[PATCH] EDAC: mc numbers refactor 1-of-2
[linux-drm-fsl-dcu.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/proc_fs.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/sysctl.h>
23 #include <linux/highmem.h>
24 #include <linux/timer.h>
25 #include <linux/slab.h>
26 #include <linux/jiffies.h>
27 #include <linux/spinlock.h>
28 #include <linux/list.h>
29 #include <linux/sysdev.h>
30 #include <linux/ctype.h>
31 #include <linux/kthread.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36
37 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
38
39 /* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
40  * presents to user space needs more thought, and is likely to change
41  * substantially.
42  */
43 #define DISABLE_EDAC_SYSFS
44
45 #ifdef CONFIG_EDAC_DEBUG
46 /* Values of 0 to 4 will generate output */
47 int edac_debug_level = 1;
48 EXPORT_SYMBOL_GPL(edac_debug_level);
49 #endif
50
51 /* EDAC Controls, setable by module parameter, and sysfs */
52 static int log_ue = 1;
53 static int log_ce = 1;
54 static int panic_on_ue;
55 static int poll_msec = 1000;
56
57 /* lock to memory controller's control array */
58 static DECLARE_MUTEX(mem_ctls_mutex);
59 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
60
61 static struct task_struct *edac_thread;
62
63 #ifdef CONFIG_PCI
64 static int check_pci_parity = 0;        /* default YES check PCI parity */
65 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
66 static atomic_t pci_parity_count = ATOMIC_INIT(0);
67
68 /* Structure of the whitelist and blacklist arrays */
69 struct edac_pci_device_list {
70         unsigned int  vendor;           /* Vendor ID */
71         unsigned int  device;           /* Deviice ID */
72 };
73
74 #define MAX_LISTED_PCI_DEVICES          32
75
76 /* List of PCI devices (vendor-id:device-id) that should be skipped */
77 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
78 static int pci_blacklist_count;
79
80 /* List of PCI devices (vendor-id:device-id) that should be scanned */
81 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
82 static int pci_whitelist_count ;
83
84 #ifndef DISABLE_EDAC_SYSFS
85 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
86 static struct completion edac_pci_kobj_complete;
87 #endif  /* DISABLE_EDAC_SYSFS */
88 #endif  /* CONFIG_PCI */
89
90 /*  START sysfs data and methods */
91
92 #ifndef DISABLE_EDAC_SYSFS
93
94 static const char *mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS"
106 };
107
108 static const char *dev_types[] = {
109         [DEV_UNKNOWN] = "Unknown",
110         [DEV_X1] = "x1",
111         [DEV_X2] = "x2",
112         [DEV_X4] = "x4",
113         [DEV_X8] = "x8",
114         [DEV_X16] = "x16",
115         [DEV_X32] = "x32",
116         [DEV_X64] = "x64"
117 };
118
119 static const char *edac_caps[] = {
120         [EDAC_UNKNOWN] = "Unknown",
121         [EDAC_NONE] = "None",
122         [EDAC_RESERVED] = "Reserved",
123         [EDAC_PARITY] = "PARITY",
124         [EDAC_EC] = "EC",
125         [EDAC_SECDED] = "SECDED",
126         [EDAC_S2ECD2ED] = "S2ECD2ED",
127         [EDAC_S4ECD4ED] = "S4ECD4ED",
128         [EDAC_S8ECD8ED] = "S8ECD8ED",
129         [EDAC_S16ECD16ED] = "S16ECD16ED"
130 };
131
132 /* sysfs object: /sys/devices/system/edac */
133 static struct sysdev_class edac_class = {
134         set_kset_name("edac"),
135 };
136
137 /* sysfs object:
138  *      /sys/devices/system/edac/mc
139  */
140 static struct kobject edac_memctrl_kobj;
141
142 /* We use these to wait for the reference counts on edac_memctrl_kobj and
143  * edac_pci_kobj to reach 0.
144  */
145 static struct completion edac_memctrl_kobj_complete;
146
147 /*
148  * /sys/devices/system/edac/mc;
149  *      data structures and methods
150  */
151 #if 0
152 static ssize_t memctrl_string_show(void *ptr, char *buffer)
153 {
154         char *value = (char*) ptr;
155         return sprintf(buffer, "%s\n", value);
156 }
157 #endif
158
159 static ssize_t memctrl_int_show(void *ptr, char *buffer)
160 {
161         int *value = (int*) ptr;
162         return sprintf(buffer, "%d\n", *value);
163 }
164
165 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
166 {
167         int *value = (int*) ptr;
168
169         if (isdigit(*buffer))
170                 *value = simple_strtoul(buffer, NULL, 0);
171
172         return count;
173 }
174
175 struct memctrl_dev_attribute {
176         struct attribute attr;
177         void *value;
178         ssize_t (*show)(void *,char *);
179         ssize_t (*store)(void *, const char *, size_t);
180 };
181
182 /* Set of show/store abstract level functions for memory control object */
183 static ssize_t memctrl_dev_show(struct kobject *kobj,
184                 struct attribute *attr, char *buffer)
185 {
186         struct memctrl_dev_attribute *memctrl_dev;
187         memctrl_dev = (struct memctrl_dev_attribute*)attr;
188
189         if (memctrl_dev->show)
190                 return memctrl_dev->show(memctrl_dev->value, buffer);
191
192         return -EIO;
193 }
194
195 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
196                 const char *buffer, size_t count)
197 {
198         struct memctrl_dev_attribute *memctrl_dev;
199         memctrl_dev = (struct memctrl_dev_attribute*)attr;
200
201         if (memctrl_dev->store)
202                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
203
204         return -EIO;
205 }
206
207 static struct sysfs_ops memctrlfs_ops = {
208         .show   = memctrl_dev_show,
209         .store  = memctrl_dev_store
210 };
211
212 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
213 struct memctrl_dev_attribute attr_##_name = {                   \
214         .attr = {.name = __stringify(_name), .mode = _mode },   \
215         .value  = &_name,                                       \
216         .show   = _show,                                        \
217         .store  = _store,                                       \
218 };
219
220 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
221 struct memctrl_dev_attribute attr_##_name = {                   \
222         .attr = {.name = __stringify(_name), .mode = _mode },   \
223         .value  = _data,                                        \
224         .show   = _show,                                        \
225         .store  = _store,                                       \
226 };
227
228 /* cwrow<id> attribute f*/
229 #if 0
230 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
231 #endif
232
233 /* csrow<id> control files */
234 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239 /* Base Attributes of the memory ECC object */
240 static struct memctrl_dev_attribute *memctrl_attr[] = {
241         &attr_panic_on_ue,
242         &attr_log_ue,
243         &attr_log_ce,
244         &attr_poll_msec,
245         NULL,
246 };
247
248 /* Main MC kobject release() function */
249 static void edac_memctrl_master_release(struct kobject *kobj)
250 {
251         debugf1("%s()\n", __func__);
252         complete(&edac_memctrl_kobj_complete);
253 }
254
255 static struct kobj_type ktype_memctrl = {
256         .release = edac_memctrl_master_release,
257         .sysfs_ops = &memctrlfs_ops,
258         .default_attrs = (struct attribute **) memctrl_attr,
259 };
260
261 #endif  /* DISABLE_EDAC_SYSFS */
262
263 /* Initialize the main sysfs entries for edac:
264  *   /sys/devices/system/edac
265  *
266  * and children
267  *
268  * Return:  0 SUCCESS
269  *         !0 FAILURE
270  */
271 static int edac_sysfs_memctrl_setup(void)
272 #ifdef DISABLE_EDAC_SYSFS
273 {
274         return 0;
275 }
276 #else
277 {
278         int err=0;
279
280         debugf1("%s()\n", __func__);
281
282         /* create the /sys/devices/system/edac directory */
283         err = sysdev_class_register(&edac_class);
284
285         if (!err) {
286                 /* Init the MC's kobject */
287                 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
288                 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289                 edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291                 /* generate sysfs "..../edac/mc"   */
292                 err = kobject_set_name(&edac_memctrl_kobj,"mc");
293
294                 if (!err) {
295                         /* FIXME: maybe new sysdev_create_subdir() */
296                         err = kobject_register(&edac_memctrl_kobj);
297
298                         if (err)
299                                 debugf1("Failed to register '.../edac/mc'\n");
300                         else
301                                 debugf1("Registered '.../edac/mc' kobject\n");
302                 }
303         } else
304                 debugf1("%s() error=%d\n", __func__, err);
305
306         return err;
307 }
308 #endif  /* DISABLE_EDAC_SYSFS */
309
310 /*
311  * MC teardown:
312  *      the '..../edac/mc' kobject followed by '..../edac' itself
313  */
314 static void edac_sysfs_memctrl_teardown(void)
315 {
316 #ifndef DISABLE_EDAC_SYSFS
317         debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
319         /* Unregister the MC's kobject and wait for reference count to reach
320          * 0.
