[PATCH] IPMI: Fix some RCU problems
[linux-drm-fsl-dcu.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/sched.h>
38 #include <linux/poll.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48
49 #define PFX "IPMI message handler: "
50
51 #define IPMI_DRIVER_VERSION "39.1"
52
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55
56 static int initialized;
57
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
61
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65 #define MAX_EVENTS_IN_QUEUE     25
66
67 /* Don't let a message sit in a queue forever, always time it with at lest
68    the max message timer.  This is in milliseconds. */
69 #define MAX_MSG_TIMEOUT         60000
70
71
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user
76 {
77         struct list_head link;
78
79         /* Set to "0" when the user is destroyed. */
80         int valid;
81
82         struct kref refcount;
83
84         /* The upper layer that handles receive messages. */
85         struct ipmi_user_hndl *handler;
86         void             *handler_data;
87
88         /* The interface this user is bound to. */
89         ipmi_smi_t intf;
90
91         /* Does this interface receive IPMI events? */
92         int gets_events;
93 };
94
95 struct cmd_rcvr
96 {
97         struct list_head link;
98
99         ipmi_user_t   user;
100         unsigned char netfn;
101         unsigned char cmd;
102         unsigned int  chans;
103
104         /*
105          * This is used to form a linked lised during mass deletion.
106          * Since this is in an RCU list, we cannot use the link above
107          * or change any data until the RCU period completes.  So we
108          * use this next variable during mass deletion so we can have
109          * a list and don't have to wait and restart the search on
110          * every individual deletion of a command. */
111         struct cmd_rcvr *next;
112 };
113
114 struct seq_table
115 {
116         unsigned int         inuse : 1;
117         unsigned int         broadcast : 1;
118
119         unsigned long        timeout;
120         unsigned long        orig_timeout;
121         unsigned int         retries_left;
122
123         /* To verify on an incoming send message response that this is
124            the message that the response is for, we keep a sequence id
125            and increment it every time we send a message. */
126         long                 seqid;
127
128         /* This is held so we can properly respond to the message on a
129            timeout, and it is used to hold the temporary data for
130            retransmission, too. */
131         struct ipmi_recv_msg *recv_msg;
132 };
133
134 /* Store the information in a msgid (long) to allow us to find a
135    sequence table entry from the msgid. */
136 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
137
138 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
139         do {                                                            \
140                 seq = ((msgid >> 26) & 0x3f);                           \
141                 seqid = (msgid & 0x3fffff);                             \
142         } while (0)
143
144 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
145
146 struct ipmi_channel
147 {
148         unsigned char medium;
149         unsigned char protocol;
150
151         /* My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
152            but may be changed by the user. */
153         unsigned char address;
154
155         /* My LUN.  This should generally stay the SMS LUN, but just in
156            case... */
157         unsigned char lun;
158 };
159
160 #ifdef CONFIG_PROC_FS
161 struct ipmi_proc_entry
162 {
163         char                   *name;
164         struct ipmi_proc_entry *next;
165 };
166 #endif
167
168 struct bmc_device
169 {
170         struct platform_device *dev;
171         struct ipmi_device_id  id;
172         unsigned char          guid[16];
173         int                    guid_set;
174
175         struct kref            refcount;
176
177         /* bmc device attributes */
178         struct device_attribute device_id_attr;
179         struct device_attribute provides_dev_sdrs_attr;
180         struct device_attribute revision_attr;
181         struct device_attribute firmware_rev_attr;
182         struct device_attribute version_attr;
183         struct device_attribute add_dev_support_attr;
184         struct device_attribute manufacturer_id_attr;
185         struct device_attribute product_id_attr;
186         struct device_attribute guid_attr;
187         struct device_attribute aux_firmware_rev_attr;
188 };
189
190 #define IPMI_IPMB_NUM_SEQ       64
191 #define IPMI_MAX_CHANNELS       16
192 struct ipmi_smi
193 {
194         /* What interface number are we? */
195         int intf_num;
196
197         struct kref refcount;
198
199         /* Used for a list of interfaces. */
200         struct list_head link;
201
202         /* The list of upper layers that are using me.  seq_lock
203          * protects this. */
204         struct list_head users;
205
206         /* Information to supply to users. */
207         unsigned char ipmi_version_major;
208         unsigned char ipmi_version_minor;
209
210         /* Used for wake ups at startup. */
211         wait_queue_head_t waitq;
212
213         struct bmc_device *bmc;
214         char *my_dev_name;
215         char *sysfs_name;
216
217         /* This is the lower-layer's sender routine.  Note that you
218          * must either be holding the ipmi_interfaces_mutex or be in
219          * an umpreemptible region to use this.  You must fetch the
220          * value into a local variable and make sure it is not NULL. */
221         struct ipmi_smi_handlers *handlers;
222         void                     *send_info;
223
224 #ifdef CONFIG_PROC_FS
225         /* A list of proc entries for this interface.  This does not
226            need a lock, only one thread creates it and only one thread
227            destroys it. */
228         spinlock_t             proc_entry_lock;
229         struct ipmi_proc_entry *proc_entries;
230 #endif
231
232         /* Driver-model device for the system interface. */
233         struct device          *si_dev;
234
235         /* A table of sequence numbers for this interface.  We use the
236            sequence numbers for IPMB messages that go out of the
237            interface to match them up with their responses.  A routine
238            is called periodically to time the items in this list. */
239         spinlock_t       seq_lock;
240         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
241         int curr_seq;
242
243         /* Messages that were delayed for some reason (out of memory,
244            for instance), will go in here to be processed later in a
245            periodic timer interrupt. */
246         spinlock_t       waiting_msgs_lock;
247         struct list_head waiting_msgs;
248
249         /* The list of command receivers that are registered for commands
250            on this interface. */
251         struct mutex     cmd_rcvrs_mutex;
252         struct list_head cmd_rcvrs;
253
254         /* Events that were queues because no one was there to receive
255            them. */
256         spinlock_t       events_lock; /* For dealing with event stuff. */
257         struct list_head waiting_events;
258         unsigned int     waiting_events_count; /* How many events in queue? */
259         int              delivering_events;
260
261         /* The event receiver for my BMC, only really used at panic
262            shutdown as a place to store this. */
263         unsigned char event_receiver;
264         unsigned char event_receiver_lun;
265         unsigned char local_sel_device;
266         unsigned char local_event_generator;
267
268         /* For handling of maintenance mode. */
269         int maintenance_mode;
270         int maintenance_mode_enable;
271         int auto_maintenance_timeout;
272         spinlock_t maintenance_mode_lock; /* Used in a timer... */
273
274         /* A cheap hack, if this is non-null and a message to an
275            interface comes in with a NULL user, call this routine with
276            it.  Note that the message will still be freed by the
277            caller.  This only works on the system interface. */
278         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
279
280         /* When we are scanning the channels for an SMI, this will
281            tell which channel we are scanning. */
282         int curr_channel;
283
284         /* Channel information */
285         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
286
287         /* Proc FS stuff. */
288         struct proc_dir_entry *proc_dir;
289         char                  proc_dir_name[10];
290
291         spinlock_t   counter_lock; /* For making counters atomic. */
292
293         /* Commands we got that were invalid. */
294         unsigned int sent_invalid_commands;
295
296         /* Commands we sent to the MC. */
297         unsigned int sent_local_commands;
298         /* Responses from the MC that were delivered to a user. */
299         unsigned int handled_local_responses;
300         /* Responses from the MC that were not delivered to a user. */
301         unsigned int unhandled_local_responses;
302
303         /* Commands we sent out to the IPMB bus. */
304         unsigned int sent_ipmb_commands;
305         /* Commands sent on the IPMB that had errors on the SEND CMD */
306         unsigned int sent_ipmb_command_errs;
307         /* Each retransmit increments this count. */
308         unsigned int retransmitted_ipmb_commands;
309         /* When a message times out (runs out of retransmits) this is
310            incremented. */
311         unsigned int timed_out_ipmb_commands;
312
313         /* This is like above, but for broadcasts.  Broadcasts are
314            *not* included in the above count (they are expected to
315            time out). */
316         unsigned int timed_out_ipmb_broadcasts;
317
318         /* Responses I have sent to the IPMB bus. */
319         unsigned int sent_ipmb_responses;
320
321         /* The response was delivered to the user. */
322         unsigned int handled_ipmb_responses;
323         /* The response had invalid data in it. */
324         unsigned int invalid_ipmb_responses;
325         /* The response didn't have anyone waiting for it. */
326         unsigned int unhandled_ipmb_responses;
327
328         /* Commands we sent out to the IPMB bus. */
329         unsigned int sent_lan_commands;
330         /* Commands sent on the IPMB that had errors on the SEND CMD */
331         unsigned int sent_lan_command_errs;
332         /* Each retransmit increments this count. */
333         unsigned int retransmitted_lan_commands;
334         /* When a message times out (runs out of retransmits) this is
335            incremented. */
336         unsigned int timed_out_lan_commands;
337
338         /* Responses I have sent to the IPMB bus. */
339         unsigned int sent_lan_responses;
340
341         /* The response was delivered to the user. */
342         unsigned int handled_lan_responses;
343         /* The response had invalid data in it. */
344         unsigned int invalid_lan_responses;
345         /* The response didn't have anyone waiting for it. */
346         unsigned int unhandled_lan_responses;
347
348         /* The command was delivered to the user. */
349         unsigned int handled_commands;
350         /* The command had invalid data in it. */
351         unsigned int invalid_commands;
352         /* The command didn't have anyone waiting for it. */
353         unsigned int unhandled_commands;
354
355         /* Invalid data in an event. */
356         unsigned int invalid_events;
357         /* Events that were received with the proper format. */
358         unsigned int events;
359 };
360 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
361
362 /**
363  * The driver model view of the IPMI messaging driver.
364  */
365 static struct device_driver ipmidriver = {
366         .name = "ipmi",
367         .bus = &platform_bus_type
368 };
369 static DEFINE_MUTEX(ipmidriver_mutex);
370
371 static struct list_head ipmi_interfaces = LIST_HEAD_INIT(ipmi_interfaces);
372 static DEFINE_MUTEX(ipmi_interfaces_mutex);
373
374 /* List of watchers that want to know when smi's are added and
375    deleted. */
376 static struct list_head smi_watchers = LIST_HEAD_INIT(smi_watchers);
377 static DEFINE_MUTEX(smi_watchers_mutex);
378
379
380 static void free_recv_msg_list(struct list_head *q)
381 {
382         struct ipmi_recv_msg *msg, *msg2;
383
384         list_for_each_entry_safe(msg, msg2, q, link) {
385                 list_del(&msg->link);
386                 ipmi_free_recv_msg(msg);
387         }
388 }
389
390 static void free_smi_msg_list(struct list_head *q)
391 {
392         struct ipmi_smi_msg *msg, *msg2;
393
394         list_for_each_entry_safe(msg, msg2, q, link) {
395                 list_del(&msg->link);
396                 ipmi_free_smi_msg(msg);
397         }
398 }
399
400 static void clean_up_interface_data(ipmi_smi_t intf)
401 {
402         int              i;
403         struct cmd_rcvr  *rcvr, *rcvr2;
404         struct list_head list;
405
406         free_smi_msg_list(&intf->waiting_msgs);
407         free_recv_msg_list(&intf->waiting_events);
408
409         /*
410          * Wholesale remove all the entries from the list in the
411          * interface and wait for RCU to know that none are in use.
412          */
413         mutex_lock(&intf->cmd_rcvrs_mutex);
414         INIT_LIST_HEAD(&list);
415         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
416         mutex_unlock(&intf->cmd_rcvrs_mutex);
417
418         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
419                 kfree(rcvr);
420
421         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
422                 if ((intf->seq_table[i].inuse)
423                     && (intf->seq_table[i].recv_msg))
424                 {
425                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
426                 }
427         }
428 }
429
430 static void intf_free(struct kref *ref)
431 {
432         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
433
434         clean_up_interface_data(intf);
435         kfree(intf);
436 }
437
438 struct watcher_entry {
439         int              intf_num;
440         ipmi_smi_t       intf;
441         struct list_head link;
442 };
443
444 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
445 {
446         ipmi_smi_t intf;
447         struct list_head to_deliver = LIST_HEAD_INIT(to_deliver);
448         struct watcher_entry *e, *e2;
449
450         mutex_lock(&smi_watchers_mutex);
451
452         mutex_lock(&ipmi_interfaces_mutex);
453
454         /* Build a list of things to deliver. */
455         list_for_each_entry(intf, &ipmi_interfaces, link) {
456                 if (intf->intf_num == -1)
457                         continue;
458                 e = kmalloc(sizeof(*e), GFP_KERNEL);
459                 if (!e)
460                         goto out_err;
461                 kref_get(&intf->refcount);
462                 e->intf = intf;
463                 e->intf_num = intf->intf_num;
464                 list_add_tail(&e->link, &to_deliver);
465         }
466
467         /* We will succeed, so add it to the list. */
468         list_add(&watcher->link, &smi_watchers);
469
470         mutex_unlock(&ipmi_interfaces_mutex);
471
472         list_for_each_entry_safe(e, e2, &to_deliver, link) {
473                 list_del(&e->link);
474                 watcher->new_smi(e->intf_num, e->intf->si_dev);
475                 kref_put(&e->intf->refcount, intf_free);
476                 kfree(e);
477         }
478
479         mutex_unlock(&smi_watchers_mutex);
480
481         return 0;
482
483  out_err:
484         mutex_unlock(&ipmi_interfaces_mutex);
485         mutex_unlock(&smi_watchers_mutex);
486         list_for_each_entry_safe(e, e2, &to_deliver, link) {
487                 list_del(&e->link);
488                 kref_put(&e->intf->refcount, intf_free);
489                 kfree(e);
490         }
491         return -ENOMEM;
492 }
493
494 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
495 {
496         mutex_lock(&smi_watchers_mutex);
497         list_del(&(watcher->link));
498         mutex_unlock(&smi_watchers_mutex);
499         return 0;
500 }
501
502 /*
503  * Must be called with smi_watchers_mutex held.
