Merge remote-tracking branches 'asoc/topic/link-param', 'asoc/topic/max98090', 'asoc...
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41                                         unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44                                         struct queue *q,
45                                         struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51                                         struct queue *q,
52                                         struct qcm_process_device *qpd);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55                                 unsigned int sdma_queue_id);
56
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60         if (type == KFD_QUEUE_TYPE_SDMA)
61                 return KFD_MQD_TYPE_SDMA;
62         return KFD_MQD_TYPE_CP;
63 }
64
65 unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67         BUG_ON(!dqm || !dqm->dev);
68         return dqm->dev->shared_resources.first_compute_pipe;
69 }
70
71 unsigned int get_pipes_num(struct device_queue_manager *dqm)
72 {
73         BUG_ON(!dqm || !dqm->dev);
74         return dqm->dev->shared_resources.compute_pipe_count;
75 }
76
77 static inline unsigned int get_pipes_num_cpsch(void)
78 {
79         return PIPE_PER_ME_CP_SCHEDULING;
80 }
81
82 void program_sh_mem_settings(struct device_queue_manager *dqm,
83                                         struct qcm_process_device *qpd)
84 {
85         return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
86                                                 qpd->sh_mem_config,
87                                                 qpd->sh_mem_ape1_base,
88                                                 qpd->sh_mem_ape1_limit,
89                                                 qpd->sh_mem_bases);
90 }
91
92 static int allocate_vmid(struct device_queue_manager *dqm,
93                         struct qcm_process_device *qpd,
94                         struct queue *q)
95 {
96         int bit, allocated_vmid;
97
98         if (dqm->vmid_bitmap == 0)
99                 return -ENOMEM;
100
101         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
102         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
103
104         /* Kaveri kfd vmid's starts from vmid 8 */
105         allocated_vmid = bit + KFD_VMID_START_OFFSET;
106         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
107         qpd->vmid = allocated_vmid;
108         q->properties.vmid = allocated_vmid;
109
110         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
111         program_sh_mem_settings(dqm, qpd);
112
113         return 0;
114 }
115
116 static void deallocate_vmid(struct device_queue_manager *dqm,
117                                 struct qcm_process_device *qpd,
118                                 struct queue *q)
119 {
120         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
121
122         /* Release the vmid mapping */
123         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
124
125         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
126         qpd->vmid = 0;
127         q->properties.vmid = 0;
128 }
129
130 static int create_queue_nocpsch(struct device_queue_manager *dqm,
131                                 struct queue *q,
132                                 struct qcm_process_device *qpd,
133                                 int *allocated_vmid)
134 {
135         int retval;
136
137         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
138
139         pr_debug("kfd: In func %s\n", __func__);
140         print_queue(q);
141
142         mutex_lock(&dqm->lock);
143
144         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
145                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
146                                 dqm->total_queue_count);
147                 mutex_unlock(&dqm->lock);
148                 return -EPERM;
149         }
150
151         if (list_empty(&qpd->queues_list)) {
152                 retval = allocate_vmid(dqm, qpd, q);
153                 if (retval != 0) {
154                         mutex_unlock(&dqm->lock);
155                         return retval;
156                 }
157         }
158         *allocated_vmid = qpd->vmid;
159         q->properties.vmid = qpd->vmid;
160
161         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
162                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
163         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
164                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
165
166         if (retval != 0) {
167                 if (list_empty(&qpd->queues_list)) {
168                         deallocate_vmid(dqm, qpd, q);
169                         *allocated_vmid = 0;
170                 }
171                 mutex_unlock(&dqm->lock);
172                 return retval;
173         }
174
175         list_add(&q->list, &qpd->queues_list);
176         if (q->properties.is_active)
177                 dqm->queue_count++;
178
179         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
180                 dqm->sdma_queue_count++;
181
182         /*
183          * Unconditionally increment this counter, regardless of the queue's
184          * type or whether the queue is active.