321          */
322         init_completion(&edac_memctrl_kobj_complete);
323         kobject_unregister(&edac_memctrl_kobj);
324         wait_for_completion(&edac_memctrl_kobj_complete);
325
326         /* Unregister the 'edac' object */
327         sysdev_class_unregister(&edac_class);
328 #endif  /* DISABLE_EDAC_SYSFS */
329 }
330
331 #ifdef CONFIG_PCI
332
333 #ifndef DISABLE_EDAC_SYSFS
334
335 /*
336  * /sys/devices/system/edac/pci;
337  *      data structures and methods
338  */
339
340 struct list_control {
341         struct edac_pci_device_list *list;
342         int *count;
343 };
344
345 #if 0
346 /* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
347 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
348 {
349         struct list_control *listctl;
350         struct edac_pci_device_list *list;
351         char *p = buffer;
352         int len=0;
353         int i;
354
355         listctl = ptr;
356         list = listctl->list;
357
358         for (i = 0; i < *(listctl->count); i++, list++ ) {
359                 if (len > 0)
360                         len += snprintf(p + len, (PAGE_SIZE-len), ",");
361
362                 len += snprintf(p + len,
363                                 (PAGE_SIZE-len),
364                                 "%x:%x",
365                                 list->vendor,list->device);
366         }
367
368         len += snprintf(p + len,(PAGE_SIZE-len), "\n");
369         return (ssize_t) len;
370 }
371
372 /**
373  *
374  * Scan string from **s to **e looking for one 'vendor:device' tuple
375  * where each field is a hex value
376  *
377  * return 0 if an entry is NOT found
378  * return 1 if an entry is found
379  *      fill in *vendor_id and *device_id with values found
380  *
381  * In both cases, make sure *s has been moved forward toward *e
382  */
383 static int parse_one_device(const char **s,const char **e,
384         unsigned int *vendor_id, unsigned int *device_id)
385 {
386         const char *runner, *p;
387
388         /* if null byte, we are done */
389         if (!**s) {
390                 (*s)++;  /* keep *s moving */
391                 return 0;
392         }
393
394         /* skip over newlines & whitespace */
395         if ((**s == '\n') || isspace(**s)) {
396                 (*s)++;
397                 return 0;
398         }
399
400         if (!isxdigit(**s)) {
401                 (*s)++;
402                 return 0;
403         }
404
405         /* parse vendor_id */
406         runner = *s;
407
408         while (runner < *e) {
409                 /* scan for vendor:device delimiter */
410                 if (*runner == ':') {
411                         *vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
412                         runner = p + 1;
413                         break;
414                 }
415
416                 runner++;
417         }
418
419         if (!isxdigit(*runner)) {
420                 *s = ++runner;
421                 return 0;
422         }
423
424         /* parse device_id */
425         if (runner < *e) {
426                 *device_id = simple_strtol((char*)runner, (char**)&p, 16);
427                 runner = p;
428         }
429
430         *s = runner;
431         return 1;
432 }
433
434 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
435                 size_t count)
436 {
437         struct list_control *listctl;
438         struct edac_pci_device_list *list;
439         unsigned int vendor_id, device_id;
440         const char *s, *e;
441         int *index;
442
443         s = (char*)buffer;
444         e = s + count;
445         listctl = ptr;
446         list = listctl->list;
447         index = listctl->count;
448         *index = 0;
449
450         while (*index < MAX_LISTED_PCI_DEVICES) {
451                 if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
452                         list[ *index ].vendor = vendor_id;
453                         list[ *index ].device = device_id;
454                         (*index)++;
455                 }
456
457                 /* check for all data consume */
458                 if (s >= e)
459                         break;
460         }
461
462         return count;
463 }
464
465 #endif
466 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
467 {
468         int *value = ptr;
469         return sprintf(buffer,"%d\n",*value);
470 }
471
472 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
473 {
474         int *value = ptr;
475
476         if (isdigit(*buffer))
477                 *value = simple_strtoul(buffer,NULL,0);
478
479         return count;
480 }
481
482 struct edac_pci_dev_attribute {
483         struct attribute attr;
484         void *value;
485         ssize_t (*show)(void *,char *);
486         ssize_t (*store)(void *, const char *,size_t);
487 };
488
489 /* Set of show/store abstract level functions for PCI Parity object */
490 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
491                 char *buffer)
492 {
493         struct edac_pci_dev_attribute *edac_pci_dev;
494         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
495
496         if (edac_pci_dev->show)
497                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
498         return -EIO;
499 }
500
501 static ssize_t edac_pci_dev_store(struct kobject *kobj,
502                 struct attribute *attr, const char *buffer, size_t count)
503 {
504         struct edac_pci_dev_attribute *edac_pci_dev;
505         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
506
507         if (edac_pci_dev->show)
508                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
509         return -EIO;
510 }
511
512 static struct sysfs_ops edac_pci_sysfs_ops = {
513         .show   = edac_pci_dev_show,
514         .store  = edac_pci_dev_store
515 };
516
517 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
518 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
519         .attr = {.name = __stringify(_name), .mode = _mode },   \
520         .value  = &_name,                                       \
521         .show   = _show,                                        \
522         .store  = _store,                                       \
523 };
524
525 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
526 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
527         .attr = {.name = __stringify(_name), .mode = _mode },   \
528         .value  = _data,                                        \
529         .show   = _show,                                        \
530         .store  = _store,                                       \
531 };
532
533 #if 0
534 static struct list_control pci_whitelist_control = {
535         .list = pci_whitelist,
536         .count = &pci_whitelist_count
537 };
538
539 static struct list_control pci_blacklist_control = {
540         .list = pci_blacklist,
541         .count = &pci_blacklist_count
542 };
543
544 /* whitelist attribute */
545 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
546         &pci_whitelist_control,
547         S_IRUGO|S_IWUSR,
548         edac_pci_list_string_show,
549         edac_pci_list_string_store);
550
551 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
552         &pci_blacklist_control,
553         S_IRUGO|S_IWUSR,
554         edac_pci_list_string_show,
555         edac_pci_list_string_store);
556 #endif
557
558 /* PCI Parity control files */
559 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
560         edac_pci_int_store);
561 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
562         edac_pci_int_store);
563 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
564
565 /* Base Attributes of the memory ECC object */
566 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567         &edac_pci_attr_check_pci_parity,
568         &edac_pci_attr_panic_on_pci_parity,
569         &edac_pci_attr_pci_parity_count,
570         NULL,
571 };
572
573 /* No memory to release */
574 static void edac_pci_release(struct kobject *kobj)
575 {
576         debugf1("%s()\n", __func__);
577         complete(&edac_pci_kobj_complete);
578 }
579
580 static struct kobj_type ktype_edac_pci = {
581         .release = edac_pci_release,
582         .sysfs_ops = &edac_pci_sysfs_ops,
583         .default_attrs = (struct attribute **) edac_pci_attr,
584 };
585
586 #endif  /* DISABLE_EDAC_SYSFS */
587
588 /**
589  * edac_sysfs_pci_setup()
590  *
591  */
592 static int edac_sysfs_pci_setup(void)
593 #ifdef DISABLE_EDAC_SYSFS
594 {
595         return 0;
596 }
597 #else
598 {
599         int err;
600
601         debugf1("%s()\n", __func__);
602
603         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
604         edac_pci_kobj.parent = &edac_class.kset.kobj;
605         edac_pci_kobj.ktype = &ktype_edac_pci;
606         err = kobject_set_name(&edac_pci_kobj, "pci");
607
608         if (!err) {
609                 /* Instanstiate the csrow object */