504  */
505 static void
506 call_smi_watchers(int i, struct device *dev)
507 {
508         struct ipmi_smi_watcher *w;
509
510         list_for_each_entry(w, &smi_watchers, link) {
511                 if (try_module_get(w->owner)) {
512                         w->new_smi(i, dev);
513                         module_put(w->owner);
514                 }
515         }
516 }
517
518 static int
519 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
520 {
521         if (addr1->addr_type != addr2->addr_type)
522                 return 0;
523
524         if (addr1->channel != addr2->channel)
525                 return 0;
526
527         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
528                 struct ipmi_system_interface_addr *smi_addr1
529                     = (struct ipmi_system_interface_addr *) addr1;
530                 struct ipmi_system_interface_addr *smi_addr2
531                     = (struct ipmi_system_interface_addr *) addr2;
532                 return (smi_addr1->lun == smi_addr2->lun);
533         }
534
535         if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
536             || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
537         {
538                 struct ipmi_ipmb_addr *ipmb_addr1
539                     = (struct ipmi_ipmb_addr *) addr1;
540                 struct ipmi_ipmb_addr *ipmb_addr2
541                     = (struct ipmi_ipmb_addr *) addr2;
542
543                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
544                         && (ipmb_addr1->lun == ipmb_addr2->lun));
545         }
546
547         if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
548                 struct ipmi_lan_addr *lan_addr1
549                         = (struct ipmi_lan_addr *) addr1;
550                 struct ipmi_lan_addr *lan_addr2
551                     = (struct ipmi_lan_addr *) addr2;
552
553                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
554                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
555                         && (lan_addr1->session_handle
556                             == lan_addr2->session_handle)
557                         && (lan_addr1->lun == lan_addr2->lun));
558         }
559
560         return 1;
561 }
562
563 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
564 {
565         if (len < sizeof(struct ipmi_system_interface_addr)) {
566                 return -EINVAL;
567         }
568
569         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
570                 if (addr->channel != IPMI_BMC_CHANNEL)
571                         return -EINVAL;
572                 return 0;
573         }
574
575         if ((addr->channel == IPMI_BMC_CHANNEL)
576             || (addr->channel >= IPMI_MAX_CHANNELS)
577             || (addr->channel < 0))
578                 return -EINVAL;
579
580         if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
581             || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
582         {
583                 if (len < sizeof(struct ipmi_ipmb_addr)) {
584                         return -EINVAL;
585                 }
586                 return 0;
587         }
588
589         if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
590                 if (len < sizeof(struct ipmi_lan_addr)) {
591                         return -EINVAL;
592                 }
593                 return 0;
594         }
595
596         return -EINVAL;
597 }
598
599 unsigned int ipmi_addr_length(int addr_type)
600 {
601         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
602                 return sizeof(struct ipmi_system_interface_addr);
603
604         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
605             || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
606         {
607                 return sizeof(struct ipmi_ipmb_addr);
608         }
609
610         if (addr_type == IPMI_LAN_ADDR_TYPE)
611                 return sizeof(struct ipmi_lan_addr);
612
613         return 0;
614 }
615
616 static void deliver_response(struct ipmi_recv_msg *msg)
617 {
618         if (!msg->user) {
619                 ipmi_smi_t    intf = msg->user_msg_data;
620                 unsigned long flags;
621
622                 /* Special handling for NULL users. */
623                 if (intf->null_user_handler) {
624                         intf->null_user_handler(intf, msg);
625                         spin_lock_irqsave(&intf->counter_lock, flags);
626                         intf->handled_local_responses++;
627                         spin_unlock_irqrestore(&intf->counter_lock, flags);
628                 } else {
629                         /* No handler, so give up. */
630                         spin_lock_irqsave(&intf->counter_lock, flags);
631                         intf->unhandled_local_responses++;
632                         spin_unlock_irqrestore(&intf->counter_lock, flags);
633                 }
634                 ipmi_free_recv_msg(msg);
635         } else {
636                 ipmi_user_t user = msg->user;
637                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
638         }
639 }
640
641 static void
642 deliver_err_response(struct ipmi_recv_msg *msg, int err)
643 {
644         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
645         msg->msg_data[0] = err;
646         msg->msg.netfn |= 1; /* Convert to a response. */
647         msg->msg.data_len = 1;
648         msg->msg.data = msg->msg_data;
649         deliver_response(msg);
650 }
651
652 /* Find the next sequence number not being used and add the given
653    message with the given timeout to the sequence table.  This must be
654    called with the interface's seq_lock held. */
655 static int intf_next_seq(ipmi_smi_t           intf,
656                          struct ipmi_recv_msg *recv_msg,
657                          unsigned long        timeout,
658                          int                  retries,
659                          int                  broadcast,
660                          unsigned char        *seq,
661                          long                 *seqid)
662 {
663         int          rv = 0;
664         unsigned int i;
665
666         for (i = intf->curr_seq;
667              (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
668              i = (i+1)%IPMI_IPMB_NUM_SEQ)
669         {
670                 if (!intf->seq_table[i].inuse)
671                         break;
672         }
673
674         if (!intf->seq_table[i].inuse) {
675                 intf->seq_table[i].recv_msg = recv_msg;
676
677                 /* Start with the maximum timeout, when the send response
678                    comes in we will start the real timer. */
679                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
680                 intf->seq_table[i].orig_timeout = timeout;
681                 intf->seq_table[i].retries_left = retries;
682                 intf->seq_table[i].broadcast = broadcast;
683                 intf->seq_table[i].inuse = 1;
684                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
685                 *seq = i;
686                 *seqid = intf->seq_table[i].seqid;
687                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
688         } else {
689                 rv = -EAGAIN;
690         }
691         
692         return rv;
693 }
694
695 /* Return the receive message for the given sequence number and
696    release the sequence number so it can be reused.  Some other data
697    is passed in to be sure the message matches up correctly (to help
698    guard against message coming in after their timeout and the
699    sequence number being reused). */
700 static int intf_find_seq(ipmi_smi_t           intf,
701                          unsigned char        seq,
702                          short                channel,
703                          unsigned char        cmd,
704                          unsigned char        netfn,
705                          struct ipmi_addr     *addr,
706                          struct ipmi_recv_msg **recv_msg)
707 {
708         int           rv = -ENODEV;
709         unsigned long flags;
710
711         if (seq >= IPMI_IPMB_NUM_SEQ)
712                 return -EINVAL;
713
714         spin_lock_irqsave(&(intf->seq_lock), flags);
715         if (intf->seq_table[seq].inuse) {
716                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
717
718                 if ((msg->addr.channel == channel)
719                     && (msg->msg.cmd == cmd)
720                     && (msg->msg.netfn == netfn)
721                     && (ipmi_addr_equal(addr, &(msg->addr))))
722                 {
723                         *recv_msg = msg;
724                         intf->seq_table[seq].inuse = 0;
725                         rv = 0;
726                 }
727         }
728         spin_unlock_irqrestore(&(intf->seq_lock), flags);
729
730         return rv;
731 }
732
733
734 /* Start the timer for a specific sequence table entry. */
735 static int intf_start_seq_timer(ipmi_smi_t intf,
736                                 long       msgid)
737 {
738         int           rv = -ENODEV;
739         unsigned long flags;
740         unsigned char seq;
741         unsigned long seqid;
742
743
744         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
745
746         spin_lock_irqsave(&(intf->seq_lock), flags);
747         /* We do this verification because the user can be deleted
748            while a message is outstanding. */
749         if ((intf->seq_table[seq].inuse)
750             && (intf->seq_table[seq].seqid == seqid))
751         {
752                 struct seq_table *ent = &(intf->seq_table[seq]);
753                 ent->timeout = ent->orig_timeout;
754                 rv = 0;
755         }
756         spin_unlock_irqrestore(&(intf->seq_lock), flags);
757
758         return rv;
759 }
760
761 /* Got an error for the send message for a specific sequence number. */
762 static int intf_err_seq(ipmi_smi_t   intf,
763                         long         msgid,
764                         unsigned int err)
765 {
766         int                  rv = -ENODEV;
767         unsigned long        flags;
768         unsigned char        seq;
769         unsigned long        seqid;
770         struct ipmi_recv_msg *msg = NULL;
771
772
773         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
774
775         spin_lock_irqsave(&(intf->seq_lock), flags);
776         /* We do this verification because the user can be deleted
777            while a message is outstanding. */
778         if ((intf->seq_table[seq].inuse)
779             && (intf->seq_table[seq].seqid == seqid))
780         {
781                 struct seq_table *ent = &(intf->seq_table[seq]);
782
783                 ent->inuse = 0;
784                 msg = ent->recv_msg;
785                 rv = 0;
786         }
787         spin_unlock_irqrestore(&(intf->seq_lock), flags);
788
789         if (msg)
790                 deliver_err_response(msg, err);
791
792         return rv;
793 }
794
795
796 int ipmi_create_user(unsigned int          if_num,
797                      struct ipmi_user_hndl *handler,
798                      void                  *handler_data,
799                      ipmi_user_t           *user)
800 {
801         unsigned long flags;
802         ipmi_user_t   new_user;
803         int           rv = 0;
804         ipmi_smi_t    intf;
805
806         /* There is no module usecount here, because it's not
807            required.  Since this can only be used by and called from
808            other modules, they will implicitly use this module, and
809            thus this can't be removed unless the other modules are
810            removed. */
811
812         if (handler == NULL)
813                 return -EINVAL;
814
815         /* Make sure the driver is actually initialized, this handles
816            problems with initialization order. */
817         if (!initialized) {
818                 rv = ipmi_init_msghandler();
819                 if (rv)
820                         return rv;
821
822                 /* The init code doesn't return an error if it was turned
823                    off, but it won't initialize.  Check that. */
824                 if (!initialized)
825                         return -ENODEV;
826         }
827
828         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
829         if (!new_user)
830                 return -ENOMEM;
831
832         mutex_lock(&ipmi_interfaces_mutex);
833         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
834                 if (intf->intf_num == if_num)
835                         goto found;
836         }
837         /* Not found, return an error */
838         rv = -EINVAL;
839         goto out_kfree;
840
841  found:
842         /* Note that each existing user holds a refcount to the interface. */
843         kref_get(&intf->refcount);
844
845         kref_init(&new_user->refcount);
846         new_user->handler = handler;
847         new_user->handler_data = handler_data;
848         new_user->intf = intf;
849         new_user->gets_events = 0;
850
851         if (!try_module_get(intf->handlers->owner)) {
852                 rv = -ENODEV;
853                 goto out_kref;
854         }
855
856         if (intf->handlers->inc_usecount) {
857                 rv = intf->handlers->inc_usecount(intf->send_info);
858                 if (rv) {
859                         module_put(intf->handlers->owner);
860                         goto out_kref;
861                 }
862         }
863
864         /* Hold the lock so intf->handlers is guaranteed to be good
865          * until now */
866         mutex_unlock(&ipmi_interfaces_mutex);
867
868         new_user->valid = 1;
869         spin_lock_irqsave(&intf->seq_lock, flags);
870         list_add_rcu(&new_user->link, &intf->users);
871         spin_unlock_irqrestore(&intf->seq_lock, flags);
872         *user = new_user;
873         return 0;
874
875 out_kref:
876         kref_put(&intf->refcount, intf_free);
877 out_kfree:
878         mutex_unlock(&ipmi_interfaces_mutex);
879         kfree(new_user);
880         return rv;
881 }
882
883 static void free_user(struct kref *ref)
884 {
885         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
886         kfree(user);
887 }
888
889 int ipmi_destroy_user(ipmi_user_t user)
890 {
891         ipmi_smi_t       intf = user->intf;
892         int              i;
893         unsigned long    flags;
894         struct cmd_rcvr  *rcvr;
895         struct cmd_rcvr  *rcvrs = NULL;
896
897         user->valid = 0;
898
899         /* Remove the user from the interface's sequence table. */
900         spin_lock_irqsave(&intf->seq_lock, flags);
901         list_del_rcu(&user->link);
902
903         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
904                 if (intf->seq_table[i].inuse
905                     && (intf->seq_table[i].recv_msg->user == user))
906                 {
907                         intf->seq_table[i].inuse = 0;
908                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
909                 }
910         }
911         spin_unlock_irqrestore(&intf->seq_lock, flags);
912
913         /*
914          * Remove the user from the command receiver's table.  First
915          * we build a list of everything (not using the standard link,
916          * since other things may be using it till we do
917          * synchronize_rcu()) then free everything in that list.
918          */
919         mutex_lock(&intf->cmd_rcvrs_mutex);
920         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
921                 if (rcvr->user == user) {
922                         list_del_rcu(&rcvr->link);
923                         rcvr->next = rcvrs;
924                         rcvrs = rcvr;
925                 }
926         }
927         mutex_unlock(&intf->cmd_rcvrs_mutex);
928         synchronize_rcu();
929         while (rcvrs) {
930                 rcvr = rcvrs;
931                 rcvrs = rcvr->next;
932                 kfree(rcvr);
933         }
934
935         mutex_lock(&ipmi_interfaces_mutex);
936         if (intf->handlers) {
937                 module_put(intf->handlers->owner);
938                 if (intf->handlers->dec_usecount)
939                         intf->handlers->dec_usecount(intf->send_info);
940         }
941         mutex_unlock(&ipmi_interfaces_mutex);
942
943         kref_put(&intf->refcount, intf_free);
944
945         kref_put(&user->refcount, free_user);
946
947         return 0;
948 }
949
950 void ipmi_get_version(ipmi_user_t   user,
951                       unsigned char *major,
952                       unsigned char *minor)
953 {
954         *major = user->intf->ipmi_version_major;
955         *minor = user->intf->ipmi_version_minor;
956 }
957
958 int ipmi_set_my_address(ipmi_user_t   user,
959                         unsigned int  channel,
960                         unsigned char address)
961 {
962         if (channel >= IPMI_MAX_CHANNELS)
963                 return -EINVAL;
964         user->intf->channels[channel].address = address;
965         return 0;
966 }
967
968 int ipmi_get_my_address(ipmi_user_t   user,
969                         unsigned int  channel,
970                         unsigned char *address)
971 {
972         if (channel >= IPMI_MAX_CHANNELS)
973                 return -EINVAL;
974         *address = user->intf->channels[channel].address;
975         return 0;
976 }
977
978 int ipmi_set_my_LUN(ipmi_user_t   user,
979                     unsigned int  channel,
980                     unsigned char LUN)
981 {
982         if (channel >= IPMI_MAX_CHANNELS)
983                 return -EINVAL;
984         user->intf->channels[channel].lun = LUN & 0x3;
985         return 0;
986 }
987
988 int ipmi_get_my_LUN(ipmi_user_t   user,
989                     unsigned int  channel,
990                     unsigned char *address)
991 {
992         if (channel >= IPMI_MAX_CHANNELS)
993                 return -EINVAL;
994         *address = user->intf->channels[channel].lun;
995         return 0;
996 }
997
998 int ipmi_get_maintenance_mode(ipmi_user_t user)
999 {
1000         int           mode;
1001         unsigned long flags;
1002
1003         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1004         mode = user->intf->maintenance_mode;
1005         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1006
1007         return mode;
1008 }
1009 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1010
1011 static void maintenance_mode_update(ipmi_smi_t intf)
1012 {
1013         if (intf->handlers->set_maintenance_mode)
1014                 intf->handlers->set_maintenance_mode(
1015                         intf->send_info, intf->maintenance_mode_enable);
1016 }
1017
1018 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1019 {
1020         int           rv = 0;
1021         unsigned long flags;
1022         ipmi_smi_t    intf = user->intf;
1023
1024         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1025         if (intf->maintenance_mode != mode) {
1026                 switch (mode) {
1027                 case IPMI_MAINTENANCE_MODE_AUTO:
1028                         intf->maintenance_mode = mode;
1029                         intf->maintenance_mode_enable
1030                                 = (intf->auto_maintenance_timeout > 0);
1031                         break;
1032
1033                 case IPMI_MAINTENANCE_MODE_OFF:
1034                         intf->maintenance_mode = mode;
1035                         intf->maintenance_mode_enable = 0;
1036                         break;
1037
1038                 case IPMI_MAINTENANCE_MODE_ON:
1039                         intf->maintenance_mode = mode;
1040                         intf->maintenance_mode_enable = 1;
1041                         break;
1042
1043                 default:
1044                         rv = -EINVAL;
1045                         goto out_unlock;
1046                 }
1047
1048                 maintenance_mode_update(intf);
1049         }
1050  out_unlock:
1051         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1052
1053         return rv;
1054 }
1055 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1056
1057 int ipmi_set_gets_events(ipmi_user_t user, int val)
1058 {
1059         unsigned long        flags;
1060         ipmi_smi_t           intf = user->intf;
1061         struct ipmi_recv_msg *msg, *msg2;
1062         struct list_head     msgs;
1063
1064         INIT_LIST_HEAD(&msgs);
1065
1066         spin_lock_irqsave(&intf->events_lock, flags);
1067         user->gets_events = val;
1068
1069         if (intf->delivering_events)
1070                 /*
1071                  * Another thread is delivering events for this, so
1072                  * let it handle any new events.
