039b38cf805c51cc012cc732cde8e48ed67ea1ee
[linux-drm-fsl-dcu.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE          (HZ / 10)
30 #define CFQ_SLICE_SCALE         (5)
31
32 #define CFQ_KEY_ASYNC           (0)
33
34 /*
35  * for the hash of cfqq inside the cfqd
36  */
37 #define CFQ_QHASH_SHIFT         6
38 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC                   (0)
57 #define SYNC                    (1)
58
59 #define cfq_cfqq_dispatched(cfqq)       \
60         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq)             \
65         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Per block device queue structure
71  */
72 struct cfq_data {
73         request_queue_t *queue;
74
75         /*
76          * rr list of queues with requests and the count of them
77          */
78         struct list_head rr_list[CFQ_PRIO_LISTS];
79         struct list_head busy_rr;
80         struct list_head cur_rr;
81         struct list_head idle_rr;
82         unsigned int busy_queues;
83
84         /*
85          * cfqq lookup hash
86          */
87         struct hlist_head *cfq_hash;
88
89         int rq_in_driver;
90         int hw_tag;
91
92         /*
93          * idle window management
94          */
95         struct timer_list idle_slice_timer;
96         struct work_struct unplug_work;
97
98         struct cfq_queue *active_queue;
99         struct cfq_io_context *active_cic;
100         int cur_prio, cur_end_prio;
101         unsigned int dispatch_slice;
102
103         struct timer_list idle_class_timer;
104
105         sector_t last_sector;
106         unsigned long last_end_request;
107
108         /*
109          * tunables, see top of file
110          */
111         unsigned int cfq_quantum;
112         unsigned int cfq_fifo_expire[2];
113         unsigned int cfq_back_penalty;
114         unsigned int cfq_back_max;
115         unsigned int cfq_slice[2];
116         unsigned int cfq_slice_async_rq;
117         unsigned int cfq_slice_idle;
118
119         struct list_head cic_list;
120 };
121
122 /*
123  * Per process-grouping structure
124  */
125 struct cfq_queue {
126         /* reference count */
127         atomic_t ref;
128         /* parent cfq_data */
129         struct cfq_data *cfqd;
130         /* cfqq lookup hash */
131         struct hlist_node cfq_hash;
132         /* hash key */
133         unsigned int key;
134         /* member of the rr/busy/cur/idle cfqd list */
135         struct list_head cfq_list;
136         /* sorted list of pending requests */
137         struct rb_root sort_list;
138         /* if fifo isn't expired, next request to serve */
139         struct request *next_rq;
140         /* requests queued in sort_list */
141         int queued[2];
142         /* currently allocated requests */
143         int allocated[2];
144         /* pending metadata requests */
145         int meta_pending;
146         /* fifo list of requests in sort_list */
147         struct list_head fifo;
148
149         unsigned long slice_end;
150         unsigned long service_last;
151         long slice_resid;
152
153         /* number of requests that are on the dispatch list */
154         int on_dispatch[2];
155
156         /* io prio of this group */
157         unsigned short ioprio, org_ioprio;
158         unsigned short ioprio_class, org_ioprio_class;
159
160         /* various state flags, see below */
161         unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
166         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
167         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
168         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
169         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
170         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
171         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
172         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
173         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
174         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
175 };
176
177 #define CFQ_CFQQ_FNS(name)                                              \
178 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
179 {                                                                       \
180         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
181 }                                                                       \
182 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
183 {                                                                       \
184         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
185 }                                                                       \
186 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
187 {                                                                       \
188         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
189 }
190
191 CFQ_CFQQ_FNS(on_rr);
192 CFQ_CFQQ_FNS(wait_request);
193 CFQ_CFQQ_FNS(must_alloc);
194 CFQ_CFQQ_FNS(must_alloc_slice);
195 CFQ_CFQQ_FNS(must_dispatch);
196 CFQ_CFQQ_FNS(fifo_expire);
197 CFQ_CFQQ_FNS(idle_window);
198 CFQ_CFQQ_FNS(prio_changed);
199 CFQ_CFQQ_FNS(queue_new);
200 CFQ_CFQQ_FNS(slice_new);
201 #undef CFQ_CFQQ_FNS
202
203 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
204 static void cfq_dispatch_insert(request_queue_t *, struct request *);
205 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206
207 /*
208  * scheduler run of queue, if there are requests pending and no one in the
209  * driver that will restart queueing
210  */
211 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
212 {
213         if (cfqd->busy_queues)
214                 kblockd_schedule_work(&cfqd->unplug_work);
215 }
216
217 static int cfq_queue_empty(request_queue_t *q)
218 {
219         struct cfq_data *cfqd = q->elevator->elevator_data;
220
221         return !cfqd->busy_queues;
222 }
223
224 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225 {
226         /*
227          * Use the per-process queue, for read requests and syncronous writes
228          */
229         if (!(rw & REQ_RW) || is_sync)
230                 return task->pid;
231
232         return CFQ_KEY_ASYNC;
233 }
234
235 /*
236  * Scale schedule slice based on io priority. Use the sync time slice only
237  * if a queue is marked sync and has sync io queued. A sync queue with async
238  * io only, should not get full sync slice length.