610                 /* FIXME: maybe new sysdev_create_subdir() */
611                 err = kobject_register(&edac_pci_kobj);
612
613                 if (err)
614                         debugf1("Failed to register '.../edac/pci'\n");
615                 else
616                         debugf1("Registered '.../edac/pci' kobject\n");
617         }
618
619         return err;
620 }
621 #endif  /* DISABLE_EDAC_SYSFS */
622
623 static void edac_sysfs_pci_teardown(void)
624 {
625 #ifndef DISABLE_EDAC_SYSFS
626         debugf0("%s()\n", __func__);
627         init_completion(&edac_pci_kobj_complete);
628         kobject_unregister(&edac_pci_kobj);
629         wait_for_completion(&edac_pci_kobj_complete);
630 #endif
631 }
632
633
634 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
635 {
636         int where;
637         u16 status;
638
639         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
640         pci_read_config_word(dev, where, &status);
641
642         /* If we get back 0xFFFF then we must suspect that the card has been
643          * pulled but the Linux PCI layer has not yet finished cleaning up.
644          * We don't want to report on such devices
645          */
646
647         if (status == 0xFFFF) {
648                 u32 sanity;
649
650                 pci_read_config_dword(dev, 0, &sanity);
651
652                 if (sanity == 0xFFFFFFFF)
653                         return 0;
654         }
655
656         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
657                 PCI_STATUS_PARITY;
658
659         if (status)
660                 /* reset only the bits we are interested in */
661                 pci_write_config_word(dev, where, status);
662
663         return status;
664 }
665
666 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
667
668 /* Clear any PCI parity errors logged by this device. */
669 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
670 {
671         u8 header_type;
672
673         get_pci_parity_status(dev, 0);
674
675         /* read the device TYPE, looking for bridges */
676         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
677
678         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
679                 get_pci_parity_status(dev, 1);
680 }
681
682 /*
683  *  PCI Parity polling
684  *
685  */
686 static void edac_pci_dev_parity_test(struct pci_dev *dev)
687 {
688         u16 status;
689         u8  header_type;
690
691         /* read the STATUS register on this device
692          */
693         status = get_pci_parity_status(dev, 0);
694
695         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
696
697         /* check the status reg for errors */
698         if (status) {
699                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
700                         edac_printk(KERN_CRIT, EDAC_PCI,
701                                 "Signaled System Error on %s\n",
702                                 pci_name(dev));
703
704                 if (status & (PCI_STATUS_PARITY)) {
705                         edac_printk(KERN_CRIT, EDAC_PCI,
706                                 "Master Data Parity Error on %s\n",
707                                 pci_name(dev));
708
709                         atomic_inc(&pci_parity_count);
710                 }
711
712                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
713                         edac_printk(KERN_CRIT, EDAC_PCI,
714                                 "Detected Parity Error on %s\n",
715                                 pci_name(dev));
716
717                         atomic_inc(&pci_parity_count);
718                 }
719         }
720
721         /* read the device TYPE, looking for bridges */
722         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
723
724         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
725
726         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
727                 /* On bridges, need to examine secondary status register  */
728                 status = get_pci_parity_status(dev, 1);
729
730                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
731                                 status, dev->dev.bus_id );
732
733                 /* check the secondary status reg for errors */
734                 if (status) {
735                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
736                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
737                                         "Signaled System Error on %s\n",
738                                         pci_name(dev));
739
740                         if (status & (PCI_STATUS_PARITY)) {
741                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
742                                         "Master Data Parity Error on "
743                                         "%s\n", pci_name(dev));
744
745                                 atomic_inc(&pci_parity_count);
746                         }
747
748                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
749                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
750                                         "Detected Parity Error on %s\n",
751                                         pci_name(dev));
752
753                                 atomic_inc(&pci_parity_count);
754                         }
755                 }
756         }
757 }
758
759 /*
760  * check_dev_on_list: Scan for a PCI device on a white/black list
761  * @list:       an EDAC  &edac_pci_device_list  white/black list pointer
762  * @free_index: index of next free entry on the list
763  * @pci_dev:    PCI Device pointer
764  *
765  * see if list contains the device.
766  *
767  * Returns:     0 not found
768  *              1 found on list
769  */
770 static int check_dev_on_list(struct edac_pci_device_list *list,
771                 int free_index, struct pci_dev *dev)
772 {
773         int i;
774         int rc = 0;     /* Assume not found */
775         unsigned short vendor=dev->vendor;
776         unsigned short device=dev->device;
777
778         /* Scan the list, looking for a vendor/device match */
779         for (i = 0; i < free_index; i++, list++ ) {
780                 if ((list->vendor == vendor ) && (list->device == device )) {
781                         rc = 1;
782                         break;
783                 }
784         }
785
786         return rc;
787 }
788
789 /*
790  * pci_dev parity list iterator
791  *      Scan the PCI device list for one iteration, looking for SERRORs
792  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
793  */
794 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
795 {
796         struct pci_dev *dev = NULL;
797
798         /* request for kernel access to the next PCI device, if any,
799          * and while we are looking at it have its reference count
800          * bumped until we are done with it
801          */
802         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
803                 /* if whitelist exists then it has priority, so only scan
804                  * those devices on the whitelist
805                  */
806                 if (pci_whitelist_count > 0 ) {
807                         if (check_dev_on_list(pci_whitelist,
808                                         pci_whitelist_count, dev))
809                                 fn(dev);
810                 } else {
811                         /*
812                          * if no whitelist, then check if this devices is
813                          * blacklisted
814                          */
815                         if (!check_dev_on_list(pci_blacklist,
816                                         pci_blacklist_count, dev))
817                                 fn(dev);
818                 }
819         }
820 }
821
822 static void do_pci_parity_check(void)
823 {
824         unsigned long flags;
825         int before_count;
826
827         debugf3("%s()\n", __func__);
828
829         if (!check_pci_parity)
830                 return;
831
832         before_count = atomic_read(&pci_parity_count);
833
834         /* scan all PCI devices looking for a Parity Error on devices and
835          * bridges
836          */
837         local_irq_save(flags);
838         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
839         local_irq_restore(flags);
840
841         /* Only if operator has selected panic on PCI Error */
842         if (panic_on_pci_parity) {
843                 /* If the count is different 'after' from 'before' */
844                 if (before_count != atomic_read(&pci_parity_count))
845                         panic("EDAC: PCI Parity Error");
846         }
847 }
848
849 static inline void clear_pci_parity_errors(void)
850 {
851         /* Clear any PCI bus parity errors that devices initially have logged
852          * in their registers.