1073                  */
1074                 goto out;
1075
1076         /* Deliver any queued events. */
1077         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1078                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1079                         list_move_tail(&msg->link, &msgs);
1080                 intf->waiting_events_count = 0;
1081
1082                 intf->delivering_events = 1;
1083                 spin_unlock_irqrestore(&intf->events_lock, flags);
1084
1085                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1086                         msg->user = user;
1087                         kref_get(&user->refcount);
1088                         deliver_response(msg);
1089                 }
1090
1091                 spin_lock_irqsave(&intf->events_lock, flags);
1092                 intf->delivering_events = 0;
1093         }
1094
1095  out:
1096         spin_unlock_irqrestore(&intf->events_lock, flags);
1097
1098         return 0;
1099 }
1100
1101 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1102                                       unsigned char netfn,
1103                                       unsigned char cmd,
1104                                       unsigned char chan)
1105 {
1106         struct cmd_rcvr *rcvr;
1107
1108         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1109                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1110                                         && (rcvr->chans & (1 << chan)))
1111                         return rcvr;
1112         }
1113         return NULL;
1114 }
1115
1116 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1117                                  unsigned char netfn,
1118                                  unsigned char cmd,
1119                                  unsigned int  chans)
1120 {
1121         struct cmd_rcvr *rcvr;
1122
1123         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1124                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1125                                         && (rcvr->chans & chans))
1126                         return 0;
1127         }
1128         return 1;
1129 }
1130
1131 int ipmi_register_for_cmd(ipmi_user_t   user,
1132                           unsigned char netfn,
1133                           unsigned char cmd,
1134                           unsigned int  chans)
1135 {
1136         ipmi_smi_t      intf = user->intf;
1137         struct cmd_rcvr *rcvr;
1138         int             rv = 0;
1139
1140
1141         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1142         if (!rcvr)
1143                 return -ENOMEM;
1144         rcvr->cmd = cmd;
1145         rcvr->netfn = netfn;
1146         rcvr->chans = chans;
1147         rcvr->user = user;
1148
1149         mutex_lock(&intf->cmd_rcvrs_mutex);
1150         /* Make sure the command/netfn is not already registered. */
1151         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1152                 rv = -EBUSY;
1153                 goto out_unlock;
1154         }
1155
1156         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1157
1158  out_unlock:
1159         mutex_unlock(&intf->cmd_rcvrs_mutex);
1160         if (rv)
1161                 kfree(rcvr);
1162
1163         return rv;
1164 }
1165
1166 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1167                             unsigned char netfn,
1168                             unsigned char cmd,
1169                             unsigned int  chans)
1170 {
1171         ipmi_smi_t      intf = user->intf;
1172         struct cmd_rcvr *rcvr;
1173         struct cmd_rcvr *rcvrs = NULL;
1174         int i, rv = -ENOENT;
1175
1176         mutex_lock(&intf->cmd_rcvrs_mutex);
1177         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1178                 if (((1 << i) & chans) == 0)
1179                         continue;
1180                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1181                 if (rcvr == NULL)
1182                         continue;
1183                 if (rcvr->user == user) {
1184                         rv = 0;
1185                         rcvr->chans &= ~chans;
1186                         if (rcvr->chans == 0) {
1187                                 list_del_rcu(&rcvr->link);
1188                                 rcvr->next = rcvrs;
1189                                 rcvrs = rcvr;
1190                         }
1191                 }
1192         }
1193         mutex_unlock(&intf->cmd_rcvrs_mutex);
1194         synchronize_rcu();
1195         while (rcvrs) {
1196                 rcvr = rcvrs;
1197                 rcvrs = rcvr->next;
1198                 kfree(rcvr);
1199         }
1200         return rv;
1201 }
1202
1203 void ipmi_user_set_run_to_completion(ipmi_user_t user, int val)
1204 {
1205         ipmi_smi_t intf = user->intf;
1206         if (intf->handlers)
1207                 intf->handlers->set_run_to_completion(intf->send_info, val);
1208 }
1209
1210 static unsigned char
1211 ipmb_checksum(unsigned char *data, int size)
1212 {
1213         unsigned char csum = 0;
1214         
1215         for (; size > 0; size--, data++)
1216                 csum += *data;
1217
1218         return -csum;
1219 }
1220
1221 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1222                                    struct kernel_ipmi_msg *msg,
1223                                    struct ipmi_ipmb_addr *ipmb_addr,
1224                                    long                  msgid,
1225                                    unsigned char         ipmb_seq,
1226                                    int                   broadcast,
1227                                    unsigned char         source_address,
1228                                    unsigned char         source_lun)
1229 {
1230         int i = broadcast;
1231
1232         /* Format the IPMB header data. */
1233         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1234         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1235         smi_msg->data[2] = ipmb_addr->channel;
1236         if (broadcast)
1237                 smi_msg->data[3] = 0;
1238         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1239         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1240         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1241         smi_msg->data[i+6] = source_address;
1242         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1243         smi_msg->data[i+8] = msg->cmd;
1244
1245         /* Now tack on the data to the message. */
1246         if (msg->data_len > 0)
1247                 memcpy(&(smi_msg->data[i+9]), msg->data,
1248                        msg->data_len);
1249         smi_msg->data_size = msg->data_len + 9;
1250
1251         /* Now calculate the checksum and tack it on. */
1252         smi_msg->data[i+smi_msg->data_size]
1253                 = ipmb_checksum(&(smi_msg->data[i+6]),
1254                                 smi_msg->data_size-6);
1255
1256         /* Add on the checksum size and the offset from the
1257            broadcast. */
1258         smi_msg->data_size += 1 + i;
1259
1260         smi_msg->msgid = msgid;
1261 }
1262
1263 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1264                                   struct kernel_ipmi_msg *msg,
1265                                   struct ipmi_lan_addr  *lan_addr,
1266                                   long                  msgid,
1267                                   unsigned char         ipmb_seq,
1268                                   unsigned char         source_lun)
1269 {
1270         /* Format the IPMB header data. */
1271         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1272         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1273         smi_msg->data[2] = lan_addr->channel;
1274         smi_msg->data[3] = lan_addr->session_handle;
1275         smi_msg->data[4] = lan_addr->remote_SWID;
1276         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1277         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1278         smi_msg->data[7] = lan_addr->local_SWID;
1279         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1280         smi_msg->data[9] = msg->cmd;
1281
1282         /* Now tack on the data to the message. */
1283         if (msg->data_len > 0)
1284                 memcpy(&(smi_msg->data[10]), msg->data,
1285                        msg->data_len);
1286         smi_msg->data_size = msg->data_len + 10;
1287
1288         /* Now calculate the checksum and tack it on. */
1289         smi_msg->data[smi_msg->data_size]
1290                 = ipmb_checksum(&(smi_msg->data[7]),
1291                                 smi_msg->data_size-7);
1292
1293         /* Add on the checksum size and the offset from the
1294            broadcast. */
1295         smi_msg->data_size += 1;
1296
1297         smi_msg->msgid = msgid;
1298 }
1299
1300 /* Separate from ipmi_request so that the user does not have to be
1301    supplied in certain circumstances (mainly at panic time).  If
1302    messages are supplied, they will be freed, even if an error
1303    occurs. */
1304 static int i_ipmi_request(ipmi_user_t          user,
1305                           ipmi_smi_t           intf,
1306                           struct ipmi_addr     *addr,
1307                           long                 msgid,
1308                           struct kernel_ipmi_msg *msg,
1309                           void                 *user_msg_data,
1310                           void                 *supplied_smi,
1311                           struct ipmi_recv_msg *supplied_recv,
1312                           int                  priority,
1313                           unsigned char        source_address,
1314                           unsigned char        source_lun,
1315                           int                  retries,
1316                           unsigned int         retry_time_ms)
1317 {
1318         int                      rv = 0;
1319         struct ipmi_smi_msg      *smi_msg;
1320         struct ipmi_recv_msg     *recv_msg;
1321         unsigned long            flags;
1322         struct ipmi_smi_handlers *handlers;
1323
1324
1325         if (supplied_recv) {
1326                 recv_msg = supplied_recv;
1327         } else {
1328                 recv_msg = ipmi_alloc_recv_msg();
1329                 if (recv_msg == NULL) {
1330                         return -ENOMEM;
1331                 }
1332         }
1333         recv_msg->user_msg_data = user_msg_data;
1334
1335         if (supplied_smi) {
1336                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1337         } else {
1338                 smi_msg = ipmi_alloc_smi_msg();
1339                 if (smi_msg == NULL) {
1340                         ipmi_free_recv_msg(recv_msg);
1341                         return -ENOMEM;
1342                 }
1343         }
1344
1345         rcu_read_lock();
1346         handlers = intf->handlers;
1347         if (!handlers) {
1348                 rv = -ENODEV;
1349                 goto out_err;
1350         }
1351
1352         recv_msg->user = user;
1353         if (user)
1354                 kref_get(&user->refcount);
1355         recv_msg->msgid = msgid;
1356         /* Store the message to send in the receive message so timeout
1357            responses can get the proper response data. */
1358         recv_msg->msg = *msg;
1359
1360         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1361                 struct ipmi_system_interface_addr *smi_addr;
1362
1363                 if (msg->netfn & 1) {
1364                         /* Responses are not allowed to the SMI. */
1365                         rv = -EINVAL;
1366                         goto out_err;
1367                 }
1368
1369                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1370                 if (smi_addr->lun > 3) {
1371                         spin_lock_irqsave(&intf->counter_lock, flags);
1372                         intf->sent_invalid_commands++;
1373                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1374                         rv = -EINVAL;
1375                         goto out_err;
1376                 }
1377
1378                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1379
1380                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1381                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1382                         || (msg->cmd == IPMI_GET_MSG_CMD)
1383                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD)))
1384                 {
1385                         /* We don't let the user do these, since we manage
1386                            the sequence numbers. */
1387                         spin_lock_irqsave(&intf->counter_lock, flags);
1388                         intf->sent_invalid_commands++;
1389                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1390                         rv = -EINVAL;
1391                         goto out_err;
1392                 }
1393
1394                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1395                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1396                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1397                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST))
1398                 {
1399                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1400                         intf->auto_maintenance_timeout
1401                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1402                         if (!intf->maintenance_mode
1403                             && !intf->maintenance_mode_enable)
1404                         {
1405                                 intf->maintenance_mode_enable = 1;
1406                                 maintenance_mode_update(intf);
1407                         }
1408                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1409                                                flags);
1410                 }
1411
1412                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1413                         spin_lock_irqsave(&intf->counter_lock, flags);
1414                         intf->sent_invalid_commands++;
1415                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1416                         rv = -EMSGSIZE;
1417                         goto out_err;
1418                 }
1419
1420                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1421                 smi_msg->data[1] = msg->cmd;
1422                 smi_msg->msgid = msgid;
1423                 smi_msg->user_data = recv_msg;
1424                 if (msg->data_len > 0)
1425                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1426                 smi_msg->data_size = msg->data_len + 2;
1427                 spin_lock_irqsave(&intf->counter_lock, flags);
1428                 intf->sent_local_commands++;
1429                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1430         } else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1431                    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
1432         {
1433                 struct ipmi_ipmb_addr *ipmb_addr;
1434                 unsigned char         ipmb_seq;
1435                 long                  seqid;
1436                 int                   broadcast = 0;
1437
1438                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1439                         spin_lock_irqsave(&intf->counter_lock, flags);
1440                         intf->sent_invalid_commands++;
1441                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1442                         rv = -EINVAL;
1443                         goto out_err;
1444                 }
1445
1446                 if (intf->channels[addr->channel].medium
1447                     != IPMI_CHANNEL_MEDIUM_IPMB)
1448                 {
1449                         spin_lock_irqsave(&intf->counter_lock, flags);
1450                         intf->sent_invalid_commands++;
1451                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1452                         rv = -EINVAL;
1453                         goto out_err;
1454                 }
1455
1456                 if (retries < 0) {
1457                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1458                         retries = 0; /* Don't retry broadcasts. */
1459                     else
1460                         retries = 4;
1461                 }
1462                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1463                     /* Broadcasts add a zero at the beginning of the
1464                        message, but otherwise is the same as an IPMB
1465                        address. */
1466                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1467                     broadcast = 1;
1468                 }
1469
1470
1471                 /* Default to 1 second retries. */
1472                 if (retry_time_ms == 0)
1473                     retry_time_ms = 1000;
1474
1475                 /* 9 for the header and 1 for the checksum, plus
1476                    possibly one for the broadcast. */
1477                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1478                         spin_lock_irqsave(&intf->counter_lock, flags);
1479                         intf->sent_invalid_commands++;
1480                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1481                         rv = -EMSGSIZE;
1482                         goto out_err;
1483                 }
1484
1485                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1486                 if (ipmb_addr->lun > 3) {
1487                         spin_lock_irqsave(&intf->counter_lock, flags);
1488                         intf->sent_invalid_commands++;
1489                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1490                         rv = -EINVAL;
1491                         goto out_err;
1492                 }
1493
1494                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1495
1496                 if (recv_msg->msg.netfn & 0x1) {
1497                         /* It's a response, so use the user's sequence
1498                            from msgid. */
1499                         spin_lock_irqsave(&intf->counter_lock, flags);
1500                         intf->sent_ipmb_responses++;
1501                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1502                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1503                                         msgid, broadcast,
1504                                         source_address, source_lun);
1505
1506                         /* Save the receive message so we can use it
1507                            to deliver the response. */
1508                         smi_msg->user_data = recv_msg;
1509                 } else {
1510                         /* It's a command, so get a sequence for it. */
1511
1512                         spin_lock_irqsave(&(intf->seq_lock), flags);
1513
1514                         spin_lock(&intf->counter_lock);
1515                         intf->sent_ipmb_commands++;
1516                         spin_unlock(&intf->counter_lock);
1517
1518                         /* Create a sequence number with a 1 second
1519                            timeout and 4 retries. */
1520                         rv = intf_next_seq(intf,
1521                                            recv_msg,
1522                                            retry_time_ms,
1523                                            retries,
1524                                            broadcast,
1525                                            &ipmb_seq,
1526                                            &seqid);
1527                         if (rv) {
1528                                 /* We have used up all the sequence numbers,
1529                                    probably, so abort. */
1530                                 spin_unlock_irqrestore(&(intf->seq_lock),
1531                                                        flags);
1532                                 goto out_err;
1533                         }
1534
1535                         /* Store the sequence number in the message,
1536                            so that when the send message response
1537                            comes back we can start the timer. */
1538                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1539                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1540                                         ipmb_seq, broadcast,
1541                                         source_address, source_lun);
1542
1543                         /* Copy the message into the recv message data, so we
1544                            can retransmit it later if necessary. */
1545                         memcpy(recv_msg->msg_data, smi_msg->data,
1546                                smi_msg->data_size);
1547                         recv_msg->msg.data = recv_msg->msg_data;
1548                         recv_msg->msg.data_len = smi_msg->data_size;
1549
1550                         /* We don't unlock until here, because we need
1551                            to copy the completed message into the
1552                            recv_msg before we release the lock.
1553                            Otherwise, race conditions may bite us.  I
1554                            know that's pretty paranoid, but I prefer
1555                            to be correct. */
1556                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1557                 }
1558         } else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1559                 struct ipmi_lan_addr  *lan_addr;
1560                 unsigned char         ipmb_seq;
1561                 long                  seqid;
1562
1563                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1564                         spin_lock_irqsave(&intf->counter_lock, flags);
1565                         intf->sent_invalid_commands++;
1566                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1567                         rv = -EINVAL;
1568                         goto out_err;
1569                 }
1570
1571                 if ((intf->channels[addr->channel].medium
1572                     != IPMI_CHANNEL_MEDIUM_8023LAN)
1573                     && (intf->channels[addr->channel].medium
1574                         != IPMI_CHANNEL_MEDIUM_ASYNC))
1575                 {
1576                         spin_lock_irqsave(&intf->counter_lock, flags);
1577                         intf->sent_invalid_commands++;
1578                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1579                         rv = -EINVAL;
1580                         goto out_err;
1581                 }
1582
1583                 retries = 4;
1584
1585                 /* Default to 1 second retries. */
1586                 if (retry_time_ms == 0)
1587                     retry_time_ms = 1000;
1588
1589                 /* 11 for the header and 1 for the checksum. */
1590                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1591                         spin_lock_irqsave(&intf->counter_lock, flags);
1592                         intf->sent_invalid_commands++;
1593                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1594                         rv = -EMSGSIZE;
1595                         goto out_err;
1596                 }
1597
1598                 lan_addr = (struct ipmi_lan_addr *) addr;
1599                 if (lan_addr->lun > 3) {
1600                         spin_lock_irqsave(&intf->counter_lock, flags);
1601                         intf->sent_invalid_commands++;
1602                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1603                         rv = -EINVAL;
1604                         goto out_err;
1605                 }
1606
1607                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1608
1609                 if (recv_msg->msg.netfn & 0x1) {
1610                         /* It's a response, so use the user's sequence
1611                            from msgid. */
1612                         spin_lock_irqsave(&intf->counter_lock, flags);
1613                         intf->sent_lan_responses++;
1614                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1615                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1616                                        msgid, source_lun);
1617
1618                         /* Save the receive message so we can use it
1619                            to deliver the response. */
1620                         smi_msg->user_data = recv_msg;
1621                 } else {
1622                         /* It's a command, so get a sequence for it. */
1623
1624                         spin_lock_irqsave(&(intf->seq_lock), flags);
1625
1626                         spin_lock(&intf->counter_lock);
1627                         intf->sent_lan_commands++;
1628                         spin_unlock(&intf->counter_lock);
1629
1630                         /* Create a sequence number with a 1 second
1631                            timeout and 4 retries. */
1632                         rv = intf_next_seq(intf,
1633                                            recv_msg,
1634                                            retry_time_ms,
1635                                            retries,
1636                                            0,
1637                                            &ipmb_seq,
1638                                            &seqid);
1639                         if (rv) {
1640                                 /* We have used up all the sequence numbers,
1641                                    probably, so abort. */
1642                                 spin_unlock_irqrestore(&(intf->seq_lock),
1643                                                        flags);
1644                                 goto out_err;
1645                         }
1646
1647                         /* Store the sequence number in the message,
1648                            so that when the send message response
1649                            comes back we can start the timer. */
1650                         format_lan_msg(smi_msg, msg, lan_addr,
1651                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1652                                        ipmb_seq, source_lun);
1653
1654                         /* Copy the message into the recv message data, so we
1655                            can retransmit it later if necessary. */
1656                         memcpy(recv_msg->msg_data, smi_msg->data,
1657                                smi_msg->data_size);
1658                         recv_msg->msg.data = recv_msg->msg_data;
1659                         recv_msg->msg.data_len = smi_msg->data_size;
1660
1661                         /* We don't unlock until here, because we need
1662                            to copy the completed message into the
1663                            recv_msg before we release the lock.