185          */
186         dqm->total_queue_count++;
187         pr_debug("Total of %d queues are accountable so far\n",
188                         dqm->total_queue_count);
189
190         mutex_unlock(&dqm->lock);
191         return 0;
192 }
193
194 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
195 {
196         bool set;
197         int pipe, bit, i;
198
199         set = false;
200
201         for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
202                         pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
203                 if (dqm->allocated_queues[pipe] != 0) {
204                         bit = find_first_bit(
205                                 (unsigned long *)&dqm->allocated_queues[pipe],
206                                 QUEUES_PER_PIPE);
207
208                         clear_bit(bit,
209                                 (unsigned long *)&dqm->allocated_queues[pipe]);
210                         q->pipe = pipe;
211                         q->queue = bit;
212                         set = true;
213                         break;
214                 }
215         }
216
217         if (set == false)
218                 return -EBUSY;
219
220         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
221                                 __func__, q->pipe, q->queue);
222         /* horizontal hqd allocation */
223         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
224
225         return 0;
226 }
227
228 static inline void deallocate_hqd(struct device_queue_manager *dqm,
229                                 struct queue *q)
230 {
231         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
232 }
233
234 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
235                                         struct queue *q,
236                                         struct qcm_process_device *qpd)
237 {
238         int retval;
239         struct mqd_manager *mqd;
240
241         BUG_ON(!dqm || !q || !qpd);
242
243         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
244         if (mqd == NULL)
245                 return -ENOMEM;
246
247         retval = allocate_hqd(dqm, q);
248         if (retval != 0)
249                 return retval;
250
251         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
252                                 &q->gart_mqd_addr, &q->properties);
253         if (retval != 0) {
254                 deallocate_hqd(dqm, q);
255                 return retval;
256         }
257
258         pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
259                         q->pipe,
260                         q->queue);
261
262         retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
263                         q->queue, (uint32_t __user *) q->properties.write_ptr);
264         if (retval != 0) {
265                 deallocate_hqd(dqm, q);
266                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
267                 return retval;
268         }
269
270         return 0;
271 }
272
273 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
274                                 struct qcm_process_device *qpd,
275                                 struct queue *q)
276 {
277         int retval;
278         struct mqd_manager *mqd;
279
280         BUG_ON(!dqm || !q || !q->mqd || !qpd);
281
282         retval = 0;
283
284         pr_debug("kfd: In Func %s\n", __func__);
285
286         mutex_lock(&dqm->lock);
287
288         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
289                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
290                 if (mqd == NULL) {
291                         retval = -ENOMEM;
292                         goto out;
293                 }
294                 deallocate_hqd(dqm, q);
295         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
296                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
297                 if (mqd == NULL) {
298                         retval = -ENOMEM;
299                         goto out;
300                 }
301                 dqm->sdma_queue_count--;
302                 deallocate_sdma_queue(dqm, q->sdma_id);
303         } else {
304                 pr_debug("q->properties.type is invalid (%d)\n",
305                                 q->properties.type);
306                 retval = -EINVAL;
307                 goto out;
308         }
309
310         retval = mqd->destroy_mqd(mqd, q->mqd,
311                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
312                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
313                                 q->pipe, q->queue);
314
315         if (retval != 0)
316                 goto out;
317
318         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
319
320         list_del(&q->list);
321         if (list_empty(&qpd->queues_list))
322                 deallocate_vmid(dqm, qpd, q);
323         if (q->properties.is_active)
324                 dqm->queue_count--;
325
326         /*