853          */
854         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
855 }
856
857 #else   /* CONFIG_PCI */
858
859 static inline void do_pci_parity_check(void)
860 {
861         /* no-op */
862 }
863
864 static inline void clear_pci_parity_errors(void)
865 {
866         /* no-op */
867 }
868
869 static void edac_sysfs_pci_teardown(void)
870 {
871 }
872
873 static int edac_sysfs_pci_setup(void)
874 {
875         return 0;
876 }
877 #endif  /* CONFIG_PCI */
878
879 #ifndef DISABLE_EDAC_SYSFS
880
881 /* EDAC sysfs CSROW data structures and methods */
882
883 /* Set of more detailed csrow<id> attribute show/store functions */
884 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
885 {
886         ssize_t size = 0;
887
888         if (csrow->nr_channels > 0) {
889                 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
890                         csrow->channels[0].label);
891         }
892
893         return size;
894 }
895
896 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
897 {
898         ssize_t size = 0;
899
900         if (csrow->nr_channels > 0) {
901                 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
902                         csrow->channels[1].label);
903         }
904
905         return size;
906 }
907
908 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
909                 const char *data, size_t size)
910 {
911         ssize_t max_size = 0;
912
913         if (csrow->nr_channels > 0) {
914                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
915                 strncpy(csrow->channels[0].label, data, max_size);
916                 csrow->channels[0].label[max_size] = '\0';
917         }
918
919         return size;
920 }
921
922 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
923                 const char *data, size_t size)
924 {
925         ssize_t max_size = 0;
926
927         if (csrow->nr_channels > 1) {
928                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
929                 strncpy(csrow->channels[1].label, data, max_size);
930                 csrow->channels[1].label[max_size] = '\0';
931         }
932
933         return max_size;
934 }
935
936 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
937 {
938         return sprintf(data,"%u\n", csrow->ue_count);
939 }
940
941 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
942 {
943         return sprintf(data,"%u\n", csrow->ce_count);
944 }
945
946 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
947 {
948         ssize_t size = 0;
949
950         if (csrow->nr_channels > 0) {
951                 size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
952         }
953
954         return size;
955 }
956
957 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
958 {
959         ssize_t size = 0;
960
961         if (csrow->nr_channels > 1) {
962                 size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
963         }
964
965         return size;
966 }
967
968 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
969 {
970         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
971 }
972
973 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
974 {
975         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
976 }
977
978 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
979 {
980         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
981 }
982
983 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
984 {
985         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
986 }
987
988 struct csrowdev_attribute {
989         struct attribute attr;
990         ssize_t (*show)(struct csrow_info *,char *);
991         ssize_t (*store)(struct csrow_info *, const char *,size_t);
992 };
993
994 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
995 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
996
997 /* Set of show/store higher level functions for csrow objects */
998 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
999                 char *buffer)
1000 {
1001         struct csrow_info *csrow = to_csrow(kobj);
1002         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
1003
1004         if (csrowdev_attr->show)
1005                 return csrowdev_attr->show(csrow, buffer);
1006
1007         return -EIO;
1008 }
1009
1010 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
1011                 const char *buffer, size_t count)
1012 {
1013         struct csrow_info *csrow = to_csrow(kobj);
1014         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
1015
1016         if (csrowdev_attr->store)
1017                 return csrowdev_attr->store(csrow, buffer, count);
1018
1019         return -EIO;
1020 }
1021
1022 static struct sysfs_ops csrowfs_ops = {
1023         .show   = csrowdev_show,
1024         .store  = csrowdev_store
1025 };
1026
1027 #define CSROWDEV_ATTR(_name,_mode,_show,_store)                 \
1028 struct csrowdev_attribute attr_##_name = {                      \
1029         .attr = {.name = __stringify(_name), .mode = _mode },   \
1030         .show   = _show,                                        \
1031         .store  = _store,                                       \
1032 };
1033
1034 /* cwrow<id>/attribute files */
1035 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
1036 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
1037 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
1038 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
1039 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
1040 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
1041 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
1042 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
1043
1044 /* control/attribute files */
1045 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
1046                 csrow_ch0_dimm_label_show,
1047                 csrow_ch0_dimm_label_store);
1048 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
1049                 csrow_ch1_dimm_label_show,
1050                 csrow_ch1_dimm_label_store);
1051
1052 /* Attributes of the CSROW<id> object */
1053 static struct csrowdev_attribute *csrow_attr[] = {
1054         &attr_dev_type,
1055         &attr_mem_type,
1056         &attr_edac_mode,
1057         &attr_size_mb,
1058         &attr_ue_count,
1059         &attr_ce_count,
1060         &attr_ch0_ce_count,
1061         &attr_ch1_ce_count,
1062         &attr_ch0_dimm_label,
1063         &attr_ch1_dimm_label,
1064         NULL,
1065 };
1066
1067 /* No memory to release */
1068 static void edac_csrow_instance_release(struct kobject *kobj)
1069 {
1070         struct csrow_info *cs;
1071
1072         debugf1("%s()\n", __func__);
1073         cs = container_of(kobj, struct csrow_info, kobj);
1074         complete(&cs->kobj_complete);
1075 }
1076
1077 static struct kobj_type ktype_csrow = {
1078         .release = edac_csrow_instance_release,
1079         .sysfs_ops = &csrowfs_ops,
1080         .default_attrs = (struct attribute **) csrow_attr,
1081 };
1082
1083 /* Create a CSROW object under specifed edac_mc_device */
1084 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
1085                 struct csrow_info *csrow, int index)
1086 {
1087         int err = 0;
1088
1089         debugf0("%s()\n", __func__);
1090         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
1091
1092         /* generate ..../edac/mc/mc<id>/csrow<index>   */
1093
1094         csrow->kobj.parent = edac_mci_kobj;
1095         csrow->kobj.ktype = &ktype_csrow;
1096
1097         /* name this instance of csrow<id> */
1098         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
1099
1100         if (!err) {
1101                 /* Instanstiate the csrow object */
1102                 err = kobject_register(&csrow->kobj);
1103
1104                 if (err)
1105                         debugf0("Failed to register CSROW%d\n",index);
1106                 else
1107                         debugf0("Registered CSROW%d\n",index);
1108         }
1109
1110         return err;
1111 }
1112
1113 /* sysfs data structures and methods for the MCI kobjects */
1114
1115 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
1116                 const char *data, size_t count)
1117 {
1118         int row, chan;
1119
1120         mci->ue_noinfo_count = 0;
1121         mci->ce_noinfo_count = 0;
1122         mci->ue_count = 0;
1123         mci->ce_count = 0;
1124
1125         for (row = 0; row < mci->nr_csrows; row++) {
1126                 struct csrow_info *ri = &mci->csrows[row];
1127
1128                 ri->ue_count = 0;
1129                 ri->ce_count = 0;
1130
1131                 for (chan = 0; chan < ri->nr_channels; chan++)
1132                         ri->channels[chan].ce_count = 0;