1664                            Otherwise, race conditions may bite us.  I
1665                            know that's pretty paranoid, but I prefer
1666                            to be correct. */
1667                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1668                 }
1669         } else {
1670             /* Unknown address type. */
1671                 spin_lock_irqsave(&intf->counter_lock, flags);
1672                 intf->sent_invalid_commands++;
1673                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1674                 rv = -EINVAL;
1675                 goto out_err;
1676         }
1677
1678 #ifdef DEBUG_MSGING
1679         {
1680                 int m;
1681                 for (m = 0; m < smi_msg->data_size; m++)
1682                         printk(" %2.2x", smi_msg->data[m]);
1683                 printk("\n");
1684         }
1685 #endif
1686
1687         handlers->sender(intf->send_info, smi_msg, priority);
1688         rcu_read_unlock();
1689
1690         return 0;
1691
1692  out_err:
1693         rcu_read_unlock();
1694         ipmi_free_smi_msg(smi_msg);
1695         ipmi_free_recv_msg(recv_msg);
1696         return rv;
1697 }
1698
1699 static int check_addr(ipmi_smi_t       intf,
1700                       struct ipmi_addr *addr,
1701                       unsigned char    *saddr,
1702                       unsigned char    *lun)
1703 {
1704         if (addr->channel >= IPMI_MAX_CHANNELS)
1705                 return -EINVAL;
1706         *lun = intf->channels[addr->channel].lun;
1707         *saddr = intf->channels[addr->channel].address;
1708         return 0;
1709 }
1710
1711 int ipmi_request_settime(ipmi_user_t      user,
1712                          struct ipmi_addr *addr,
1713                          long             msgid,
1714                          struct kernel_ipmi_msg  *msg,
1715                          void             *user_msg_data,
1716                          int              priority,
1717                          int              retries,
1718                          unsigned int     retry_time_ms)
1719 {
1720         unsigned char saddr, lun;
1721         int           rv;
1722
1723         if (!user)
1724                 return -EINVAL;
1725         rv = check_addr(user->intf, addr, &saddr, &lun);
1726         if (rv)
1727                 return rv;
1728         return i_ipmi_request(user,
1729                               user->intf,
1730                               addr,
1731                               msgid,
1732                               msg,
1733                               user_msg_data,
1734                               NULL, NULL,
1735                               priority,
1736                               saddr,
1737                               lun,
1738                               retries,
1739                               retry_time_ms);
1740 }
1741
1742 int ipmi_request_supply_msgs(ipmi_user_t          user,
1743                              struct ipmi_addr     *addr,
1744                              long                 msgid,
1745                              struct kernel_ipmi_msg *msg,
1746                              void                 *user_msg_data,
1747                              void                 *supplied_smi,
1748                              struct ipmi_recv_msg *supplied_recv,
1749                              int                  priority)
1750 {
1751         unsigned char saddr, lun;
1752         int           rv;
1753
1754         if (!user)
1755                 return -EINVAL;
1756         rv = check_addr(user->intf, addr, &saddr, &lun);
1757         if (rv)
1758                 return rv;
1759         return i_ipmi_request(user,
1760                               user->intf,
1761                               addr,
1762                               msgid,
1763                               msg,
1764                               user_msg_data,
1765                               supplied_smi,
1766                               supplied_recv,
1767                               priority,
1768                               saddr,
1769                               lun,
1770                               -1, 0);
1771 }
1772
1773 #ifdef CONFIG_PROC_FS
1774 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1775                                int count, int *eof, void *data)
1776 {
1777         char       *out = (char *) page;
1778         ipmi_smi_t intf = data;
1779         int        i;
1780         int        rv = 0;
1781
1782         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1783                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1784         out[rv-1] = '\n'; /* Replace the final space with a newline */
1785         out[rv] = '\0';
1786         rv++;
1787         return rv;
1788 }
1789
1790 static int version_file_read_proc(char *page, char **start, off_t off,
1791                                   int count, int *eof, void *data)
1792 {
1793         char       *out = (char *) page;
1794         ipmi_smi_t intf = data;
1795
1796         return sprintf(out, "%d.%d\n",
1797                        ipmi_version_major(&intf->bmc->id),
1798                        ipmi_version_minor(&intf->bmc->id));
1799 }
1800
1801 static int stat_file_read_proc(char *page, char **start, off_t off,
1802                                int count, int *eof, void *data)
1803 {
1804         char       *out = (char *) page;
1805         ipmi_smi_t intf = data;
1806
1807         out += sprintf(out, "sent_invalid_commands:       %d\n",
1808                        intf->sent_invalid_commands);
1809         out += sprintf(out, "sent_local_commands:         %d\n",
1810                        intf->sent_local_commands);
1811         out += sprintf(out, "handled_local_responses:     %d\n",
1812                        intf->handled_local_responses);
1813         out += sprintf(out, "unhandled_local_responses:   %d\n",
1814                        intf->unhandled_local_responses);
1815         out += sprintf(out, "sent_ipmb_commands:          %d\n",
1816                        intf->sent_ipmb_commands);
1817         out += sprintf(out, "sent_ipmb_command_errs:      %d\n",
1818                        intf->sent_ipmb_command_errs);
1819         out += sprintf(out, "retransmitted_ipmb_commands: %d\n",
1820                        intf->retransmitted_ipmb_commands);
1821         out += sprintf(out, "timed_out_ipmb_commands:     %d\n",
1822                        intf->timed_out_ipmb_commands);
1823         out += sprintf(out, "timed_out_ipmb_broadcasts:   %d\n",
1824                        intf->timed_out_ipmb_broadcasts);
1825         out += sprintf(out, "sent_ipmb_responses:         %d\n",
1826                        intf->sent_ipmb_responses);
1827         out += sprintf(out, "handled_ipmb_responses:      %d\n",
1828                        intf->handled_ipmb_responses);
1829         out += sprintf(out, "invalid_ipmb_responses:      %d\n",
1830                        intf->invalid_ipmb_responses);
1831         out += sprintf(out, "unhandled_ipmb_responses:    %d\n",
1832                        intf->unhandled_ipmb_responses);
1833         out += sprintf(out, "sent_lan_commands:           %d\n",
1834                        intf->sent_lan_commands);
1835         out += sprintf(out, "sent_lan_command_errs:       %d\n",
1836                        intf->sent_lan_command_errs);
1837         out += sprintf(out, "retransmitted_lan_commands:  %d\n",
1838                        intf->retransmitted_lan_commands);
1839         out += sprintf(out, "timed_out_lan_commands:      %d\n",
1840                        intf->timed_out_lan_commands);
1841         out += sprintf(out, "sent_lan_responses:          %d\n",
1842                        intf->sent_lan_responses);
1843         out += sprintf(out, "handled_lan_responses:       %d\n",
1844                        intf->handled_lan_responses);
1845         out += sprintf(out, "invalid_lan_responses:       %d\n",
1846                        intf->invalid_lan_responses);
1847         out += sprintf(out, "unhandled_lan_responses:     %d\n",
1848                        intf->unhandled_lan_responses);
1849         out += sprintf(out, "handled_commands:            %d\n",
1850                        intf->handled_commands);
1851         out += sprintf(out, "invalid_commands:            %d\n",
1852                        intf->invalid_commands);
1853         out += sprintf(out, "unhandled_commands:          %d\n",
1854                        intf->unhandled_commands);
1855         out += sprintf(out, "invalid_events:              %d\n",
1856                        intf->invalid_events);
1857         out += sprintf(out, "events:                      %d\n",
1858                        intf->events);
1859
1860         return (out - ((char *) page));
1861 }
1862 #endif /* CONFIG_PROC_FS */
1863
1864 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1865                             read_proc_t *read_proc, write_proc_t *write_proc,
1866                             void *data, struct module *owner)
1867 {
1868         int                    rv = 0;
1869 #ifdef CONFIG_PROC_FS
1870         struct proc_dir_entry  *file;
1871         struct ipmi_proc_entry *entry;
1872
1873         /* Create a list element. */
1874         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1875         if (!entry)
1876                 return -ENOMEM;
1877         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1878         if (!entry->name) {
1879                 kfree(entry);
1880                 return -ENOMEM;
1881         }
1882         strcpy(entry->name, name);
1883
1884         file = create_proc_entry(name, 0, smi->proc_dir);
1885         if (!file) {
1886                 kfree(entry->name);
1887                 kfree(entry);
1888                 rv = -ENOMEM;
1889         } else {
1890                 file->nlink = 1;
1891                 file->data = data;
1892                 file->read_proc = read_proc;
1893                 file->write_proc = write_proc;
1894                 file->owner = owner;
1895
1896                 spin_lock(&smi->proc_entry_lock);
1897                 /* Stick it on the list. */
1898                 entry->next = smi->proc_entries;
1899                 smi->proc_entries = entry;
1900                 spin_unlock(&smi->proc_entry_lock);
1901         }
1902 #endif /* CONFIG_PROC_FS */
1903
1904         return rv;
1905 }
1906
1907 static int add_proc_entries(ipmi_smi_t smi, int num)
1908 {
1909         int rv = 0;
1910
1911 #ifdef CONFIG_PROC_FS
1912         sprintf(smi->proc_dir_name, "%d", num);
1913         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1914         if (!smi->proc_dir)
1915                 rv = -ENOMEM;
1916         else {
1917                 smi->proc_dir->owner = THIS_MODULE;
1918         }
1919
1920         if (rv == 0)
1921                 rv = ipmi_smi_add_proc_entry(smi, "stats",
1922                                              stat_file_read_proc, NULL,
1923                                              smi, THIS_MODULE);
1924
1925         if (rv == 0)
1926                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
1927                                              ipmb_file_read_proc, NULL,
1928                                              smi, THIS_MODULE);
1929
1930         if (rv == 0)
1931                 rv = ipmi_smi_add_proc_entry(smi, "version",
1932                                              version_file_read_proc, NULL,
1933                                              smi, THIS_MODULE);
1934 #endif /* CONFIG_PROC_FS */
1935
1936         return rv;
1937 }
1938
1939 static void remove_proc_entries(ipmi_smi_t smi)
1940 {
1941 #ifdef CONFIG_PROC_FS
1942         struct ipmi_proc_entry *entry;
1943
1944         spin_lock(&smi->proc_entry_lock);
1945         while (smi->proc_entries) {
1946                 entry = smi->proc_entries;
1947                 smi->proc_entries = entry->next;
1948
1949                 remove_proc_entry(entry->name, smi->proc_dir);
1950                 kfree(entry->name);
1951                 kfree(entry);
1952         }
1953         spin_unlock(&smi->proc_entry_lock);
1954         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
1955 #endif /* CONFIG_PROC_FS */
1956 }
1957
1958 static int __find_bmc_guid(struct device *dev, void *data)
1959 {
1960         unsigned char *id = data;
1961         struct bmc_device *bmc = dev_get_drvdata(dev);
1962         return memcmp(bmc->guid, id, 16) == 0;
1963 }
1964
1965 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
1966                                              unsigned char *guid)
1967 {
1968         struct device *dev;
1969
1970         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
1971         if (dev)
1972                 return dev_get_drvdata(dev);
1973         else
1974                 return NULL;
1975 }
1976
1977 struct prod_dev_id {
1978         unsigned int  product_id;
1979         unsigned char device_id;
1980 };
1981
1982 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
1983 {
1984         struct prod_dev_id *id = data;
1985         struct bmc_device *bmc = dev_get_drvdata(dev);
1986
1987         return (bmc->id.product_id == id->product_id
1988                 && bmc->id.device_id == id->device_id);
1989 }
1990
1991 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
1992         struct device_driver *drv,
1993         unsigned int product_id, unsigned char device_id)
1994 {
1995         struct prod_dev_id id = {
1996                 .product_id = product_id,
1997                 .device_id = device_id,
1998         };
1999         struct device *dev;
2000
2001         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2002         if (dev)
2003                 return dev_get_drvdata(dev);
2004         else
2005                 return NULL;
2006 }
2007
2008 static ssize_t device_id_show(struct device *dev,
2009                               struct device_attribute *attr,
2010                               char *buf)
2011 {
2012         struct bmc_device *bmc = dev_get_drvdata(dev);
2013
2014         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2015 }
2016
2017 static ssize_t provides_dev_sdrs_show(struct device *dev,
2018                                       struct device_attribute *attr,
2019                                       char *buf)
2020 {
2021         struct bmc_device *bmc = dev_get_drvdata(dev);
2022
2023         return snprintf(buf, 10, "%u\n",
2024                         (bmc->id.device_revision & 0x80) >> 7);
2025 }
2026
2027 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2028                              char *buf)
2029 {
2030         struct bmc_device *bmc = dev_get_drvdata(dev);
2031
2032         return snprintf(buf, 20, "%u\n",
2033                         bmc->id.device_revision & 0x0F);
2034 }
2035
2036 static ssize_t firmware_rev_show(struct device *dev,
2037                                  struct device_attribute *attr,
2038                                  char *buf)
2039 {
2040         struct bmc_device *bmc = dev_get_drvdata(dev);
2041
2042         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2043                         bmc->id.firmware_revision_2);
2044 }
2045
2046 static ssize_t ipmi_version_show(struct device *dev,
2047                                  struct device_attribute *attr,
2048                                  char *buf)
2049 {
2050         struct bmc_device *bmc = dev_get_drvdata(dev);
2051
2052         return snprintf(buf, 20, "%u.%u\n",
2053                         ipmi_version_major(&bmc->id),
2054                         ipmi_version_minor(&bmc->id));
2055 }
2056
2057 static ssize_t add_dev_support_show(struct device *dev,
2058                                     struct device_attribute *attr,
2059                                     char *buf)
2060 {
2061         struct bmc_device *bmc = dev_get_drvdata(dev);
2062
2063         return snprintf(buf, 10, "0x%02x\n",
2064                         bmc->id.additional_device_support);
2065 }
2066
2067 static ssize_t manufacturer_id_show(struct device *dev,
2068                                     struct device_attribute *attr,
2069                                     char *buf)
2070 {
2071         struct bmc_device *bmc = dev_get_drvdata(dev);
2072
2073         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2074 }
2075
2076 static ssize_t product_id_show(struct device *dev,
2077                                struct device_attribute *attr,
2078                                char *buf)
2079 {
2080         struct bmc_device *bmc = dev_get_drvdata(dev);
2081
2082         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2083 }
2084
2085 static ssize_t aux_firmware_rev_show(struct device *dev,
2086                                      struct device_attribute *attr,
2087                                      char *buf)
2088 {
2089         struct bmc_device *bmc = dev_get_drvdata(dev);
2090
2091         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2092                         bmc->id.aux_firmware_revision[3],
2093                         bmc->id.aux_firmware_revision[2],
2094                         bmc->id.aux_firmware_revision[1],
2095                         bmc->id.aux_firmware_revision[0]);
2096 }
2097
2098 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2099                          char *buf)
2100 {
2101         struct bmc_device *bmc = dev_get_drvdata(dev);
2102
2103         return snprintf(buf, 100, "%Lx%Lx\n",
2104                         (long long) bmc->guid[0],
2105                         (long long) bmc->guid[8]);
2106 }
2107
2108 static void remove_files(struct bmc_device *bmc)
2109 {
2110         if (!bmc->dev)
2111                 return;
2112
2113         device_remove_file(&bmc->dev->dev,
2114                            &bmc->device_id_attr);
2115         device_remove_file(&bmc->dev->dev,
2116                            &bmc->provides_dev_sdrs_attr);
2117         device_remove_file(&bmc->dev->dev,
2118                            &bmc->revision_attr);
2119         device_remove_file(&bmc->dev->dev,
2120                            &bmc->firmware_rev_attr);
2121         device_remove_file(&bmc->dev->dev,
2122                            &bmc->version_attr);
2123         device_remove_file(&bmc->dev->dev,
2124                            &bmc->add_dev_support_attr);
2125         device_remove_file(&bmc->dev->dev,
2126                            &bmc->manufacturer_id_attr);
2127         device_remove_file(&bmc->dev->dev,
2128                            &bmc->product_id_attr);
2129
2130         if (bmc->id.aux_firmware_revision_set)
2131                 device_remove_file(&bmc->dev->dev,
2132                                    &bmc->aux_firmware_rev_attr);
2133         if (bmc->guid_set)
2134                 device_remove_file(&bmc->dev->dev,
2135                                    &bmc->guid_attr);
2136 }
2137
2138 static void
2139 cleanup_bmc_device(struct kref *ref)
2140 {
2141         struct bmc_device *bmc;
2142
2143         bmc = container_of(ref, struct bmc_device, refcount);
2144
2145         remove_files(bmc);
2146         platform_device_unregister(bmc->dev);
2147         kfree(bmc);
2148 }
2149
2150 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2151 {
2152         struct bmc_device *bmc = intf->bmc;
2153
2154         if (intf->sysfs_name) {
2155                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2156                 kfree(intf->sysfs_name);
2157                 intf->sysfs_name = NULL;
2158         }
2159         if (intf->my_dev_name) {
2160                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2161                 kfree(intf->my_dev_name);
2162                 intf->my_dev_name = NULL;
2163         }
2164
2165         mutex_lock(&ipmidriver_mutex);
2166         kref_put(&bmc->refcount, cleanup_bmc_device);
2167         intf->bmc = NULL;
2168         mutex_unlock(&ipmidriver_mutex);
2169 }
2170
2171 static int create_files(struct bmc_device *bmc)
2172 {
2173         int err;
2174
2175         bmc->device_id_attr.attr.name = "device_id";
2176         bmc->device_id_attr.attr.owner = THIS_MODULE;
2177         bmc->device_id_attr.attr.mode = S_IRUGO;
2178         bmc->device_id_attr.show = device_id_show;
2179
2180         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2181         bmc->provides_dev_sdrs_attr.attr.owner = THIS_MODULE;
2182         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2183         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2184
2185         bmc->revision_attr.attr.name = "revision";
2186         bmc->revision_attr.attr.owner = THIS_MODULE;
2187         bmc->revision_attr.attr.mode = S_IRUGO;
2188         bmc->revision_attr.show = revision_show;
2189
2190         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2191         bmc->firmware_rev_attr.attr.owner = THIS_MODULE;
2192         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2193         bmc->firmware_rev_attr.show = firmware_rev_show;
2194
2195         bmc->version_attr.attr.name = "ipmi_version";
2196         bmc->version_attr.attr.owner = THIS_MODULE;
2197         bmc->version_attr.attr.mode = S_IRUGO;
2198         bmc->version_attr.show = ipmi_version_show;
2199
2200         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2201         bmc->add_dev_support_attr.attr.owner = THIS_MODULE;
2202         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2203         bmc->add_dev_support_attr.show = add_dev_support_show;
2204
2205         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2206         bmc->manufacturer_id_attr.attr.owner = THIS_MODULE;
2207         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2208         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2209
2210         bmc->product_id_attr.attr.name = "product_id";
2211         bmc->product_id_attr.attr.owner = THIS_MODULE;
2212         bmc->product_id_attr.attr.mode = S_IRUGO;
2213         bmc->product_id_attr.show = product_id_show;
2214
2215         bmc->guid_attr.attr.name = "guid";
2216         bmc->guid_attr.attr.owner = THIS_MODULE;
2217         bmc->guid_attr.attr.mode = S_IRUGO;
2218         bmc->guid_attr.show = guid_show;
2219
2220         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2221         bmc->aux_firmware_rev_attr.attr.owner = THIS_MODULE;
2222         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2223         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2224