327          * Unconditionally decrement this counter, regardless of the queue's
328          * type
329          */
330         dqm->total_queue_count--;
331         pr_debug("Total of %d queues are accountable so far\n",
332                         dqm->total_queue_count);
333
334 out:
335         mutex_unlock(&dqm->lock);
336         return retval;
337 }
338
339 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
340 {
341         int retval;
342         struct mqd_manager *mqd;
343         bool prev_active = false;
344
345         BUG_ON(!dqm || !q || !q->mqd);
346
347         mutex_lock(&dqm->lock);
348         mqd = dqm->ops.get_mqd_manager(dqm,
349                         get_mqd_type_from_queue_type(q->properties.type));
350         if (mqd == NULL) {
351                 mutex_unlock(&dqm->lock);
352                 return -ENOMEM;
353         }
354
355         if (q->properties.is_active == true)
356                 prev_active = true;
357
358         /*
359          *
360          * check active state vs. the previous state
361          * and modify counter accordingly
362          */
363         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
364         if ((q->properties.is_active == true) && (prev_active == false))
365                 dqm->queue_count++;
366         else if ((q->properties.is_active == false) && (prev_active == true))
367                 dqm->queue_count--;
368
369         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
370                 retval = execute_queues_cpsch(dqm, false);
371
372         mutex_unlock(&dqm->lock);
373         return retval;
374 }
375
376 static struct mqd_manager *get_mqd_manager_nocpsch(
377                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
378 {
379         struct mqd_manager *mqd;
380
381         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
382
383         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
384
385         mqd = dqm->mqds[type];
386         if (!mqd) {
387                 mqd = mqd_manager_init(type, dqm->dev);
388                 if (mqd == NULL)
389                         pr_err("kfd: mqd manager is NULL");
390                 dqm->mqds[type] = mqd;
391         }
392
393         return mqd;
394 }
395
396 static int register_process_nocpsch(struct device_queue_manager *dqm,
397                                         struct qcm_process_device *qpd)
398 {
399         struct device_process_node *n;
400         int retval;
401
402         BUG_ON(!dqm || !qpd);
403
404         pr_debug("kfd: In func %s\n", __func__);
405
406         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
407         if (!n)
408                 return -ENOMEM;
409
410         n->qpd = qpd;
411
412         mutex_lock(&dqm->lock);
413         list_add(&n->list, &dqm->queues);
414
415         retval = dqm->ops_asic_specific.register_process(dqm, qpd);
416
417         dqm->processes_count++;
418
419         mutex_unlock(&dqm->lock);
420
421         return retval;
422 }
423
424 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
425                                         struct qcm_process_device *qpd)
426 {
427         int retval;
428         struct device_process_node *cur, *next;
429
430         BUG_ON(!dqm || !qpd);
431
432         BUG_ON(!list_empty(&qpd->queues_list));
433
434         pr_debug("kfd: In func %s\n", __func__);
435
436         retval = 0;
437         mutex_lock(&dqm->lock);
438
439         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
440                 if (qpd == cur->qpd) {
441                         list_del(&cur->list);
442                         kfree(cur);
443                         dqm->processes_count--;
444                         goto out;
445                 }
446         }
447         /* qpd not found in dqm list */
448         retval = 1;
449 out:
450         mutex_unlock(&dqm->lock);
451         return retval;
452 }
453
454 static int
455 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
456                         unsigned int vmid)
457 {
458         uint32_t pasid_mapping;
459
460         pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
461                                                 ATC_VMID_PASID_MAPPING_VALID;
462         return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
463                                                 vmid);
464 }
465
466 int init_pipelines(struct device_queue_manager *dqm,
467                         unsigned int pipes_num, unsigned int first_pipe)
468 {
469         void *hpdptr;
470         struct mqd_manager *mqd;
471         unsigned int i, err, inx;
472         uint64_t pipe_hpd_addr;
473
474         BUG_ON(!dqm || !dqm->dev);
475
476         pr_debug("kfd: In func %s\n", __func__);
477
478         /*
479          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
480          * The driver never accesses this memory after zeroing it.
481          * It doesn't even have to be saved/restored on suspend/resume
482          * because it contains no data when there are no active queues.
