                 describe_obj(m, obj);
536                 seq_putc(m, '\n');
537                 total_obj_size += obj->base.size;
538                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
539                 count++;
540         }
541
542         mutex_unlock(&dev->struct_mutex);
543
544         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
545                    count, total_obj_size, total_gtt_size);
546
547         return 0;
548 }
549
550 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
551 {
552         struct drm_info_node *node = m->private;
553         struct drm_device *dev = node->minor->dev;
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct intel_crtc *crtc;
556         int ret;
557
558         ret = mutex_lock_interruptible(&dev->struct_mutex);
559         if (ret)
560                 return ret;
561
562         for_each_intel_crtc(dev, crtc) {
563                 const char pipe = pipe_name(crtc->pipe);
564                 const char plane = plane_name(crtc->plane);
565                 struct intel_unpin_work *work;
566
567                 spin_lock_irq(&dev->event_lock);
568                 work = crtc->unpin_work;
569                 if (work == NULL) {
570                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
571                                    pipe, plane);
572                 } else {
573                         u32 addr;
574
575                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
576                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
577                                            pipe, plane);
578                         } else {
579                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
580                                            pipe, plane);
581                         }
582                         if (work->flip_queued_req) {
583                                 struct intel_engine_cs *ring =
584                                         i915_gem_request_get_ring(work->flip_queued_req);
585
586                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
587                                            ring->name,
588                                            i915_gem_request_get_seqno(work->flip_queued_req),
589                                            dev_priv->next_seqno,
590                                            ring->get_seqno(ring, true),
591                                            i915_gem_request_completed(work->flip_queued_req, true));
592                         } else
593                                 seq_printf(m, "Flip not associated with any ring\n");
594                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
595                                    work->flip_queued_vblank,
596                                    work->flip_ready_vblank,
597                                    drm_crtc_vblank_count(&crtc->base));
598                         if (work->enable_stall_check)
599                                 seq_puts(m, "Stall check enabled, ");
600                         else
601                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
602                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
603
604                         if (INTEL_INFO(dev)->gen >= 4)
605                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
606                         else
607                                 addr = I915_READ(DSPADDR(crtc->plane));
608                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
609
610                         if (work->pending_flip_obj) {
611                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
612                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
613                         }
614                 }
615                 spin_unlock_irq(&dev->event_lock);
616         }
617
618         mutex_unlock(&dev->struct_mutex);
619
620         return 0;
621 }
622
623 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
624 {
625         struct drm_info_node *node = m->private;
626         struct drm_device *dev = node->minor->dev;
627         struct drm_i915_private *dev_priv = dev->dev_private;
628         struct drm_i915_gem_object *obj;
629         struct intel_engine_cs *ring;
630         int total = 0;
631         int ret, i, j;
632
633         ret = mutex_lock_interruptible(&dev->struct_mutex);
634         if (ret)
635                 return ret;
636
637         for_each_ring(ring, dev_priv, i) {
638                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
639                         int count;
640
641                         count = 0;
642                         list_for_each_entry(obj,
643                                             &ring->batch_pool.cache_list[j],
644                                             batch_pool_link)
645                                 count++;
646                         seq_printf(m, "%s cache[%d]: %d objects\n",
647                                    ring->name, j, count);
648
649                         list_for_each_entry(obj,
650                                             &ring->batch_pool.cache_list[j],
651                                             batch_pool_link) {
652                                 seq_puts(m, "   ");
653                                 describe_obj(m, obj);
654                                 seq_putc(m, '\n');
655                         }
656
657                         total += count;
658                 }
659         }
660
661         seq_printf(m, "total: %d\n", total);
662
663         mutex_unlock(&dev->struct_mutex);
664
665         return 0;
666 }
667
668 static int i915_gem_request_info(struct seq_file *m, void *data)
669 {
670         struct drm_info_node *node = m->private;
671         struct drm_device *dev = node->minor->dev;
672         struct drm_i915_private *dev_priv = dev->dev_private;
673         struct intel_engine_cs *ring;
674         struct drm_i915_gem_request *req;
675         int ret, any, i;
676
677         ret = mutex_lock_interruptible(&dev->struct_mutex);
678         if (ret)
679                 return ret;
680
681         any = 0;
682         for_each_ring(ring, dev_priv, i) {
683                 int count;
684
685                 count = 0;
686                 list_for_each_entry(req, &ring->request_list, list)
687                         count++;
688                 if (count == 0)
689                         continue;
690
691                 seq_printf(m, "%s requests: %d\n", ring->name, count);
692                 list_for_each_entry(req, &ring->request_list, list) {
693                         struct task_struct *task;
694
695                         rcu_read_lock();
696                         task = NULL;
697                         if (req->pid)
698                                 task = pid_task(req->pid, PIDTYPE_PID);
699                         seq_printf(m, "    %x @ %d: %s [%d]\n",
700                                    req->seqno,
701                                    (int) (jiffies - req->emitted_jiffies),
702                                    task ? task->comm : "<unknown>",
703                                    task ? task->pid : -1);
704                         rcu_read_unlock();
705                 }
706
707                 any++;
708         }
709         mutex_unlock(&dev->struct_mutex);
710
711         if (any == 0)
712                 seq_puts(m, "No requests\n");
713
714         return 0;
715 }
716
717 static void i915_ring_seqno_info(struct seq_file *m,
718                                  struct intel_engine_cs *ring)
719 {
720         if (ring->get_seqno) {
721                 seq_printf(m, "Current sequence (%s): %x\n",
722                            ring->name, ring->get_seqno(ring, false));
723         }
724 }
725
726 static int i915_gem_seqno_info(struct seq_file *m, void *data)
727 {
728         struct drm_info_node *node = m->private;
729         struct drm_device *dev = node->minor->dev;
730         struct drm_i915_private *dev_priv = dev->dev_private;
731         struct intel_engine_cs *ring;
732         int ret, i;
733
734         ret = mutex_lock_interruptible(&dev->struct_mutex);
735         if (ret)
736                 return ret;
737         intel_runtime_pm_get(dev_priv);
738
739         for_each_ring(ring, dev_priv, i)
740                 i915_ring_seqno_info(m, ring);
741
742         intel_runtime_pm_put(dev_priv);
743         mutex_unlock(&dev->struct_mutex);
744
745         return 0;
746 }
747
748
749 static int i915_interrupt_info(struct seq_file *m, void *data)
750 {
751         struct drm_info_node *node = m->private;
752         struct drm_device *dev = node->minor->dev;
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         struct intel_engine_cs *ring;
755         int ret, i, pipe;
756
757         ret = mutex_lock_interruptible(&dev->struct_mutex);
758         if (ret)
759                 return ret;
760         intel_runtime_pm_get(dev_priv);
761
762         if (IS_CHERRYVIEW(dev)) {
763                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
764                            I915_READ(GEN8_MASTER_IRQ));
765
766                 seq_printf(m, "Display IER:\t%08x\n",
767                            I915_READ(VLV_IER));
768                 seq_printf(m, "Display IIR:\t%08x\n",
769                            I915_READ(VLV_IIR));
770                 seq_printf(m, "Display IIR_RW:\t%08x\n",
771                            I915_READ(VLV_IIR_RW));
772                 seq_printf(m, "Display IMR:\t%08x\n",
773                            I915_READ(VLV_IMR));
774                 for_each_pipe(dev_priv, pipe)
775                         seq_printf(m, "Pipe %c stat:\t%08x\n",
776                                    pipe_name(pipe),
777                                    I915_READ(PIPESTAT(pipe)));
778
779                 seq_printf(m, "Port hotplug:\t%08x\n",
780                            I915_READ(PORT_HOTPLUG_EN));
781                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
782                            I915_READ(VLV_DPFLIPSTAT));
783                 seq_printf(m, "DPINVGTT:\t%08x\n",
784                            I915_READ(DPINVGTT));
785
786                 for (i = 0; i < 4; i++) {
787                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
788                                    i, I915_READ(GEN8_GT_IMR(i)));
789                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
790                                    i, I915_READ(GEN8_GT_IIR(i)));
791                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
792                                    i, I915_READ(GEN8_GT_IER(i)));
793                 }
794
795                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
796                            I915_READ(GEN8_PCU_IMR));
797                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
798                            I915_READ(GEN8_PCU_IIR));
799                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
800                            I915_READ(GEN8_PCU_IER));
801         } else if (INTEL_INFO(dev)->gen >= 8) {
802                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
803                            I915_READ(GEN8_MASTER_IRQ));
804
805                 for (i = 0; i < 4; i++) {
806                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
807                                    i, I915_READ(GEN8_GT_IMR(i)));
808                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
809                                    i, I915_READ(GEN8_GT_IIR(i)));
810                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
811                                    i, I915_READ(GEN8_GT_IER(i)));
812                 }
813
814                 for_each_pipe(dev_priv, pipe) {
815                         if (!intel_display_power_is_enabled(dev_priv,
816                                                 POWER_DOMAIN_PIPE(pipe))) {
817                                 seq_printf(m, "Pipe %c power disabled\n",
818                                            pipe_name(pipe));
819                                 continue;
820                         }
821                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
822                                    pipe_name(pipe),
823                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
824                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
825                                    pipe_name(pipe),
826                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
827                         seq_printf(m, "Pipe %c IER:\t%08x\n",
828                                    pipe_name(pipe),
829                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
830                 }
831
832                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
833                            I915_READ(GEN8_DE_PORT_IMR));
834                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
835                            I915_READ(GEN8_DE_PORT_IIR));
836                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
837                            I915_READ(GEN8_DE_PORT_IER));
838
839                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
840                            I915_READ(GEN8_DE_MISC_IMR));
841                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
842                            I915_READ(GEN8_DE_MISC_IIR));
843                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
844                            I915_READ(GEN8_DE_MISC_IER));
845
846                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
847                            I915_READ(GEN8_PCU_IMR));
848                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
849                            I915_READ(GEN8_PCU_IIR));
850                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
851                            I915_READ(GEN8_PCU_IER));
852         } else if (IS_VALLEYVIEW(dev)) {
853                 seq_printf(m, "Display IER:\t%08x\n",
854                            I915_READ(VLV_IER));
855                 seq_printf(m, "Display IIR:\t%08x\n",
856                            I915_READ(VLV_IIR));
857                 seq_printf(m, "Display IIR_RW:\t%08x\n",
858                            I915_READ(VLV_IIR_RW));
859                 seq_printf(m, "Display IMR:\t%08x\n",
860                            I915_READ(VLV_IMR));
861                 for_each_pipe(dev_priv, pipe)
862                         seq_printf(m, "Pipe %c stat:\t%08x\n",
863                                    pipe_name(pipe),
864                                    I915_READ(PIPESTAT(pipe)));
865
866                 seq_printf(m, "Master IER:\t%08x\n",
867                            I915_READ(VLV_MASTER_IER));
868
869                 seq_printf(m, "Render IER:\t%08x\n",
870                            I915_READ(GTIER));
871                 seq_printf(m, "Render IIR:\t%08x\n",
872                            I915_READ(GTIIR));
873                 seq_printf(m, "Render IMR:\t%08x\n",
874                            I915_READ(GTIMR));
875
876                 seq_printf(m, "PM IER:\t\t%08x\n",
877                            I915_READ(GEN6_PMIER));
878                 seq_printf(m, "PM IIR:\t\t%08x\n",
879                            I915_READ(GEN6_PMIIR));
880                 seq_printf(m, "PM IMR:\t\t%08x\n",
881                            I915_READ(GEN6_PMIMR));
882
883                 seq_printf(m, "Port hotplug:\t%08x\n",
884                            I915_READ(PORT_HOTPLUG_EN));
885                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
886                            I915_READ(VLV_DPFLIPSTAT));
887                 seq_printf(m, "DPINVGTT:\t%08x\n",
888                            I915_READ(DPINVGTT));
889
890         } else if (!HAS_PCH_SPLIT(dev)) {
891                 seq_printf(m, "Interrupt enable:    %08x\n",
892                            I915_READ(IER));
893                 seq_printf(m, "Interrupt identity:  %08x\n",
894                            I915_READ(IIR));
895                 seq_printf(m, "Interrupt mask:      %08x\n",
896                            I915_READ(IMR));
897                 for_each_pipe(dev_priv, pipe)
898                         seq_printf(m, "Pipe %c stat:         %08x\n",
899                                    pipe_name(pipe),
900                                    I915_READ(PIPESTAT(pipe)));
901         } else {
902                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
903                            I915_READ(DEIER));
904                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
905                            I915_READ(DEIIR));
906                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
907                            I915_READ(DEIMR));
908                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
909                            I915_READ(SDEIER));
910                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
911                            I915_READ(SDEIIR));
912                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
913                            I915_READ(SDEIMR));
914                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
915                            I915_READ(GTIER));
916                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
917                            I915_READ(GTIIR));
918                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
919                            I915_READ(GTIMR));
920         }
921         for_each_ring(ring, dev_priv, i) {
922                 if (INTEL_INFO(dev)->gen >= 6) {
923                         seq_printf(m,
924                                    "Graphics Interrupt mask (%s):       %08x\n",
925                                    ring->name, I915_READ_IMR(ring));
926                 }
927                 i915_ring_seqno_info(m, ring);
928         }
929         intel_runtime_pm_put(dev_priv);
930         mutex_unlock(&dev->struct_mutex);
931
932         return 0;
933 }
934
935 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
936 {
937         struct drm_info_node *node = m->private;
938         struct drm_device *dev = node->minor->dev;
939         struct drm_i915_private *dev_priv = dev->dev_private;
940         int i, ret;
941
942         ret = mutex_lock_interruptible(&dev->struct_mutex);
943         if (ret)
944                 return ret;
945
946         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
947         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
948         for (i = 0; i < dev_priv->num_fence_regs; i++) {
949                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
950
951                 seq_printf(m, "Fence %d, pin count = %d, object = ",
952                            i, dev_priv->fence_regs[i].pin_count);
953                 if (obj == NULL)
954                         seq_puts(m, "unused");
955                 else
956                         describe_obj(m, obj);
957                 seq_putc(m, '\n');
958         }
959
960         mutex_unlock(&dev->struct_mutex);
961         return 0;
962 }
963
964 static int i915_hws_info(struct seq_file *m, void *data)
965 {
966         struct drm_info_node *node = m->private;
967         struct drm_device *dev = node->minor->dev;
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         struct intel_engine_cs *ring;
970         const u32 *hws;
971         int i;
972
973         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
974         hws = ring->status_page.page_addr;
975         if (hws == NULL)
976                 return 0;
977
978         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
979                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
980                            i * 4,
981                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
982         }
983         return 0;
984 }
985
986 static ssize_t
987 i915_error_state_write(struct file *filp,
988                        const char __user *ubuf,
989                        size_t cnt,
990                        loff_t *ppos)
991 {
992         struct i915_error_state_file_priv *error_priv = filp->private_data;
993         struct drm_device *dev = error_priv->dev;
994         int ret;
995
996         DRM_DEBUG_DRIVER("Resetting error state\n");
997
998         ret = mutex_lock_interruptible(&dev->struct_mutex);
999         if (ret)
1000                 return ret;
1001
1002         i915_destroy_error_state(dev);
1003         mutex_unlock(&dev->struct_mutex);
1004
1005         return cnt;
1006 }
1007
1008 static int i915_error_state_open(struct inode *inode, struct file *file)
1009 {
1010         struct drm_device *dev = inode->i_private;
1011         struct i915_error_state_file_priv *error_priv;
1012
1013         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1014         if (!error_priv)
1015                 return -ENOMEM;
1016
1017         error_priv->dev = dev;
1018
1019         i915_error_state_get(dev, error_priv);
1020
1021         file->private_data = error_priv;
1022
1023         return 0;
1024 }
1025
1026 static int i915_error_state_release(struct inode *inode, struct file *file)
1027 {
1028         struct i915_error_state_file_priv *error_priv = file->private_data;
1029
1030         i915_error_state_put(error_priv);
1031         kfree(error_priv);
1032
1033         return 0;
1034 }
1035
1036 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1037                                      size_t count, loff_t *pos)
1038 {
1039         struct i915_error_state_file_priv *error_priv = file->private_data;
1040         struct drm_i915_error_state_buf error_str;
1041         loff_t tmp_pos = 0;
1042         ssize_t ret_count = 0;
1043         int ret;
1044
1045         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1046         if (ret)
1047                 return ret;
1048
1049         ret = i915_error_state_to_str(&error_str, error_priv);
1050         if (ret)
1051                 goto out;
1052
1053         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1054                                             error_str.buf,
1055                                             error_str.bytes);
1056
1057         if (ret_count < 0)
1058                 ret = ret_count;
1059         else
1060                 *pos = error_str.start + ret_count;
1061 out:
1062         i915_error_state_buf_release(&error_str);
1063         return ret ?: ret_count;
1064 }
1065
1066 static const struct file_operations i915_error_state_fops = {
1067         .owner = THIS_MODULE,
1068         .open = i915_error_state_open,
1069         .read = i915_error_state_read,
1070         .write = i915_error_state_write,
1071         .llseek = default_llseek,
1072         .release = i915_error_state_release,
1073 };
1074
1075 static int
1076 i915_next_seqno_get(void *data, u64 *val)
1077 {
1078         struct drm_device *dev = data;
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         int ret;
1081
1082         ret = mutex_lock_interruptible(&dev->struct_mutex);
1083         if (ret)
1084                 return ret;
1085
1086         *val = dev_priv->next_seqno;
1087         mutex_unlock(&dev->struct_mutex);
1088
1089         return 0;
1090 }
1091
1092 static int
1093 i915_next_seqno_set(void *data, u64 val)
1094 {
1095         struct drm_device *dev = data;
1096         int ret;
1097
1098         ret = mutex_lock_interruptible(&dev->struct_mutex);
1099         if (ret)
1100                 return ret;
1101
1102         ret = i915_gem_set_seqno(dev, val);
1103         mutex_unlock(&dev->struct_mutex);
1104
1105         return ret;
1106 }
1107
1108 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1109                         i915_next_seqno_get, i915_next_seqno_set,
1110                         "0x%llx\n");
1111
1112 static int i915_frequency_info(struct seq_file *m, void *unused)
1113 {
1114         struct drm_info_node *node = m->private;
1115         struct drm_device *dev = node->minor->dev;
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         int ret = 0;
1118
1119         intel_runtime_pm_get(dev_priv);
1120
1121         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1122
1123         if (IS_GEN5(dev)) {
1124                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1125                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1126
1127                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1128                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1129                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1130                            MEMSTAT_VID_SHIFT);