239  */
240 static inline int
241 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
242 {
243         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
244
245         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
246
247         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
248 }
249
250 static inline void
251 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
252 {
253         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
254         cfqq->slice_end += cfqq->slice_resid;
255
256         /*
257          * Don't carry over residual for more than one slice, we only want
258          * to slightly correct the fairness. Carrying over forever would
259          * easily introduce oscillations.
260          */
261         cfqq->slice_resid = 0;
262 }
263
264 /*
265  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
266  * isn't valid until the first request from the dispatch is activated
267  * and the slice time set.
268  */
269 static inline int cfq_slice_used(struct cfq_queue *cfqq)
270 {
271         if (cfq_cfqq_slice_new(cfqq))
272                 return 0;
273         if (time_before(jiffies, cfqq->slice_end))
274                 return 0;
275
276         return 1;
277 }
278
279 /*
280  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
281  * We choose the request that is closest to the head right now. Distance
282  * behind the head is penalized and only allowed to a certain extent.
283  */
284 static struct request *
285 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
286 {
287         sector_t last, s1, s2, d1 = 0, d2 = 0;
288         unsigned long back_max;
289 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
290 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
291         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
292
293         if (rq1 == NULL || rq1 == rq2)
294                 return rq2;
295         if (rq2 == NULL)
296                 return rq1;
297
298         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
299                 return rq1;
300         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
301                 return rq2;
302         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
303                 return rq1;
304         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
305                 return rq2;
306
307         s1 = rq1->sector;
308         s2 = rq2->sector;
309
310         last = cfqd->last_sector;
311
312         /*
313          * by definition, 1KiB is 2 sectors
314          */
315         back_max = cfqd->cfq_back_max * 2;
316
317         /*
318          * Strict one way elevator _except_ in the case where we allow
319          * short backward seeks which are biased as twice the cost of a
320          * similar forward seek.
321          */
322         if (s1 >= last)
323                 d1 = s1 - last;
324         else if (s1 + back_max >= last)
325                 d1 = (last - s1) * cfqd->cfq_back_penalty;
326         else
327                 wrap |= CFQ_RQ1_WRAP;
328
329         if (s2 >= last)
330                 d2 = s2 - last;
331         else if (s2 + back_max >= last)
332                 d2 = (last - s2) * cfqd->cfq_back_penalty;
333         else
334                 wrap |= CFQ_RQ2_WRAP;
335
336         /* Found required data */
337
338         /*
339          * By doing switch() on the bit mask "wrap" we avoid having to
340          * check two variables for all permutations: --> faster!
341          */
342         switch (wrap) {
343         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
344                 if (d1 < d2)
345                         return rq1;
346                 else if (d2 < d1)
347                         return rq2;
348                 else {
349                         if (s1 >= s2)
350                                 return rq1;
351                         else
352                                 return rq2;
353                 }
354
355         case CFQ_RQ2_WRAP:
356                 return rq1;
357         case CFQ_RQ1_WRAP:
358                 return rq2;
359         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
360         default:
361                 /*
362                  * Since both rqs are wrapped,
363                  * start with the one that's further behind head
364                  * (--> only *one* back seek required),
365                  * since back seek takes more time than forward.