483          */
484
485         err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
486                                         &dqm->pipeline_mem);
487
488         if (err) {
489                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
490                         pipes_num);
491                 return -ENOMEM;
492         }
493
494         hpdptr = dqm->pipeline_mem->cpu_ptr;
495         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
496
497         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
498
499         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
500         if (mqd == NULL) {
501                 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
502                 return -ENOMEM;
503         }
504
505         for (i = 0; i < pipes_num; i++) {
506                 inx = i + first_pipe;
507                 /*
508                  * HPD buffer on GTT is allocated by amdkfd, no need to waste
509                  * space in GTT for pipelines we don't initialize
510                  */
511                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
512                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
513                 /* = log2(bytes/4)-1 */
514                 kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
515                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
516         }
517
518         return 0;
519 }
520
521 static int init_scheduler(struct device_queue_manager *dqm)
522 {
523         int retval;
524
525         BUG_ON(!dqm);
526
527         pr_debug("kfd: In %s\n", __func__);
528
529         retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
530         return retval;
531 }
532
533 static int initialize_nocpsch(struct device_queue_manager *dqm)
534 {
535         int i;
536
537         BUG_ON(!dqm);
538
539         pr_debug("kfd: In func %s num of pipes: %d\n",
540                         __func__, get_pipes_num(dqm));
541
542         mutex_init(&dqm->lock);
543         INIT_LIST_HEAD(&dqm->queues);
544         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
545         dqm->sdma_queue_count = 0;
546         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
547                                         sizeof(unsigned int), GFP_KERNEL);
548         if (!dqm->allocated_queues) {
549                 mutex_destroy(&dqm->lock);
550                 return -ENOMEM;
551         }
552
553         for (i = 0; i < get_pipes_num(dqm); i++)
554                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
555
556         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
557         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
558
559         init_scheduler(dqm);
560         return 0;
561 }
562
563 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
564 {
565         int i;
566
567         BUG_ON(!dqm);
568
569         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
570
571         kfree(dqm->allocated_queues);
572         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
573                 kfree(dqm->mqds[i]);
574         mutex_destroy(&dqm->lock);
575         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
576 }
577
578 static int start_nocpsch(struct device_queue_manager *dqm)
579 {
580         return 0;
581 }
582
583 static int stop_nocpsch(struct device_queue_manager *dqm)
584 {
585         return 0;
586 }
587
588 static int allocate_sdma_queue(struct device_queue_manager *dqm,
589                                 unsigned int *sdma_queue_id)
590 {
591         int bit;
592
593         if (dqm->sdma_bitmap == 0)
594                 return -ENOMEM;
595
596         bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
597                                 CIK_SDMA_QUEUES);
598
599         clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
600         *sdma_queue_id = bit;
601
602         return 0;
603 }
604
605 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
606                                 unsigned int sdma_queue_id)
607 {
608         if (sdma_queue_id >= CIK_SDMA_QUEUES)
609                 return;
610         set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
611 }
612
613 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
614                                 struct qcm_process_device *qpd)
615 {
616         uint32_t value = SDMA_ATC;
617
618         if (q->process->is_32bit_user_mode)
619                 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
620         else
621                 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
622                                                         qpd_to_pdd(qpd)));
623         q->properties.sdma_vm_addr = value;
624 }
625
626 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
627                                         struct queue *q,
628                                         struct qcm_process_device *qpd)
629 {
630         struct mqd_manager *mqd;
631         int retval;
632
633         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
634         if (!mqd)
635                 return -ENOMEM;
636
637         retval = allocate_sdma_queue(dqm, &q->sdma_id);
638         if (retval != 0)
639                 return retval;
640
641         q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
642         q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
643