1131                 seq_printf(m, "Current P-state: %d\n",
1132                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1133         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1134                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1135                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1136                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1137                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1138                 u32 rpmodectl, rpinclimit, rpdeclimit;
1139                 u32 rpstat, cagf, reqf;
1140                 u32 rpupei, rpcurup, rpprevup;
1141                 u32 rpdownei, rpcurdown, rpprevdown;
1142                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143                 int max_freq;
1144
1145                 /* RPSTAT1 is in the GT power well */
1146                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1147                 if (ret)
1148                         goto out;
1149
1150                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1151
1152                 reqf = I915_READ(GEN6_RPNSWREQ);
1153                 if (IS_GEN9(dev))
1154                         reqf >>= 23;
1155                 else {
1156                         reqf &= ~GEN6_TURBO_DISABLE;
1157                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1158                                 reqf >>= 24;
1159                         else
1160                                 reqf >>= 25;
1161                 }
1162                 reqf = intel_gpu_freq(dev_priv, reqf);
1163
1164                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1165                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1166                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1167
1168                 rpstat = I915_READ(GEN6_RPSTAT1);
1169                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1170                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1171                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1172                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1173                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1174                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1175                 if (IS_GEN9(dev))
1176                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1177                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1178                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1179                 else
1180                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1181                 cagf = intel_gpu_freq(dev_priv, cagf);
1182
1183                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1184                 mutex_unlock(&dev->struct_mutex);
1185
1186                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1187                         pm_ier = I915_READ(GEN6_PMIER);
1188                         pm_imr = I915_READ(GEN6_PMIMR);
1189                         pm_isr = I915_READ(GEN6_PMISR);
1190                         pm_iir = I915_READ(GEN6_PMIIR);
1191                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1192                 } else {
1193                         pm_ier = I915_READ(GEN8_GT_IER(2));
1194                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1195                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1196                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1197                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1198                 }
1199                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1200                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1201                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1202                 seq_printf(m, "Render p-state ratio: %d\n",
1203                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1204                 seq_printf(m, "Render p-state VID: %d\n",
1205                            gt_perf_status & 0xff);
1206                 seq_printf(m, "Render p-state limit: %d\n",
1207                            rp_state_limits & 0xff);
1208                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1209                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1210                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1211                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1212                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1213                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1214                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1215                            GEN6_CURICONT_MASK);
1216                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1217                            GEN6_CURBSYTAVG_MASK);
1218                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1219                            GEN6_CURBSYTAVG_MASK);
1220                 seq_printf(m, "Up threshold: %d%%\n",
1221                            dev_priv->rps.up_threshold);
1222
1223                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1224                            GEN6_CURIAVG_MASK);
1225                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1226                            GEN6_CURBSYTAVG_MASK);
1227                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1228                            GEN6_CURBSYTAVG_MASK);
1229                 seq_printf(m, "Down threshold: %d%%\n",
1230                            dev_priv->rps.down_threshold);
1231
1232                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1233                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1234                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1235                            intel_gpu_freq(dev_priv, max_freq));
1236
1237                 max_freq = (rp_state_cap & 0xff00) >> 8;
1238                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1239                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1240                            intel_gpu_freq(dev_priv, max_freq));
1241
1242                 max_freq = rp_state_cap & 0xff;
1243                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1244                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245                            intel_gpu_freq(dev_priv, max_freq));
1246                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1248
1249                 seq_printf(m, "Current freq: %d MHz\n",
1250                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252                 seq_printf(m, "Idle freq: %d MHz\n",
1253                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254                 seq_printf(m, "Min freq: %d MHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256                 seq_printf(m, "Max freq: %d MHz\n",
1257                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1258                 seq_printf(m,
1259                            "efficient (RPe) frequency: %d MHz\n",
1260                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1261         } else if (IS_VALLEYVIEW(dev)) {
1262                 u32 freq_sts;
1263
1264                 mutex_lock(&dev_priv->rps.hw_lock);
1265                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1266                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1267                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1268
1269                 seq_printf(m, "actual GPU freq: %d MHz\n",
1270                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1271
1272                 seq_printf(m, "current GPU freq: %d MHz\n",
1273                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1274
1275                 seq_printf(m, "max GPU freq: %d MHz\n",
1276                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1277
1278                 seq_printf(m, "min GPU freq: %d MHz\n",
1279                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1280
1281                 seq_printf(m, "idle GPU freq: %d MHz\n",
1282                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1283
1284                 seq_printf(m,
1285                            "efficient (RPe) frequency: %d MHz\n",
1286                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1287                 mutex_unlock(&dev_priv->rps.hw_lock);
1288         } else {
1289                 seq_puts(m, "no P-state info available\n");
1290         }
1291
1292 out:
1293         intel_runtime_pm_put(dev_priv);
1294         return ret;
1295 }
1296
1297 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1298 {
1299         struct drm_info_node *node = m->private;
1300         struct drm_device *dev = node->minor->dev;
1301         struct drm_i915_private *dev_priv = dev->dev_private;
1302         struct intel_engine_cs *ring;
1303         u64 acthd[I915_NUM_RINGS];
1304         u32 seqno[I915_NUM_RINGS];
1305         int i;
1306
1307         if (!i915.enable_hangcheck) {
1308                 seq_printf(m, "Hangcheck disabled\n");
1309                 return 0;
1310         }
1311
1312         intel_runtime_pm_get(dev_priv);
1313
1314         for_each_ring(ring, dev_priv, i) {
1315                 seqno[i] = ring->get_seqno(ring, false);
1316                 acthd[i] = intel_ring_get_active_head(ring);
1317         }
1318
1319         intel_runtime_pm_put(dev_priv);
1320
1321         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1322                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1323                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1324                                             jiffies));
1325         } else
1326                 seq_printf(m, "Hangcheck inactive\n");
1327
1328         for_each_ring(ring, dev_priv, i) {
1329                 seq_printf(m, "%s:\n", ring->name);
1330                 seq_printf(m, "\tseqno = %x [current %x]\n",
1331                            ring->hangcheck.seqno, seqno[i]);
1332                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1333                            (long long)ring->hangcheck.acthd,
1334                            (long long)acthd[i]);
1335                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1336                            (long long)ring->hangcheck.max_acthd);
1337                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1338                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int ironlake_drpc_info(struct seq_file *m)
1345 {
1346         struct drm_info_node *node = m->private;
1347         struct drm_device *dev = node->minor->dev;
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         u32 rgvmodectl, rstdbyctl;
1350         u16 crstandvid;
1351         int ret;
1352
1353         ret = mutex_lock_interruptible(&dev->struct_mutex);
1354         if (ret)
1355                 return ret;
1356         intel_runtime_pm_get(dev_priv);
1357
1358         rgvmodectl = I915_READ(MEMMODECTL);
1359         rstdbyctl = I915_READ(RSTDBYCTL);
1360         crstandvid = I915_READ16(CRSTANDVID);
1361
1362         intel_runtime_pm_put(dev_priv);
1363         mutex_unlock(&dev->struct_mutex);
1364
1365         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1366                    "yes" : "no");
1367         seq_printf(m, "Boost freq: %d\n",
1368                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1369                    MEMMODE_BOOST_FREQ_SHIFT);
1370         seq_printf(m, "HW control enabled: %s\n",
1371                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1372         seq_printf(m, "SW control enabled: %s\n",
1373                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1374         seq_printf(m, "Gated voltage change: %s\n",
1375                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1376         seq_printf(m, "Starting frequency: P%d\n",
1377                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1378         seq_printf(m, "Max P-state: P%d\n",
1379                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1380         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1381         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1382         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1383         seq_printf(m, "Render standby enabled: %s\n",
1384                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1385         seq_puts(m, "Current RS state: ");
1386         switch (rstdbyctl & RSX_STATUS_MASK) {
1387         case RSX_STATUS_ON:
1388                 seq_puts(m, "on\n");
1389                 break;
1390         case RSX_STATUS_RC1:
1391                 seq_puts(m, "RC1\n");
1392                 break;
1393         case RSX_STATUS_RC1E:
1394                 seq_puts(m, "RC1E\n");
1395                 break;
1396         case RSX_STATUS_RS1:
1397                 seq_puts(m, "RS1\n");
1398                 break;
1399         case RSX_STATUS_RS2:
1400                 seq_puts(m, "RS2 (RC6)\n");
1401                 break;
1402         case RSX_STATUS_RS3:
1403                 seq_puts(m, "RC3 (RC6+)\n");
1404                 break;
1405         default:
1406                 seq_puts(m, "unknown\n");
1407                 break;
1408         }
1409
1410         return 0;
1411 }
1412
1413 static int i915_forcewake_domains(struct seq_file *m, void *data)
1414 {
1415         struct drm_info_node *node = m->private;
1416         struct drm_device *dev = node->minor->dev;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         struct intel_uncore_forcewake_domain *fw_domain;
1419         int i;
1420
1421         spin_lock_irq(&dev_priv->uncore.lock);
1422         for_each_fw_domain(fw_domain, dev_priv, i) {
1423                 seq_printf(m, "%s.wake_count = %u\n",
1424                            intel_uncore_forcewake_domain_to_str(i),
1425                            fw_domain->wake_count);
1426         }
1427         spin_unlock_irq(&dev_priv->uncore.lock);
1428
1429         return 0;
1430 }
1431
1432 static int vlv_drpc_info(struct seq_file *m)
1433 {
1434         struct drm_info_node *node = m->private;
1435         struct drm_device *dev = node->minor->dev;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         u32 rpmodectl1, rcctl1, pw_status;
1438
1439         intel_runtime_pm_get(dev_priv);
1440
1441         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1442         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1443         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1444
1445         intel_runtime_pm_put(dev_priv);
1446
1447         seq_printf(m, "Video Turbo Mode: %s\n",
1448                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1449         seq_printf(m, "Turbo enabled: %s\n",
1450                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1451         seq_printf(m, "HW control enabled: %s\n",
1452                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1453         seq_printf(m, "SW control enabled: %s\n",
1454                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1455                           GEN6_RP_MEDIA_SW_MODE));
1456         seq_printf(m, "RC6 Enabled: %s\n",
1457                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1458                                         GEN6_RC_CTL_EI_MODE(1))));
1459         seq_printf(m, "Render Power Well: %s\n",
1460                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1461         seq_printf(m, "Media Power Well: %s\n",
1462                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1463
1464         seq_printf(m, "Render RC6 residency since boot: %u\n",
1465                    I915_READ(VLV_GT_RENDER_RC6));
1466         seq_printf(m, "Media RC6 residency since boot: %u\n",
1467                    I915_READ(VLV_GT_MEDIA_RC6));
1468
1469         return i915_forcewake_domains(m, NULL);
1470 }
1471
1472 static int gen6_drpc_info(struct seq_file *m)
1473 {
1474         struct drm_info_node *node = m->private;
1475         struct drm_device *dev = node->minor->dev;
1476         struct drm_i915_private *dev_priv = dev->dev_private;
1477         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1478         unsigned forcewake_count;
1479         int count = 0, ret;
1480
1481         ret = mutex_lock_interruptible(&dev->struct_mutex);
1482         if (ret)
1483                 return ret;
1484         intel_runtime_pm_get(dev_priv);
1485
1486         spin_lock_irq(&dev_priv->uncore.lock);
1487         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1488         spin_unlock_irq(&dev_priv->uncore.lock);
1489
1490         if (forcewake_count) {
1491                 seq_puts(m, "RC information inaccurate because somebody "
1492                             "holds a forcewake reference \n");
1493         } else {
1494                 /* NB: we cannot use forcewake, else we read the wrong values */
1495                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1496                         udelay(10);
1497                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1498         }
1499
1500         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1501         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1502
1503         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1504         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1505         mutex_unlock(&dev->struct_mutex);
1506         mutex_lock(&dev_priv->rps.hw_lock);
1507         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1508         mutex_unlock(&dev_priv->rps.hw_lock);
1509
1510         intel_runtime_pm_put(dev_priv);
1511
1512         seq_printf(m, "Video Turbo Mode: %s\n",
1513                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1514         seq_printf(m, "HW control enabled: %s\n",
1515                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1516         seq_printf(m, "SW control enabled: %s\n",
1517                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1518                           GEN6_RP_MEDIA_SW_MODE));
1519         seq_printf(m, "RC1e Enabled: %s\n",
1520                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1521         seq_printf(m, "RC6 Enabled: %s\n",
1522                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1523         seq_printf(m, "Deep RC6 Enabled: %s\n",
1524                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1525         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1526                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1527         seq_puts(m, "Current RC state: ");
1528         switch (gt_core_status & GEN6_RCn_MASK) {
1529         case GEN6_RC0:
1530                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1531                         seq_puts(m, "Core Power Down\n");
1532                 else
1533                         seq_puts(m, "on\n");
1534                 break;
1535         case GEN6_RC3:
1536                 seq_puts(m, "RC3\n");
1537                 break;
1538         case GEN6_RC6:
1539                 seq_puts(m, "RC6\n");
1540                 break;
1541         case GEN6_RC7:
1542                 seq_puts(m, "RC7\n");
1543                 break;
1544         default:
1545                 seq_puts(m, "Unknown\n");
1546                 break;
1547         }
1548
1549         seq_printf(m, "Core Power Down: %s\n",
1550                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1551
1552         /* Not exactly sure what this is */
1553         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1554                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1555         seq_printf(m, "RC6 residency since boot: %u\n",
1556                    I915_READ(GEN6_GT_GFX_RC6));
1557         seq_printf(m, "RC6+ residency since boot: %u\n",
1558                    I915_READ(GEN6_GT_GFX_RC6p));
1559         seq_printf(m, "RC6++ residency since boot: %u\n",
1560                    I915_READ(GEN6_GT_GFX_RC6pp));
1561
1562         seq_printf(m, "RC6   voltage: %dmV\n",
1563                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1564         seq_printf(m, "RC6+  voltage: %dmV\n",
1565                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1566         seq_printf(m, "RC6++ voltage: %dmV\n",
1567                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1568         return 0;
1569 }
1570
1571 static int i915_drpc_info(struct seq_file *m, void *unused)
1572 {
1573         struct drm_info_node *node = m->private;
1574         struct drm_device *dev = node->minor->dev;
1575
1576         if (IS_VALLEYVIEW(dev))
1577                 return vlv_drpc_info(m);
1578         else if (INTEL_INFO(dev)->gen >= 6)
1579                 return gen6_drpc_info(m);
1580         else
1581                 return ironlake_drpc_info(m);
1582 }
1583
1584 static int i915_fbc_status(struct seq_file *m, void *unused)
1585 {
1586         struct drm_info_node *node = m->private;
1587         struct drm_device *dev = node->minor->dev;
1588         struct drm_i915_private *dev_priv = dev->dev_private;
1589
1590         if (!HAS_FBC(dev)) {
1591                 seq_puts(m, "FBC unsupported on this chipset\n");
1592                 return 0;
1593         }
1594
1595         intel_runtime_pm_get(dev_priv);
1596
1597         if (intel_fbc_enabled(dev)) {
1598                 seq_puts(m, "FBC enabled\n");
1599         } else {
1600                 seq_puts(m, "FBC disabled: ");
1601                 switch (dev_priv->fbc.no_fbc_reason) {
1602                 case FBC_OK:
1603                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1604                         break;
1605                 case FBC_UNSUPPORTED:
1606                         seq_puts(m, "unsupported by this chipset");
1607                         break;
1608                 case FBC_NO_OUTPUT:
1609                         seq_puts(m, "no outputs");
1610                         break;
1611                 case FBC_STOLEN_TOO_SMALL:
1612                         seq_puts(m, "not enough stolen memory");
1613                         break;
1614                 case FBC_UNSUPPORTED_MODE:
1615                         seq_puts(m, "mode not supported");
1616                         break;
1617                 case FBC_MODE_TOO_LARGE:
1618                         seq_puts(m, "mode too large");
1619                         break;
1620                 case FBC_BAD_PLANE:
1621                         seq_puts(m, "FBC unsupported on plane");
1622                         break;
1623                 case FBC_NOT_TILED:
1624                         seq_puts(m, "scanout buffer not tiled");
1625                         break;
1626                 case FBC_MULTIPLE_PIPES:
1627                         seq_puts(m, "multiple pipes are enabled");
1628                         break;
1629                 case FBC_MODULE_PARAM:
1630                         seq_puts(m, "disabled per module param (default off)");
1631                         break;
1632                 case FBC_CHIP_DEFAULT:
1633                         seq_puts(m, "disabled per chip default");
1634                         break;
1635                 default:
1636                         seq_puts(m, "unknown reason");
1637                 }
1638                 seq_putc(m, '\n');
1639         }
1640
1641         intel_runtime_pm_put(dev_priv);
1642
1643         return 0;
1644 }
1645
1646 static int i915_fbc_fc_get(void *data, u64 *val)
1647 {
1648         struct drm_device *dev = data;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1652                 return -ENODEV;
1653
1654         drm_modeset_lock_all(dev);
1655         *val = dev_priv->fbc.false_color;
1656         drm_modeset_unlock_all(dev);
1657
1658         return 0;
1659 }
1660
1661 static int i915_fbc_fc_set(void *data, u64 val)
1662 {
1663         struct drm_device *dev = data;
1664         struct drm_i915_private *dev_priv = dev->dev_private;
1665         u32 reg;
1666
1667         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1668                 return -ENODEV;
1669
1670         drm_modeset_lock_all(dev);
1671
1672         reg = I915_READ(ILK_DPFC_CONTROL);
1673         dev_priv->fbc.false_color = val;