366                  */
367                 if (s1 <= s2)
368                         return rq1;
369                 else
370                         return rq2;
371         }
372 }
373
374 /*
375  * would be nice to take fifo expire time into account as well
376  */
377 static struct request *
378 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
379                   struct request *last)
380 {
381         struct rb_node *rbnext = rb_next(&last->rb_node);
382         struct rb_node *rbprev = rb_prev(&last->rb_node);
383         struct request *next = NULL, *prev = NULL;
384
385         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
386
387         if (rbprev)
388                 prev = rb_entry_rq(rbprev);
389
390         if (rbnext)
391                 next = rb_entry_rq(rbnext);
392         else {
393                 rbnext = rb_first(&cfqq->sort_list);
394                 if (rbnext && rbnext != &last->rb_node)
395                         next = rb_entry_rq(rbnext);
396         }
397
398         return cfq_choose_req(cfqd, next, prev);
399 }
400
401 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
402 {
403         struct cfq_data *cfqd = cfqq->cfqd;
404         struct list_head *list, *n;
405         struct cfq_queue *__cfqq;
406
407         /*
408          * Resorting requires the cfqq to be on the RR list already.
409          */
410         if (!cfq_cfqq_on_rr(cfqq))
411                 return;
412
413         list_del(&cfqq->cfq_list);
414
415         if (cfq_class_rt(cfqq))
416                 list = &cfqd->cur_rr;
417         else if (cfq_class_idle(cfqq))
418                 list = &cfqd->idle_rr;
419         else {
420                 /*
421                  * if cfqq has requests in flight, don't allow it to be
422                  * found in cfq_set_active_queue before it has finished them.
423                  * this is done to increase fairness between a process that
424                  * has lots of io pending vs one that only generates one
425                  * sporadically or synchronously
426                  */
427                 if (cfq_cfqq_dispatched(cfqq))
428                         list = &cfqd->busy_rr;
429                 else
430                         list = &cfqd->rr_list[cfqq->ioprio];
431         }
432
433         if (preempted || cfq_cfqq_queue_new(cfqq)) {
434                 /*
435                  * If this queue was preempted or is new (never been serviced),
436                  * let it be added first for fairness but beind other new
437                  * queues.
438                  */
439                 n = list;
440                 while (n->next != list) {
441                         __cfqq = list_entry_cfqq(n->next);
442                         if (!cfq_cfqq_queue_new(__cfqq))
443                                 break;
444
445                         n = n->next;
446                 }
447                 list_add_tail(&cfqq->cfq_list, n);
448         } else if (!cfq_cfqq_class_sync(cfqq)) {
449                 /*
450                  * async queue always goes to the end. this wont be overly
451                  * unfair to writes, as the sort of the sync queue wont be
452                  * allowed to pass the async queue again.
453                  */
454                 list_add_tail(&cfqq->cfq_list, list);
455         } else {
456                 /*
457                  * sort by last service, but don't cross a new or async
458                  * queue. we don't cross a new queue because it hasn't been
459                  * service before, and we don't cross an async queue because
460                  * it gets added to the end on expire.