2225         err = device_create_file(&bmc->dev->dev,
2226                            &bmc->device_id_attr);
2227         if (err) goto out;
2228         err = device_create_file(&bmc->dev->dev,
2229                            &bmc->provides_dev_sdrs_attr);
2230         if (err) goto out_devid;
2231         err = device_create_file(&bmc->dev->dev,
2232                            &bmc->revision_attr);
2233         if (err) goto out_sdrs;
2234         err = device_create_file(&bmc->dev->dev,
2235                            &bmc->firmware_rev_attr);
2236         if (err) goto out_rev;
2237         err = device_create_file(&bmc->dev->dev,
2238                            &bmc->version_attr);
2239         if (err) goto out_firm;
2240         err = device_create_file(&bmc->dev->dev,
2241                            &bmc->add_dev_support_attr);
2242         if (err) goto out_version;
2243         err = device_create_file(&bmc->dev->dev,
2244                            &bmc->manufacturer_id_attr);
2245         if (err) goto out_add_dev;
2246         err = device_create_file(&bmc->dev->dev,
2247                            &bmc->product_id_attr);
2248         if (err) goto out_manu;
2249         if (bmc->id.aux_firmware_revision_set) {
2250                 err = device_create_file(&bmc->dev->dev,
2251                                    &bmc->aux_firmware_rev_attr);
2252                 if (err) goto out_prod_id;
2253         }
2254         if (bmc->guid_set) {
2255                 err = device_create_file(&bmc->dev->dev,
2256                                    &bmc->guid_attr);
2257                 if (err) goto out_aux_firm;
2258         }
2259
2260         return 0;
2261
2262 out_aux_firm:
2263         if (bmc->id.aux_firmware_revision_set)
2264                 device_remove_file(&bmc->dev->dev,
2265                                    &bmc->aux_firmware_rev_attr);
2266 out_prod_id:
2267         device_remove_file(&bmc->dev->dev,
2268                            &bmc->product_id_attr);
2269 out_manu:
2270         device_remove_file(&bmc->dev->dev,
2271                            &bmc->manufacturer_id_attr);
2272 out_add_dev:
2273         device_remove_file(&bmc->dev->dev,
2274                            &bmc->add_dev_support_attr);
2275 out_version:
2276         device_remove_file(&bmc->dev->dev,
2277                            &bmc->version_attr);
2278 out_firm:
2279         device_remove_file(&bmc->dev->dev,
2280                            &bmc->firmware_rev_attr);
2281 out_rev:
2282         device_remove_file(&bmc->dev->dev,
2283                            &bmc->revision_attr);
2284 out_sdrs:
2285         device_remove_file(&bmc->dev->dev,
2286                            &bmc->provides_dev_sdrs_attr);
2287 out_devid:
2288         device_remove_file(&bmc->dev->dev,
2289                            &bmc->device_id_attr);
2290 out:
2291         return err;
2292 }
2293
2294 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2295                              const char *sysfs_name)
2296 {
2297         int               rv;
2298         struct bmc_device *bmc = intf->bmc;
2299         struct bmc_device *old_bmc;
2300         int               size;
2301         char              dummy[1];
2302
2303         mutex_lock(&ipmidriver_mutex);
2304
2305         /*
2306          * Try to find if there is an bmc_device struct
2307          * representing the interfaced BMC already
2308          */
2309         if (bmc->guid_set)
2310                 old_bmc = ipmi_find_bmc_guid(&ipmidriver, bmc->guid);
2311         else
2312                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver,
2313                                                     bmc->id.product_id,
2314                                                     bmc->id.device_id);
2315
2316         /*
2317          * If there is already an bmc_device, free the new one,
2318          * otherwise register the new BMC device
2319          */
2320         if (old_bmc) {
2321                 kfree(bmc);
2322                 intf->bmc = old_bmc;
2323                 bmc = old_bmc;
2324
2325                 kref_get(&bmc->refcount);
2326                 mutex_unlock(&ipmidriver_mutex);
2327
2328                 printk(KERN_INFO
2329                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2330                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2331                        bmc->id.manufacturer_id,
2332                        bmc->id.product_id,
2333                        bmc->id.device_id);
2334         } else {
2335                 char name[14];
2336                 unsigned char orig_dev_id = bmc->id.device_id;
2337                 int warn_printed = 0;
2338
2339                 snprintf(name, sizeof(name),
2340                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2341
2342                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver,
2343                                                  bmc->id.product_id,
2344                                                  bmc->id.device_id)) {
2345                         if (!warn_printed) {
2346                                 printk(KERN_WARNING PFX
2347                                        "This machine has two different BMCs"
2348                                        " with the same product id and device"
2349                                        " id.  This is an error in the"
2350                                        " firmware, but incrementing the"
2351                                        " device id to work around the problem."
2352                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2353                                        bmc->id.product_id, bmc->id.device_id);
2354                                 warn_printed = 1;
2355                         }
2356                         bmc->id.device_id++; /* Wraps at 255 */
2357                         if (bmc->id.device_id == orig_dev_id) {
2358                                 printk(KERN_ERR PFX
2359                                        "Out of device ids!\n");
2360                                 break;
2361                         }
2362                 }
2363
2364                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2365                 if (!bmc->dev) {
2366                         mutex_unlock(&ipmidriver_mutex);
2367                         printk(KERN_ERR
2368                                "ipmi_msghandler:"
2369                                " Unable to allocate platform device\n");
2370                         return -ENOMEM;
2371                 }
2372                 bmc->dev->dev.driver = &ipmidriver;
2373                 dev_set_drvdata(&bmc->dev->dev, bmc);
2374                 kref_init(&bmc->refcount);
2375
2376                 rv = platform_device_add(bmc->dev);
2377                 mutex_unlock(&ipmidriver_mutex);
2378                 if (rv) {
2379                         platform_device_put(bmc->dev);
2380                         bmc->dev = NULL;
2381                         printk(KERN_ERR
2382                                "ipmi_msghandler:"
2383                                " Unable to register bmc device: %d\n",
2384                                rv);
2385                         /* Don't go to out_err, you can only do that if
2386                            the device is registered already. */
2387                         return rv;
2388                 }
2389
2390                 rv = create_files(bmc);
2391                 if (rv) {
2392                         mutex_lock(&ipmidriver_mutex);
2393                         platform_device_unregister(bmc->dev);
2394                         mutex_unlock(&ipmidriver_mutex);
2395
2396                         return rv;
2397                 }
2398
2399                 printk(KERN_INFO
2400                        "ipmi: Found new BMC (man_id: 0x%6.6x, "
2401                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2402                        bmc->id.manufacturer_id,
2403                        bmc->id.product_id,
2404                        bmc->id.device_id);
2405         }
2406
2407         /*
2408          * create symlink from system interface device to bmc device
2409          * and back.
2410          */
2411         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2412         if (!intf->sysfs_name) {
2413                 rv = -ENOMEM;
2414                 printk(KERN_ERR
2415                        "ipmi_msghandler: allocate link to BMC: %d\n",
2416                        rv);
2417                 goto out_err;
2418         }
2419
2420         rv = sysfs_create_link(&intf->si_dev->kobj,
2421                                &bmc->dev->dev.kobj, intf->sysfs_name);
2422         if (rv) {
2423                 kfree(intf->sysfs_name);
2424                 intf->sysfs_name = NULL;
2425                 printk(KERN_ERR
2426                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2427                        rv);
2428                 goto out_err;
2429         }
2430
2431         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2432         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2433         if (!intf->my_dev_name) {
2434                 kfree(intf->sysfs_name);
2435                 intf->sysfs_name = NULL;
2436                 rv = -ENOMEM;
2437                 printk(KERN_ERR
2438                        "ipmi_msghandler: allocate link from BMC: %d\n",
2439                        rv);
2440                 goto out_err;
2441         }
2442         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2443
2444         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2445                                intf->my_dev_name);
2446         if (rv) {
2447                 kfree(intf->sysfs_name);
2448                 intf->sysfs_name = NULL;
2449                 kfree(intf->my_dev_name);
2450                 intf->my_dev_name = NULL;
2451                 printk(KERN_ERR
2452                        "ipmi_msghandler:"
2453                        " Unable to create symlink to bmc: %d\n",
2454                        rv);
2455                 goto out_err;
2456         }
2457
2458         return 0;
2459
2460 out_err:
2461         ipmi_bmc_unregister(intf);
2462         return rv;
2463 }
2464
2465 static int
2466 send_guid_cmd(ipmi_smi_t intf, int chan)
2467 {
2468         struct kernel_ipmi_msg            msg;
2469         struct ipmi_system_interface_addr si;
2470
2471         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2472         si.channel = IPMI_BMC_CHANNEL;
2473         si.lun = 0;
2474
2475         msg.netfn = IPMI_NETFN_APP_REQUEST;
2476         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2477         msg.data = NULL;
2478         msg.data_len = 0;
2479         return i_ipmi_request(NULL,
2480                               intf,
2481                               (struct ipmi_addr *) &si,
2482                               0,
2483                               &msg,
2484                               intf,
2485                               NULL,
2486                               NULL,
2487                               0,
2488                               intf->channels[0].address,
2489                               intf->channels[0].lun,
2490                               -1, 0);
2491 }
2492
2493 static void
2494 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2495 {
2496         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2497             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2498             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2499                 /* Not for me */
2500                 return;
2501
2502         if (msg->msg.data[0] != 0) {
2503                 /* Error from getting the GUID, the BMC doesn't have one. */
2504                 intf->bmc->guid_set = 0;
2505                 goto out;
2506         }
2507
2508         if (msg->msg.data_len < 17) {
2509                 intf->bmc->guid_set = 0;
2510                 printk(KERN_WARNING PFX
2511                        "guid_handler: The GUID response from the BMC was too"
2512                        " short, it was %d but should have been 17.  Assuming"
2513                        " GUID is not available.\n",
2514                        msg->msg.data_len);
2515                 goto out;
2516         }
2517
2518         memcpy(intf->bmc->guid, msg->msg.data, 16);
2519         intf->bmc->guid_set = 1;
2520  out:
2521         wake_up(&intf->waitq);
2522 }
2523
2524 static void
2525 get_guid(ipmi_smi_t intf)
2526 {
2527         int rv;
2528
2529         intf->bmc->guid_set = 0x2;
2530         intf->null_user_handler = guid_handler;
2531         rv = send_guid_cmd(intf, 0);
2532         if (rv)
2533                 /* Send failed, no GUID available. */
2534                 intf->bmc->guid_set = 0;
2535         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2536         intf->null_user_handler = NULL;
2537 }
2538
2539 static int
2540 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2541 {
2542         struct kernel_ipmi_msg            msg;
2543         unsigned char                     data[1];
2544         struct ipmi_system_interface_addr si;
2545
2546         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2547         si.channel = IPMI_BMC_CHANNEL;
2548         si.lun = 0;
2549
2550         msg.netfn = IPMI_NETFN_APP_REQUEST;
2551         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2552         msg.data = data;
2553         msg.data_len = 1;
2554         data[0] = chan;
2555         return i_ipmi_request(NULL,
2556                               intf,
2557                               (struct ipmi_addr *) &si,
2558                               0,
2559                               &msg,
2560                               intf,
2561                               NULL,
2562                               NULL,
2563                               0,
2564                               intf->channels[0].address,
2565                               intf->channels[0].lun,
2566                               -1, 0);
2567 }
2568
2569 static void
2570 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2571 {
2572         int rv = 0;
2573         int chan;
2574
2575         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2576             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2577             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD))
2578         {
2579                 /* It's the one we want */
2580                 if (msg->msg.data[0] != 0) {
2581                         /* Got an error from the channel, just go on. */
2582
2583                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2584                                 /* If the MC does not support this
2585                                    command, that is legal.  We just
2586                                    assume it has one IPMB at channel
2587                                    zero. */
2588                                 intf->channels[0].medium
2589                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2590                                 intf->channels[0].protocol
2591                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2592                                 rv = -ENOSYS;
2593
2594                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2595                                 wake_up(&intf->waitq);
2596                                 goto out;
2597                         }
2598                         goto next_channel;
2599                 }
2600                 if (msg->msg.data_len < 4) {
2601                         /* Message not big enough, just go on. */
2602                         goto next_channel;
2603                 }
2604                 chan = intf->curr_channel;
2605                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2606                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2607
2608         next_channel:
2609                 intf->curr_channel++;
2610                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2611                         wake_up(&intf->waitq);
2612                 else
2613                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2614
2615                 if (rv) {
2616                         /* Got an error somehow, just give up. */
2617                         intf->curr_channel = IPMI_MAX_CHANNELS;
2618                         wake_up(&intf->waitq);
2619
2620                         printk(KERN_WARNING PFX
2621                                "Error sending channel information: %d\n",
2622                                rv);
2623                 }
2624         }
2625  out:
2626         return;
2627 }
2628
2629 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2630                       void                     *send_info,
2631                       struct ipmi_device_id    *device_id,
2632                       struct device            *si_dev,
2633                       const char               *sysfs_name,
2634                       unsigned char            slave_addr)
2635 {
2636         int              i, j;
2637         int              rv;
2638         ipmi_smi_t       intf;
2639         ipmi_smi_t       tintf;
2640         struct list_head *link;
2641
2642         /* Make sure the driver is actually initialized, this handles
2643            problems with initialization order. */
2644         if (!initialized) {
2645                 rv = ipmi_init_msghandler();
2646                 if (rv)
2647                         return rv;
2648                 /* The init code doesn't return an error if it was turned
2649                    off, but it won't initialize.  Check that. */
2650                 if (!initialized)
2651                         return -ENODEV;
2652         }
2653
2654         intf = kmalloc(sizeof(*intf), GFP_KERNEL);
2655         if (!intf)
2656                 return -ENOMEM;
2657         memset(intf, 0, sizeof(*intf));
2658
2659         intf->ipmi_version_major = ipmi_version_major(device_id);
2660         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2661
2662         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2663         if (!intf->bmc) {
2664                 kfree(intf);
2665                 return -ENOMEM;
2666         }
2667         intf->intf_num = -1; /* Mark it invalid for now. */
2668         kref_init(&intf->refcount);
2669         intf->bmc->id = *device_id;
2670         intf->si_dev = si_dev;
2671         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2672                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2673                 intf->channels[j].lun = 2;
2674         }
2675         if (slave_addr != 0)
2676                 intf->channels[0].address = slave_addr;
2677         INIT_LIST_HEAD(&intf->users);
2678         intf->handlers = handlers;
2679         intf->send_info = send_info;
2680         spin_lock_init(&intf->seq_lock);
2681         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2682                 intf->seq_table[j].inuse = 0;
2683                 intf->seq_table[j].seqid = 0;
2684         }
2685         intf->curr_seq = 0;
2686 #ifdef CONFIG_PROC_FS
2687         spin_lock_init(&intf->proc_entry_lock);
2688 #endif
2689         spin_lock_init(&intf->waiting_msgs_lock);
2690         INIT_LIST_HEAD(&intf->waiting_msgs);
2691         spin_lock_init(&intf->events_lock);
2692         INIT_LIST_HEAD(&intf->waiting_events);
2693         intf->waiting_events_count = 0;
2694         mutex_init(&intf->cmd_rcvrs_mutex);
2695         spin_lock_init(&intf->maintenance_mode_lock);
2696         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2697         init_waitqueue_head(&intf->waitq);
2698
2699         spin_lock_init(&intf->counter_lock);
2700         intf->proc_dir = NULL;
2701
2702         mutex_lock(&smi_watchers_mutex);
2703         mutex_lock(&ipmi_interfaces_mutex);
2704         /* Look for a hole in the numbers. */
2705         i = 0;
2706         link = &ipmi_interfaces;
2707         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2708                 if (tintf->intf_num != i) {
2709                         link = &tintf->link;
2710                         break;
2711                 }
2712                 i++;
2713         }
2714         /* Add the new interface in numeric order. */
2715         if (i == 0)
2716                 list_add_rcu(&intf->link, &ipmi_interfaces);
2717         else
2718                 list_add_tail_rcu(&intf->link, link);
2719
2720         rv = handlers->start_processing(send_info, intf);
2721         if (rv)
2722                 goto out;
2723
2724         get_guid(intf);
2725
2726         if ((intf->ipmi_version_major > 1)
2727             || ((intf->ipmi_version_major == 1)
2728                 && (intf->ipmi_version_minor >= 5)))
2729         {
2730                 /* Start scanning the channels to see what is
2731                    available. */
2732                 intf->null_user_handler = channel_handler;
2733                 intf->curr_channel = 0;
2734                 rv = send_channel_info_cmd(intf, 0);
2735                 if (rv)
2736                         goto out;
2737
2738                 /* Wait for the channel info to be read. */
2739                 wait_event(intf->waitq,
2740                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2741                 intf->null_user_handler = NULL;
2742         } else {
2743                 /* Assume a single IPMB channel at zero. */
2744                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2745                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2746         }
2747
2748         if (rv == 0)
2749                 rv = add_proc_entries(intf, i);
2750
2751         rv = ipmi_bmc_register(intf, i, sysfs_name);
2752
2753  out:
2754         if (rv) {
2755                 if (intf->proc_dir)
2756                         remove_proc_entries(intf);
2757                 intf->handlers = NULL;
2758                 list_del_rcu(&intf->link);
2759                 mutex_unlock(&ipmi_interfaces_mutex);
2760                 mutex_unlock(&smi_watchers_mutex);
2761                 synchronize_rcu();
2762                 kref_put(&intf->refcount, intf_free);
2763         } else {
2764                 /*
2765                  * Keep memory order straight for RCU readers.  Make
2766                  * sure everything else is committed to memory before
2767                  * setting intf_num to mark the interface valid.