1674
1675         I915_WRITE(ILK_DPFC_CONTROL, val ?
1676                    (reg | FBC_CTL_FALSE_COLOR) :
1677                    (reg & ~FBC_CTL_FALSE_COLOR));
1678
1679         drm_modeset_unlock_all(dev);
1680         return 0;
1681 }
1682
1683 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1684                         i915_fbc_fc_get, i915_fbc_fc_set,
1685                         "%llu\n");
1686
1687 static int i915_ips_status(struct seq_file *m, void *unused)
1688 {
1689         struct drm_info_node *node = m->private;
1690         struct drm_device *dev = node->minor->dev;
1691         struct drm_i915_private *dev_priv = dev->dev_private;
1692
1693         if (!HAS_IPS(dev)) {
1694                 seq_puts(m, "not supported\n");
1695                 return 0;
1696         }
1697
1698         intel_runtime_pm_get(dev_priv);
1699
1700         seq_printf(m, "Enabled by kernel parameter: %s\n",
1701                    yesno(i915.enable_ips));
1702
1703         if (INTEL_INFO(dev)->gen >= 8) {
1704                 seq_puts(m, "Currently: unknown\n");
1705         } else {
1706                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1707                         seq_puts(m, "Currently: enabled\n");
1708                 else
1709                         seq_puts(m, "Currently: disabled\n");
1710         }
1711
1712         intel_runtime_pm_put(dev_priv);
1713
1714         return 0;
1715 }
1716
1717 static int i915_sr_status(struct seq_file *m, void *unused)
1718 {
1719         struct drm_info_node *node = m->private;
1720         struct drm_device *dev = node->minor->dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         bool sr_enabled = false;
1723
1724         intel_runtime_pm_get(dev_priv);
1725
1726         if (HAS_PCH_SPLIT(dev))
1727                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1728         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1729                  IS_I945G(dev) || IS_I945GM(dev))
1730                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1731         else if (IS_I915GM(dev))
1732                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1733         else if (IS_PINEVIEW(dev))
1734                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1735         else if (IS_VALLEYVIEW(dev))
1736                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1737
1738         intel_runtime_pm_put(dev_priv);
1739
1740         seq_printf(m, "self-refresh: %s\n",
1741                    sr_enabled ? "enabled" : "disabled");
1742
1743         return 0;
1744 }
1745
1746 static int i915_emon_status(struct seq_file *m, void *unused)
1747 {
1748         struct drm_info_node *node = m->private;
1749         struct drm_device *dev = node->minor->dev;
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751         unsigned long temp, chipset, gfx;
1752         int ret;
1753
1754         if (!IS_GEN5(dev))
1755                 return -ENODEV;
1756
1757         ret = mutex_lock_interruptible(&dev->struct_mutex);
1758         if (ret)
1759                 return ret;
1760
1761         temp = i915_mch_val(dev_priv);
1762         chipset = i915_chipset_val(dev_priv);
1763         gfx = i915_gfx_val(dev_priv);
1764         mutex_unlock(&dev->struct_mutex);
1765
1766         seq_printf(m, "GMCH temp: %ld\n", temp);
1767         seq_printf(m, "Chipset power: %ld\n", chipset);
1768         seq_printf(m, "GFX power: %ld\n", gfx);
1769         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1770
1771         return 0;
1772 }
1773
1774 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1775 {
1776         struct drm_info_node *node = m->private;
1777         struct drm_device *dev = node->minor->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         int ret = 0;
1780         int gpu_freq, ia_freq;
1781
1782         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1783                 seq_puts(m, "unsupported on this chipset\n");
1784                 return 0;
1785         }
1786
1787         intel_runtime_pm_get(dev_priv);
1788
1789         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1790
1791         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1792         if (ret)
1793                 goto out;
1794
1795         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1796
1797         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1798              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1799              gpu_freq++) {
1800                 ia_freq = gpu_freq;
1801                 sandybridge_pcode_read(dev_priv,
1802                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1803                                        &ia_freq);
1804                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1805                            intel_gpu_freq(dev_priv, gpu_freq),
1806                            ((ia_freq >> 0) & 0xff) * 100,
1807                            ((ia_freq >> 8) & 0xff) * 100);
1808         }
1809
1810         mutex_unlock(&dev_priv->rps.hw_lock);
1811
1812 out:
1813         intel_runtime_pm_put(dev_priv);
1814         return ret;
1815 }
1816
1817 static int i915_opregion(struct seq_file *m, void *unused)
1818 {
1819         struct drm_info_node *node = m->private;
1820         struct drm_device *dev = node->minor->dev;
1821         struct drm_i915_private *dev_priv = dev->dev_private;
1822         struct intel_opregion *opregion = &dev_priv->opregion;
1823         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1824         int ret;
1825
1826         if (data == NULL)
1827                 return -ENOMEM;
1828
1829         ret = mutex_lock_interruptible(&dev->struct_mutex);
1830         if (ret)
1831                 goto out;
1832
1833         if (opregion->header) {
1834                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1835                 seq_write(m, data, OPREGION_SIZE);
1836         }
1837
1838         mutex_unlock(&dev->struct_mutex);
1839
1840 out:
1841         kfree(data);
1842         return 0;
1843 }
1844
1845 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1846 {
1847         struct drm_info_node *node = m->private;
1848         struct drm_device *dev = node->minor->dev;
1849         struct intel_fbdev *ifbdev = NULL;
1850         struct intel_framebuffer *fb;
1851
1852 #ifdef CONFIG_DRM_I915_FBDEV
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854
1855         ifbdev = dev_priv->fbdev;
1856         fb = to_intel_framebuffer(ifbdev->helper.fb);
1857
1858         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1859                    fb->base.width,
1860                    fb->base.height,
1861                    fb->base.depth,
1862                    fb->base.bits_per_pixel,
1863                    fb->base.modifier[0],
1864                    atomic_read(&fb->base.refcount.refcount));
1865         describe_obj(m, fb->obj);
1866         seq_putc(m, '\n');
1867 #endif
1868
1869         mutex_lock(&dev->mode_config.fb_lock);
1870         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1871                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1872                         continue;
1873
1874                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1875                            fb->base.width,
1876                            fb->base.height,
1877                            fb->base.depth,
1878                            fb->base.bits_per_pixel,
1879                            fb->base.modifier[0],
1880                            atomic_read(&fb->base.refcount.refcount));
1881                 describe_obj(m, fb->obj);
1882                 seq_putc(m, '\n');
1883         }
1884         mutex_unlock(&dev->mode_config.fb_lock);
1885
1886         return 0;
1887 }
1888
1889 static void describe_ctx_ringbuf(struct seq_file *m,
1890                                  struct intel_ringbuffer *ringbuf)
1891 {
1892         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1893                    ringbuf->space, ringbuf->head, ringbuf->tail,
1894                    ringbuf->last_retired_head);
1895 }
1896
1897 static int i915_context_status(struct seq_file *m, void *unused)
1898 {
1899         struct drm_info_node *node = m->private;
1900         struct drm_device *dev = node->minor->dev;
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         struct intel_engine_cs *ring;
1903         struct intel_context *ctx;
1904         int ret, i;
1905
1906         ret = mutex_lock_interruptible(&dev->struct_mutex);
1907         if (ret)
1908                 return ret;
1909
1910         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1911                 if (!i915.enable_execlists &&
1912                     ctx->legacy_hw_ctx.rcs_state == NULL)
1913                         continue;
1914
1915                 seq_puts(m, "HW context ");
1916                 describe_ctx(m, ctx);
1917                 for_each_ring(ring, dev_priv, i) {
1918                         if (ring->default_context == ctx)
1919                                 seq_printf(m, "(default context %s) ",
1920                                            ring->name);
1921                 }
1922
1923                 if (i915.enable_execlists) {
1924                         seq_putc(m, '\n');
1925                         for_each_ring(ring, dev_priv, i) {
1926                                 struct drm_i915_gem_object *ctx_obj =
1927                                         ctx->engine[i].state;
1928                                 struct intel_ringbuffer *ringbuf =
1929                                         ctx->engine[i].ringbuf;
1930
1931                                 seq_printf(m, "%s: ", ring->name);
1932                                 if (ctx_obj)
1933                                         describe_obj(m, ctx_obj);
1934                                 if (ringbuf)
1935                                         describe_ctx_ringbuf(m, ringbuf);
1936                                 seq_putc(m, '\n');
1937                         }
1938                 } else {
1939                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1940                 }
1941
1942                 seq_putc(m, '\n');
1943         }
1944
1945         mutex_unlock(&dev->struct_mutex);
1946
1947         return 0;
1948 }
1949
1950 static void i915_dump_lrc_obj(struct seq_file *m,
1951                               struct intel_engine_cs *ring,
1952                               struct drm_i915_gem_object *ctx_obj)
1953 {
1954         struct page *page;
1955         uint32_t *reg_state;
1956         int j;
1957         unsigned long ggtt_offset = 0;
1958
1959         if (ctx_obj == NULL) {
1960                 seq_printf(m, "Context on %s with no gem object\n",
1961                            ring->name);
1962                 return;
1963         }
1964
1965         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1966                    intel_execlists_ctx_id(ctx_obj));
1967
1968         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1969                 seq_puts(m, "\tNot bound in GGTT\n");
1970         else
1971                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1972
1973         if (i915_gem_object_get_pages(ctx_obj)) {
1974                 seq_puts(m, "\tFailed to get pages for context object\n");
1975                 return;
1976         }
1977
1978         page = i915_gem_object_get_page(ctx_obj, 1);
1979         if (!WARN_ON(page == NULL)) {
1980                 reg_state = kmap_atomic(page);
1981
1982                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1983                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984                                    ggtt_offset + 4096 + (j * 4),
1985                                    reg_state[j], reg_state[j + 1],
1986                                    reg_state[j + 2], reg_state[j + 3]);
1987                 }
1988                 kunmap_atomic(reg_state);
1989         }
1990
1991         seq_putc(m, '\n');
1992 }
1993
1994 static int i915_dump_lrc(struct seq_file *m, void *unused)
1995 {
1996         struct drm_info_node *node = (struct drm_info_node *) m->private;
1997         struct drm_device *dev = node->minor->dev;
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999         struct intel_engine_cs *ring;
2000         struct intel_context *ctx;
2001         int ret, i;
2002
2003         if (!i915.enable_execlists) {
2004                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2005                 return 0;
2006         }
2007
2008         ret = mutex_lock_interruptible(&dev->struct_mutex);
2009         if (ret)
2010                 return ret;
2011
2012         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2013                 for_each_ring(ring, dev_priv, i) {
2014                         if (ring->default_context != ctx)
2015                                 i915_dump_lrc_obj(m, ring,
2016                                                   ctx->engine[i].state);
2017                 }
2018         }
2019
2020         mutex_unlock(&dev->struct_mutex);
2021
2022         return 0;
2023 }
2024
2025 static int i915_execlists(struct seq_file *m, void *data)
2026 {
2027         struct drm_info_node *node = (struct drm_info_node *)m->private;
2028         struct drm_device *dev = node->minor->dev;
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_engine_cs *ring;
2031         u32 status_pointer;
2032         u8 read_pointer;
2033         u8 write_pointer;
2034         u32 status;
2035         u32 ctx_id;
2036         struct list_head *cursor;
2037         int ring_id, i;
2038         int ret;
2039
2040         if (!i915.enable_execlists) {
2041                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2042                 return 0;
2043         }
2044
2045         ret = mutex_lock_interruptible(&dev->struct_mutex);
2046         if (ret)
2047                 return ret;
2048
2049         intel_runtime_pm_get(dev_priv);
2050
2051         for_each_ring(ring, dev_priv, ring_id) {
2052                 struct drm_i915_gem_request *head_req = NULL;
2053                 int count = 0;
2054                 unsigned long flags;
2055
2056                 seq_printf(m, "%s\n", ring->name);
2057
2058                 status = I915_READ(RING_EXECLIST_STATUS(ring));
2059                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2060                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2061                            status, ctx_id);
2062
2063                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2064                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2065
2066                 read_pointer = ring->next_context_status_buffer;
2067                 write_pointer = status_pointer & 0x07;
2068                 if (read_pointer > write_pointer)
2069                         write_pointer += 6;
2070                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2071                            read_pointer, write_pointer);
2072
2073                 for (i = 0; i < 6; i++) {
2074                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2075                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2076
2077                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2078                                    i, status, ctx_id);
2079                 }
2080
2081                 spin_lock_irqsave(&ring->execlist_lock, flags);
2082                 list_for_each(cursor, &ring->execlist_queue)
2083                         count++;
2084                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2085                                 struct drm_i915_gem_request, execlist_link);
2086                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2087
2088                 seq_printf(m, "\t%d requests in queue\n", count);
2089                 if (head_req) {
2090                         struct drm_i915_gem_object *ctx_obj;
2091
2092                         ctx_obj = head_req->ctx->engine[ring_id].state;
2093                         seq_printf(m, "\tHead request id: %u\n",
2094                                    intel_execlists_ctx_id(ctx_obj));
2095                         seq_printf(m, "\tHead request tail: %u\n",
2096                                    head_req->tail);
2097                 }
2098
2099                 seq_putc(m, '\n');
2100         }
2101
2102         intel_runtime_pm_put(dev_priv);
2103         mutex_unlock(&dev->struct_mutex);
2104
2105         return 0;
2106 }
2107
2108 static const char *swizzle_string(unsigned swizzle)
2109 {
2110         switch (swizzle) {
2111         case I915_BIT_6_SWIZZLE_NONE:
2112                 return "none";
2113         case I915_BIT_6_SWIZZLE_9:
2114                 return "bit9";
2115         case I915_BIT_6_SWIZZLE_9_10:
2116                 return "bit9/bit10";
2117         case I915_BIT_6_SWIZZLE_9_11:
2118                 return "bit9/bit11";
2119         case I915_BIT_6_SWIZZLE_9_10_11:
2120                 return "bit9/bit10/bit11";
2121         case I915_BIT_6_SWIZZLE_9_17:
2122                 return "bit9/bit17";
2123         case I915_BIT_6_SWIZZLE_9_10_17:
2124                 return "bit9/bit10/bit17";
2125         case I915_BIT_6_SWIZZLE_UNKNOWN:
2126                 return "unknown";
2127         }
2128
2129         return "bug";
2130 }
2131
2132 static int i915_swizzle_info(struct seq_file *m, void *data)
2133 {
2134         struct drm_info_node *node = m->private;
2135         struct drm_device *dev = node->minor->dev;
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         int ret;
2138
2139         ret = mutex_lock_interruptible(&dev->struct_mutex);
2140         if (ret)
2141                 return ret;
2142         intel_runtime_pm_get(dev_priv);
2143
2144         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2145                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2146         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2147                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2148
2149         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2150                 seq_printf(m, "DDC = 0x%08x\n",
2151                            I915_READ(DCC));
2152                 seq_printf(m, "DDC2 = 0x%08x\n",
2153                            I915_READ(DCC2));
2154                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2155                            I915_READ16(C0DRB3));
2156                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2157                            I915_READ16(C1DRB3));
2158         } else if (INTEL_INFO(dev)->gen >= 6) {
2159                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2160                            I915_READ(MAD_DIMM_C0));
2161                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2162                            I915_READ(MAD_DIMM_C1));
2163                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2164                            I915_READ(MAD_DIMM_C2));
2165                 seq_printf(m, "TILECTL = 0x%08x\n",
2166                            I915_READ(TILECTL));
2167                 if (INTEL_INFO(dev)->gen >= 8)
2168                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2169                                    I915_READ(GAMTARBMODE));
2170                 else
2171                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2172                                    I915_READ(ARB_MODE));
2173                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2174                            I915_READ(DISP_ARB_CTL));
2175         }
2176
2177         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2178                 seq_puts(m, "L-shaped memory detected\n");
2179
2180         intel_runtime_pm_put(dev_priv);
2181         mutex_unlock(&dev->struct_mutex);
2182
2183         return 0;
2184 }
2185
2186 static int per_file_ctx(int id, void *ptr, void *data)
2187 {
2188         struct intel_context *ctx = ptr;
2189         struct seq_file *m = data;
2190         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2191