644         pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
645         pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
646         pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
647
648         init_sdma_vm(dqm, q, qpd);
649         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
650                                 &q->gart_mqd_addr, &q->properties);
651         if (retval != 0) {
652                 deallocate_sdma_queue(dqm, q->sdma_id);
653                 return retval;
654         }
655
656         retval = mqd->load_mqd(mqd, q->mqd, 0,
657                                 0, NULL);
658         if (retval != 0) {
659                 deallocate_sdma_queue(dqm, q->sdma_id);
660                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
661                 return retval;
662         }
663
664         return 0;
665 }
666
667 /*
668  * Device Queue Manager implementation for cp scheduler
669  */
670
671 static int set_sched_resources(struct device_queue_manager *dqm)
672 {
673         struct scheduling_resources res;
674         unsigned int queue_num, queue_mask;
675
676         BUG_ON(!dqm);
677
678         pr_debug("kfd: In func %s\n", __func__);
679
680         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
681         queue_mask = (1 << queue_num) - 1;
682         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
683         res.vmid_mask <<= KFD_VMID_START_OFFSET;
684         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
685         res.gws_mask = res.oac_mask = res.gds_heap_base =
686                                                 res.gds_heap_size = 0;
687
688         pr_debug("kfd: scheduling resources:\n"
689                         "      vmid mask: 0x%8X\n"
690                         "      queue mask: 0x%8llX\n",
691                         res.vmid_mask, res.queue_mask);
692
693         return pm_send_set_resources(&dqm->packets, &res);
694 }
695
696 static int initialize_cpsch(struct device_queue_manager *dqm)
697 {
698         int retval;
699
700         BUG_ON(!dqm);
701
702         pr_debug("kfd: In func %s num of pipes: %d\n",
703                         __func__, get_pipes_num_cpsch());
704
705         mutex_init(&dqm->lock);
706         INIT_LIST_HEAD(&dqm->queues);
707         dqm->queue_count = dqm->processes_count = 0;
708         dqm->sdma_queue_count = 0;
709         dqm->active_runlist = false;
710         retval = dqm->ops_asic_specific.initialize(dqm);
711         if (retval != 0)
712                 goto fail_init_pipelines;
713
714         return 0;
715
716 fail_init_pipelines:
717         mutex_destroy(&dqm->lock);
718         return retval;
719 }
720
721 static int start_cpsch(struct device_queue_manager *dqm)
722 {
723         struct device_process_node *node;
724         int retval;
725
726         BUG_ON(!dqm);
727
728         retval = 0;
729
730         retval = pm_init(&dqm->packets, dqm);
731         if (retval != 0)
732                 goto fail_packet_manager_init;
733
734         retval = set_sched_resources(dqm);
735         if (retval != 0)
736                 goto fail_set_sched_resources;
737
738         pr_debug("kfd: allocating fence memory\n");
739
740         /* allocate fence memory on the gart */
741         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
742                                         &dqm->fence_mem);
743
744         if (retval != 0)
745                 goto fail_allocate_vidmem;
746
747         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
748         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
749         list_for_each_entry(node, &dqm->queues, list)
750                 if (node->qpd->pqm->process && dqm->dev)
751                         kfd_bind_process_to_device(dqm->dev,
752                                                 node->qpd->pqm->process);
753
754         execute_queues_cpsch(dqm, true);
755
756         return 0;
757 fail_allocate_vidmem:
758 fail_set_sched_resources:
759         pm_uninit(&dqm->packets);
760 fail_packet_manager_init:
761         return retval;
762 }
763
764 static int stop_cpsch(struct device_queue_manager *dqm)
765 {
766         struct device_process_node *node;
767         struct kfd_process_device *pdd;
768
769         BUG_ON(!dqm);
770
771         destroy_queues_cpsch(dqm, true);
772
773         list_for_each_entry(node, &dqm->queues, list) {
774                 pdd = qpd_to_pdd(node->qpd);
775                 pdd->bound = false;
776         }
777         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
778         pm_uninit(&dqm->packets);
779
780         return 0;
781 }
782
783 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
784                                         struct kernel_queue *kq,
785                                         struct qcm_process_device *qpd)
786 {
787         BUG_ON(!dqm || !kq || !qpd);
788
789         pr_debug("kfd: In func %s\n", __func__);
790
791         mutex_lock(&dqm->lock);
792         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
793                 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
794                                 dqm->total_queue_count);
795                 mutex_unlock(&dqm->lock);
796                 return -EPERM;
797         }
798
799         /*
800          * Unconditionally increment this counter, regardless of the queue's
801          * type or whether the queue is active.