2768                  */
2769                 smp_wmb();
2770                 intf->intf_num = i;
2771                 mutex_unlock(&ipmi_interfaces_mutex);
2772                 /* After this point the interface is legal to use. */
2773                 call_smi_watchers(i, intf->si_dev);
2774                 mutex_unlock(&smi_watchers_mutex);
2775         }
2776
2777         return rv;
2778 }
2779
2780 static void cleanup_smi_msgs(ipmi_smi_t intf)
2781 {
2782         int              i;
2783         struct seq_table *ent;
2784
2785         /* No need for locks, the interface is down. */
2786         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2787                 ent = &(intf->seq_table[i]);
2788                 if (!ent->inuse)
2789                         continue;
2790                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2791         }
2792 }
2793
2794 int ipmi_unregister_smi(ipmi_smi_t intf)
2795 {
2796         struct ipmi_smi_watcher *w;
2797         int    intf_num = intf->intf_num;
2798
2799         ipmi_bmc_unregister(intf);
2800
2801         mutex_lock(&smi_watchers_mutex);
2802         mutex_lock(&ipmi_interfaces_mutex);
2803         intf->intf_num = -1;
2804         intf->handlers = NULL;
2805         list_del_rcu(&intf->link);
2806         mutex_unlock(&ipmi_interfaces_mutex);
2807         synchronize_rcu();
2808
2809         cleanup_smi_msgs(intf);
2810
2811         remove_proc_entries(intf);
2812
2813         /* Call all the watcher interfaces to tell them that
2814            an interface is gone. */
2815         list_for_each_entry(w, &smi_watchers, link)
2816                 w->smi_gone(intf_num);
2817         mutex_unlock(&smi_watchers_mutex);
2818
2819         kref_put(&intf->refcount, intf_free);
2820         return 0;
2821 }
2822
2823 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2824                                    struct ipmi_smi_msg *msg)
2825 {
2826         struct ipmi_ipmb_addr ipmb_addr;
2827         struct ipmi_recv_msg  *recv_msg;
2828         unsigned long         flags;
2829
2830         
2831         /* This is 11, not 10, because the response must contain a
2832          * completion code. */
2833         if (msg->rsp_size < 11) {
2834                 /* Message not big enough, just ignore it. */
2835                 spin_lock_irqsave(&intf->counter_lock, flags);
2836                 intf->invalid_ipmb_responses++;
2837                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2838                 return 0;
2839         }
2840
2841         if (msg->rsp[2] != 0) {
2842                 /* An error getting the response, just ignore it. */
2843                 return 0;
2844         }
2845
2846         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2847         ipmb_addr.slave_addr = msg->rsp[6];
2848         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2849         ipmb_addr.lun = msg->rsp[7] & 3;
2850
2851         /* It's a response from a remote entity.  Look up the sequence
2852            number and handle the response. */
2853         if (intf_find_seq(intf,
2854                           msg->rsp[7] >> 2,
2855                           msg->rsp[3] & 0x0f,
2856                           msg->rsp[8],
2857                           (msg->rsp[4] >> 2) & (~1),
2858                           (struct ipmi_addr *) &(ipmb_addr),
2859                           &recv_msg))
2860         {
2861                 /* We were unable to find the sequence number,
2862                    so just nuke the message. */
2863                 spin_lock_irqsave(&intf->counter_lock, flags);
2864                 intf->unhandled_ipmb_responses++;
2865                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2866                 return 0;
2867         }
2868
2869         memcpy(recv_msg->msg_data,
2870                &(msg->rsp[9]),
2871                msg->rsp_size - 9);
2872         /* THe other fields matched, so no need to set them, except
2873            for netfn, which needs to be the response that was
2874            returned, not the request value. */
2875         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2876         recv_msg->msg.data = recv_msg->msg_data;
2877         recv_msg->msg.data_len = msg->rsp_size - 10;
2878         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2879         spin_lock_irqsave(&intf->counter_lock, flags);
2880         intf->handled_ipmb_responses++;
2881         spin_unlock_irqrestore(&intf->counter_lock, flags);
2882         deliver_response(recv_msg);
2883
2884         return 0;
2885 }
2886
2887 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
2888                                    struct ipmi_smi_msg *msg)
2889 {
2890         struct cmd_rcvr          *rcvr;
2891         int                      rv = 0;
2892         unsigned char            netfn;
2893         unsigned char            cmd;
2894         unsigned char            chan;
2895         ipmi_user_t              user = NULL;
2896         struct ipmi_ipmb_addr    *ipmb_addr;
2897         struct ipmi_recv_msg     *recv_msg;
2898         unsigned long            flags;
2899         struct ipmi_smi_handlers *handlers;
2900
2901         if (msg->rsp_size < 10) {
2902                 /* Message not big enough, just ignore it. */
2903                 spin_lock_irqsave(&intf->counter_lock, flags);
2904                 intf->invalid_commands++;
2905                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2906                 return 0;
2907         }
2908
2909         if (msg->rsp[2] != 0) {
2910                 /* An error getting the response, just ignore it. */
2911                 return 0;
2912         }
2913
2914         netfn = msg->rsp[4] >> 2;
2915         cmd = msg->rsp[8];
2916         chan = msg->rsp[3] & 0xf;
2917
2918         rcu_read_lock();
2919         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
2920         if (rcvr) {
2921                 user = rcvr->user;
2922                 kref_get(&user->refcount);
2923         } else
2924                 user = NULL;
2925         rcu_read_unlock();
2926
2927         if (user == NULL) {
2928                 /* We didn't find a user, deliver an error response. */
2929                 spin_lock_irqsave(&intf->counter_lock, flags);
2930                 intf->unhandled_commands++;
2931                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2932
2933                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
2934                 msg->data[1] = IPMI_SEND_MSG_CMD;
2935                 msg->data[2] = msg->rsp[3];
2936                 msg->data[3] = msg->rsp[6];
2937                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
2938                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
2939                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
2940                 /* rqseq/lun */
2941                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
2942                 msg->data[8] = msg->rsp[8]; /* cmd */
2943                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
2944                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
2945                 msg->data_size = 11;
2946
2947 #ifdef DEBUG_MSGING
2948         {
2949                 int m;
2950                 printk("Invalid command:");
2951                 for (m = 0; m < msg->data_size; m++)
2952                         printk(" %2.2x", msg->data[m]);
2953                 printk("\n");
2954         }
2955 #endif
2956                 rcu_read_lock();
2957                 handlers = intf->handlers;
2958                 if (handlers) {
2959                         handlers->sender(intf->send_info, msg, 0);
2960                         /* We used the message, so return the value
2961                            that causes it to not be freed or
2962                            queued. */
2963                         rv = -1;
2964                 }
2965                 rcu_read_unlock();
2966         } else {
2967                 /* Deliver the message to the user. */
2968                 spin_lock_irqsave(&intf->counter_lock, flags);
2969                 intf->handled_commands++;
2970                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2971
2972                 recv_msg = ipmi_alloc_recv_msg();
2973                 if (!recv_msg) {
2974                         /* We couldn't allocate memory for the
2975                            message, so requeue it for handling
2976                            later. */
2977                         rv = 1;
2978                         kref_put(&user->refcount, free_user);
2979                 } else {
2980                         /* Extract the source address from the data. */
2981                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
2982                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2983                         ipmb_addr->slave_addr = msg->rsp[6];
2984                         ipmb_addr->lun = msg->rsp[7] & 3;
2985                         ipmb_addr->channel = msg->rsp[3] & 0xf;
2986
2987                         /* Extract the rest of the message information
2988                            from the IPMB header.*/
2989                         recv_msg->user = user;
2990                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
2991                         recv_msg->msgid = msg->rsp[7] >> 2;
2992                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2993                         recv_msg->msg.cmd = msg->rsp[8];
2994                         recv_msg->msg.data = recv_msg->msg_data;
2995
2996                         /* We chop off 10, not 9 bytes because the checksum
2997                            at the end also needs to be removed. */
2998                         recv_msg->msg.data_len = msg->rsp_size - 10;
2999                         memcpy(recv_msg->msg_data,
3000                                &(msg->rsp[9]),
3001                                msg->rsp_size - 10);
3002                         deliver_response(recv_msg);
3003                 }
3004         }
3005
3006         return rv;
3007 }
3008
3009 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3010                                   struct ipmi_smi_msg *msg)
3011 {
3012         struct ipmi_lan_addr  lan_addr;
3013         struct ipmi_recv_msg  *recv_msg;
3014         unsigned long         flags;
3015
3016
3017         /* This is 13, not 12, because the response must contain a
3018          * completion code. */
3019         if (msg->rsp_size < 13) {
3020                 /* Message not big enough, just ignore it. */
3021                 spin_lock_irqsave(&intf->counter_lock, flags);
3022                 intf->invalid_lan_responses++;
3023                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3024                 return 0;
3025         }
3026
3027         if (msg->rsp[2] != 0) {
3028                 /* An error getting the response, just ignore it. */
3029                 return 0;
3030         }
3031
3032         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3033         lan_addr.session_handle = msg->rsp[4];
3034         lan_addr.remote_SWID = msg->rsp[8];
3035         lan_addr.local_SWID = msg->rsp[5];
3036         lan_addr.channel = msg->rsp[3] & 0x0f;
3037         lan_addr.privilege = msg->rsp[3] >> 4;
3038         lan_addr.lun = msg->rsp[9] & 3;
3039
3040         /* It's a response from a remote entity.  Look up the sequence
3041            number and handle the response. */
3042         if (intf_find_seq(intf,
3043                           msg->rsp[9] >> 2,
3044                           msg->rsp[3] & 0x0f,
3045                           msg->rsp[10],
3046                           (msg->rsp[6] >> 2) & (~1),
3047                           (struct ipmi_addr *) &(lan_addr),
3048                           &recv_msg))
3049         {
3050                 /* We were unable to find the sequence number,
3051                    so just nuke the message. */
3052                 spin_lock_irqsave(&intf->counter_lock, flags);
3053                 intf->unhandled_lan_responses++;
3054                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3055                 return 0;
3056         }
3057
3058         memcpy(recv_msg->msg_data,
3059                &(msg->rsp[11]),
3060                msg->rsp_size - 11);
3061         /* The other fields matched, so no need to set them, except
3062            for netfn, which needs to be the response that was
3063            returned, not the request value. */
3064         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3065         recv_msg->msg.data = recv_msg->msg_data;
3066         recv_msg->msg.data_len = msg->rsp_size - 12;
3067         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3068         spin_lock_irqsave(&intf->counter_lock, flags);
3069         intf->handled_lan_responses++;
3070         spin_unlock_irqrestore(&intf->counter_lock, flags);
3071         deliver_response(recv_msg);
3072
3073         return 0;
3074 }
3075
3076 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3077                                   struct ipmi_smi_msg *msg)
3078 {
3079         struct cmd_rcvr          *rcvr;
3080         int                      rv = 0;
3081         unsigned char            netfn;
3082         unsigned char            cmd;
3083         unsigned char            chan;
3084         ipmi_user_t              user = NULL;
3085         struct ipmi_lan_addr     *lan_addr;
3086         struct ipmi_recv_msg     *recv_msg;
3087         unsigned long            flags;
3088
3089         if (msg->rsp_size < 12) {
3090                 /* Message not big enough, just ignore it. */
3091                 spin_lock_irqsave(&intf->counter_lock, flags);
3092                 intf->invalid_commands++;
3093                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3094                 return 0;
3095         }
3096
3097         if (msg->rsp[2] != 0) {
3098                 /* An error getting the response, just ignore it. */
3099                 return 0;
3100         }
3101
3102         netfn = msg->rsp[6] >> 2;
3103         cmd = msg->rsp[10];
3104         chan = msg->rsp[3] & 0xf;
3105
3106         rcu_read_lock();
3107         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3108         if (rcvr) {
3109                 user = rcvr->user;
3110                 kref_get(&user->refcount);
3111         } else
3112                 user = NULL;
3113         rcu_read_unlock();
3114
3115         if (user == NULL) {
3116                 /* We didn't find a user, just give up. */
3117                 spin_lock_irqsave(&intf->counter_lock, flags);
3118                 intf->unhandled_commands++;
3119                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3120
3121                 rv = 0; /* Don't do anything with these messages, just
3122                            allow them to be freed. */
3123         } else {
3124                 /* Deliver the message to the user. */
3125                 spin_lock_irqsave(&intf->counter_lock, flags);
3126                 intf->handled_commands++;
3127                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3128
3129                 recv_msg = ipmi_alloc_recv_msg();
3130                 if (!recv_msg) {
3131                         /* We couldn't allocate memory for the
3132                            message, so requeue it for handling
3133                            later. */
3134                         rv = 1;
3135                         kref_put(&user->refcount, free_user);
3136                 } else {
3137                         /* Extract the source address from the data. */
3138                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3139                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3140                         lan_addr->session_handle = msg->rsp[4];
3141                         lan_addr->remote_SWID = msg->rsp[8];
3142                         lan_addr->local_SWID = msg->rsp[5];
3143                         lan_addr->lun = msg->rsp[9] & 3;
3144                         lan_addr->channel = msg->rsp[3] & 0xf;
3145                         lan_addr->privilege = msg->rsp[3] >> 4;
3146
3147                         /* Extract the rest of the message information
3148                            from the IPMB header.*/
3149                         recv_msg->user = user;
3150                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3151                         recv_msg->msgid = msg->rsp[9] >> 2;
3152                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3153                         recv_msg->msg.cmd = msg->rsp[10];
3154                         recv_msg->msg.data = recv_msg->msg_data;
3155
3156                         /* We chop off 12, not 11 bytes because the checksum
3157                            at the end also needs to be removed. */
3158                         recv_msg->msg.data_len = msg->rsp_size - 12;
3159                         memcpy(recv_msg->msg_data,
3160                                &(msg->rsp[11]),
3161                                msg->rsp_size - 12);
3162                         deliver_response(recv_msg);
3163                 }
3164         }
3165
3166         return rv;
3167 }
3168
3169 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3170                                      struct ipmi_smi_msg  *msg)
3171 {
3172         struct ipmi_system_interface_addr *smi_addr;
3173         
3174         recv_msg->msgid = 0;
3175         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3176         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3177         smi_addr->channel = IPMI_BMC_CHANNEL;
3178         smi_addr->lun = msg->rsp[0] & 3;
3179         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3180         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3181         recv_msg->msg.cmd = msg->rsp[1];
3182         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3183         recv_msg->msg.data = recv_msg->msg_data;
3184         recv_msg->msg.data_len = msg->rsp_size - 3;
3185 }
3186
3187 static int handle_read_event_rsp(ipmi_smi_t          intf,
3188                                  struct ipmi_smi_msg *msg)
3189 {
3190         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3191         struct list_head     msgs;
3192         ipmi_user_t          user;
3193         int                  rv = 0;
3194         int                  deliver_count = 0;
3195         unsigned long        flags;
3196
3197         if (msg->rsp_size < 19) {
3198                 /* Message is too small to be an IPMB event. */
3199                 spin_lock_irqsave(&intf->counter_lock, flags);
3200                 intf->invalid_events++;
3201                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3202                 return 0;
3203         }
3204
3205         if (msg->rsp[2] != 0) {
3206                 /* An error getting the event, just ignore it. */
3207                 return 0;
3208         }
3209
3210         INIT_LIST_HEAD(&msgs);
3211
3212         spin_lock_irqsave(&intf->events_lock, flags);
3213
3214         spin_lock(&intf->counter_lock);
3215         intf->events++;
3216         spin_unlock(&intf->counter_lock);
3217
3218         /* Allocate and fill in one message for every user that is getting
3219            events. */
3220         rcu_read_lock();
3221         list_for_each_entry_rcu(user, &intf->users, link) {
3222                 if (!user->gets_events)
3223                         continue;
3224
3225                 recv_msg = ipmi_alloc_recv_msg();
3226                 if (!recv_msg) {
3227                         rcu_read_unlock();
3228                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3229                                                  link) {
3230                                 list_del(&recv_msg->link);
3231                                 ipmi_free_recv_msg(recv_msg);
3232                         }
3233                         /* We couldn't allocate memory for the
3234                            message, so requeue it for handling
3235                            later. */
3236                         rv = 1;
3237                         goto out;
3238                 }
3239
3240                 deliver_count++;
3241
3242                 copy_event_into_recv_msg(recv_msg, msg);
3243                 recv_msg->user = user;
3244                 kref_get(&user->refcount);
3245                 list_add_tail(&(recv_msg->link), &msgs);