1133         }
1134
1135         mci->start_time = jiffies;
1136         return count;
1137 }
1138
1139 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
1140 {
1141         return sprintf(data,"%d\n", mci->ue_count);
1142 }
1143
1144 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
1145 {
1146         return sprintf(data,"%d\n", mci->ce_count);
1147 }
1148
1149 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
1150 {
1151         return sprintf(data,"%d\n", mci->ce_noinfo_count);
1152 }
1153
1154 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
1155 {
1156         return sprintf(data,"%d\n", mci->ue_noinfo_count);
1157 }
1158
1159 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1160 {
1161         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1162 }
1163
1164 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
1165 {
1166         return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
1167 }
1168
1169 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1170 {
1171         return sprintf(data,"%s\n", mci->ctl_name);
1172 }
1173
1174 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
1175 {
1176         char *p = buf;
1177         int bit_idx;
1178
1179         for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
1180                 if ((edac_cap >> bit_idx) & 0x1)
1181                         p += sprintf(p, "%s ", edac_caps[bit_idx]);
1182         }
1183
1184         return p - buf;
1185 }
1186
1187 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
1188 {
1189         char *p = data;
1190
1191         p += mci_output_edac_cap(p,mci->edac_ctl_cap);
1192         p += sprintf(p, "\n");
1193         return p - data;
1194 }
1195
1196 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
1197                 char *data)
1198 {
1199         char *p = data;
1200
1201         p += mci_output_edac_cap(p,mci->edac_cap);
1202         p += sprintf(p, "\n");
1203         return p - data;
1204 }
1205
1206 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
1207 {
1208         char *p = buf;
1209         int bit_idx;
1210
1211         for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
1212                 if ((mtype_cap >> bit_idx) & 0x1)
1213                         p += sprintf(p, "%s ", mem_types[bit_idx]);
1214         }
1215
1216         return p - buf;
1217 }
1218
1219 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci,
1220                 char *data)
1221 {
1222         char *p = data;
1223
1224         p += mci_output_mtype_cap(p,mci->mtype_cap);
1225         p += sprintf(p, "\n");
1226         return p - data;
1227 }
1228
1229 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1230 {
1231         int total_pages, csrow_idx;
1232
1233         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1234                         csrow_idx++) {
1235                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
1236
1237                 if (!csrow->nr_pages)
1238                         continue;
1239
1240                 total_pages += csrow->nr_pages;
1241         }
1242
1243         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1244 }
1245
1246 struct mcidev_attribute {
1247         struct attribute attr;
1248         ssize_t (*show)(struct mem_ctl_info *,char *);
1249         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1250 };
1251
1252 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1253 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1254
1255 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1256                 char *buffer)
1257 {
1258         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1259         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1260
1261         if (mcidev_attr->show)
1262                 return mcidev_attr->show(mem_ctl_info, buffer);
1263
1264         return -EIO;
1265 }
1266
1267 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1268                 const char *buffer, size_t count)
1269 {
1270         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1271         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1272
1273         if (mcidev_attr->store)
1274                 return mcidev_attr->store(mem_ctl_info, buffer, count);
1275
1276         return -EIO;
1277 }
1278
1279 static struct sysfs_ops mci_ops = {
1280         .show = mcidev_show,
1281         .store = mcidev_store
1282 };
1283
1284 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1285 struct mcidev_attribute mci_attr_##_name = {                    \
1286         .attr = {.name = __stringify(_name), .mode = _mode },   \
1287         .show   = _show,                                        \
1288         .store  = _store,                                       \
1289 };
1290
1291 /* Control file */
1292 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1293
1294 /* Attribute files */
1295 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1296 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1297 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1298 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1299 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1300 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1301 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1302 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1303 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1304 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1305         mci_edac_current_capability_show,NULL);
1306 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1307         mci_supported_mem_type_show,NULL);
1308
1309 static struct mcidev_attribute *mci_attr[] = {
1310         &mci_attr_reset_counters,
1311         &mci_attr_module_name,
1312         &mci_attr_mc_name,
1313         &mci_attr_edac_capability,
1314         &mci_attr_edac_current_capability,
1315         &mci_attr_supported_mem_type,
1316         &mci_attr_size_mb,
1317         &mci_attr_seconds_since_reset,
1318         &mci_attr_ue_noinfo_count,
1319         &mci_attr_ce_noinfo_count,
1320         &mci_attr_ue_count,
1321         &mci_attr_ce_count,
1322         NULL
1323 };
1324
1325 /*
1326  * Release of a MC controlling instance
1327  */
1328 static void edac_mci_instance_release(struct kobject *kobj)
1329 {
1330         struct mem_ctl_info *mci;
1331
1332         mci = to_mci(kobj);
1333         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1334         complete(&mci->kobj_complete);
1335 }
1336
1337 static struct kobj_type ktype_mci = {
1338         .release = edac_mci_instance_release,
1339         .sysfs_ops = &mci_ops,
1340         .default_attrs = (struct attribute **) mci_attr,
1341 };
1342
1343 #endif  /* DISABLE_EDAC_SYSFS */
1344
1345 #define EDAC_DEVICE_SYMLINK     "device"
1346
1347 /*
1348  * Create a new Memory Controller kobject instance,
1349  *      mc<id> under the 'mc' directory
1350  *
1351  * Return:
1352  *      0       Success
1353  *      !0      Failure
1354  */
1355 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1356 #ifdef DISABLE_EDAC_SYSFS
1357 {
1358         return 0;
1359 }
1360 #else
1361 {
1362         int i;
1363         int err;
1364         struct csrow_info *csrow;
1365         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1366
1367         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1368         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1369
1370         /* set the name of the mc<id> object */
1371         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1372
1373         if (err)
1374                 return err;
1375
1376         /* link to our parent the '..../edac/mc' object */
1377         edac_mci_kobj->parent = &edac_memctrl_kobj;
1378         edac_mci_kobj->ktype = &ktype_mci;
1379
1380         /* register the mc<id> kobject */
1381         err = kobject_register(edac_mci_kobj);
1382
1383         if (err)
1384                 return err;
1385
1386         /* create a symlink for the device */
1387         err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1388                                 EDAC_DEVICE_SYMLINK);
1389
1390         if (err)
1391                 goto fail0;
1392
1393         /* Make directories for each CSROW object
1394          * under the mc<id> kobject
1395          */
1396         for (i = 0; i < mci->nr_csrows; i++) {
1397                 csrow = &mci->csrows[i];
1398
1399                 /* Only expose populated CSROWs */
1400                 if (csrow->nr_pages > 0) {
1401                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1402
1403                         if (err)
1404                                 goto fail1;
1405                 }
1406         }
1407
1408         return 0;
1409
1410         /* CSROW error: backout what has already been registered,  */