2192         if (!ppgtt) {
2193                 seq_printf(m, "  no ppgtt for context %d\n",
2194                            ctx->user_handle);
2195                 return 0;
2196         }
2197
2198         if (i915_gem_context_is_default(ctx))
2199                 seq_puts(m, "  default context:\n");
2200         else
2201                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2202         ppgtt->debug_dump(ppgtt, m);
2203
2204         return 0;
2205 }
2206
2207 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2208 {
2209         struct drm_i915_private *dev_priv = dev->dev_private;
2210         struct intel_engine_cs *ring;
2211         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2212         int unused, i;
2213
2214         if (!ppgtt)
2215                 return;
2216
2217         for_each_ring(ring, dev_priv, unused) {
2218                 seq_printf(m, "%s\n", ring->name);
2219                 for (i = 0; i < 4; i++) {
2220                         u32 offset = 0x270 + i * 8;
2221                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2222                         pdp <<= 32;
2223                         pdp |= I915_READ(ring->mmio_base + offset);
2224                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2225                 }
2226         }
2227 }
2228
2229 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         struct intel_engine_cs *ring;
2233         struct drm_file *file;
2234         int i;
2235
2236         if (INTEL_INFO(dev)->gen == 6)
2237                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2238
2239         for_each_ring(ring, dev_priv, i) {
2240                 seq_printf(m, "%s\n", ring->name);
2241                 if (INTEL_INFO(dev)->gen == 7)
2242                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2243                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2244                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2245                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2246         }
2247         if (dev_priv->mm.aliasing_ppgtt) {
2248                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2249
2250                 seq_puts(m, "aliasing PPGTT:\n");
2251                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2252
2253                 ppgtt->debug_dump(ppgtt, m);
2254         }
2255
2256         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2257                 struct drm_i915_file_private *file_priv = file->driver_priv;
2258
2259                 seq_printf(m, "proc: %s\n",
2260                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2261                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2262         }
2263         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2264 }
2265
2266 static int i915_ppgtt_info(struct seq_file *m, void *data)
2267 {
2268         struct drm_info_node *node = m->private;
2269         struct drm_device *dev = node->minor->dev;
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271
2272         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2273         if (ret)
2274                 return ret;
2275         intel_runtime_pm_get(dev_priv);
2276
2277         if (INTEL_INFO(dev)->gen >= 8)
2278                 gen8_ppgtt_info(m, dev);
2279         else if (INTEL_INFO(dev)->gen >= 6)
2280                 gen6_ppgtt_info(m, dev);
2281
2282         intel_runtime_pm_put(dev_priv);
2283         mutex_unlock(&dev->struct_mutex);
2284
2285         return 0;
2286 }
2287
2288 static int count_irq_waiters(struct drm_i915_private *i915)
2289 {
2290         struct intel_engine_cs *ring;
2291         int count = 0;
2292         int i;
2293
2294         for_each_ring(ring, i915, i)
2295                 count += ring->irq_refcount;
2296
2297         return count;
2298 }
2299
2300 static int i915_rps_boost_info(struct seq_file *m, void *data)
2301 {
2302         struct drm_info_node *node = m->private;
2303         struct drm_device *dev = node->minor->dev;
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305         struct drm_file *file;
2306
2307         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2308         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2309         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2310         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2311                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2312                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2313                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2314                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2315                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2316         spin_lock(&dev_priv->rps.client_lock);
2317         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2318                 struct drm_i915_file_private *file_priv = file->driver_priv;
2319                 struct task_struct *task;
2320
2321                 rcu_read_lock();
2322                 task = pid_task(file->pid, PIDTYPE_PID);
2323                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2324                            task ? task->comm : "<unknown>",
2325                            task ? task->pid : -1,
2326                            file_priv->rps.boosts,
2327                            list_empty(&file_priv->rps.link) ? "" : ", active");
2328                 rcu_read_unlock();
2329         }
2330         seq_printf(m, "Semaphore boosts: %d%s\n",
2331                    dev_priv->rps.semaphores.boosts,
2332                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2333         seq_printf(m, "MMIO flip boosts: %d%s\n",
2334                    dev_priv->rps.mmioflips.boosts,
2335                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2336         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2337         spin_unlock(&dev_priv->rps.client_lock);
2338
2339         return 0;
2340 }
2341
2342 static int i915_llc(struct seq_file *m, void *data)
2343 {
2344         struct drm_info_node *node = m->private;
2345         struct drm_device *dev = node->minor->dev;
2346         struct drm_i915_private *dev_priv = dev->dev_private;
2347
2348         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2349         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2350         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2351
2352         return 0;
2353 }
2354
2355 static int i915_edp_psr_status(struct seq_file *m, void *data)
2356 {
2357         struct drm_info_node *node = m->private;
2358         struct drm_device *dev = node->minor->dev;
2359         struct drm_i915_private *dev_priv = dev->dev_private;
2360         u32 psrperf = 0;
2361         u32 stat[3];
2362         enum pipe pipe;
2363         bool enabled = false;
2364
2365         if (!HAS_PSR(dev)) {
2366                 seq_puts(m, "PSR not supported\n");
2367                 return 0;
2368         }
2369
2370         intel_runtime_pm_get(dev_priv);
2371
2372         mutex_lock(&dev_priv->psr.lock);
2373         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2374         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2375         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2376         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2377         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2378                    dev_priv->psr.busy_frontbuffer_bits);
2379         seq_printf(m, "Re-enable work scheduled: %s\n",
2380                    yesno(work_busy(&dev_priv->psr.work.work)));
2381
2382         if (HAS_DDI(dev))
2383                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2384         else {
2385                 for_each_pipe(dev_priv, pipe) {
2386                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2387                                 VLV_EDP_PSR_CURR_STATE_MASK;
2388                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2389                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2390                                 enabled = true;
2391                 }
2392         }
2393         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2394
2395         if (!HAS_DDI(dev))
2396                 for_each_pipe(dev_priv, pipe) {
2397                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2398                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2399                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2400                 }
2401         seq_puts(m, "\n");
2402
2403         /* CHV PSR has no kind of performance counter */
2404         if (HAS_DDI(dev)) {
2405                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2406                         EDP_PSR_PERF_CNT_MASK;
2407
2408                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2409         }
2410         mutex_unlock(&dev_priv->psr.lock);
2411
2412         intel_runtime_pm_put(dev_priv);
2413         return 0;
2414 }
2415
2416 static int i915_sink_crc(struct seq_file *m, void *data)
2417 {
2418         struct drm_info_node *node = m->private;
2419         struct drm_device *dev = node->minor->dev;
2420         struct intel_encoder *encoder;
2421         struct intel_connector *connector;
2422         struct intel_dp *intel_dp = NULL;
2423         int ret;
2424         u8 crc[6];
2425
2426         drm_modeset_lock_all(dev);
2427         for_each_intel_connector(dev, connector) {
2428
2429                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2430                         continue;
2431
2432                 if (!connector->base.encoder)
2433                         continue;
2434
2435                 encoder = to_intel_encoder(connector->base.encoder);
2436                 if (encoder->type != INTEL_OUTPUT_EDP)
2437                         continue;
2438
2439                 intel_dp = enc_to_intel_dp(&encoder->base);
2440
2441                 ret = intel_dp_sink_crc(intel_dp, crc);
2442                 if (ret)
2443                         goto out;
2444
2445                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2446                            crc[0], crc[1], crc[2],
2447                            crc[3], crc[4], crc[5]);
2448                 goto out;
2449         }
2450         ret = -ENODEV;
2451 out:
2452         drm_modeset_unlock_all(dev);
2453         return ret;
2454 }
2455
2456 static int i915_energy_uJ(struct seq_file *m, void *data)
2457 {
2458         struct drm_info_node *node = m->private;
2459         struct drm_device *dev = node->minor->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         u64 power;
2462         u32 units;
2463
2464         if (INTEL_INFO(dev)->gen < 6)
2465                 return -ENODEV;
2466
2467         intel_runtime_pm_get(dev_priv);
2468
2469         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2470         power = (power & 0x1f00) >> 8;
2471         units = 1000000 / (1 << power); /* convert to uJ */
2472         power = I915_READ(MCH_SECP_NRG_STTS);
2473         power *= units;
2474
2475         intel_runtime_pm_put(dev_priv);
2476
2477         seq_printf(m, "%llu", (long long unsigned)power);
2478
2479         return 0;
2480 }
2481
2482 static int i915_pc8_status(struct seq_file *m, void *unused)
2483 {
2484         struct drm_info_node *node = m->private;
2485         struct drm_device *dev = node->minor->dev;
2486         struct drm_i915_private *dev_priv = dev->dev_private;
2487
2488         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2489                 seq_puts(m, "not supported\n");
2490                 return 0;
2491         }
2492
2493         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2494         seq_printf(m, "IRQs disabled: %s\n",
2495                    yesno(!intel_irqs_enabled(dev_priv)));
2496
2497         return 0;
2498 }
2499
2500 static const char *power_domain_str(enum intel_display_power_domain domain)
2501 {
2502         switch (domain) {
2503         case POWER_DOMAIN_PIPE_A:
2504                 return "PIPE_A";
2505         case POWER_DOMAIN_PIPE_B:
2506                 return "PIPE_B";
2507         case POWER_DOMAIN_PIPE_C:
2508                 return "PIPE_C";
2509         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2510                 return "PIPE_A_PANEL_FITTER";
2511         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2512                 return "PIPE_B_PANEL_FITTER";
2513         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2514                 return "PIPE_C_PANEL_FITTER";
2515         case POWER_DOMAIN_TRANSCODER_A:
2516                 return "TRANSCODER_A";
2517         case POWER_DOMAIN_TRANSCODER_B:
2518                 return "TRANSCODER_B";
2519         case POWER_DOMAIN_TRANSCODER_C:
2520                 return "TRANSCODER_C";
2521         case POWER_DOMAIN_TRANSCODER_EDP:
2522                 return "TRANSCODER_EDP";
2523         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2524                 return "PORT_DDI_A_2_LANES";
2525         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2526                 return "PORT_DDI_A_4_LANES";
2527         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2528                 return "PORT_DDI_B_2_LANES";
2529         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2530                 return "PORT_DDI_B_4_LANES";
2531         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2532                 return "PORT_DDI_C_2_LANES";
2533         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2534                 return "PORT_DDI_C_4_LANES";
2535         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2536                 return "PORT_DDI_D_2_LANES";
2537         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2538                 return "PORT_DDI_D_4_LANES";
2539         case POWER_DOMAIN_PORT_DSI:
2540                 return "PORT_DSI";
2541         case POWER_DOMAIN_PORT_CRT:
2542                 return "PORT_CRT";
2543         case POWER_DOMAIN_PORT_OTHER:
2544                 return "PORT_OTHER";
2545         case POWER_DOMAIN_VGA:
2546                 return "VGA";
2547         case POWER_DOMAIN_AUDIO:
2548                 return "AUDIO";
2549         case POWER_DOMAIN_PLLS:
2550                 return "PLLS";
2551         case POWER_DOMAIN_AUX_A:
2552                 return "AUX_A";
2553         case POWER_DOMAIN_AUX_B:
2554                 return "AUX_B";
2555         case POWER_DOMAIN_AUX_C:
2556                 return "AUX_C";
2557         case POWER_DOMAIN_AUX_D:
2558                 return "AUX_D";
2559         case POWER_DOMAIN_INIT:
2560                 return "INIT";
2561         default:
2562                 MISSING_CASE(domain);
2563                 return "?";
2564         }
2565 }
2566
2567 static int i915_power_domain_info(struct seq_file *m, void *unused)
2568 {
2569         struct drm_info_node *node = m->private;
2570         struct drm_device *dev = node->minor->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2573         int i;
2574
2575         mutex_lock(&power_domains->lock);
2576
2577         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2578         for (i = 0; i < power_domains->power_well_count; i++) {
2579                 struct i915_power_well *power_well;
2580                 enum intel_display_power_domain power_domain;
2581
2582                 power_well = &power_domains->power_wells[i];
2583                 seq_printf(m, "%-25s %d\n", power_well->name,
2584                            power_well->count);
2585
2586                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2587                      power_domain++) {
2588                         if (!(BIT(power_domain) & power_well->domains))
2589                                 continue;
2590
2591                         seq_printf(m, "  %-23s %d\n",
2592                                  power_domain_str(power_domain),
2593                                  power_domains->domain_use_count[power_domain]);
2594                 }
2595         }
2596
2597         mutex_unlock(&power_domains->lock);
2598
2599         return 0;
2600 }
2601
2602 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2603                                  struct drm_display_mode *mode)
2604 {
2605         int i;
2606
2607         for (i = 0; i < tabs; i++)
2608                 seq_putc(m, '\t');
2609
2610         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2611                    mode->base.id, mode->name,
2612                    mode->vrefresh, mode->clock,
2613                    mode->hdisplay, mode->hsync_start,
2614                    mode->hsync_end, mode->htotal,
2615                    mode->vdisplay, mode->vsync_start,
2616                    mode->vsync_end, mode->vtotal,
2617                    mode->type, mode->flags);
2618 }
2619
2620 static void intel_encoder_info(struct seq_file *m,
2621                                struct intel_crtc *intel_crtc,
2622                                struct intel_encoder *intel_encoder)
2623 {
2624         struct drm_info_node *node = m->private;
2625         struct drm_device *dev = node->minor->dev;
2626         struct drm_crtc *crtc = &intel_crtc->base;
2627         struct intel_connector *intel_connector;
2628         struct drm_encoder *encoder;
2629
2630         encoder = &intel_encoder->base;
2631         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2632                    encoder->base.id, encoder->name);
2633         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2634                 struct drm_connector *connector = &intel_connector->base;
2635                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2636                            connector->base.id,
2637                            connector->name,
2638                            drm_get_connector_status_name(connector->status));
2639                 if (connector->status == connector_status_connected) {
2640                         struct drm_display_mode *mode = &crtc->mode;
2641                         seq_printf(m, ", mode:\n");
2642                         intel_seq_print_mode(m, 2, mode);
2643                 } else {
2644                         seq_putc(m, '\n');
2645                 }
2646         }
2647 }
2648
2649 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2650 {
2651         struct drm_info_node *node = m->private;
2652         struct drm_device *dev = node->minor->dev;
2653         struct drm_crtc *crtc = &intel_crtc->base;
2654         struct intel_encoder *intel_encoder;
2655
2656         if (crtc->primary->fb)
2657                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2658                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2659                            crtc->primary->fb->width, crtc->primary->fb->height);
2660         else
2661                 seq_puts(m, "\tprimary plane disabled\n");
2662         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2663                 intel_encoder_info(m, intel_crtc, intel_encoder);
2664 }
2665
2666 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2667 {
2668         struct drm_display_mode *mode = panel->fixed_mode;
2669
2670         seq_printf(m, "\tfixed mode:\n");
2671         intel_seq_print_mode(m, 2, mode);
2672 }
2673
2674 static void intel_dp_info(struct seq_file *m,
2675                           struct intel_connector *intel_connector)
2676 {
2677         struct intel_encoder *intel_encoder = intel_connector->encoder;
2678         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2679
2680         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2681         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2682                    "no");
2683         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2684                 intel_panel_info(m, &intel_connector->panel);
2685 }
2686
2687 static void intel_hdmi_info(struct seq_file *m,
2688                             struct intel_connector *intel_connector)
2689 {
2690         struct intel_encoder *intel_encoder = intel_connector->encoder;