461                  */
462                 n = list;
463                 while ((n = n->prev) != list) {
464                         struct cfq_queue *__cfqq = list_entry_cfqq(n);
465
466                         if (!cfq_cfqq_class_sync(cfqq) || !__cfqq->service_last)
467                                 break;
468                         if (time_before(__cfqq->service_last, cfqq->service_last))
469                                 break;
470                 }
471                 list_add(&cfqq->cfq_list, n);
472         }
473 }
474
475 /*
476  * add to busy list of queues for service, trying to be fair in ordering
477  * the pending list according to last request service
478  */
479 static inline void
480 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
481 {
482         BUG_ON(cfq_cfqq_on_rr(cfqq));
483         cfq_mark_cfqq_on_rr(cfqq);
484         cfqd->busy_queues++;
485
486         cfq_resort_rr_list(cfqq, 0);
487 }
488
489 static inline void
490 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
491 {
492         BUG_ON(!cfq_cfqq_on_rr(cfqq));
493         cfq_clear_cfqq_on_rr(cfqq);
494         list_del_init(&cfqq->cfq_list);
495
496         BUG_ON(!cfqd->busy_queues);
497         cfqd->busy_queues--;
498 }
499
500 /*
501  * rb tree support functions
502  */
503 static inline void cfq_del_rq_rb(struct request *rq)
504 {
505         struct cfq_queue *cfqq = RQ_CFQQ(rq);
506         struct cfq_data *cfqd = cfqq->cfqd;
507         const int sync = rq_is_sync(rq);
508
509         BUG_ON(!cfqq->queued[sync]);
510         cfqq->queued[sync]--;
511
512         elv_rb_del(&cfqq->sort_list, rq);
513
514         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
515                 cfq_del_cfqq_rr(cfqd, cfqq);
516 }
517
518 static void cfq_add_rq_rb(struct request *rq)
519 {
520         struct cfq_queue *cfqq = RQ_CFQQ(rq);
521         struct cfq_data *cfqd = cfqq->cfqd;
522         struct request *__alias;
523
524         cfqq->queued[rq_is_sync(rq)]++;
525
526         /*
527          * looks a little odd, but the first insert might return an alias.
528          * if that happens, put the alias on the dispatch list
529          */
530         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
531                 cfq_dispatch_insert(cfqd->queue, __alias);
532
533         if (!cfq_cfqq_on_rr(cfqq))
534                 cfq_add_cfqq_rr(cfqd, cfqq);
535 }
536
537 static inline void
538 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
539 {
540         elv_rb_del(&cfqq->sort_list, rq);
541         cfqq->queued[rq_is_sync(rq)]--;
542         cfq_add_rq_rb(rq);
543 }
544
545 static struct request *
546 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
547 {
548         struct task_struct *tsk = current;
549         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
550         struct cfq_queue *cfqq;
551
552         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
553         if (cfqq) {
554                 sector_t sector = bio->bi_sector + bio_sectors(bio);
555
556                 return elv_rb_find(&cfqq->sort_list, sector);
557         }
558
559         return NULL;
560 }
561
562 static void cfq_activate_request(request_queue_t *q, struct request *rq)
563 {
564         struct cfq_data *cfqd = q->elevator->elevator_data;
565
566         cfqd->rq_in_driver++;
567
568         /*
569          * If the depth is larger 1, it really could be queueing. But lets
570          * make the mark a little higher - idling could still be good for
571          * low queueing, and a low queueing number could also just indicate
572          * a SCSI mid layer like behaviour where limit+1 is often seen.
573          */
574         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
575                 cfqd->hw_tag = 1;
576 }
577
578 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
579 {
580         struct cfq_data *cfqd = q->elevator->elevator_data;
581
582         WARN_ON(!cfqd->rq_in_driver);
583         cfqd->rq_in_driver--;
584 }
585
586 static void cfq_remove_request(struct request *rq)
587 {
588         struct cfq_queue *cfqq = RQ_CFQQ(rq);
589
590         if (cfqq->next_rq == rq)
591                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
592
593         list_del_init(&rq->queuelist);
594         cfq_del_rq_rb(rq);
595
596         if (rq_is_meta(rq)) {
597                 WARN_ON(!cfqq->meta_pending);
598                 cfqq->meta_pending--;
599         }
600 }
601
602 static int
603 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
604 {
605         struct cfq_data *cfqd = q->elevator->elevator_data;
606         struct request *__rq;
607
608         __rq = cfq_find_rq_fmerge(cfqd, bio);
609         if (__rq && elv_rq_merge_ok(__rq, bio)) {
610                 *req = __rq;
611                 return ELEVATOR_FRONT_MERGE;
612         }
613
614         return ELEVATOR_NO_MERGE;
615 }
616
617 static void cfq_merged_request(request_queue_t *q, struct request *req,
618                                int type)
619 {
620         if (type == ELEVATOR_FRONT_MERGE) {
621                 struct cfq_queue *cfqq = RQ_CFQQ(req);
622
623                 cfq_reposition_rq_rb(cfqq, req);
624         }
625 }
626
627 static void
628 cfq_merged_requests(request_queue_t *q, struct request *rq,
629                     struct request *next)
630 {
631         /*
632          * reposition in fifo if next is older than rq
633          */
634         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
635             time_before(next->start_time, rq->start_time))
636                 list_move(&rq->queuelist, &next->queuelist);
637
638         cfq_remove_request(next);
639 }
640
641 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
642                            struct bio *bio)
643 {
644         struct cfq_data *cfqd = q->elevator->elevator_data;
645         const int rw = bio_data_dir(bio);
646         struct cfq_queue *cfqq;
647         pid_t key;
648
649         /*
650          * Disallow merge of a sync bio into an async request.