1411 fail1:
1412         for ( i--; i >= 0; i--) {
1413                 if (csrow->nr_pages > 0) {
1414                         init_completion(&csrow->kobj_complete);
1415                         kobject_unregister(&mci->csrows[i].kobj);
1416                         wait_for_completion(&csrow->kobj_complete);
1417                 }
1418         }
1419
1420 fail0:
1421         init_completion(&mci->kobj_complete);
1422         kobject_unregister(edac_mci_kobj);
1423         wait_for_completion(&mci->kobj_complete);
1424         return err;
1425 }
1426 #endif  /* DISABLE_EDAC_SYSFS */
1427
1428 /*
1429  * remove a Memory Controller instance
1430  */
1431 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1432 {
1433 #ifndef DISABLE_EDAC_SYSFS
1434         int i;
1435
1436         debugf0("%s()\n", __func__);
1437
1438         /* remove all csrow kobjects */
1439         for (i = 0; i < mci->nr_csrows; i++) {
1440                 if (mci->csrows[i].nr_pages > 0) {
1441                         init_completion(&mci->csrows[i].kobj_complete);
1442                         kobject_unregister(&mci->csrows[i].kobj);
1443                         wait_for_completion(&mci->csrows[i].kobj_complete);
1444                 }
1445         }
1446
1447         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1448         init_completion(&mci->kobj_complete);
1449         kobject_unregister(&mci->edac_mci_kobj);
1450         wait_for_completion(&mci->kobj_complete);
1451 #endif  /* DISABLE_EDAC_SYSFS */
1452 }
1453
1454 /* END OF sysfs data and methods */
1455
1456 #ifdef CONFIG_EDAC_DEBUG
1457
1458 void edac_mc_dump_channel(struct channel_info *chan)
1459 {
1460         debugf4("\tchannel = %p\n", chan);
1461         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1462         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1463         debugf4("\tchannel->label = '%s'\n", chan->label);
1464         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1465 }
1466 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1467
1468 void edac_mc_dump_csrow(struct csrow_info *csrow)
1469 {
1470         debugf4("\tcsrow = %p\n", csrow);
1471         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1472         debugf4("\tcsrow->first_page = 0x%lx\n",
1473                 csrow->first_page);
1474         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1475         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1476         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1477         debugf4("\tcsrow->nr_channels = %d\n",
1478                 csrow->nr_channels);
1479         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1480         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1481 }
1482 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1483
1484 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1485 {
1486         debugf3("\tmci = %p\n", mci);
1487         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1488         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1489         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1490         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1491         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1492                 mci->nr_csrows, mci->csrows);
1493         debugf3("\tdev = %p\n", mci->dev);
1494         debugf3("\tmod_name:ctl_name = %s:%s\n",
1495                 mci->mod_name, mci->ctl_name);
1496         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1497 }
1498 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1499
1500 #endif  /* CONFIG_EDAC_DEBUG */
1501
1502 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1503  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1504  * compiler would provide for X and return the aligned result.
1505  *
1506  * If 'size' is a constant, the compiler will optimize this whole function
1507  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1508  */
1509 static inline char * align_ptr(void *ptr, unsigned size)
1510 {
1511         unsigned align, r;
1512
1513         /* Here we assume that the alignment of a "long long" is the most
1514          * stringent alignment that the compiler will ever provide by default.
1515          * As far as I know, this is a reasonable assumption.
1516          */
1517         if (size > sizeof(long))
1518                 align = sizeof(long long);
1519         else if (size > sizeof(int))
1520                 align = sizeof(long);
1521         else if (size > sizeof(short))
1522                 align = sizeof(int);
1523         else if (size > sizeof(char))
1524                 align = sizeof(short);
1525         else
1526                 return (char *) ptr;
1527
1528         r = size % align;
1529
1530         if (r == 0)
1531                 return (char *) ptr;
1532
1533         return (char *) (((unsigned long) ptr) + align - r);
1534 }
1535
1536 /**
1537  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1538  * @size_pvt:   size of private storage needed
1539  * @nr_csrows:  Number of CWROWS needed for this MC
1540  * @nr_chans:   Number of channels for the MC
1541  *
1542  * Everything is kmalloc'ed as one big chunk - more efficient.
1543  * Only can be used if all structures have the same lifetime - otherwise
1544  * you have to allocate and initialize your own structures.
1545  *
1546  * Use edac_mc_free() to free mc structures allocated by this function.
1547  *
1548  * Returns:
1549  *      NULL allocation failed
1550  *      struct mem_ctl_info pointer
1551  */
1552 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1553                 unsigned nr_chans)
1554 {
1555         struct mem_ctl_info *mci;
1556         struct csrow_info *csi, *csrow;
1557         struct channel_info *chi, *chp, *chan;
1558         void *pvt;
1559         unsigned size;
1560         int row, chn;
1561
1562         /* Figure out the offsets of the various items from the start of an mc
1563          * structure.  We want the alignment of each item to be at least as
1564          * stringent as what the compiler would provide if we could simply
1565          * hardcode everything into a single struct.
1566          */
1567         mci = (struct mem_ctl_info *) 0;
1568         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1569         chi = (struct channel_info *)
1570                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1571         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1572         size = ((unsigned long) pvt) + sz_pvt;
1573
1574         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1575                 return NULL;
1576
1577         /* Adjust pointers so they point within the memory we just allocated
1578          * rather than an imaginary chunk of memory located at address 0.
1579          */
1580         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1581         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1582         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1583
1584         memset(mci, 0, size);  /* clear all fields */
1585         mci->csrows = csi;
1586         mci->pvt_info = pvt;
1587         mci->nr_csrows = nr_csrows;
1588
1589         for (row = 0; row < nr_csrows; row++) {
1590                 csrow = &csi[row];
1591                 csrow->csrow_idx = row;
1592                 csrow->mci = mci;
1593                 csrow->nr_channels = nr_chans;
1594                 chp = &chi[row * nr_chans];
1595                 csrow->channels = chp;
1596
1597                 for (chn = 0; chn < nr_chans; chn++) {
1598                         chan = &chp[chn];
1599                         chan->chan_idx = chn;
1600                         chan->csrow = csrow;
1601                 }
1602         }
1603
1604         return mci;
1605 }
1606 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1607
1608 /**
1609  * edac_mc_free:  Free a previously allocated 'mci' structure
1610  * @mci: pointer to a struct mem_ctl_info structure
1611  */
1612 void edac_mc_free(struct mem_ctl_info *mci)
1613 {
1614         kfree(mci);
1615 }
1616 EXPORT_SYMBOL_GPL(edac_mc_free);
1617
1618 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1619 {
1620         struct mem_ctl_info *mci;
1621         struct list_head *item;
1622
1623         debugf3("%s()\n", __func__);
1624
1625         list_for_each(item, &mc_devices) {
1626                 mci = list_entry(item, struct mem_ctl_info, link);
1627
1628                 if (mci->dev == dev)
1629                         return mci;
1630         }
1631
1632         return NULL;
1633 }
1634
1635 /* Return 0 on success, 1 on failure.
1636  * Before calling this function, caller must
1637  * assign a unique value to mci->mc_idx.