2691         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2692
2693         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2694                    "no");
2695 }
2696
2697 static void intel_lvds_info(struct seq_file *m,
2698                             struct intel_connector *intel_connector)
2699 {
2700         intel_panel_info(m, &intel_connector->panel);
2701 }
2702
2703 static void intel_connector_info(struct seq_file *m,
2704                                  struct drm_connector *connector)
2705 {
2706         struct intel_connector *intel_connector = to_intel_connector(connector);
2707         struct intel_encoder *intel_encoder = intel_connector->encoder;
2708         struct drm_display_mode *mode;
2709
2710         seq_printf(m, "connector %d: type %s, status: %s\n",
2711                    connector->base.id, connector->name,
2712                    drm_get_connector_status_name(connector->status));
2713         if (connector->status == connector_status_connected) {
2714                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2715                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2716                            connector->display_info.width_mm,
2717                            connector->display_info.height_mm);
2718                 seq_printf(m, "\tsubpixel order: %s\n",
2719                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2720                 seq_printf(m, "\tCEA rev: %d\n",
2721                            connector->display_info.cea_rev);
2722         }
2723         if (intel_encoder) {
2724                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2725                     intel_encoder->type == INTEL_OUTPUT_EDP)
2726                         intel_dp_info(m, intel_connector);
2727                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2728                         intel_hdmi_info(m, intel_connector);
2729                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2730                         intel_lvds_info(m, intel_connector);
2731         }
2732
2733         seq_printf(m, "\tmodes:\n");
2734         list_for_each_entry(mode, &connector->modes, head)
2735                 intel_seq_print_mode(m, 2, mode);
2736 }
2737
2738 static bool cursor_active(struct drm_device *dev, int pipe)
2739 {
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741         u32 state;
2742
2743         if (IS_845G(dev) || IS_I865G(dev))
2744                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2745         else
2746                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2747
2748         return state;
2749 }
2750
2751 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2752 {
2753         struct drm_i915_private *dev_priv = dev->dev_private;
2754         u32 pos;
2755
2756         pos = I915_READ(CURPOS(pipe));
2757
2758         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2759         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2760                 *x = -*x;
2761
2762         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2763         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2764                 *y = -*y;
2765
2766         return cursor_active(dev, pipe);
2767 }
2768
2769 static int i915_display_info(struct seq_file *m, void *unused)
2770 {
2771         struct drm_info_node *node = m->private;
2772         struct drm_device *dev = node->minor->dev;
2773         struct drm_i915_private *dev_priv = dev->dev_private;
2774         struct intel_crtc *crtc;
2775         struct drm_connector *connector;
2776
2777         intel_runtime_pm_get(dev_priv);
2778         drm_modeset_lock_all(dev);
2779         seq_printf(m, "CRTC info\n");
2780         seq_printf(m, "---------\n");
2781         for_each_intel_crtc(dev, crtc) {
2782                 bool active;
2783                 int x, y;
2784
2785                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2786                            crtc->base.base.id, pipe_name(crtc->pipe),
2787                            yesno(crtc->active), crtc->config->pipe_src_w,
2788                            crtc->config->pipe_src_h);
2789                 if (crtc->active) {
2790                         intel_crtc_info(m, crtc);
2791
2792                         active = cursor_position(dev, crtc->pipe, &x, &y);
2793                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2794                                    yesno(crtc->cursor_base),
2795                                    x, y, crtc->base.cursor->state->crtc_w,
2796                                    crtc->base.cursor->state->crtc_h,
2797                                    crtc->cursor_addr, yesno(active));
2798                 }
2799
2800                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2801                            yesno(!crtc->cpu_fifo_underrun_disabled),
2802                            yesno(!crtc->pch_fifo_underrun_disabled));
2803         }
2804
2805         seq_printf(m, "\n");
2806         seq_printf(m, "Connector info\n");
2807         seq_printf(m, "--------------\n");
2808         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2809                 intel_connector_info(m, connector);
2810         }
2811         drm_modeset_unlock_all(dev);
2812         intel_runtime_pm_put(dev_priv);
2813
2814         return 0;
2815 }
2816
2817 static int i915_semaphore_status(struct seq_file *m, void *unused)
2818 {
2819         struct drm_info_node *node = (struct drm_info_node *) m->private;
2820         struct drm_device *dev = node->minor->dev;
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         struct intel_engine_cs *ring;
2823         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2824         int i, j, ret;
2825
2826         if (!i915_semaphore_is_enabled(dev)) {
2827                 seq_puts(m, "Semaphores are disabled\n");
2828                 return 0;
2829         }
2830
2831         ret = mutex_lock_interruptible(&dev->struct_mutex);
2832         if (ret)
2833                 return ret;
2834         intel_runtime_pm_get(dev_priv);
2835
2836         if (IS_BROADWELL(dev)) {
2837                 struct page *page;
2838                 uint64_t *seqno;
2839
2840                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2841
2842                 seqno = (uint64_t *)kmap_atomic(page);
2843                 for_each_ring(ring, dev_priv, i) {
2844                         uint64_t offset;
2845
2846                         seq_printf(m, "%s\n", ring->name);
2847
2848                         seq_puts(m, "  Last signal:");
2849                         for (j = 0; j < num_rings; j++) {
2850                                 offset = i * I915_NUM_RINGS + j;
2851                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2852                                            seqno[offset], offset * 8);
2853                         }
2854                         seq_putc(m, '\n');
2855
2856                         seq_puts(m, "  Last wait:  ");
2857                         for (j = 0; j < num_rings; j++) {
2858                                 offset = i + (j * I915_NUM_RINGS);
2859                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2860                                            seqno[offset], offset * 8);
2861                         }
2862                         seq_putc(m, '\n');
2863
2864                 }
2865                 kunmap_atomic(seqno);
2866         } else {
2867                 seq_puts(m, "  Last signal:");
2868                 for_each_ring(ring, dev_priv, i)
2869                         for (j = 0; j < num_rings; j++)
2870                                 seq_printf(m, "0x%08x\n",
2871                                            I915_READ(ring->semaphore.mbox.signal[j]));
2872                 seq_putc(m, '\n');
2873         }
2874
2875         seq_puts(m, "\nSync seqno:\n");
2876         for_each_ring(ring, dev_priv, i) {
2877                 for (j = 0; j < num_rings; j++) {
2878                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2879                 }
2880                 seq_putc(m, '\n');
2881         }
2882         seq_putc(m, '\n');
2883
2884         intel_runtime_pm_put(dev_priv);
2885         mutex_unlock(&dev->struct_mutex);
2886         return 0;
2887 }
2888
2889 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2890 {
2891         struct drm_info_node *node = (struct drm_info_node *) m->private;
2892         struct drm_device *dev = node->minor->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         int i;
2895
2896         drm_modeset_lock_all(dev);
2897         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2898                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2899
2900                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2901                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2902                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2903                 seq_printf(m, " tracked hardware state:\n");
2904                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2905                 seq_printf(m, " dpll_md: 0x%08x\n",
2906                            pll->config.hw_state.dpll_md);
2907                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2908                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2909                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2910         }
2911         drm_modeset_unlock_all(dev);
2912
2913         return 0;
2914 }
2915
2916 static int i915_wa_registers(struct seq_file *m, void *unused)
2917 {
2918         int i;
2919         int ret;
2920         struct drm_info_node *node = (struct drm_info_node *) m->private;
2921         struct drm_device *dev = node->minor->dev;
2922         struct drm_i915_private *dev_priv = dev->dev_private;
2923
2924         ret = mutex_lock_interruptible(&dev->struct_mutex);
2925         if (ret)
2926                 return ret;
2927
2928         intel_runtime_pm_get(dev_priv);
2929
2930         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2931         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2932                 u32 addr, mask, value, read;
2933                 bool ok;
2934
2935                 addr = dev_priv->workarounds.reg[i].addr;
2936                 mask = dev_priv->workarounds.reg[i].mask;
2937                 value = dev_priv->workarounds.reg[i].value;
2938                 read = I915_READ(addr);
2939                 ok = (value & mask) == (read & mask);
2940                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2941                            addr, value, mask, read, ok ? "OK" : "FAIL");
2942         }
2943
2944         intel_runtime_pm_put(dev_priv);
2945         mutex_unlock(&dev->struct_mutex);
2946
2947         return 0;
2948 }
2949
2950 static int i915_ddb_info(struct seq_file *m, void *unused)
2951 {
2952         struct drm_info_node *node = m->private;
2953         struct drm_device *dev = node->minor->dev;
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         struct skl_ddb_allocation *ddb;
2956         struct skl_ddb_entry *entry;
2957         enum pipe pipe;
2958         int plane;
2959
2960         if (INTEL_INFO(dev)->gen < 9)
2961                 return 0;
2962
2963         drm_modeset_lock_all(dev);
2964
2965         ddb = &dev_priv->wm.skl_hw.ddb;
2966
2967         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2968
2969         for_each_pipe(dev_priv, pipe) {
2970                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2971
2972                 for_each_plane(dev_priv, pipe, plane) {
2973                         entry = &ddb->plane[pipe][plane];
2974                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2975                                    entry->start, entry->end,
2976                                    skl_ddb_entry_size(entry));
2977                 }
2978
2979                 entry = &ddb->cursor[pipe];
2980                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2981                            entry->end, skl_ddb_entry_size(entry));
2982         }
2983
2984         drm_modeset_unlock_all(dev);
2985
2986         return 0;
2987 }
2988
2989 static void drrs_status_per_crtc(struct seq_file *m,
2990                 struct drm_device *dev, struct intel_crtc *intel_crtc)
2991 {
2992         struct intel_encoder *intel_encoder;
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         struct i915_drrs *drrs = &dev_priv->drrs;
2995         int vrefresh = 0;
2996
2997         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2998                 /* Encoder connected on this CRTC */
2999                 switch (intel_encoder->type) {
3000                 case INTEL_OUTPUT_EDP:
3001                         seq_puts(m, "eDP:\n");
3002                         break;
3003                 case INTEL_OUTPUT_DSI:
3004                         seq_puts(m, "DSI:\n");
3005                         break;
3006                 case INTEL_OUTPUT_HDMI:
3007                         seq_puts(m, "HDMI:\n");
3008                         break;
3009                 case INTEL_OUTPUT_DISPLAYPORT:
3010                         seq_puts(m, "DP:\n");
3011                         break;
3012                 default:
3013                         seq_printf(m, "Other encoder (id=%d).\n",
3014                                                 intel_encoder->type);
3015                         return;
3016                 }
3017         }
3018
3019         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3020                 seq_puts(m, "\tVBT: DRRS_type: Static");
3021         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3022                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3023         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3024                 seq_puts(m, "\tVBT: DRRS_type: None");
3025         else
3026                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3027
3028         seq_puts(m, "\n\n");
3029
3030         if (intel_crtc->config->has_drrs) {
3031                 struct intel_panel *panel;
3032
3033                 mutex_lock(&drrs->mutex);
3034                 /* DRRS Supported */
3035                 seq_puts(m, "\tDRRS Supported: Yes\n");
3036
3037                 /* disable_drrs() will make drrs->dp NULL */
3038                 if (!drrs->dp) {
3039                         seq_puts(m, "Idleness DRRS: Disabled");
3040                         mutex_unlock(&drrs->mutex);
3041                         return;
3042                 }
3043
3044                 panel = &drrs->dp->attached_connector->panel;
3045                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3046                                         drrs->busy_frontbuffer_bits);
3047
3048                 seq_puts(m, "\n\t\t");
3049                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3050                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3051                         vrefresh = panel->fixed_mode->vrefresh;
3052                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3053                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3054                         vrefresh = panel->downclock_mode->vrefresh;
3055                 } else {
3056                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3057                                                 drrs->refresh_rate_type);
3058                         mutex_unlock(&drrs->mutex);
3059                         return;
3060                 }
3061                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3062
3063                 seq_puts(m, "\n\t\t");
3064                 mutex_unlock(&drrs->mutex);
3065         } else {
3066                 /* DRRS not supported. Print the VBT parameter*/
3067                 seq_puts(m, "\tDRRS Supported : No");
3068         }
3069         seq_puts(m, "\n");
3070 }
3071
3072 static int i915_drrs_status(struct seq_file *m, void *unused)
3073 {
3074         struct drm_info_node *node = m->private;
3075         struct drm_device *dev = node->minor->dev;
3076         struct intel_crtc *intel_crtc;
3077         int active_crtc_cnt = 0;
3078
3079         for_each_intel_crtc(dev, intel_crtc) {
3080                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3081
3082                 if (intel_crtc->active) {
3083                         active_crtc_cnt++;
3084                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3085
3086                         drrs_status_per_crtc(m, dev, intel_crtc);
3087                 }
3088
3089                 drm_modeset_unlock(&intel_crtc->base.mutex);
3090         }
3091
3092         if (!active_crtc_cnt)
3093                 seq_puts(m, "No active crtc found\n");
3094
3095         return 0;
3096 }
3097
3098 struct pipe_crc_info {
3099         const char *name;
3100         struct drm_device *dev;
3101         enum pipe pipe;
3102 };
3103
3104 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3105 {
3106         struct drm_info_node *node = (struct drm_info_node *) m->private;
3107         struct drm_device *dev = node->minor->dev;
3108         struct drm_encoder *encoder;
3109         struct intel_encoder *intel_encoder;
3110         struct intel_digital_port *intel_dig_port;
3111         drm_modeset_lock_all(dev);
3112         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3113                 intel_encoder = to_intel_encoder(encoder);
3114                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3115                         continue;
3116                 intel_dig_port = enc_to_dig_port(encoder);
3117                 if (!intel_dig_port->dp.can_mst)
3118                         continue;
3119
3120                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3121         }
3122         drm_modeset_unlock_all(dev);
3123         return 0;
3124 }
3125
3126 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3127 {
3128         struct pipe_crc_info *info = inode->i_private;
3129         struct drm_i915_private *dev_priv = info->dev->dev_private;
3130         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3131
3132         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3133                 return -ENODEV;
3134
3135         spin_lock_irq(&pipe_crc->lock);
3136
3137         if (pipe_crc->opened) {
3138                 spin_unlock_irq(&pipe_crc->lock);
3139                 return -EBUSY; /* already open */
3140         }
3141
3142         pipe_crc->opened = true;
3143         filep->private_data = inode->i_private;
3144
3145         spin_unlock_irq(&pipe_crc->lock);
3146
3147         return 0;
3148 }
3149
3150 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3151 {
3152         struct pipe_crc_info *info = inode->i_private;
3153         struct drm_i915_private *dev_priv = info->dev->dev_private;
3154         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3155
3156         spin_lock_irq(&pipe_crc->lock);
3157         pipe_crc->opened = false;
3158         spin_unlock_irq(&pipe_crc->lock);
3159
3160         return 0;
3161 }
3162
3163 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3164 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3165 /* account for \'0' */
3166 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3167
3168 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3169 {
3170         assert_spin_locked(&pipe_crc->lock);
3171         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3172                         INTEL_PIPE_CRC_ENTRIES_NR);
3173 }
3174
3175 static ssize_t
3176 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3177                    loff_t *pos)
3178 {
3179         struct pipe_crc_info *info = filep->private_data;
3180         struct drm_device *dev = info->dev;
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3183         char buf[PIPE_CRC_BUFFER_LEN];
3184         int n_entries;
3185         ssize_t bytes_read;
3186
3187         /*
3188          * Don't allow user space to provide buffers not big enough to hold
3189          * a line of data.