651          */
652         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
653                 return 0;
654
655         /*
656          * Lookup the cfqq that this bio will be queued with. Allow
657          * merge only if rq is queued there.
658          */
659         key = cfq_queue_pid(current, rw, bio_sync(bio));
660         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
661
662         if (cfqq == RQ_CFQQ(rq))
663                 return 1;
664
665         return 0;
666 }
667
668 static inline void
669 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
670 {
671         if (cfqq) {
672                 /*
673                  * stop potential idle class queues waiting service
674                  */
675                 del_timer(&cfqd->idle_class_timer);
676
677                 cfqq->slice_end = 0;
678                 cfq_clear_cfqq_must_alloc_slice(cfqq);
679                 cfq_clear_cfqq_fifo_expire(cfqq);
680                 cfq_mark_cfqq_slice_new(cfqq);
681         }
682
683         cfqd->active_queue = cfqq;
684 }
685
686 /*
687  * current cfqq expired its slice (or was too idle), select new one
688  */
689 static void
690 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
691                     int preempted)
692 {
693         if (cfq_cfqq_wait_request(cfqq))
694                 del_timer(&cfqd->idle_slice_timer);
695
696         if (!preempted && !cfq_cfqq_dispatched(cfqq))
697                 cfq_schedule_dispatch(cfqd);
698
699         cfq_clear_cfqq_must_dispatch(cfqq);
700         cfq_clear_cfqq_wait_request(cfqq);
701         cfq_clear_cfqq_queue_new(cfqq);
702
703         /*
704          * store what was left of this slice, if the queue idled out
705          * or was preempted
706          */
707         if (!cfq_cfqq_slice_new(cfqq))
708                 cfqq->slice_resid = cfqq->slice_end - jiffies;
709
710         cfq_resort_rr_list(cfqq, preempted);
711
712         if (cfqq == cfqd->active_queue)
713                 cfqd->active_queue = NULL;
714
715         if (cfqd->active_cic) {
716                 put_io_context(cfqd->active_cic->ioc);
717                 cfqd->active_cic = NULL;
718         }
719
720         cfqd->dispatch_slice = 0;
721 }
722
723 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
724 {
725         struct cfq_queue *cfqq = cfqd->active_queue;
726
727         if (cfqq)
728                 __cfq_slice_expired(cfqd, cfqq, preempted);
729 }
730
731 /*
732  * 0
733  * 0,1
734  * 0,1,2
735  * 0,1,2,3
736  * 0,1,2,3,4
737  * 0,1,2,3,4,5
738  * 0,1,2,3,4,5,6
739  * 0,1,2,3,4,5,6,7
740  */
741 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
742 {
743         int prio, wrap;
744
745         prio = -1;
746         wrap = 0;
747         do {
748                 int p;
749
750                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
751                         if (!list_empty(&cfqd->rr_list[p])) {
752                                 prio = p;
753                                 break;
754                         }
755                 }
756
757                 if (prio != -1)
758                         break;
759                 cfqd->cur_prio = 0;
760                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
761                         cfqd->cur_end_prio = 0;
762                         if (wrap)
763                                 break;
764                         wrap = 1;
765                 }
766         } while (1);
767
768         if (unlikely(prio == -1))
769                 return -1;
770
771         BUG_ON(prio >= CFQ_PRIO_LISTS);
772
773         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
774
775         cfqd->cur_prio = prio + 1;
776         if (cfqd->cur_prio > cfqd->cur_end_prio) {
777                 cfqd->cur_end_prio = cfqd->cur_prio;
778                 cfqd->cur_prio = 0;
779         }
780         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
781                 cfqd->cur_prio = 0;
782                 cfqd->cur_end_prio = 0;
783         }
784
785         return prio;
786 }
787
788 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
789 {
790         struct cfq_queue *cfqq = NULL;
791
792         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
793                 /*
794                  * if current list is non-empty, grab first entry. if it is
795                  * empty, get next prio level and grab first entry then if any
796                  * are spliced
797                  */
798                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
799         } else if (!list_empty(&cfqd->busy_rr)) {
800                 /*
801                  * If no new queues are available, check if the busy list has
802                  * some before falling back to idle io.