3246         }
3247         rcu_read_unlock();
3248
3249         if (deliver_count) {
3250                 /* Now deliver all the messages. */
3251                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3252                         list_del(&recv_msg->link);
3253                         deliver_response(recv_msg);
3254                 }
3255         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3256                 /* No one to receive the message, put it in queue if there's
3257                    not already too many things in the queue. */
3258                 recv_msg = ipmi_alloc_recv_msg();
3259                 if (!recv_msg) {
3260                         /* We couldn't allocate memory for the
3261                            message, so requeue it for handling
3262                            later. */
3263                         rv = 1;
3264                         goto out;
3265                 }
3266
3267                 copy_event_into_recv_msg(recv_msg, msg);
3268                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3269                 intf->waiting_events_count++;
3270         } else {
3271                 /* There's too many things in the queue, discard this
3272                    message. */
3273                 printk(KERN_WARNING PFX "Event queue full, discarding an"
3274                        " incoming event\n");
3275         }
3276
3277  out:
3278         spin_unlock_irqrestore(&(intf->events_lock), flags);
3279
3280         return rv;
3281 }
3282
3283 static int handle_bmc_rsp(ipmi_smi_t          intf,
3284                           struct ipmi_smi_msg *msg)
3285 {
3286         struct ipmi_recv_msg *recv_msg;
3287         unsigned long        flags;
3288         struct ipmi_user     *user;
3289
3290         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3291         if (recv_msg == NULL)
3292         {
3293                 printk(KERN_WARNING"IPMI message received with no owner. This\n"
3294                         "could be because of a malformed message, or\n"
3295                         "because of a hardware error.  Contact your\n"
3296                         "hardware vender for assistance\n");
3297                 return 0;
3298         }
3299
3300         user = recv_msg->user;
3301         /* Make sure the user still exists. */
3302         if (user && !user->valid) {
3303                 /* The user for the message went away, so give up. */
3304                 spin_lock_irqsave(&intf->counter_lock, flags);
3305                 intf->unhandled_local_responses++;
3306                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3307                 ipmi_free_recv_msg(recv_msg);
3308         } else {
3309                 struct ipmi_system_interface_addr *smi_addr;
3310
3311                 spin_lock_irqsave(&intf->counter_lock, flags);
3312                 intf->handled_local_responses++;
3313                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3314                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3315                 recv_msg->msgid = msg->msgid;
3316                 smi_addr = ((struct ipmi_system_interface_addr *)
3317                             &(recv_msg->addr));
3318                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3319                 smi_addr->channel = IPMI_BMC_CHANNEL;
3320                 smi_addr->lun = msg->rsp[0] & 3;
3321                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3322                 recv_msg->msg.cmd = msg->rsp[1];
3323                 memcpy(recv_msg->msg_data,
3324                        &(msg->rsp[2]),
3325                        msg->rsp_size - 2);
3326                 recv_msg->msg.data = recv_msg->msg_data;
3327                 recv_msg->msg.data_len = msg->rsp_size - 2;
3328                 deliver_response(recv_msg);
3329         }
3330
3331         return 0;
3332 }
3333
3334 /* Handle a new message.  Return 1 if the message should be requeued,
3335    0 if the message should be freed, or -1 if the message should not
3336    be freed or requeued. */
3337 static int handle_new_recv_msg(ipmi_smi_t          intf,
3338                                struct ipmi_smi_msg *msg)
3339 {
3340         int requeue;
3341         int chan;
3342
3343 #ifdef DEBUG_MSGING
3344         int m;
3345         printk("Recv:");
3346         for (m = 0; m < msg->rsp_size; m++)
3347                 printk(" %2.2x", msg->rsp[m]);
3348         printk("\n");
3349 #endif
3350         if (msg->rsp_size < 2) {
3351                 /* Message is too small to be correct. */
3352                 printk(KERN_WARNING PFX "BMC returned to small a message"
3353                        " for netfn %x cmd %x, got %d bytes\n",
3354                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3355
3356                 /* Generate an error response for the message. */
3357                 msg->rsp[0] = msg->data[0] | (1 << 2);
3358                 msg->rsp[1] = msg->data[1];
3359                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3360                 msg->rsp_size = 3;
3361         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))/* Netfn */
3362                    || (msg->rsp[1] != msg->data[1]))              /* Command */
3363         {
3364                 /* The response is not even marginally correct. */
3365                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3366                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3367                        (msg->data[0] >> 2) | 1, msg->data[1],
3368                        msg->rsp[0] >> 2, msg->rsp[1]);
3369
3370                 /* Generate an error response for the message. */
3371                 msg->rsp[0] = msg->data[0] | (1 << 2);
3372                 msg->rsp[1] = msg->data[1];
3373                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3374                 msg->rsp_size = 3;
3375         }
3376
3377         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3378             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3379             && (msg->user_data != NULL))
3380         {
3381                 /* It's a response to a response we sent.  For this we
3382                    deliver a send message response to the user. */
3383                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3384
3385                 requeue = 0;
3386                 if (msg->rsp_size < 2)
3387                         /* Message is too small to be correct. */
3388                         goto out;
3389
3390                 chan = msg->data[2] & 0x0f;
3391                 if (chan >= IPMI_MAX_CHANNELS)
3392                         /* Invalid channel number */
3393                         goto out;
3394
3395                 if (!recv_msg)
3396                         goto out;
3397
3398                 /* Make sure the user still exists. */
3399                 if (!recv_msg->user || !recv_msg->user->valid)
3400                         goto out;
3401
3402                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3403                 recv_msg->msg.data = recv_msg->msg_data;
3404                 recv_msg->msg.data_len = 1;
3405                 recv_msg->msg_data[0] = msg->rsp[2];
3406                 deliver_response(recv_msg);
3407         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3408                    && (msg->rsp[1] == IPMI_GET_MSG_CMD))
3409         {
3410                 /* It's from the receive queue. */
3411                 chan = msg->rsp[3] & 0xf;
3412                 if (chan >= IPMI_MAX_CHANNELS) {
3413                         /* Invalid channel number */
3414                         requeue = 0;
3415                         goto out;
3416                 }
3417
3418                 switch (intf->channels[chan].medium) {
3419                 case IPMI_CHANNEL_MEDIUM_IPMB:
3420                         if (msg->rsp[4] & 0x04) {
3421                                 /* It's a response, so find the
3422                                    requesting message and send it up. */
3423                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3424                         } else {
3425                                 /* It's a command to the SMS from some other
3426                                    entity.  Handle that. */
3427                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3428                         }
3429                         break;
3430
3431                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3432                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3433                         if (msg->rsp[6] & 0x04) {
3434                                 /* It's a response, so find the
3435                                    requesting message and send it up. */
3436                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3437                         } else {
3438                                 /* It's a command to the SMS from some other
3439                                    entity.  Handle that. */
3440                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3441                         }
3442                         break;
3443
3444                 default:
3445                         /* We don't handle the channel type, so just
3446                          * free the message. */
3447                         requeue = 0;
3448                 }
3449
3450         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3451                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD))
3452         {
3453                 /* It's an asyncronous event. */
3454                 requeue = handle_read_event_rsp(intf, msg);
3455         } else {
3456                 /* It's a response from the local BMC. */
3457                 requeue = handle_bmc_rsp(intf, msg);
3458         }
3459
3460  out:
3461         return requeue;
3462 }
3463
3464 /* Handle a new message from the lower layer. */
3465 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3466                            struct ipmi_smi_msg *msg)
3467 {
3468         unsigned long flags;
3469         int           rv;
3470
3471
3472         if ((msg->data_size >= 2)
3473             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3474             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3475             && (msg->user_data == NULL))
3476         {
3477                 /* This is the local response to a command send, start
3478                    the timer for these.  The user_data will not be
3479                    NULL if this is a response send, and we will let
3480                    response sends just go through. */
3481
3482                 /* Check for errors, if we get certain errors (ones
3483                    that mean basically we can try again later), we
3484                    ignore them and start the timer.  Otherwise we
3485                    report the error immediately. */
3486                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3487                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3488                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3489                     && (msg->rsp[2] != IPMI_BUS_ERR)
3490                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR))
3491                 {
3492                         int chan = msg->rsp[3] & 0xf;
3493
3494                         /* Got an error sending the message, handle it. */
3495                         spin_lock_irqsave(&intf->counter_lock, flags);
3496                         if (chan >= IPMI_MAX_CHANNELS)
3497                                 ; /* This shouldn't happen */
3498                         else if ((intf->channels[chan].medium
3499                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3500                                  || (intf->channels[chan].medium
3501                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3502                                 intf->sent_lan_command_errs++;
3503                         else
3504                                 intf->sent_ipmb_command_errs++;
3505                         spin_unlock_irqrestore(&intf->counter_lock, flags);
3506                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3507                 } else {
3508                         /* The message was sent, start the timer. */
3509                         intf_start_seq_timer(intf, msg->msgid);
3510                 }
3511
3512                 ipmi_free_smi_msg(msg);
3513                 goto out;
3514         }
3515
3516         /* To preserve message order, if the list is not empty, we
3517            tack this message onto the end of the list. */
3518         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3519         if (!list_empty(&intf->waiting_msgs)) {
3520                 list_add_tail(&msg->link, &intf->waiting_msgs);
3521                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3522                 goto out;
3523         }
3524         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3525                 
3526         rv = handle_new_recv_msg(intf, msg);
3527         if (rv > 0) {
3528                 /* Could not handle the message now, just add it to a
3529                    list to handle later. */
3530                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3531                 list_add_tail(&msg->link, &intf->waiting_msgs);
3532                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3533         } else if (rv == 0) {
3534                 ipmi_free_smi_msg(msg);
3535         }
3536
3537  out:
3538         return;
3539 }
3540
3541 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3542 {
3543         ipmi_user_t user;
3544
3545         rcu_read_lock();
3546         list_for_each_entry_rcu(user, &intf->users, link) {
3547                 if (!user->handler->ipmi_watchdog_pretimeout)
3548                         continue;
3549
3550                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3551         }
3552         rcu_read_unlock();
3553 }
3554
3555
3556 static struct ipmi_smi_msg *
3557 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3558                   unsigned char seq, long seqid)
3559 {
3560         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3561         if (!smi_msg)
3562                 /* If we can't allocate the message, then just return, we
3563                    get 4 retries, so this should be ok. */
3564                 return NULL;
3565
3566         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3567         smi_msg->data_size = recv_msg->msg.data_len;
3568         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3569                 
3570 #ifdef DEBUG_MSGING
3571         {
3572                 int m;
3573                 printk("Resend: ");
3574                 for (m = 0; m < smi_msg->data_size; m++)
3575                         printk(" %2.2x", smi_msg->data[m]);
3576                 printk("\n");
3577         }
3578 #endif
3579         return smi_msg;
3580 }
3581
3582 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3583                               struct list_head *timeouts, long timeout_period,
3584                               int slot, unsigned long *flags)
3585 {
3586         struct ipmi_recv_msg     *msg;
3587         struct ipmi_smi_handlers *handlers;
3588
3589         if (intf->intf_num == -1)
3590                 return;
3591
3592         if (!ent->inuse)
3593                 return;
3594
3595         ent->timeout -= timeout_period;
3596         if (ent->timeout > 0)
3597                 return;
3598
3599         if (ent->retries_left == 0) {
3600                 /* The message has used all its retries. */
3601                 ent->inuse = 0;
3602                 msg = ent->recv_msg;
3603                 list_add_tail(&msg->link, timeouts);
3604                 spin_lock(&intf->counter_lock);
3605                 if (ent->broadcast)
3606                         intf->timed_out_ipmb_broadcasts++;
3607                 else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3608                         intf->timed_out_lan_commands++;
3609                 else
3610                         intf->timed_out_ipmb_commands++;
3611                 spin_unlock(&intf->counter_lock);
3612         } else {
3613                 struct ipmi_smi_msg *smi_msg;
3614                 /* More retries, send again. */
3615
3616                 /* Start with the max timer, set to normal
3617                    timer after the message is sent. */
3618                 ent->timeout = MAX_MSG_TIMEOUT;
3619                 ent->retries_left--;
3620                 spin_lock(&intf->counter_lock);
3621                 if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3622                         intf->retransmitted_lan_commands++;
3623                 else
3624                         intf->retransmitted_ipmb_commands++;
3625                 spin_unlock(&intf->counter_lock);
3626
3627                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3628                                             ent->seqid);
3629                 if (!smi_msg)
3630                         return;
3631
3632                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3633
3634                 /* Send the new message.  We send with a zero
3635                  * priority.  It timed out, I doubt time is
3636                  * that critical now, and high priority
3637                  * messages are really only for messages to the
3638                  * local MC, which don't get resent. */
3639                 handlers = intf->handlers;
3640                 if (handlers)
3641                         intf->handlers->sender(intf->send_info,
3642                                                smi_msg, 0);
3643                 else
3644                         ipmi_free_smi_msg(smi_msg);
3645
3646                 spin_lock_irqsave(&intf->seq_lock, *flags);
3647         }
3648 }
3649
3650 static void ipmi_timeout_handler(long timeout_period)
3651 {
3652         ipmi_smi_t           intf;
3653         struct list_head     timeouts;
3654         struct ipmi_recv_msg *msg, *msg2;
3655         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3656         unsigned long        flags;
3657         int                  i;
3658
3659         rcu_read_lock();
3660         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3661                 /* See if any waiting messages need to be processed. */
3662                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3663                 list_for_each_entry_safe(smi_msg, smi_msg2,
3664                                          &intf->waiting_msgs, link) {
3665                         if (!handle_new_recv_msg(intf, smi_msg)) {
3666                                 list_del(&smi_msg->link);
3667                                 ipmi_free_smi_msg(smi_msg);
3668                         } else {
3669                                 /* To preserve message order, quit if we
3670                                    can't handle a message. */
3671                                 break;
3672                         }
3673                 }
3674                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3675
3676                 /* Go through the seq table and find any messages that
3677                    have timed out, putting them in the timeouts
3678                    list. */
3679                 INIT_LIST_HEAD(&timeouts);
3680                 spin_lock_irqsave(&intf->seq_lock, flags);
3681                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3682                         check_msg_timeout(intf, &(intf->seq_table[i]),
3683                                           &timeouts, timeout_period, i,
3684                                           &flags);
3685                 spin_unlock_irqrestore(&intf->seq_lock, flags);
3686
3687                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3688                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3689
3690                 /*
3691                  * Maintenance mode handling.  Check the timeout
3692                  * optimistically before we claim the lock.  It may
3693                  * mean a timeout gets missed occasionally, but that
3694                  * only means the timeout gets extended by one period
3695                  * in that case.  No big deal, and it avoids the lock
3696                  * most of the time.