3190          */
3191         if (count < PIPE_CRC_LINE_LEN)
3192                 return -EINVAL;
3193
3194         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3195                 return 0;
3196
3197         /* nothing to read */
3198         spin_lock_irq(&pipe_crc->lock);
3199         while (pipe_crc_data_count(pipe_crc) == 0) {
3200                 int ret;
3201
3202                 if (filep->f_flags & O_NONBLOCK) {
3203                         spin_unlock_irq(&pipe_crc->lock);
3204                         return -EAGAIN;
3205                 }
3206
3207                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3208                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3209                 if (ret) {
3210                         spin_unlock_irq(&pipe_crc->lock);
3211                         return ret;
3212                 }
3213         }
3214
3215         /* We now have one or more entries to read */
3216         n_entries = count / PIPE_CRC_LINE_LEN;
3217
3218         bytes_read = 0;
3219         while (n_entries > 0) {
3220                 struct intel_pipe_crc_entry *entry =
3221                         &pipe_crc->entries[pipe_crc->tail];
3222                 int ret;
3223
3224                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3225                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3226                         break;
3227
3228                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3229                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3230
3231                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3232                                        "%8u %8x %8x %8x %8x %8x\n",
3233                                        entry->frame, entry->crc[0],
3234                                        entry->crc[1], entry->crc[2],
3235                                        entry->crc[3], entry->crc[4]);
3236
3237                 spin_unlock_irq(&pipe_crc->lock);
3238
3239                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3240                 if (ret == PIPE_CRC_LINE_LEN)
3241                         return -EFAULT;
3242
3243                 user_buf += PIPE_CRC_LINE_LEN;
3244                 n_entries--;
3245
3246                 spin_lock_irq(&pipe_crc->lock);
3247         }
3248
3249         spin_unlock_irq(&pipe_crc->lock);
3250
3251         return bytes_read;
3252 }
3253
3254 static const struct file_operations i915_pipe_crc_fops = {
3255         .owner = THIS_MODULE,
3256         .open = i915_pipe_crc_open,
3257         .read = i915_pipe_crc_read,
3258         .release = i915_pipe_crc_release,
3259 };
3260
3261 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3262         {
3263                 .name = "i915_pipe_A_crc",
3264                 .pipe = PIPE_A,
3265         },
3266         {
3267                 .name = "i915_pipe_B_crc",
3268                 .pipe = PIPE_B,
3269         },
3270         {
3271                 .name = "i915_pipe_C_crc",
3272                 .pipe = PIPE_C,
3273         },
3274 };
3275
3276 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3277                                 enum pipe pipe)
3278 {
3279         struct drm_device *dev = minor->dev;
3280         struct dentry *ent;
3281         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3282
3283         info->dev = dev;
3284         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3285                                   &i915_pipe_crc_fops);
3286         if (!ent)
3287                 return -ENOMEM;
3288
3289         return drm_add_fake_info_node(minor, ent, info);
3290 }
3291
3292 static const char * const pipe_crc_sources[] = {
3293         "none",
3294         "plane1",
3295         "plane2",
3296         "pf",
3297         "pipe",
3298         "TV",
3299         "DP-B",
3300         "DP-C",
3301         "DP-D",
3302         "auto",
3303 };
3304
3305 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3306 {
3307         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3308         return pipe_crc_sources[source];
3309 }
3310
3311 static int display_crc_ctl_show(struct seq_file *m, void *data)
3312 {
3313         struct drm_device *dev = m->private;
3314         struct drm_i915_private *dev_priv = dev->dev_private;
3315         int i;
3316
3317         for (i = 0; i < I915_MAX_PIPES; i++)
3318                 seq_printf(m, "%c %s\n", pipe_name(i),
3319                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3320
3321         return 0;
3322 }
3323
3324 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3325 {
3326         struct drm_device *dev = inode->i_private;
3327
3328         return single_open(file, display_crc_ctl_show, dev);
3329 }
3330
3331 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3332                                  uint32_t *val)
3333 {
3334         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3335                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3336
3337         switch (*source) {
3338         case INTEL_PIPE_CRC_SOURCE_PIPE:
3339                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3340                 break;
3341         case INTEL_PIPE_CRC_SOURCE_NONE:
3342                 *val = 0;
3343                 break;
3344         default:
3345                 return -EINVAL;
3346         }
3347
3348         return 0;
3349 }
3350
3351 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3352                                      enum intel_pipe_crc_source *source)
3353 {
3354         struct intel_encoder *encoder;
3355         struct intel_crtc *crtc;
3356         struct intel_digital_port *dig_port;
3357         int ret = 0;
3358
3359         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3360
3361         drm_modeset_lock_all(dev);
3362         for_each_intel_encoder(dev, encoder) {
3363                 if (!encoder->base.crtc)
3364                         continue;
3365
3366                 crtc = to_intel_crtc(encoder->base.crtc);
3367
3368                 if (crtc->pipe != pipe)
3369                         continue;
3370
3371                 switch (encoder->type) {
3372                 case INTEL_OUTPUT_TVOUT:
3373                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3374                         break;
3375                 case INTEL_OUTPUT_DISPLAYPORT:
3376                 case INTEL_OUTPUT_EDP:
3377                         dig_port = enc_to_dig_port(&encoder->base);
3378                         switch (dig_port->port) {
3379                         case PORT_B:
3380                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3381                                 break;
3382                         case PORT_C:
3383                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3384                                 break;
3385                         case PORT_D:
3386                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3387                                 break;
3388                         default:
3389                                 WARN(1, "nonexisting DP port %c\n",
3390                                      port_name(dig_port->port));
3391                                 break;
3392                         }
3393                         break;
3394                 default:
3395                         break;
3396                 }
3397         }
3398         drm_modeset_unlock_all(dev);
3399
3400         return ret;
3401 }
3402
3403 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3404                                 enum pipe pipe,
3405                                 enum intel_pipe_crc_source *source,
3406                                 uint32_t *val)
3407 {
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409         bool need_stable_symbols = false;
3410
3411         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3412                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3413                 if (ret)
3414                         return ret;
3415         }
3416
3417         switch (*source) {
3418         case INTEL_PIPE_CRC_SOURCE_PIPE:
3419                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3420                 break;
3421         case INTEL_PIPE_CRC_SOURCE_DP_B:
3422                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3423                 need_stable_symbols = true;
3424                 break;
3425         case INTEL_PIPE_CRC_SOURCE_DP_C:
3426                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3427                 need_stable_symbols = true;
3428                 break;
3429         case INTEL_PIPE_CRC_SOURCE_DP_D:
3430                 if (!IS_CHERRYVIEW(dev))
3431                         return -EINVAL;
3432                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3433                 need_stable_symbols = true;
3434                 break;
3435         case INTEL_PIPE_CRC_SOURCE_NONE:
3436                 *val = 0;
3437                 break;
3438         default:
3439                 return -EINVAL;
3440         }
3441
3442         /*
3443          * When the pipe CRC tap point is after the transcoders we need
3444          * to tweak symbol-level features to produce a deterministic series of
3445          * symbols for a given frame. We need to reset those features only once
3446          * a frame (instead of every nth symbol):
3447          *   - DC-balance: used to ensure a better clock recovery from the data
3448          *     link (SDVO)
3449          *   - DisplayPort scrambling: used for EMI reduction
3450          */
3451         if (need_stable_symbols) {
3452                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3453
3454                 tmp |= DC_BALANCE_RESET_VLV;
3455                 switch (pipe) {
3456                 case PIPE_A:
3457                         tmp |= PIPE_A_SCRAMBLE_RESET;
3458                         break;
3459                 case PIPE_B:
3460                         tmp |= PIPE_B_SCRAMBLE_RESET;
3461                         break;
3462                 case PIPE_C:
3463                         tmp |= PIPE_C_SCRAMBLE_RESET;
3464                         break;
3465                 default:
3466                         return -EINVAL;
3467                 }
3468                 I915_WRITE(PORT_DFT2_G4X, tmp);
3469         }
3470
3471         return 0;
3472 }
3473
3474 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3475                                  enum pipe pipe,
3476                                  enum intel_pipe_crc_source *source,
3477                                  uint32_t *val)
3478 {
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480         bool need_stable_symbols = false;
3481
3482         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3483                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3484                 if (ret)
3485                         return ret;
3486         }
3487
3488         switch (*source) {
3489         case INTEL_PIPE_CRC_SOURCE_PIPE:
3490                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3491                 break;
3492         case INTEL_PIPE_CRC_SOURCE_TV:
3493                 if (!SUPPORTS_TV(dev))
3494                         return -EINVAL;
3495                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3496                 break;
3497         case INTEL_PIPE_CRC_SOURCE_DP_B:
3498                 if (!IS_G4X(dev))
3499                         return -EINVAL;
3500                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3501                 need_stable_symbols = true;
3502                 break;
3503         case INTEL_PIPE_CRC_SOURCE_DP_C:
3504                 if (!IS_G4X(dev))
3505                         return -EINVAL;
3506                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3507                 need_stable_symbols = true;
3508                 break;
3509         case INTEL_PIPE_CRC_SOURCE_DP_D:
3510                 if (!IS_G4X(dev))
3511                         return -EINVAL;
3512                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3513                 need_stable_symbols = true;
3514                 break;
3515         case INTEL_PIPE_CRC_SOURCE_NONE:
3516                 *val = 0;
3517                 break;
3518         default:
3519                 return -EINVAL;
3520         }
3521
3522         /*
3523          * When the pipe CRC tap point is after the transcoders we need
3524          * to tweak symbol-level features to produce a deterministic series of
3525          * symbols for a given frame. We need to reset those features only once
3526          * a frame (instead of every nth symbol):
3527          *   - DC-balance: used to ensure a better clock recovery from the data
3528          *     link (SDVO)
3529          *   - DisplayPort scrambling: used for EMI reduction
3530          */
3531         if (need_stable_symbols) {
3532                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3533
3534                 WARN_ON(!IS_G4X(dev));
3535
3536                 I915_WRITE(PORT_DFT_I9XX,
3537                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3538
3539                 if (pipe == PIPE_A)
3540                         tmp |= PIPE_A_SCRAMBLE_RESET;
3541                 else
3542                         tmp |= PIPE_B_SCRAMBLE_RESET;
3543
3544                 I915_WRITE(PORT_DFT2_G4X, tmp);
3545         }
3546
3547         return 0;
3548 }
3549
3550 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3551                                          enum pipe pipe)
3552 {
3553         struct drm_i915_private *dev_priv = dev->dev_private;
3554         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3555
3556         switch (pipe) {
3557         case PIPE_A:
3558                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3559                 break;
3560         case PIPE_B:
3561                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3562                 break;
3563         case PIPE_C:
3564                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3565                 break;
3566         default:
3567                 return;
3568         }
3569         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3570                 tmp &= ~DC_BALANCE_RESET_VLV;
3571         I915_WRITE(PORT_DFT2_G4X, tmp);
3572
3573 }
3574
3575 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3576                                          enum pipe pipe)
3577 {
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3580
3581         if (pipe == PIPE_A)
3582                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3583         else
3584                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3585         I915_WRITE(PORT_DFT2_G4X, tmp);
3586
3587         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3588                 I915_WRITE(PORT_DFT_I9XX,
3589                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3590         }
3591 }
3592
3593 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3594                                 uint32_t *val)
3595 {
3596         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3597                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3598
3599         switch (*source) {
3600         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3601                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3602                 break;
3603         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3604                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3605                 break;
3606         case INTEL_PIPE_CRC_SOURCE_PIPE:
3607                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3608                 break;
3609         case INTEL_PIPE_CRC_SOURCE_NONE:
3610                 *val = 0;
3611                 break;
3612         default:
3613                 return -EINVAL;
3614         }
3615
3616         return 0;
3617 }
3618
3619 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3620 {
3621         struct drm_i915_private *dev_priv = dev->dev_private;
3622         struct intel_crtc *crtc =
3623                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3624
3625         drm_modeset_lock_all(dev);
3626         /*
3627          * If we use the eDP transcoder we need to make sure that we don't
3628          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3629          * relevant on hsw with pipe A when using the always-on power well
3630          * routing.
3631          */
3632         if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3633             !crtc->config->pch_pfit.enabled) {
3634                 crtc->config->pch_pfit.force_thru = true;
3635
3636                 intel_display_power_get(dev_priv,
3637                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3638
3639                 intel_crtc_reset(crtc);
3640         }
3641         drm_modeset_unlock_all(dev);
3642 }
3643
3644 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3645 {
3646         struct drm_i915_private *dev_priv = dev->dev_private;
3647         struct intel_crtc *crtc =
3648                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3649
3650         drm_modeset_lock_all(dev);
3651         /*
3652          * If we use the eDP transcoder we need to make sure that we don't
3653          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3654          * relevant on hsw with pipe A when using the always-on power well
3655          * routing.
3656          */
3657         if (crtc->config->pch_pfit.force_thru) {
3658                 crtc->config->pch_pfit.force_thru = false;
3659
3660                 intel_crtc_reset(crtc);
3661
3662                 intel_display_power_put(dev_priv,
3663                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3664         }
3665         drm_modeset_unlock_all(dev);
3666 }
3667
3668 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3669                                 enum pipe pipe,
3670                                 enum intel_pipe_crc_source *source,
3671                                 uint32_t *val)
3672 {
3673         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3674                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3675
3676         switch (*source) {
3677         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3678                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3679                 break;
3680         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3681                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3682                 break;
3683         case INTEL_PIPE_CRC_SOURCE_PF:
3684                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3685                         hsw_trans_edp_pipe_A_crc_wa(dev);
3686
3687                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3688                 break;
3689         case INTEL_PIPE_CRC_SOURCE_NONE:
3690                 *val = 0;
3691                 break;
3692         default:
3693                 return -EINVAL;
3694         }
3695
3696         return 0;
3697 }
3698
3699 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3700                                enum intel_pipe_crc_source source)
3701 {
3702         struct drm_i915_private *dev_priv = dev->dev_private;
3703         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3704         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3705                                                                         pipe));
3706         u32 val = 0; /* shut up gcc */
3707         int ret;
3708
3709         if (pipe_crc->source == source)
3710                 return 0;
3711
3712         /* forbid changing the source without going back to 'none' */
3713         if (pipe_crc->source && source)
3714                 return -EINVAL;
3715
3716         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3717                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3718                 return -EIO;
3719         }
3720
3721         if (IS_GEN2(dev))
3722                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3723         else if (INTEL_INFO(dev)->gen < 5)
3724                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3725         else if (IS_VALLEYVIEW(dev))
3726                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3727         else if (IS_GEN5(dev) || IS_GEN6(dev))
3728                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3729         else
3730                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3731
3732         if (ret != 0)
3733                 return ret;
3734
3735         /* none -> real source transition */
3736         if (source) {
3737                 struct intel_pipe_crc_entry *entries;
3738
3739                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3740                                  pipe_name(pipe), pipe_crc_source_name(source));
3741
3742                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3743                                   sizeof(pipe_crc->entries[0]),
3744                                   GFP_KERNEL);
3745                 if (!entries)
3746                         return -ENOMEM;
3747
3748                 /*
3749                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3750                  * enabled and disabled dynamically based on package C states,
3751                  * user space can't make reliable use of the CRCs, so let's just
3752                  * completely disable it.
3753                  */
3754                 hsw_disable_ips(crtc);
3755
3756                 spin_lock_irq(&pipe_crc->lock);
3757                 kfree(pipe_crc->entries);
3758                 pipe_crc->entries = entries;
3759                 pipe_crc->head = 0;
3760                 pipe_crc->tail = 0;
3761                 spin_unlock_irq(&pipe_crc->lock);
3762         }
3763
3764         pipe_crc->source = source;
3765
3766         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3767         POSTING_READ(PIPE_CRC_CTL(pipe));
3768
3769         /* real source -> none transition */
3770         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3771                 struct intel_pipe_crc_entry *entries;
3772                 struct intel_crtc *crtc =
3773                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3774
3775                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3776                                  pipe_name(pipe));
3777
3778                 drm_modeset_lock(&crtc->base.mutex, NULL);
3779                 if (crtc->active)
3780                         intel_wait_for_vblank(dev, pipe);
3781                 drm_modeset_unlock(&crtc->base.mutex);
3782
3783                 spin_lock_irq(&pipe_crc->lock);
3784                 entries = pipe_crc->entries;
3785                 pipe_crc->entries = NULL;
3786                 pipe_crc->head = 0;
3787                 pipe_crc->tail = 0;
3788                 spin_unlock_irq(&pipe_crc->lock);
3789
3790                 kfree(entries);
3791
3792                 if (IS_G4X(dev))
3793                         g4x_undo_pipe_scramble_reset(dev, pipe);
3794                 else if (IS_VALLEYVIEW(dev))
3795                         vlv_undo_pipe_scramble_reset(dev, pipe);
3796                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3797                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3798
3799                 hsw_enable_ips(crtc);
3800         }
3801
3802         return 0;
3803 }
3804
3805 /*
3806  * Parse pipe CRC command strings:
3807  *   command: wsp* object wsp+ name wsp+ source wsp*
3808  *   object: 'pipe'
3809  *   name: (A | B | C)
3810  *   source: (none | plane1 | plane2 | pf)
3811  *   wsp: (#0x20 | #0x9 | #0xA)+
3812  *
3813  * eg.:
3814  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3815  *  "pipe A none"    ->  Stop CRC
3816  */
3817 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3818 {
3819         int n_words = 0;
3820
3821         while (*buf) {
3822                 char *end;
3823
3824                 /* skip leading white space */
3825                 buf = skip_spaces(buf);
3826                 if (!*buf)
3827                         break;  /* end of buffer */
3828
3829                 /* find end of word */
3830                 for (end = buf; *end && !isspace(*end); end++)
3831                         ;
3832
3833                 if (n_words == max_words) {
3834                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3835                                          max_words);
3836                         return -EINVAL; /* ran out of words[] before bytes */
3837                 }
3838
3839                 if (*end)
3840                         *end++ = '\0';
3841                 words[n_words++] = buf;
3842                 buf = end;
3843         }
3844
3845         return n_words;
3846 }
3847
3848 enum intel_pipe_crc_object {
3849         PIPE_CRC_OBJECT_PIPE,
3850 };
3851
3852 static const char * const pipe_crc_objects[] = {
3853         "pipe",
3854 };
3855
3856 static int
3857 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3858 {
3859         int i;
3860
3861         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3862                 if (!strcmp(buf, pipe_crc_objects[i])) {
3863                         *o = i;
3864                         return 0;
3865                     }