1638  */
1639 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1640 {
1641         struct list_head *item, *insert_before;
1642         struct mem_ctl_info *p;
1643
1644         insert_before = &mc_devices;
1645
1646         if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1647                 goto fail0;
1648
1649         list_for_each(item, &mc_devices) {
1650                 p = list_entry(item, struct mem_ctl_info, link);
1651
1652                 if (p->mc_idx >= mci->mc_idx) {
1653                         if (unlikely(p->mc_idx == mci->mc_idx))
1654                                 goto fail1;
1655
1656                         insert_before = item;
1657                         break;
1658                 }
1659         }
1660
1661         list_add_tail_rcu(&mci->link, insert_before);
1662         return 0;
1663
1664 fail0:
1665         edac_printk(KERN_WARNING, EDAC_MC,
1666                     "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1667                     dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1668         return 1;
1669
1670 fail1:
1671         edac_printk(KERN_WARNING, EDAC_MC,
1672                     "bug in low-level driver: attempt to assign\n"
1673                     "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1674         return 1;
1675 }
1676
1677 static void complete_mc_list_del(struct rcu_head *head)
1678 {
1679         struct mem_ctl_info *mci;
1680
1681         mci = container_of(head, struct mem_ctl_info, rcu);
1682         INIT_LIST_HEAD(&mci->link);
1683         complete(&mci->complete);
1684 }
1685
1686 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1687 {
1688         list_del_rcu(&mci->link);
1689         init_completion(&mci->complete);
1690         call_rcu(&mci->rcu, complete_mc_list_del);
1691         wait_for_completion(&mci->complete);
1692 }
1693
1694 /**
1695  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1696  *                 create sysfs entries associated with mci structure
1697  * @mci: pointer to the mci structure to be added to the list
1698  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1699  *
1700  * Return:
1701  *      0       Success
1702  *      !0      Failure
1703  */
1704
1705 /* FIXME - should a warning be printed if no error detection? correction? */
1706 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1707 {
1708         debugf0("%s()\n", __func__);
1709         mci->mc_idx = mc_idx;
1710 #ifdef CONFIG_EDAC_DEBUG
1711         if (edac_debug_level >= 3)
1712                 edac_mc_dump_mci(mci);
1713
1714         if (edac_debug_level >= 4) {
1715                 int i;
1716
1717                 for (i = 0; i < mci->nr_csrows; i++) {
1718                         int j;
1719
1720                         edac_mc_dump_csrow(&mci->csrows[i]);
1721                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1722                                 edac_mc_dump_channel(
1723                                         &mci->csrows[i].channels[j]);
1724                 }
1725         }
1726 #endif
1727         down(&mem_ctls_mutex);
1728
1729         if (add_mc_to_global_list(mci))
1730                 goto fail0;
1731
1732         /* set load time so that error rate can be tracked */
1733         mci->start_time = jiffies;
1734
1735         if (edac_create_sysfs_mci_device(mci)) {
1736                 edac_mc_printk(mci, KERN_WARNING,
1737                         "failed to create sysfs device\n");
1738                 goto fail1;
1739         }
1740
1741         /* Report action taken */
1742         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1743                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1744
1745         up(&mem_ctls_mutex);
1746         return 0;
1747
1748 fail1:
1749         del_mc_from_global_list(mci);
1750
1751 fail0:
1752         up(&mem_ctls_mutex);
1753         return 1;
1754 }
1755 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1756
1757 /**
1758  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1759  *                 remove mci structure from global list
1760  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1761  *
1762  * Return pointer to removed mci structure, or NULL if device not found.
1763  */
1764 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1765 {
1766         struct mem_ctl_info *mci;
1767
1768         debugf0("MC: %s()\n", __func__);
1769         down(&mem_ctls_mutex);
1770
1771         if ((mci = find_mci_by_dev(dev)) == NULL) {
1772                 up(&mem_ctls_mutex);
1773                 return NULL;
1774         }
1775
1776         edac_remove_sysfs_mci_device(mci);
1777         del_mc_from_global_list(mci);
1778         up(&mem_ctls_mutex);
1779         edac_printk(KERN_INFO, EDAC_MC,
1780                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1781                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1782         return mci;
1783 }
1784 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1785
1786 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1787 {
1788         struct page *pg;
1789         void *virt_addr;
1790         unsigned long flags = 0;
1791
1792         debugf3("%s()\n", __func__);
1793
1794         /* ECC error page was not in our memory. Ignore it. */
1795         if(!pfn_valid(page))
1796                 return;
1797
1798         /* Find the actual page structure then map it and fix */
1799         pg = pfn_to_page(page);
1800
1801         if (PageHighMem(pg))
1802                 local_irq_save(flags);
1803
1804         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1805
1806         /* Perform architecture specific atomic scrub operation */
1807         atomic_scrub(virt_addr + offset, size);
1808
1809         /* Unmap and complete */
1810         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1811
1812         if (PageHighMem(pg))
1813                 local_irq_restore(flags);
1814 }
1815 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1816
1817 /* FIXME - should return -1 */
1818 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1819 {
1820         struct csrow_info *csrows = mci->csrows;
1821         int row, i;
1822
1823         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1824         row = -1;
1825
1826         for (i = 0; i < mci->nr_csrows; i++) {
1827                 struct csrow_info *csrow = &csrows[i];
1828
1829                 if (csrow->nr_pages == 0)
1830                         continue;
1831
1832                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1833                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1834                         csrow->first_page, page, csrow->last_page,
1835                         csrow->page_mask);
1836
1837                 if ((page >= csrow->first_page) &&
1838                     (page <= csrow->last_page) &&
1839                     ((page & csrow->page_mask) ==
1840                      (csrow->first_page & csrow->page_mask))) {
1841                         row = i;
1842                         break;
1843                 }
1844         }
1845
1846         if (row == -1)
1847                 edac_mc_printk(mci, KERN_ERR,
1848                         "could not look up page error address %lx\n",
1849                         (unsigned long) page);
1850
1851         return row;
1852 }
1853 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1854
1855 /* FIXME - setable log (warning/emerg) levels */
1856 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1857 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1858                 unsigned long page_frame_number, unsigned long offset_in_page,
1859                 unsigned long syndrome, int row, int channel, const char *msg)
1860 {
1861         unsigned long remapped_page;
1862
1863         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1864
1865         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1866         if (row >= mci->nr_csrows || row < 0) {
1867                 /* something is wrong */
1868                 edac_mc_printk(mci, KERN_ERR,
1869                         "INTERNAL ERROR: row out of range "
1870                         "(%d >= %d)\n", row, mci->nr_csrows);
1871                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1872                 return;
1873         }
1874
1875         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1876                 /* something is wrong */
1877                 edac_mc_printk(mci, KERN_ERR,
1878                         "INTERNAL ERROR: channel out of range "
1879                         "(%d >= %d)\n", channel,
1880                         mci->csrows[row].nr_channels);
1881                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1882                 return;
1883         }
1884
1885         if (log_ce)
1886                 /* FIXME - put in DIMM location */
1887                 edac_mc_printk(mci, KERN_WARNING,
1888                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1889                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1890                         page_frame_number, offset_in_page,
1891                         mci->csrows[row].grain, syndrome, row, channel,
1892                         mci->csrows[row].channels[channel].label, msg);
1893
1894         mci->ce_count++;
1895         mci->csrows[row].ce_count++;
1896         mci->csrows[row].channels[channel].ce_count++;
1897
1898         if (mci->scrub_mode & SCRUB_SW_SRC) {
1899                 /*
1900                  * Some MC's can remap memory so that it is still available
1901                  * at a different address when PCI devices map into memory.