3697                  */
3698                 if (intf->auto_maintenance_timeout > 0) {
3699                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3700                         if (intf->auto_maintenance_timeout > 0) {
3701                                 intf->auto_maintenance_timeout
3702                                         -= timeout_period;
3703                                 if (!intf->maintenance_mode
3704                                     && (intf->auto_maintenance_timeout <= 0))
3705                                 {
3706                                         intf->maintenance_mode_enable = 0;
3707                                         maintenance_mode_update(intf);
3708                                 }
3709                         }
3710                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3711                                                flags);
3712                 }
3713         }
3714         rcu_read_unlock();
3715 }
3716
3717 static void ipmi_request_event(void)
3718 {
3719         ipmi_smi_t               intf;
3720         struct ipmi_smi_handlers *handlers;
3721
3722         rcu_read_lock();
3723         /* Called from the timer, no need to check if handlers is
3724          * valid. */
3725         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3726                 /* No event requests when in maintenance mode. */
3727                 if (intf->maintenance_mode_enable)
3728                         continue;
3729
3730                 handlers = intf->handlers;
3731                 if (handlers)
3732                         handlers->request_events(intf->send_info);
3733         }
3734         rcu_read_unlock();
3735 }
3736
3737 static struct timer_list ipmi_timer;
3738
3739 /* Call every ~100 ms. */
3740 #define IPMI_TIMEOUT_TIME       100
3741
3742 /* How many jiffies does it take to get to the timeout time. */
3743 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3744
3745 /* Request events from the queue every second (this is the number of
3746    IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
3747    future, IPMI will add a way to know immediately if an event is in
3748    the queue and this silliness can go away. */
3749 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
3750
3751 static atomic_t stop_operation;
3752 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3753
3754 static void ipmi_timeout(unsigned long data)
3755 {
3756         if (atomic_read(&stop_operation))
3757                 return;
3758
3759         ticks_to_req_ev--;
3760         if (ticks_to_req_ev == 0) {
3761                 ipmi_request_event();
3762                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3763         }
3764
3765         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3766
3767         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3768 }
3769
3770
3771 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3772 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3773
3774 /* FIXME - convert these to slabs. */
3775 static void free_smi_msg(struct ipmi_smi_msg *msg)
3776 {
3777         atomic_dec(&smi_msg_inuse_count);
3778         kfree(msg);
3779 }
3780
3781 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3782 {
3783         struct ipmi_smi_msg *rv;
3784         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3785         if (rv) {
3786                 rv->done = free_smi_msg;
3787                 rv->user_data = NULL;
3788                 atomic_inc(&smi_msg_inuse_count);
3789         }
3790         return rv;
3791 }
3792
3793 static void free_recv_msg(struct ipmi_recv_msg *msg)
3794 {
3795         atomic_dec(&recv_msg_inuse_count);
3796         kfree(msg);
3797 }
3798
3799 struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3800 {
3801         struct ipmi_recv_msg *rv;
3802
3803         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3804         if (rv) {
3805                 rv->user = NULL;
3806                 rv->done = free_recv_msg;
3807                 atomic_inc(&recv_msg_inuse_count);
3808         }
3809         return rv;
3810 }
3811
3812 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3813 {
3814         if (msg->user)
3815                 kref_put(&msg->user->refcount, free_user);
3816         msg->done(msg);
3817 }
3818
3819 #ifdef CONFIG_IPMI_PANIC_EVENT
3820
3821 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3822 {
3823 }
3824
3825 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3826 {
3827 }
3828
3829 #ifdef CONFIG_IPMI_PANIC_STRING
3830 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3831 {
3832         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3833             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3834             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3835             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3836         {
3837                 /* A get event receiver command, save it. */
3838                 intf->event_receiver = msg->msg.data[1];
3839                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3840         }
3841 }
3842
3843 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3844 {
3845         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3846             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3847             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3848             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3849         {
3850                 /* A get device id command, save if we are an event
3851                    receiver or generator. */
3852                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3853                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3854         }
3855 }
3856 #endif
3857
3858 static void send_panic_events(char *str)
3859 {
3860         struct kernel_ipmi_msg            msg;
3861         ipmi_smi_t                        intf;
3862         unsigned char                     data[16];
3863         struct ipmi_system_interface_addr *si;
3864         struct ipmi_addr                  addr;
3865         struct ipmi_smi_msg               smi_msg;
3866         struct ipmi_recv_msg              recv_msg;
3867
3868         si = (struct ipmi_system_interface_addr *) &addr;
3869         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3870         si->channel = IPMI_BMC_CHANNEL;
3871         si->lun = 0;
3872
3873         /* Fill in an event telling that we have failed. */
3874         msg.netfn = 0x04; /* Sensor or Event. */
3875         msg.cmd = 2; /* Platform event command. */
3876         msg.data = data;
3877         msg.data_len = 8;
3878         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
3879         data[1] = 0x03; /* This is for IPMI 1.0. */
3880         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
3881         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
3882         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
3883
3884         /* Put a few breadcrumbs in.  Hopefully later we can add more things
3885            to make the panic events more useful. */
3886         if (str) {
3887                 data[3] = str[0];
3888                 data[6] = str[1];
3889                 data[7] = str[2];
3890         }
3891
3892         smi_msg.done = dummy_smi_done_handler;
3893         recv_msg.done = dummy_recv_done_handler;
3894
3895         /* For every registered interface, send the event. */
3896         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3897                 if (!intf->handlers)
3898                         /* Interface is not ready. */
3899                         continue;
3900
3901                 /* Send the event announcing the panic. */
3902                 intf->handlers->set_run_to_completion(intf->send_info, 1);
3903                 i_ipmi_request(NULL,
3904                                intf,
3905                                &addr,
3906                                0,
3907                                &msg,
3908                                intf,
3909                                &smi_msg,
3910                                &recv_msg,
3911                                0,
3912                                intf->channels[0].address,
3913                                intf->channels[0].lun,
3914                                0, 1); /* Don't retry, and don't wait. */
3915         }
3916
3917 #ifdef CONFIG_IPMI_PANIC_STRING
3918         /* On every interface, dump a bunch of OEM event holding the
3919            string. */
3920         if (!str) 
3921                 return;
3922
3923         /* For every registered interface, send the event. */
3924         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3925                 char                  *p = str;
3926                 struct ipmi_ipmb_addr *ipmb;
3927                 int                   j;
3928
3929                 if (intf->intf_num == -1)
3930                         /* Interface was not ready yet. */
3931                         continue;
3932
3933                 /*
3934                  * intf_num is used as an marker to tell if the
3935                  * interface is valid.  Thus we need a read barrier to
3936                  * make sure data fetched before checking intf_num
3937                  * won't be used.
3938                  */
3939                 smp_rmb();
3940
3941                 /* First job here is to figure out where to send the
3942                    OEM events.  There's no way in IPMI to send OEM
3943                    events using an event send command, so we have to
3944                    find the SEL to put them in and stick them in
3945                    there. */
3946
3947                 /* Get capabilities from the get device id. */
3948                 intf->local_sel_device = 0;
3949                 intf->local_event_generator = 0;
3950                 intf->event_receiver = 0;
3951
3952                 /* Request the device info from the local MC. */
3953                 msg.netfn = IPMI_NETFN_APP_REQUEST;
3954                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
3955                 msg.data = NULL;
3956                 msg.data_len = 0;
3957                 intf->null_user_handler = device_id_fetcher;
3958                 i_ipmi_request(NULL,
3959                                intf,
3960                                &addr,
3961                                0,
3962                                &msg,
3963                                intf,
3964                                &smi_msg,
3965                                &recv_msg,
3966                                0,
3967                                intf->channels[0].address,
3968                                intf->channels[0].lun,
3969                                0, 1); /* Don't retry, and don't wait. */
3970
3971                 if (intf->local_event_generator) {
3972                         /* Request the event receiver from the local MC. */
3973                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
3974                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
3975                         msg.data = NULL;
3976                         msg.data_len = 0;
3977                         intf->null_user_handler = event_receiver_fetcher;
3978                         i_ipmi_request(NULL,
3979                                        intf,
3980                                        &addr,
3981                                        0,
3982                                        &msg,
3983                                        intf,
3984                                        &smi_msg,
3985                                        &recv_msg,
3986                                        0,
3987                                        intf->channels[0].address,
3988                                        intf->channels[0].lun,
3989                                        0, 1); /* no retry, and no wait. */
3990                 }
3991                 intf->null_user_handler = NULL;
3992
3993                 /* Validate the event receiver.  The low bit must not
3994                    be 1 (it must be a valid IPMB address), it cannot
3995                    be zero, and it must not be my address. */
3996                 if (((intf->event_receiver & 1) == 0)
3997                     && (intf->event_receiver != 0)
3998                     && (intf->event_receiver != intf->channels[0].address))
3999                 {
4000                         /* The event receiver is valid, send an IPMB
4001                            message. */
4002                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4003                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4004                         ipmb->channel = 0; /* FIXME - is this right? */
4005                         ipmb->lun = intf->event_receiver_lun;
4006                         ipmb->slave_addr = intf->event_receiver;
4007                 } else if (intf->local_sel_device) {
4008                         /* The event receiver was not valid (or was
4009                            me), but I am an SEL device, just dump it
4010                            in my SEL. */
4011                         si = (struct ipmi_system_interface_addr *) &addr;
4012                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4013                         si->channel = IPMI_BMC_CHANNEL;
4014                         si->lun = 0;
4015                 } else
4016                         continue; /* No where to send the event. */
4017
4018                 
4019                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4020                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4021                 msg.data = data;
4022                 msg.data_len = 16;
4023
4024                 j = 0;
4025                 while (*p) {
4026                         int size = strlen(p);
4027
4028                         if (size > 11)
4029                                 size = 11;
4030                         data[0] = 0;
4031                         data[1] = 0;
4032                         data[2] = 0xf0; /* OEM event without timestamp. */
4033                         data[3] = intf->channels[0].address;
4034                         data[4] = j++; /* sequence # */
4035                         /* Always give 11 bytes, so strncpy will fill
4036                            it with zeroes for me. */
4037                         strncpy(data+5, p, 11);
4038                         p += size;
4039
4040                         i_ipmi_request(NULL,
4041                                        intf,
4042                                        &addr,
4043                                        0,
4044                                        &msg,
4045                                        intf,
4046                                        &smi_msg,
4047                                        &recv_msg,
4048                                        0,
4049                                        intf->channels[0].address,
4050                                        intf->channels[0].lun,
4051                                        0, 1); /* no retry, and no wait. */
4052                 }
4053         }       
4054 #endif /* CONFIG_IPMI_PANIC_STRING */
4055 }
4056 #endif /* CONFIG_IPMI_PANIC_EVENT */
4057
4058 static int has_panicked;
4059
4060 static int panic_event(struct notifier_block *this,
4061                        unsigned long         event,
4062                        void                  *ptr)
4063 {
4064         ipmi_smi_t intf;
4065
4066         if (has_panicked)
4067                 return NOTIFY_DONE;
4068         has_panicked = 1;
4069
4070         /* For every registered interface, set it to run to completion. */
4071         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4072                 if (!intf->handlers)
4073                         /* Interface is not ready. */
4074                         continue;
4075
4076                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4077         }
4078
4079 #ifdef CONFIG_IPMI_PANIC_EVENT
4080         send_panic_events(ptr);
4081 #endif
4082
4083         return NOTIFY_DONE;
4084 }
4085
4086 static struct notifier_block panic_block = {
4087         .notifier_call  = panic_event,
4088         .next           = NULL,
4089         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4090 };
4091
4092 static int ipmi_init_msghandler(void)
4093 {
4094         int rv;
4095
4096         if (initialized)
4097                 return 0;
4098
4099         rv = driver_register(&ipmidriver);
4100         if (rv) {
4101                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4102                 return rv;
4103         }
4104
4105         printk(KERN_INFO "ipmi message handler version "
4106                IPMI_DRIVER_VERSION "\n");
4107
4108 #ifdef CONFIG_PROC_FS
4109         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4110         if (!proc_ipmi_root) {
4111             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4112             return -ENOMEM;
4113         }
4114
4115         proc_ipmi_root->owner = THIS_MODULE;
4116 #endif /* CONFIG_PROC_FS */
4117
4118         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4119         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4120
4121         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4122
4123         initialized = 1;
4124
4125         return 0;
4126 }
4127
4128 static __init int ipmi_init_msghandler_mod(void)
4129 {
4130         ipmi_init_msghandler();
4131         return 0;
4132 }
4133
4134 static __exit void cleanup_ipmi(void)
4135 {
4136         int count;
4137
4138         if (!initialized)
4139                 return;
4140
4141         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4142
4143         /* This can't be called if any interfaces exist, so no worry about
4144            shutting down the interfaces. */
4145
4146         /* Tell the timer to stop, then wait for it to stop.  This avoids
4147            problems with race conditions removing the timer here. */
4148         atomic_inc(&stop_operation);
4149         del_timer_sync(&ipmi_timer);
4150
4151 #ifdef CONFIG_PROC_FS
4152         remove_proc_entry(proc_ipmi_root->name, &proc_root);
4153 #endif /* CONFIG_PROC_FS */
4154
4155         driver_unregister(&ipmidriver);
4156
4157         initialized = 0;
4158
4159         /* Check for buffer leaks. */
4160         count = atomic_read(&smi_msg_inuse_count);
4161         if (count != 0)
4162                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4163                        count);
4164         count = atomic_read(&recv_msg_inuse_count);
4165         if (count != 0)
4166                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4167                        count);
4168 }
4169 module_exit(cleanup_ipmi);
4170
4171 module_init(ipmi_init_msghandler_mod);
4172 MODULE_LICENSE("GPL");
4173 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4174 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
4175 MODULE_VERSION(IPMI_DRIVER_VERSION);
4176
4177 EXPORT_SYMBOL(ipmi_create_user);
4178 EXPORT_SYMBOL(ipmi_destroy_user);
4179 EXPORT_SYMBOL(ipmi_get_version);
4180 EXPORT_SYMBOL(ipmi_request_settime);
4181 EXPORT_SYMBOL(ipmi_request_supply_msgs);
4182 EXPORT_SYMBOL(ipmi_register_smi);
4183 EXPORT_SYMBOL(ipmi_unregister_smi);
4184 EXPORT_SYMBOL(ipmi_register_for_cmd);
4185 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
4186 EXPORT_SYMBOL(ipmi_smi_msg_received);
4187 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4188 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4189 EXPORT_SYMBOL(ipmi_addr_length);
4190 EXPORT_SYMBOL(ipmi_validate_addr);
4191 EXPORT_SYMBOL(ipmi_set_gets_events);
4192 EXPORT_SYMBOL(ipmi_smi_watcher_register);
4193 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
4194 EXPORT_SYMBOL(ipmi_set_my_address);
4195 EXPORT_SYMBOL(ipmi_get_my_address);
4196 EXPORT_SYMBOL(ipmi_set_my_LUN);
4197 EXPORT_SYMBOL(ipmi_get_my_LUN);
4198 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
4199 EXPORT_SYMBOL(ipmi_user_set_run_to_completion);
4200 EXPORT_SYMBOL(ipmi_free_recv_msg);