3866
3867         return -EINVAL;
3868 }
3869
3870 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3871 {
3872         const char name = buf[0];
3873
3874         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3875                 return -EINVAL;
3876
3877         *pipe = name - 'A';
3878
3879         return 0;
3880 }
3881
3882 static int
3883 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3884 {
3885         int i;
3886
3887         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3888                 if (!strcmp(buf, pipe_crc_sources[i])) {
3889                         *s = i;
3890                         return 0;
3891                     }
3892
3893         return -EINVAL;
3894 }
3895
3896 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3897 {
3898 #define N_WORDS 3
3899         int n_words;
3900         char *words[N_WORDS];
3901         enum pipe pipe;
3902         enum intel_pipe_crc_object object;
3903         enum intel_pipe_crc_source source;
3904
3905         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3906         if (n_words != N_WORDS) {
3907                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3908                                  N_WORDS);
3909                 return -EINVAL;
3910         }
3911
3912         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3913                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3914                 return -EINVAL;
3915         }
3916
3917         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3918                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3919                 return -EINVAL;
3920         }
3921
3922         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3923                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3924                 return -EINVAL;
3925         }
3926
3927         return pipe_crc_set_source(dev, pipe, source);
3928 }
3929
3930 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3931                                      size_t len, loff_t *offp)
3932 {
3933         struct seq_file *m = file->private_data;
3934         struct drm_device *dev = m->private;
3935         char *tmpbuf;
3936         int ret;
3937
3938         if (len == 0)
3939                 return 0;
3940
3941         if (len > PAGE_SIZE - 1) {
3942                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3943                                  PAGE_SIZE);
3944                 return -E2BIG;
3945         }
3946
3947         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3948         if (!tmpbuf)
3949                 return -ENOMEM;
3950
3951         if (copy_from_user(tmpbuf, ubuf, len)) {
3952                 ret = -EFAULT;
3953                 goto out;
3954         }
3955         tmpbuf[len] = '\0';
3956
3957         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3958
3959 out:
3960         kfree(tmpbuf);
3961         if (ret < 0)
3962                 return ret;
3963
3964         *offp += len;
3965         return len;
3966 }
3967
3968 static const struct file_operations i915_display_crc_ctl_fops = {
3969         .owner = THIS_MODULE,
3970         .open = display_crc_ctl_open,
3971         .read = seq_read,
3972         .llseek = seq_lseek,
3973         .release = single_release,
3974         .write = display_crc_ctl_write
3975 };
3976
3977 static ssize_t i915_displayport_test_active_write(struct file *file,
3978                                             const char __user *ubuf,
3979                                             size_t len, loff_t *offp)
3980 {
3981         char *input_buffer;
3982         int status = 0;
3983         struct seq_file *m;
3984         struct drm_device *dev;
3985         struct drm_connector *connector;
3986         struct list_head *connector_list;
3987         struct intel_dp *intel_dp;
3988         int val = 0;
3989
3990         m = file->private_data;
3991         if (!m) {
3992                 status = -ENODEV;
3993                 return status;
3994         }
3995         dev = m->private;
3996
3997         if (!dev) {
3998                 status = -ENODEV;
3999                 return status;
4000         }
4001         connector_list = &dev->mode_config.connector_list;
4002
4003         if (len == 0)
4004                 return 0;
4005
4006         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4007         if (!input_buffer)
4008                 return -ENOMEM;
4009
4010         if (copy_from_user(input_buffer, ubuf, len)) {
4011                 status = -EFAULT;
4012                 goto out;
4013         }
4014
4015         input_buffer[len] = '\0';
4016         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4017
4018         list_for_each_entry(connector, connector_list, head) {
4019
4020                 if (connector->connector_type !=
4021                     DRM_MODE_CONNECTOR_DisplayPort)
4022                         continue;
4023
4024                 if (connector->connector_type ==
4025                     DRM_MODE_CONNECTOR_DisplayPort &&
4026                     connector->status == connector_status_connected &&
4027                     connector->encoder != NULL) {
4028                         intel_dp = enc_to_intel_dp(connector->encoder);
4029                         status = kstrtoint(input_buffer, 10, &val);
4030                         if (status < 0)
4031                                 goto out;
4032                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4033                         /* To prevent erroneous activation of the compliance
4034                          * testing code, only accept an actual value of 1 here
4035                          */
4036                         if (val == 1)
4037                                 intel_dp->compliance_test_active = 1;
4038                         else
4039                                 intel_dp->compliance_test_active = 0;
4040                 }
4041         }
4042 out:
4043         kfree(input_buffer);
4044         if (status < 0)
4045                 return status;
4046
4047         *offp += len;
4048         return len;
4049 }
4050
4051 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4052 {
4053         struct drm_device *dev = m->private;
4054         struct drm_connector *connector;
4055         struct list_head *connector_list = &dev->mode_config.connector_list;
4056         struct intel_dp *intel_dp;
4057
4058         if (!dev)
4059                 return -ENODEV;
4060
4061         list_for_each_entry(connector, connector_list, head) {
4062
4063                 if (connector->connector_type !=
4064                     DRM_MODE_CONNECTOR_DisplayPort)
4065                         continue;
4066
4067                 if (connector->status == connector_status_connected &&
4068                     connector->encoder != NULL) {
4069                         intel_dp = enc_to_intel_dp(connector->encoder);
4070                         if (intel_dp->compliance_test_active)
4071                                 seq_puts(m, "1");
4072                         else
4073                                 seq_puts(m, "0");
4074                 } else
4075                         seq_puts(m, "0");
4076         }
4077
4078         return 0;
4079 }
4080
4081 static int i915_displayport_test_active_open(struct inode *inode,
4082                                        struct file *file)
4083 {
4084         struct drm_device *dev = inode->i_private;
4085
4086         return single_open(file, i915_displayport_test_active_show, dev);
4087 }
4088
4089 static const struct file_operations i915_displayport_test_active_fops = {
4090         .owner = THIS_MODULE,
4091         .open = i915_displayport_test_active_open,
4092         .read = seq_read,
4093         .llseek = seq_lseek,
4094         .release = single_release,
4095         .write = i915_displayport_test_active_write
4096 };
4097
4098 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4099 {
4100         struct drm_device *dev = m->private;
4101         struct drm_connector *connector;
4102         struct list_head *connector_list = &dev->mode_config.connector_list;
4103         struct intel_dp *intel_dp;
4104
4105         if (!dev)
4106                 return -ENODEV;
4107
4108         list_for_each_entry(connector, connector_list, head) {
4109
4110                 if (connector->connector_type !=
4111                     DRM_MODE_CONNECTOR_DisplayPort)
4112                         continue;
4113
4114                 if (connector->status == connector_status_connected &&
4115                     connector->encoder != NULL) {
4116                         intel_dp = enc_to_intel_dp(connector->encoder);
4117                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4118                 } else
4119                         seq_puts(m, "0");
4120         }
4121
4122         return 0;
4123 }
4124 static int i915_displayport_test_data_open(struct inode *inode,
4125                                        struct file *file)
4126 {
4127         struct drm_device *dev = inode->i_private;
4128
4129         return single_open(file, i915_displayport_test_data_show, dev);
4130 }
4131
4132 static const struct file_operations i915_displayport_test_data_fops = {
4133         .owner = THIS_MODULE,
4134         .open = i915_displayport_test_data_open,
4135         .read = seq_read,
4136         .llseek = seq_lseek,
4137         .release = single_release
4138 };
4139
4140 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4141 {
4142         struct drm_device *dev = m->private;
4143         struct drm_connector *connector;
4144         struct list_head *connector_list = &dev->mode_config.connector_list;
4145         struct intel_dp *intel_dp;
4146
4147         if (!dev)
4148                 return -ENODEV;
4149
4150         list_for_each_entry(connector, connector_list, head) {
4151
4152                 if (connector->connector_type !=
4153                     DRM_MODE_CONNECTOR_DisplayPort)
4154                         continue;
4155
4156                 if (connector->status == connector_status_connected &&
4157                     connector->encoder != NULL) {
4158                         intel_dp = enc_to_intel_dp(connector->encoder);
4159                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4160                 } else
4161                         seq_puts(m, "0");
4162         }
4163
4164         return 0;
4165 }
4166
4167 static int i915_displayport_test_type_open(struct inode *inode,
4168                                        struct file *file)
4169 {
4170         struct drm_device *dev = inode->i_private;
4171
4172         return single_open(file, i915_displayport_test_type_show, dev);
4173 }
4174
4175 static const struct file_operations i915_displayport_test_type_fops = {
4176         .owner = THIS_MODULE,
4177         .open = i915_displayport_test_type_open,
4178         .read = seq_read,
4179         .llseek = seq_lseek,
4180         .release = single_release
4181 };
4182
4183 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4184 {
4185         struct drm_device *dev = m->private;
4186         int num_levels = ilk_wm_max_level(dev) + 1;
4187         int level;
4188
4189         drm_modeset_lock_all(dev);
4190
4191         for (level = 0; level < num_levels; level++) {
4192                 unsigned int latency = wm[level];
4193
4194                 /*
4195                  * - WM1+ latency values in 0.5us units
4196                  * - latencies are in us on gen9
4197                  */
4198                 if (INTEL_INFO(dev)->gen >= 9)
4199                         latency *= 10;
4200                 else if (level > 0)
4201                         latency *= 5;
4202
4203                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4204                            level, wm[level], latency / 10, latency % 10);
4205         }
4206
4207         drm_modeset_unlock_all(dev);
4208 }
4209
4210 static int pri_wm_latency_show(struct seq_file *m, void *data)
4211 {
4212         struct drm_device *dev = m->private;
4213         struct drm_i915_private *dev_priv = dev->dev_private;
4214         const uint16_t *latencies;
4215
4216         if (INTEL_INFO(dev)->gen >= 9)
4217                 latencies = dev_priv->wm.skl_latency;
4218         else
4219                 latencies = to_i915(dev)->wm.pri_latency;
4220
4221         wm_latency_show(m, latencies);
4222
4223         return 0;
4224 }
4225
4226 static int spr_wm_latency_show(struct seq_file *m, void *data)
4227 {
4228         struct drm_device *dev = m->private;
4229         struct drm_i915_private *dev_priv = dev->dev_private;
4230         const uint16_t *latencies;
4231
4232         if (INTEL_INFO(dev)->gen >= 9)
4233                 latencies = dev_priv->wm.skl_latency;
4234         else
4235                 latencies = to_i915(dev)->wm.spr_latency;
4236
4237         wm_latency_show(m, latencies);
4238
4239         return 0;
4240 }
4241
4242 static int cur_wm_latency_show(struct seq_file *m, void *data)
4243 {
4244         struct drm_device *dev = m->private;
4245         struct drm_i915_private *dev_priv = dev->dev_private;
4246         const uint16_t *latencies;
4247
4248         if (INTEL_INFO(dev)->gen >= 9)
4249                 latencies = dev_priv->wm.skl_latency;
4250         else
4251                 latencies = to_i915(dev)->wm.cur_latency;
4252
4253         wm_latency_show(m, latencies);
4254
4255         return 0;
4256 }
4257
4258 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4259 {
4260         struct drm_device *dev = inode->i_private;
4261
4262         if (HAS_GMCH_DISPLAY(dev))
4263                 return -ENODEV;
4264
4265         return single_open(file, pri_wm_latency_show, dev);
4266 }
4267
4268 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4269 {
4270         struct drm_device *dev = inode->i_private;
4271
4272         if (HAS_GMCH_DISPLAY(dev))
4273                 return -ENODEV;
4274
4275         return single_open(file, spr_wm_latency_show, dev);
4276 }
4277
4278 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4279 {
4280         struct drm_device *dev = inode->i_private;
4281
4282         if (HAS_GMCH_DISPLAY(dev))
4283                 return -ENODEV;
4284
4285         return single_open(file, cur_wm_latency_show, dev);
4286 }
4287
4288 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4289                                 size_t len, loff_t *offp, uint16_t wm[8])
4290 {
4291         struct seq_file *m = file->private_data;
4292         struct drm_device *dev = m->private;
4293         uint16_t new[8] = { 0 };
4294         int num_levels = ilk_wm_max_level(dev) + 1;
4295         int level;
4296         int ret;
4297         char tmp[32];
4298
4299         if (len >= sizeof(tmp))
4300                 return -EINVAL;
4301
4302         if (copy_from_user(tmp, ubuf, len))
4303                 return -EFAULT;
4304
4305         tmp[len] = '\0';
4306
4307         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4308                      &new[0], &new[1], &new[2], &new[3],
4309                      &new[4], &new[5], &new[6], &new[7]);
4310         if (ret != num_levels)
4311                 return -EINVAL;
4312
4313         drm_modeset_lock_all(dev);
4314
4315         for (level = 0; level < num_levels; level++)
4316                 wm[level] = new[level];
4317
4318         drm_modeset_unlock_all(dev);
4319
4320         return len;
4321 }
4322
4323
4324 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4325                                     size_t len, loff_t *offp)
4326 {
4327         struct seq_file *m = file->private_data;
4328         struct drm_device *dev = m->private;
4329         struct drm_i915_private *dev_priv = dev->dev_private;
4330         uint16_t *latencies;
4331
4332         if (INTEL_INFO(dev)->gen >= 9)
4333                 latencies = dev_priv->wm.skl_latency;
4334         else
4335                 latencies = to_i915(dev)->wm.pri_latency;
4336
4337         return wm_latency_write(file, ubuf, len, offp, latencies);
4338 }
4339
4340 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4341                                     size_t len, loff_t *offp)
4342 {
4343         struct seq_file *m = file->private_data;
4344         struct drm_device *dev = m->private;
4345         struct drm_i915_private *dev_priv = dev->dev_private;
4346         uint16_t *latencies;
4347
4348         if (INTEL_INFO(dev)->gen >= 9)
4349                 latencies = dev_priv->wm.skl_latency;
4350         else
4351                 latencies = to_i915(dev)->wm.spr_latency;
4352
4353         return wm_latency_write(file, ubuf, len, offp, latencies);
4354 }
4355
4356 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4357                                     size_t len, loff_t *offp)
4358 {
4359         struct seq_file *m = file->private_data;
4360         struct drm_device *dev = m->private;
4361         struct drm_i915_private *dev_priv = dev->dev_private;
4362         uint16_t *latencies;
4363
4364         if (INTEL_INFO(dev)->gen >= 9)
4365                 latencies = dev_priv->wm.skl_latency;
4366         else
4367                 latencies = to_i915(dev)->wm.cur_latency;
4368
4369         return wm_latency_write(file, ubuf, len, offp, latencies);
4370 }
4371
4372 static const struct file_operations i915_pri_wm_latency_fops = {
4373         .owner = THIS_MODULE,
4374         .open = pri_wm_latency_open,
4375         .read = seq_read,
4376         .llseek = seq_lseek,
4377         .release = single_release,
4378         .write = pri_wm_latency_write
4379 };
4380
4381 static const struct file_operations i915_spr_wm_latency_fops = {
4382         .owner = THIS_MODULE,
4383         .open = spr_wm_latency_open,
4384         .read = seq_read,
4385         .llseek = seq_lseek,
4386         .release = single_release,
4387         .write = spr_wm_latency_write
4388 };
4389
4390 static const struct file_operations i915_cur_wm_latency_fops = {
4391         .owner = THIS_MODULE,
4392         .open = cur_wm_latency_open,
4393         .read = seq_read,
4394         .llseek = seq_lseek,
4395         .release = single_release,
4396         .write = cur_wm_latency_write
4397 };
4398
4399 static int
4400 i915_wedged_get(void *data, u64 *val)
4401 {
4402         struct drm_device *dev = data;
4403         struct drm_i915_private *dev_priv = dev->dev_private;
4404
4405         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4406
4407         return 0;
4408 }
4409
4410 static int
4411 i915_wedged_set(void *data, u64 val)
4412 {
4413         struct drm_device *dev = data;
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415
4416         /*
4417          * There is no safeguard against this debugfs entry colliding
4418          * with the hangcheck calling same i915_handle_error() in
4419          * parallel, causing an explosion. For now we assume that the
4420          * test harness is responsible enough not to inject gpu hangs
4421          * while it is writing to 'i915_wedged'
4422          */
4423
4424         if (i915_reset_in_progress(&dev_priv->gpu_error))
4425                 return -EAGAIN;
4426
4427         intel_runtime_pm_get(dev_priv);
4428
4429         i915_handle_error(dev, val,
4430                           "Manually setting wedged to %llu", val);
4431
4432         intel_runtime_pm_put(dev_priv);
4433
4434         return 0;
4435 }
4436
4437 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4438                         i915_wedged_get, i915_wedged_set,
4439                         "%llu\n");
4440
4441 static int
4442 i915_ring_stop_get(void *data, u64 *val)
4443 {
4444         struct drm_device *dev = data;
4445         struct drm_i915_private *dev_priv = dev->dev_private;
4446
4447         *val = dev_priv->gpu_error.stop_rings;
4448
4449         return 0;
4450 }
4451
4452 static int
4453 i915_ring_stop_set(void *data, u64 val)
4454 {
4455         struct drm_device *dev = data;
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457         int ret;
4458
4459         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4460
4461         ret = mutex_lock_interruptible(&dev->struct_mutex);
4462         if (ret)
4463                 return ret;
4464
4465         dev_priv->gpu_error.stop_rings = val;
4466         mutex_unlock(&dev->struct_mutex);
4467
4468         return 0;
4469 }
4470
4471 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4472                         i915_ring_stop_get, i915_ring_stop_set,
4473                         "0x%08llx\n");
4474
4475 static int
4476 i915_ring_missed_irq_get(void *data, u64 *val)
4477 {
4478         struct drm_device *dev = data;
4479         struct drm_i915_private *dev_priv = dev->dev_private;
4480
4481         *val = dev_priv->gpu_error.missed_irq_rings;
4482         return 0;
4483 }
4484
4485 static int
4486 i915_ring_missed_irq_set(void *data, u64 val)
4487 {
4488         struct drm_device *dev = data;
4489         struct drm_i915_private *dev_priv = dev->dev_private;
4490         int ret;
4491
4492         /* Lock against concurrent debugfs callers */
4493         ret = mutex_lock_interruptible(&dev->struct_mutex);
4494         if (ret)
4495                 return ret;
4496         dev_priv->gpu_error.missed_irq_rings = val;
4497         mutex_unlock(&dev->struct_mutex);
4498
4499         return 0;
4500 }
4501
4502 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4503                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4504                         "0x%08llx\n");
4505
4506 static int
4507 i915_ring_test_irq_get(void *data, u64 *val)
4508 {
4509         struct drm_device *dev = data;
4510         struct drm_i915_private *dev_priv = dev->dev_private;
4511
4512         *val = dev_priv->gpu_error.test_irq_rings;
4513
4514         return 0;
4515 }
4516
4517 static int
4518 i915_ring_test_irq_set(void *data, u64 val)
4519 {
4520         struct drm_device *dev = data;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         int ret;
4523
4524         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4525
4526         /* Lock against concurrent debugfs callers */
4527         ret = mutex_lock_interruptible(&dev->struct_mutex);
4528         if (ret)
4529                 return ret;
4530
4531         dev_priv->gpu_error.test_irq_rings = val;
4532         mutex_unlock(&dev->struct_mutex);
4533
4534         return 0;
4535 }
4536
4537 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4538                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4539                         "0x%08llx\n");
4540
4541 #define DROP_UNBOUND 0x1
4542 #define DROP_BOUND 0x2
4543 #define DROP_RETIRE 0x4
4544 #define DROP_ACTIVE 0x8
4545 #define DROP_ALL (DROP_UNBOUND | \
4546                   DROP_BOUND | \
4547                   DROP_RETIRE | \
4548                   DROP_ACTIVE)
4549 static int
4550 i915_drop_caches_get(void *data, u64 *val)
4551 {
4552         *val = DROP_ALL;
4553
4554         return 0;
4555 }
4556
4557 static int
4558 i915_drop_caches_set(void *data, u64 val)
4559 {
4560         struct drm_device *dev = data;
4561         struct drm_i915_private *dev_priv = dev->dev_private;
4562         int ret;
4563
4564         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4565
4566         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4567          * on ioctls on -EAGAIN. */
4568         ret = mutex_lock_interruptible(&dev->struct_mutex);
4569         if (ret)
4570                 return ret;
4571
4572         if (val & DROP_ACTIVE) {
4573                 ret = i915_gpu_idle(dev);
4574                 if (ret)
4575                         goto unlock;
4576         }
4577
4578         if (val & (DROP_RETIRE | DROP_ACTIVE))
4579                 i915_gem_retire_requests(dev);
4580
4581         if (val & DROP_BOUND)
4582                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4583
4584         if (val & DROP_UNBOUND)
4585                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4586
4587 unlock:
4588         mutex_unlock(&dev->struct_mutex);
4589
4590         return ret;
4591 }
4592
4593 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4594                         i915_drop_caches_get, i915_drop_caches_set,
4595                         "0x%08llx\n");
4596
4597 static int
4598 i915_max_freq_get(void *data, u64 *val)
4599 {
4600         struct drm_device *dev = data;
4601         struct drm_i915_private *dev_priv = dev->dev_private;
4602         int ret;
4603
4604         if (INTEL_INFO(dev)->gen < 6)
4605                 return -ENODEV;
4606
4607         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4608
4609         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4610         if (ret)
4611                 return ret;
4612
4613         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4614         mutex_unlock(&dev_priv->rps.hw_lock);
4615
4616         return 0;
4617 }
4618
4619 static int
4620 i915_max_freq_set(void *data, u64 val)
4621 {
4622         struct drm_device *dev = data;
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624         u32 hw_max, hw_min;
4625         int ret;
4626
4627         if (INTEL_INFO(dev)->gen < 6)
4628                 return -ENODEV;
4629
4630         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4631
4632         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4633
4634         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4635         if (ret)
4636                 return ret;
4637
4638         /*
4639          * Turbo will still be enabled, but won't go above the set value.