802          */
803         dqm->total_queue_count++;
804         pr_debug("Total of %d queues are accountable so far\n",
805                         dqm->total_queue_count);
806
807         list_add(&kq->list, &qpd->priv_queue_list);
808         dqm->queue_count++;
809         qpd->is_debug = true;
810         execute_queues_cpsch(dqm, false);
811         mutex_unlock(&dqm->lock);
812
813         return 0;
814 }
815
816 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
817                                         struct kernel_queue *kq,
818                                         struct qcm_process_device *qpd)
819 {
820         BUG_ON(!dqm || !kq);
821
822         pr_debug("kfd: In %s\n", __func__);
823
824         mutex_lock(&dqm->lock);
825         destroy_queues_cpsch(dqm, false);
826         list_del(&kq->list);
827         dqm->queue_count--;
828         qpd->is_debug = false;
829         execute_queues_cpsch(dqm, false);
830         /*
831          * Unconditionally decrement this counter, regardless of the queue's
832          * type.
833          */
834         dqm->total_queue_count--;
835         pr_debug("Total of %d queues are accountable so far\n",
836                         dqm->total_queue_count);
837         mutex_unlock(&dqm->lock);
838 }
839
840 static void select_sdma_engine_id(struct queue *q)
841 {
842         static int sdma_id;
843
844         q->sdma_id = sdma_id;
845         sdma_id = (sdma_id + 1) % 2;
846 }
847
848 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
849                         struct qcm_process_device *qpd, int *allocate_vmid)
850 {
851         int retval;
852         struct mqd_manager *mqd;
853
854         BUG_ON(!dqm || !q || !qpd);
855
856         retval = 0;
857
858         if (allocate_vmid)
859                 *allocate_vmid = 0;
860
861         mutex_lock(&dqm->lock);
862
863         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
864                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
865                                 dqm->total_queue_count);
866                 retval = -EPERM;
867                 goto out;
868         }
869
870         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
871                 select_sdma_engine_id(q);
872
873         mqd = dqm->ops.get_mqd_manager(dqm,
874                         get_mqd_type_from_queue_type(q->properties.type));
875
876         if (mqd == NULL) {
877                 mutex_unlock(&dqm->lock);
878                 return -ENOMEM;
879         }
880
881         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
882                                 &q->gart_mqd_addr, &q->properties);
883         if (retval != 0)
884                 goto out;
885
886         list_add(&q->list, &qpd->queues_list);
887         if (q->properties.is_active) {
888                 dqm->queue_count++;
889                 retval = execute_queues_cpsch(dqm, false);
890         }
891
892         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
893                         dqm->sdma_queue_count++;
894         /*
895          * Unconditionally increment this counter, regardless of the queue's
896          * type or whether the queue is active.