803                  */
804                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
805         } else if (!list_empty(&cfqd->idle_rr)) {
806                 /*
807                  * if we have idle queues and no rt or be queues had pending
808                  * requests, either allow immediate service if the grace period
809                  * has passed or arm the idle grace timer
810                  */
811                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
812
813                 if (time_after_eq(jiffies, end))
814                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
815                 else
816                         mod_timer(&cfqd->idle_class_timer, end);
817         }
818
819         __cfq_set_active_queue(cfqd, cfqq);
820         return cfqq;
821 }
822
823 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
824
825 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
826
827 {
828         struct cfq_io_context *cic;
829         unsigned long sl;
830
831         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
832         WARN_ON(cfqq != cfqd->active_queue);
833
834         /*
835          * idle is disabled, either manually or by past process history
836          */
837         if (!cfqd->cfq_slice_idle)
838                 return 0;
839         if (!cfq_cfqq_idle_window(cfqq))
840                 return 0;
841         /*
842          * task has exited, don't wait
843          */
844         cic = cfqd->active_cic;
845         if (!cic || !cic->ioc->task)
846                 return 0;
847
848         cfq_mark_cfqq_must_dispatch(cfqq);
849         cfq_mark_cfqq_wait_request(cfqq);
850
851         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
852
853         /*
854          * we don't want to idle for seeks, but we do want to allow
855          * fair distribution of slice time for a process doing back-to-back
856          * seeks. so allow a little bit of time for him to submit a new rq
857          */
858         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
859                 sl = min(sl, msecs_to_jiffies(2));
860
861         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
862         return 1;
863 }
864
865 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
866 {
867         struct cfq_data *cfqd = q->elevator->elevator_data;
868         struct cfq_queue *cfqq = RQ_CFQQ(rq);
869
870         cfq_remove_request(rq);
871         cfqq->on_dispatch[rq_is_sync(rq)]++;
872         elv_dispatch_sort(q, rq);
873
874         rq = list_entry(q->queue_head.prev, struct request, queuelist);
875         cfqd->last_sector = rq->sector + rq->nr_sectors;
876 }
877
878 /*
879  * return expired entry, or NULL to just start from scratch in rbtree
880  */
881 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
882 {
883         struct cfq_data *cfqd = cfqq->cfqd;
884         struct request *rq;
885         int fifo;
886
887         if (cfq_cfqq_fifo_expire(cfqq))
888                 return NULL;
889         if (list_empty(&cfqq->fifo))
890                 return NULL;
891
892         fifo = cfq_cfqq_class_sync(cfqq);
893         rq = rq_entry_fifo(cfqq->fifo.next);
894
895         if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
896                 cfq_mark_cfqq_fifo_expire(cfqq);
897                 return rq;
898         }
899
900         return NULL;
901 }
902
903 static inline int
904 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
905 {
906         const int base_rq = cfqd->cfq_slice_async_rq;
907
908         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
909
910         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
911 }
912
913 /*
914  * get next queue for service
915  */
916 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
917 {
918         struct cfq_queue *cfqq;
919
920         cfqq = cfqd->active_queue;
921         if (!cfqq)
922                 goto new_queue;
923
924         /*
925          * slice has expired
926          */
927         if (!cfq_cfqq_must_dispatch(cfqq) && cfq_slice_used(cfqq))
928                 goto expire;
929
930         /*
931          * if queue has requests, dispatch one. if not, check if
932          * enough slice is left to wait for one
933          */
934         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
935                 goto keep_queue;
936         else if (cfq_cfqq_slice_new(cfqq) || cfq_cfqq_dispatched(cfqq)) {
937                 cfqq = NULL;
938                 goto keep_queue;
939         } else if (cfq_cfqq_class_sync(cfqq)) {
940                 if (cfq_arm_slice_timer(cfqd, cfqq))