4640          */
4641         val = intel_freq_opcode(dev_priv, val);
4642
4643         hw_max = dev_priv->rps.max_freq;
4644         hw_min = dev_priv->rps.min_freq;
4645
4646         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4647                 mutex_unlock(&dev_priv->rps.hw_lock);
4648                 return -EINVAL;
4649         }
4650
4651         dev_priv->rps.max_freq_softlimit = val;
4652
4653         intel_set_rps(dev, val);
4654
4655         mutex_unlock(&dev_priv->rps.hw_lock);
4656
4657         return 0;
4658 }
4659
4660 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4661                         i915_max_freq_get, i915_max_freq_set,
4662                         "%llu\n");
4663
4664 static int
4665 i915_min_freq_get(void *data, u64 *val)
4666 {
4667         struct drm_device *dev = data;
4668         struct drm_i915_private *dev_priv = dev->dev_private;
4669         int ret;
4670
4671         if (INTEL_INFO(dev)->gen < 6)
4672                 return -ENODEV;
4673
4674         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4675
4676         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4677         if (ret)
4678                 return ret;
4679
4680         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4681         mutex_unlock(&dev_priv->rps.hw_lock);
4682
4683         return 0;
4684 }
4685
4686 static int
4687 i915_min_freq_set(void *data, u64 val)
4688 {
4689         struct drm_device *dev = data;
4690         struct drm_i915_private *dev_priv = dev->dev_private;
4691         u32 hw_max, hw_min;
4692         int ret;
4693
4694         if (INTEL_INFO(dev)->gen < 6)
4695                 return -ENODEV;
4696
4697         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4698
4699         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4700
4701         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4702         if (ret)
4703                 return ret;
4704
4705         /*
4706          * Turbo will still be enabled, but won't go below the set value.
4707          */
4708         val = intel_freq_opcode(dev_priv, val);
4709
4710         hw_max = dev_priv->rps.max_freq;
4711         hw_min = dev_priv->rps.min_freq;
4712
4713         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4714                 mutex_unlock(&dev_priv->rps.hw_lock);
4715                 return -EINVAL;
4716         }
4717
4718         dev_priv->rps.min_freq_softlimit = val;
4719
4720         intel_set_rps(dev, val);
4721
4722         mutex_unlock(&dev_priv->rps.hw_lock);
4723
4724         return 0;
4725 }
4726
4727 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4728                         i915_min_freq_get, i915_min_freq_set,
4729                         "%llu\n");
4730
4731 static int
4732 i915_cache_sharing_get(void *data, u64 *val)
4733 {
4734         struct drm_device *dev = data;
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736         u32 snpcr;
4737         int ret;
4738
4739         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4740                 return -ENODEV;
4741
4742         ret = mutex_lock_interruptible(&dev->struct_mutex);
4743         if (ret)
4744                 return ret;
4745         intel_runtime_pm_get(dev_priv);
4746
4747         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4748
4749         intel_runtime_pm_put(dev_priv);
4750         mutex_unlock(&dev_priv->dev->struct_mutex);
4751
4752         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4753
4754         return 0;
4755 }
4756
4757 static int
4758 i915_cache_sharing_set(void *data, u64 val)
4759 {
4760         struct drm_device *dev = data;
4761         struct drm_i915_private *dev_priv = dev->dev_private;
4762         u32 snpcr;
4763
4764         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4765                 return -ENODEV;
4766
4767         if (val > 3)
4768                 return -EINVAL;
4769
4770         intel_runtime_pm_get(dev_priv);
4771         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4772
4773         /* Update the cache sharing policy here as well */
4774         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4775         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4776         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4777         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4778
4779         intel_runtime_pm_put(dev_priv);
4780         return 0;
4781 }
4782
4783 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4784                         i915_cache_sharing_get, i915_cache_sharing_set,
4785                         "%llu\n");
4786
4787 struct sseu_dev_status {
4788         unsigned int slice_total;
4789         unsigned int subslice_total;
4790         unsigned int subslice_per_slice;
4791         unsigned int eu_total;
4792         unsigned int eu_per_subslice;
4793 };
4794
4795 static void cherryview_sseu_device_status(struct drm_device *dev,
4796                                           struct sseu_dev_status *stat)
4797 {
4798         struct drm_i915_private *dev_priv = dev->dev_private;
4799         const int ss_max = 2;
4800         int ss;
4801         u32 sig1[ss_max], sig2[ss_max];
4802
4803         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4804         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4805         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4806         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4807
4808         for (ss = 0; ss < ss_max; ss++) {
4809                 unsigned int eu_cnt;
4810
4811                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4812                         /* skip disabled subslice */
4813                         continue;
4814
4815                 stat->slice_total = 1;
4816                 stat->subslice_per_slice++;
4817                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4818                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4819                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4820                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4821                 stat->eu_total += eu_cnt;
4822                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4823         }
4824         stat->subslice_total = stat->subslice_per_slice;
4825 }
4826
4827 static void gen9_sseu_device_status(struct drm_device *dev,
4828                                     struct sseu_dev_status *stat)
4829 {
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         int s_max = 3, ss_max = 4;
4832         int s, ss;
4833         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4834
4835         /* BXT has a single slice and at most 3 subslices. */
4836         if (IS_BROXTON(dev)) {
4837                 s_max = 1;
4838                 ss_max = 3;
4839         }
4840
4841         for (s = 0; s < s_max; s++) {
4842                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4843                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4844                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4845         }
4846
4847         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4848                      GEN9_PGCTL_SSA_EU19_ACK |
4849                      GEN9_PGCTL_SSA_EU210_ACK |
4850                      GEN9_PGCTL_SSA_EU311_ACK;
4851         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4852                      GEN9_PGCTL_SSB_EU19_ACK |
4853                      GEN9_PGCTL_SSB_EU210_ACK |
4854                      GEN9_PGCTL_SSB_EU311_ACK;
4855
4856         for (s = 0; s < s_max; s++) {
4857                 unsigned int ss_cnt = 0;
4858
4859                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4860                         /* skip disabled slice */
4861                         continue;
4862
4863                 stat->slice_total++;
4864
4865                 if (IS_SKYLAKE(dev))
4866                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
4867
4868                 for (ss = 0; ss < ss_max; ss++) {
4869                         unsigned int eu_cnt;
4870
4871                         if (IS_BROXTON(dev) &&
4872                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4873                                 /* skip disabled subslice */
4874                                 continue;
4875
4876                         if (IS_BROXTON(dev))
4877                                 ss_cnt++;
4878
4879                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4880                                                eu_mask[ss%2]);
4881                         stat->eu_total += eu_cnt;
4882                         stat->eu_per_subslice = max(stat->eu_per_subslice,
4883                                                     eu_cnt);
4884                 }
4885
4886                 stat->subslice_total += ss_cnt;
4887                 stat->subslice_per_slice = max(stat->subslice_per_slice,
4888                                                ss_cnt);
4889         }
4890 }
4891
4892 static int i915_sseu_status(struct seq_file *m, void *unused)
4893 {
4894         struct drm_info_node *node = (struct drm_info_node *) m->private;
4895         struct drm_device *dev = node->minor->dev;
4896         struct sseu_dev_status stat;
4897
4898         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4899                 return -ENODEV;
4900
4901         seq_puts(m, "SSEU Device Info\n");
4902         seq_printf(m, "  Available Slice Total: %u\n",
4903                    INTEL_INFO(dev)->slice_total);
4904         seq_printf(m, "  Available Subslice Total: %u\n",
4905                    INTEL_INFO(dev)->subslice_total);
4906         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4907                    INTEL_INFO(dev)->subslice_per_slice);
4908         seq_printf(m, "  Available EU Total: %u\n",
4909                    INTEL_INFO(dev)->eu_total);
4910         seq_printf(m, "  Available EU Per Subslice: %u\n",
4911                    INTEL_INFO(dev)->eu_per_subslice);
4912         seq_printf(m, "  Has Slice Power Gating: %s\n",
4913                    yesno(INTEL_INFO(dev)->has_slice_pg));
4914         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4915                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4916         seq_printf(m, "  Has EU Power Gating: %s\n",
4917                    yesno(INTEL_INFO(dev)->has_eu_pg));
4918
4919         seq_puts(m, "SSEU Device Status\n");
4920         memset(&stat, 0, sizeof(stat));
4921         if (IS_CHERRYVIEW(dev)) {
4922                 cherryview_sseu_device_status(dev, &stat);
4923         } else if (INTEL_INFO(dev)->gen >= 9) {
4924                 gen9_sseu_device_status(dev, &stat);
4925         }
4926         seq_printf(m, "  Enabled Slice Total: %u\n",
4927                    stat.slice_total);
4928         seq_printf(m, "  Enabled Subslice Total: %u\n",
4929                    stat.subslice_total);
4930         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
4931                    stat.subslice_per_slice);
4932         seq_printf(m, "  Enabled EU Total: %u\n",
4933                    stat.eu_total);
4934         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
4935                    stat.eu_per_subslice);
4936
4937         return 0;
4938 }
4939
4940 static int i915_forcewake_open(struct inode *inode, struct file *file)
4941 {
4942         struct drm_device *dev = inode->i_private;
4943         struct drm_i915_private *dev_priv = dev->dev_private;
4944
4945         if (INTEL_INFO(dev)->gen < 6)
4946                 return 0;
4947
4948         intel_runtime_pm_get(dev_priv);
4949         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4950
4951         return 0;
4952 }
4953
4954 static int i915_forcewake_release(struct inode *inode, struct file *file)
4955 {
4956         struct drm_device *dev = inode->i_private;
4957         struct drm_i915_private *dev_priv = dev->dev_private;
4958
4959         if (INTEL_INFO(dev)->gen < 6)
4960                 return 0;
4961
4962         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4963         intel_runtime_pm_put(dev_priv);
4964
4965         return 0;
4966 }
4967
4968 static const struct file_operations i915_forcewake_fops = {
4969         .owner = THIS_MODULE,
4970         .open = i915_forcewake_open,
4971         .release = i915_forcewake_release,
4972 };
4973
4974 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4975 {
4976         struct drm_device *dev = minor->dev;
4977         struct dentry *ent;
4978
4979         ent = debugfs_create_file("i915_forcewake_user",
4980                                   S_IRUSR,
4981                                   root, dev,
4982                                   &i915_forcewake_fops);
4983         if (!ent)
4984                 return -ENOMEM;
4985
4986         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4987 }
4988
4989 static int i915_debugfs_create(struct dentry *root,
4990                                struct drm_minor *minor,
4991                                const char *name,
4992                                const struct file_operations *fops)
4993 {
4994         struct drm_device *dev = minor->dev;
4995         struct dentry *ent;
4996
4997         ent = debugfs_create_file(name,
4998                                   S_IRUGO | S_IWUSR,
4999                                   root, dev,
5000                                   fops);
5001         if (!ent)
5002                 return -ENOMEM;
5003
5004         return drm_add_fake_info_node(minor, ent, fops);
5005 }
5006
5007 static const struct drm_info_list i915_debugfs_list[] = {
5008         {"i915_capabilities", i915_capabilities, 0},
5009         {"i915_gem_objects", i915_gem_object_info, 0},
5010         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5011         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5012         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5013         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5014         {"i915_gem_stolen", i915_gem_stolen_list_info },
5015         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5016         {"i915_gem_request", i915_gem_request_info, 0},
5017         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5018         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5019         {"i915_gem_interrupt", i915_interrupt_info, 0},
5020         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5021         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5022         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5023         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5024         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5025         {"i915_frequency_info", i915_frequency_info, 0},
5026         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5027         {"i915_drpc_info", i915_drpc_info, 0},
5028         {"i915_emon_status", i915_emon_status, 0},
5029         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5030         {"i915_fbc_status", i915_fbc_status, 0},
5031         {"i915_ips_status", i915_ips_status, 0},
5032         {"i915_sr_status", i915_sr_status, 0},
5033         {"i915_opregion", i915_opregion, 0},
5034         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5035         {"i915_context_status", i915_context_status, 0},
5036         {"i915_dump_lrc", i915_dump_lrc, 0},
5037         {"i915_execlists", i915_execlists, 0},
5038         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5039         {"i915_swizzle_info", i915_swizzle_info, 0},
5040         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5041         {"i915_llc", i915_llc, 0},
5042         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5043         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5044         {"i915_energy_uJ", i915_energy_uJ, 0},
5045         {"i915_pc8_status", i915_pc8_status, 0},
5046         {"i915_power_domain_info", i915_power_domain_info, 0},
5047         {"i915_display_info", i915_display_info, 0},
5048         {"i915_semaphore_status", i915_semaphore_status, 0},
5049         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5050         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5051         {"i915_wa_registers", i915_wa_registers, 0},
5052         {"i915_ddb_info", i915_ddb_info, 0},
5053         {"i915_sseu_status", i915_sseu_status, 0},
5054         {"i915_drrs_status", i915_drrs_status, 0},
5055         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5056 };
5057 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5058
5059 static const struct i915_debugfs_files {
5060         const char *name;
5061         const struct file_operations *fops;
5062 } i915_debugfs_files[] = {
5063         {"i915_wedged", &i915_wedged_fops},
5064         {"i915_max_freq", &i915_max_freq_fops},
5065         {"i915_min_freq", &i915_min_freq_fops},
5066         {"i915_cache_sharing", &i915_cache_sharing_fops},
5067         {"i915_ring_stop", &i915_ring_stop_fops},
5068         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5069         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5070         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5071         {"i915_error_state", &i915_error_state_fops},
5072         {"i915_next_seqno", &i915_next_seqno_fops},
5073         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5074         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5075         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5076         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5077         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5078         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5079         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5080         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5081 };
5082
5083 void intel_display_crc_init(struct drm_device *dev)
5084 {
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086         enum pipe pipe;
5087
5088         for_each_pipe(dev_priv, pipe) {
5089                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5090
5091                 pipe_crc->opened = false;
5092                 spin_lock_init(&pipe_crc->lock);
5093                 init_waitqueue_head(&pipe_crc->wq);
5094         }
5095 }
5096
5097 int i915_debugfs_init(struct drm_minor *minor)
5098 {
5099         int ret, i;
5100
5101         ret = i915_forcewake_create(minor->debugfs_root, minor);
5102         if (ret)
5103                 return ret;
5104
5105         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5106                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5107                 if (ret)
5108                         return ret;
5109         }
5110
5111         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5112                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5113                                           i915_debugfs_files[i].name,
5114                                           i915_debugfs_files[i].fops);
5115                 if (ret)
5116                         return ret;
5117         }
5118
5119         return drm_debugfs_create_files(i915_debugfs_list,
5120                                         I915_DEBUGFS_ENTRIES,
5121                                         minor->debugfs_root, minor);
5122 }
5123
5124 void i915_debugfs_cleanup(struct drm_minor *minor)
5125 {
5126         int i;
5127
5128         drm_debugfs_remove_files(i915_debugfs_list,
5129                                  I915_DEBUGFS_ENTRIES, minor);
5130
5131         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5132                                  1, minor);
5133
5134         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5135                 struct drm_info_list *info_list =
5136                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5137
5138                 drm_debugfs_remove_files(info_list, 1, minor);
5139         }
5140
5141         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5142                 struct drm_info_list *info_list =
5143                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5144
5145                 drm_debugfs_remove_files(info_list, 1, minor);
5146         }
5147 }
5148
5149 struct dpcd_block {
5150         /* DPCD dump start address. */
5151         unsigned int offset;
5152         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5153         unsigned int end;
5154         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5155         size_t size;
5156         /* Only valid for eDP. */
5157         bool edp;
5158 };
5159
5160 static const struct dpcd_block i915_dpcd_debug[] = {
5161         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5162         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5163         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5164         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5165         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5166         { .offset = DP_SET_POWER },
5167         { .offset = DP_EDP_DPCD_REV },
5168         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5169         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5170         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5171 };
5172
5173 static int i915_dpcd_show(struct seq_file *m, void *data)
5174 {
5175         struct drm_connector *connector = m->private;
5176         struct intel_dp *intel_dp =
5177                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5178         uint8_t buf[16];
5179         ssize_t err;
5180         int i;
5181
5182         if (connector->status != connector_status_connected)
5183                 return -ENODEV;
5184
5185         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5186                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5187                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5188
5189                 if (b->edp &&
5190                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5191                         continue;
5192
5193                 /* low tech for now */
5194                 if (WARN_ON(size > sizeof(buf)))
5195                         continue;
5196
5197                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5198                 if (err <= 0) {
5199                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5200                                   size, b->offset, err);
5201                         continue;
5202                 }
5203
5204                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5205         }
5206
5207         return 0;
5208 }
5209
5210 static int i915_dpcd_open(struct inode *inode, struct file *file)
5211 {
5212         return single_open(file, i915_dpcd_show, inode->i_private);
5213 }
5214
5215 static const struct file_operations i915_dpcd_fops = {
5216         .owner = THIS_MODULE,
5217         .open = i915_dpcd_open,
5218         .read = seq_read,
5219         .llseek = seq_lseek,
5220         .release = single_release,
5221 };
5222
5223 /**
5224  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5225  * @connector: pointer to a registered drm_connector
5226  *
5227  * Cleanup will be done by drm_connector_unregister() through a call to
5228  * drm_debugfs_connector_remove().
5229  *
5230  * Returns 0 on success, negative error codes on error.
5231  */
5232 int i915_debugfs_connector_add(struct drm_connector *connector)
5233 {
5234         struct dentry *root = connector->debugfs_entry;
5235
5236         /* The connector must have been registered beforehands. */
5237         if (!root)
5238                 return -ENODEV;
5239
5240         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5241             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5242                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5243                                     &i915_dpcd_fops);
5244
5245         return 0;
5246 }