1902                  * MC's that can't do this lose the memory where PCI devices
1903                  * are mapped.  This mapping is MC dependant and so we call
1904                  * back into the MC driver for it to map the MC page to
1905                  * a physical (CPU) page which can then be mapped to a virtual
1906                  * page - which can then be scrubbed.
1907                  */
1908                 remapped_page = mci->ctl_page_to_phys ?
1909                     mci->ctl_page_to_phys(mci, page_frame_number) :
1910                     page_frame_number;
1911
1912                 edac_mc_scrub_block(remapped_page, offset_in_page,
1913                                         mci->csrows[row].grain);
1914         }
1915 }
1916 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1917
1918 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1919 {
1920         if (log_ce)
1921                 edac_mc_printk(mci, KERN_WARNING,
1922                         "CE - no information available: %s\n", msg);
1923
1924         mci->ce_noinfo_count++;
1925         mci->ce_count++;
1926 }
1927 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1928
1929 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1930                 unsigned long page_frame_number, unsigned long offset_in_page,
1931                 int row, const char *msg)
1932 {
1933         int len = EDAC_MC_LABEL_LEN * 4;
1934         char labels[len + 1];
1935         char *pos = labels;
1936         int chan;
1937         int chars;
1938
1939         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1940
1941         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1942         if (row >= mci->nr_csrows || row < 0) {
1943                 /* something is wrong */
1944                 edac_mc_printk(mci, KERN_ERR,
1945                         "INTERNAL ERROR: row out of range "
1946                         "(%d >= %d)\n", row, mci->nr_csrows);
1947                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1948                 return;
1949         }
1950
1951         chars = snprintf(pos, len + 1, "%s",
1952                         mci->csrows[row].channels[0].label);
1953         len -= chars;
1954         pos += chars;
1955
1956         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1957              chan++) {
1958                 chars = snprintf(pos, len + 1, ":%s",
1959                                 mci->csrows[row].channels[chan].label);
1960                 len -= chars;
1961                 pos += chars;
1962         }
1963
1964         if (log_ue)
1965                 edac_mc_printk(mci, KERN_EMERG,
1966                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1967                         "labels \"%s\": %s\n", page_frame_number,
1968                         offset_in_page, mci->csrows[row].grain, row, labels,
1969                         msg);
1970
1971         if (panic_on_ue)
1972                 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1973                         "row %d, labels \"%s\": %s\n", mci->mc_idx,
1974                         page_frame_number, offset_in_page,
1975                         mci->csrows[row].grain, row, labels, msg);
1976
1977         mci->ue_count++;
1978         mci->csrows[row].ue_count++;
1979 }
1980 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1981
1982 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1983 {
1984         if (panic_on_ue)
1985                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1986
1987         if (log_ue)
1988                 edac_mc_printk(mci, KERN_WARNING,
1989                         "UE - no information available: %s\n", msg);
1990         mci->ue_noinfo_count++;
1991         mci->ue_count++;
1992 }
1993 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1994
1995
1996 /*
1997  * Iterate over all MC instances and check for ECC, et al, errors
1998  */
1999 static inline void check_mc_devices(void)
2000 {
2001         struct list_head *item;
2002         struct mem_ctl_info *mci;
2003
2004         debugf3("%s()\n", __func__);
2005         down(&mem_ctls_mutex);
2006
2007         list_for_each(item, &mc_devices) {
2008                 mci = list_entry(item, struct mem_ctl_info, link);
2009
2010                 if (mci->edac_check != NULL)
2011                         mci->edac_check(mci);
2012         }
2013
2014         up(&mem_ctls_mutex);
2015 }
2016
2017 /*
2018  * Check MC status every poll_msec.
2019  * Check PCI status every poll_msec as well.
2020  *
2021  * This where the work gets done for edac.
2022  *
2023  * SMP safe, doesn't use NMI, and auto-rate-limits.
2024  */
2025 static void do_edac_check(void)
2026 {
2027         debugf3("%s()\n", __func__);
2028         check_mc_devices();
2029         do_pci_parity_check();
2030 }
2031
2032 static int edac_kernel_thread(void *arg)
2033 {
2034         while (!kthread_should_stop()) {
2035                 do_edac_check();
2036
2037                 /* goto sleep for the interval */
2038                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2039                 try_to_freeze();
2040         }
2041
2042         return 0;
2043 }
2044
2045 /*
2046  * edac_mc_init
2047  *      module initialization entry point
2048  */
2049 static int __init edac_mc_init(void)
2050 {
2051         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2052
2053         /*
2054          * Harvest and clear any boot/initialization PCI parity errors
2055          *
2056          * FIXME: This only clears errors logged by devices present at time of
2057          *      module initialization.  We should also do an initial clear
2058          *      of each newly hotplugged device.
2059          */
2060         clear_pci_parity_errors();
2061
2062         /* Create the MC sysfs entries */
2063         if (edac_sysfs_memctrl_setup()) {
2064                 edac_printk(KERN_ERR, EDAC_MC,
2065                         "Error initializing sysfs code\n");
2066                 return -ENODEV;
2067         }
2068
2069         /* Create the PCI parity sysfs entries */
2070         if (edac_sysfs_pci_setup()) {
2071                 edac_sysfs_memctrl_teardown();
2072                 edac_printk(KERN_ERR, EDAC_MC,
2073                         "EDAC PCI: Error initializing sysfs code\n");
2074                 return -ENODEV;
2075         }
2076
2077         /* create our kernel thread */
2078         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2079
2080         if (IS_ERR(edac_thread)) {
2081                 /* remove the sysfs entries */
2082                 edac_sysfs_memctrl_teardown();
2083                 edac_sysfs_pci_teardown();
2084                 return PTR_ERR(edac_thread);
2085         }
2086
2087         return 0;
2088 }
2089
2090 /*
2091  * edac_mc_exit()
2092  *      module exit/termination functioni
2093  */
2094 static void __exit edac_mc_exit(void)
2095 {
2096         debugf0("%s()\n", __func__);
2097         kthread_stop(edac_thread);
2098
2099         /* tear down the sysfs device */
2100         edac_sysfs_memctrl_teardown();
2101         edac_sysfs_pci_teardown();
2102 }
2103
2104 module_init(edac_mc_init);
2105 module_exit(edac_mc_exit);
2106
2107 MODULE_LICENSE("GPL");
2108 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2109         "Based on work by Dan Hollis et al");
2110 MODULE_DESCRIPTION("Core library routines for MC reporting");
2111
2112 module_param(panic_on_ue, int, 0644);
2113 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2114 #ifdef CONFIG_PCI
2115 module_param(check_pci_parity, int, 0644);
2116 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2117 module_param(panic_on_pci_parity, int, 0644);
2118 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2119 #endif
2120 module_param(log_ue, int, 0644);
2121 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2122 module_param(log_ce, int, 0644);
2123 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2124 module_param(poll_msec, int, 0644);
2125 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2126 #ifdef CONFIG_EDAC_DEBUG
2127 module_param(edac_debug_level, int, 0644);
2128 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2129 #endif