897          */
898         dqm->total_queue_count++;
899
900         pr_debug("Total of %d queues are accountable so far\n",
901                         dqm->total_queue_count);
902
903 out:
904         mutex_unlock(&dqm->lock);
905         return retval;
906 }
907
908 static int fence_wait_timeout(unsigned int *fence_addr,
909                                 unsigned int fence_value,
910                                 unsigned long timeout)
911 {
912         BUG_ON(!fence_addr);
913         timeout += jiffies;
914
915         while (*fence_addr != fence_value) {
916                 if (time_after(jiffies, timeout)) {
917                         pr_err("kfd: qcm fence wait loop timeout expired\n");
918                         return -ETIME;
919                 }
920                 schedule();
921         }
922
923         return 0;
924 }
925
926 static int destroy_sdma_queues(struct device_queue_manager *dqm,
927                                 unsigned int sdma_engine)
928 {
929         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
930                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
931                         sdma_engine);
932 }
933
934 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
935 {
936         int retval;
937
938         BUG_ON(!dqm);
939
940         retval = 0;
941
942         if (lock)
943                 mutex_lock(&dqm->lock);
944         if (dqm->active_runlist == false)
945                 goto out;
946
947         pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
948                 dqm->sdma_queue_count);
949
950         if (dqm->sdma_queue_count > 0) {
951                 destroy_sdma_queues(dqm, 0);
952                 destroy_sdma_queues(dqm, 1);
953         }
954
955         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
956                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
957         if (retval != 0)
958                 goto out;
959
960         *dqm->fence_addr = KFD_FENCE_INIT;
961         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
962                                 KFD_FENCE_COMPLETED);
963         /* should be timed out */
964         fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
965                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
966         pm_release_ib(&dqm->packets);
967         dqm->active_runlist = false;
968
969 out:
970         if (lock)
971                 mutex_unlock(&dqm->lock);
972         return retval;
973 }
974
975 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
976 {
977         int retval;
978
979         BUG_ON(!dqm);
980
981         if (lock)
982                 mutex_lock(&dqm->lock);
983
984         retval = destroy_queues_cpsch(dqm, false);
985         if (retval != 0) {
986                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
987                 goto out;
988         }
989
990         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
991                 retval = 0;
992                 goto out;
993         }
994
995         if (dqm->active_runlist) {
996                 retval = 0;
997                 goto out;
998         }
999
1000         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1001         if (retval != 0) {
1002                 pr_err("kfd: failed to execute runlist");
1003                 goto out;
1004         }
1005         dqm->active_runlist = true;
1006
1007 out:
1008         if (lock)
1009                 mutex_unlock(&dqm->lock);
1010         return retval;
1011 }
1012
1013 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1014                                 struct qcm_process_device *qpd,
1015                                 struct queue *q)
1016 {
1017         int retval;
1018         struct mqd_manager *mqd;
1019
1020         BUG_ON(!dqm || !qpd || !q);
1021
1022         retval = 0;
1023
1024         /* remove queue from list to prevent rescheduling after preemption */
1025         mutex_lock(&dqm->lock);
1026         mqd = dqm->ops.get_mqd_manager(dqm,
1027                         get_mqd_type_from_queue_type(q->properties.type));
1028         if (!mqd) {
1029                 retval = -ENOMEM;
1030                 goto failed;
1031         }
1032
1033         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1034                 dqm->sdma_queue_count--;
1035
1036         list_del(&q->list);
1037         if (q->properties.is_active)
1038                 dqm->queue_count--;
1039
1040         execute_queues_cpsch(dqm, false);
1041
1042         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1043
1044         /*
1045          * Unconditionally decrement this counter, regardless of the queue's
1046          * type
1047          */
1048         dqm->total_queue_count--;
1049         pr_debug("Total of %d queues are accountable so far\n",
1050                         dqm->total_queue_count);
1051
1052         mutex_unlock(&dqm->lock);
1053
1054         return 0;
1055
1056 failed:
1057         mutex_unlock(&dqm->lock);
1058         return retval;
1059 }
1060
1061 /*
1062  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1063  * stay in user mode.
1064  */
1065 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1066 /* APE1 limit is inclusive and 64K aligned. */
1067 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1068
1069 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1070                                    struct qcm_process_device *qpd,
1071                                    enum cache_policy default_policy,
1072                                    enum cache_policy alternate_policy,
1073                                    void __user *alternate_aperture_base,
1074                                    uint64_t alternate_aperture_size)
1075 {
1076         bool retval;
1077
1078         pr_debug("kfd: In func %s\n", __func__);
1079
1080         mutex_lock(&dqm->lock);
1081
1082         if (alternate_aperture_size == 0) {
1083                 /* base > limit disables APE1 */
1084                 qpd->sh_mem_ape1_base = 1;
1085                 qpd->sh_mem_ape1_limit = 0;
1086         } else {
1087                 /*
1088                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1089                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1090                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1091                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1092                  * Verify that the base and size parameters can be
1093                  * represented in this format and convert them.
1094                  * Additionally restrict APE1 to user-mode addresses.
1095                  */
1096
1097                 uint64_t base = (uintptr_t)alternate_aperture_base;
1098                 uint64_t limit = base + alternate_aperture_size - 1;
1099
1100                 if (limit <= base)
1101                         goto out;
1102
1103                 if ((base & APE1_FIXED_BITS_MASK) != 0)
1104                         goto out;
1105
1106                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1107                         goto out;
1108
1109                 qpd->sh_mem_ape1_base = base >> 16;
1110                 qpd->sh_mem_ape1_limit = limit >> 16;
1111         }
1112
1113         retval = dqm->ops_asic_specific.set_cache_memory_policy(
1114                         dqm,
1115                         qpd,
1116                         default_policy,
1117                         alternate_policy,
1118                         alternate_aperture_base,
1119                         alternate_aperture_size);
1120
1121         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1122                 program_sh_mem_settings(dqm, qpd);
1123
1124         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1125                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1126                 qpd->sh_mem_ape1_limit);
1127
1128         mutex_unlock(&dqm->lock);
1129         return retval;
1130
1131 out:
1132         mutex_unlock(&dqm->lock);
1133         return false;
1134 }
1135
1136 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1137 {
1138         struct device_queue_manager *dqm;
1139
1140         BUG_ON(!dev);
1141
1142         pr_debug("kfd: loading device queue manager\n");
1143
1144         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1145         if (!dqm)
1146                 return NULL;
1147
1148         dqm->dev = dev;
1149         switch (sched_policy) {
1150         case KFD_SCHED_POLICY_HWS:
1151         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1152                 /* initialize dqm for cp scheduling */
1153                 dqm->ops.create_queue = create_queue_cpsch;
1154                 dqm->ops.initialize = initialize_cpsch;
1155                 dqm->ops.start = start_cpsch;
1156                 dqm->ops.stop = stop_cpsch;
1157                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1158                 dqm->ops.update_queue = update_queue;
1159                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1160                 dqm->ops.register_process = register_process_nocpsch;
1161                 dqm->ops.unregister_process = unregister_process_nocpsch;
1162                 dqm->ops.uninitialize = uninitialize_nocpsch;
1163                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1164                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1165                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1166                 break;
1167         case KFD_SCHED_POLICY_NO_HWS:
1168                 /* initialize dqm for no cp scheduling */
1169                 dqm->ops.start = start_nocpsch;
1170                 dqm->ops.stop = stop_nocpsch;
1171                 dqm->ops.create_queue = create_queue_nocpsch;
1172                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1173                 dqm->ops.update_queue = update_queue;
1174                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1175                 dqm->ops.register_process = register_process_nocpsch;
1176                 dqm->ops.unregister_process = unregister_process_nocpsch;
1177                 dqm->ops.initialize = initialize_nocpsch;
1178                 dqm->ops.uninitialize = uninitialize_nocpsch;
1179                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1180                 break;
1181         default:
1182                 BUG();
1183                 break;
1184         }
1185
1186         switch (dev->device_info->asic_family) {
1187         case CHIP_CARRIZO:
1188                 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1189                 break;
1190
1191         case CHIP_KAVERI:
1192                 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1193                 break;
1194         }
1195
1196         if (dqm->ops.initialize(dqm) != 0) {
1197                 kfree(dqm);
1198                 return NULL;
1199         }
1200
1201         return dqm;
1202 }
1203
1204 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1205 {
1206         BUG_ON(!dqm);
1207
1208         dqm->ops.uninitialize(dqm);
1209         kfree(dqm);
1210 }