941                         return NULL;
942         }
943
944 expire:
945         cfq_slice_expired(cfqd, 0);
946 new_queue:
947         cfqq = cfq_set_active_queue(cfqd);
948 keep_queue:
949         return cfqq;
950 }
951
952 static int
953 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
954                         int max_dispatch)
955 {
956         int dispatched = 0;
957
958         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
959
960         do {
961                 struct request *rq;
962
963                 /*
964                  * follow expired path, else get first next available
965                  */
966                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
967                         rq = cfqq->next_rq;
968
969                 /*
970                  * finally, insert request into driver dispatch list
971                  */
972                 cfq_dispatch_insert(cfqd->queue, rq);
973
974                 cfqd->dispatch_slice++;
975                 dispatched++;
976
977                 if (!cfqd->active_cic) {
978                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
979                         cfqd->active_cic = RQ_CIC(rq);
980                 }
981
982                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
983                         break;
984
985         } while (dispatched < max_dispatch);
986
987         /*
988          * expire an async queue immediately if it has used up its slice. idle
989          * queue always expire after 1 dispatch round.
990          */
991         if ((!cfq_cfqq_sync(cfqq) &&
992             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
993             cfq_class_idle(cfqq)) {
994                 cfqq->slice_end = jiffies + 1;
995                 cfq_slice_expired(cfqd, 0);
996         }
997
998         return dispatched;
999 }
1000
1001 static int
1002 cfq_forced_dispatch_cfqqs(struct list_head *list)
1003 {
1004         struct cfq_queue *cfqq, *next;
1005         int dispatched;
1006
1007         dispatched = 0;
1008         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1009                 while (cfqq->next_rq) {
1010                         cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1011                         dispatched++;
1012                 }
1013                 BUG_ON(!list_empty(&cfqq->fifo));
1014         }
1015
1016         return dispatched;
1017 }
1018
1019 static int
1020 cfq_forced_dispatch(struct cfq_data *cfqd)
1021 {
1022         int i, dispatched = 0;
1023
1024         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1025                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1026
1027         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1028         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1029         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1030
1031         cfq_slice_expired(cfqd, 0);
1032
1033         BUG_ON(cfqd->busy_queues);
1034
1035         return dispatched;
1036 }
1037
1038 static int
1039 cfq_dispatch_requests(request_queue_t *q, int force)
1040 {
1041         struct cfq_data *cfqd = q->elevator->elevator_data;
1042         struct cfq_queue *cfqq, *prev_cfqq;
1043         int dispatched;
1044
1045         if (!cfqd->busy_queues)
1046                 return 0;
1047
1048         if (unlikely(force))
1049                 return cfq_forced_dispatch(cfqd);
1050
1051         dispatched = 0;
1052         prev_cfqq = NULL;
1053         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1054                 int max_dispatch;
1055
1056                 /*
1057                  * Don't repeat dispatch from the previous queue.
1058                  */
1059                 if (prev_cfqq == cfqq)
1060                         break;
1061
1062                 cfq_clear_cfqq_must_dispatch(cfqq);
1063                 cfq_clear_cfqq_wait_request(cfqq);
1064                 del_timer(&cfqd->idle_slice_timer);
1065
1066                 max_dispatch = cfqd->cfq_quantum;
1067                 if (cfq_class_idle(cfqq))
1068                         max_dispatch = 1;
1069
1070                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1071
1072                 /*
1073                  * If the dispatch cfqq has idling enabled and is still
1074                  * the active queue, break out.
1075                  */
1076                 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1077                         break;
1078
1079                 prev_cfqq = cfqq;
1080         }
1081
1082         return dispatched;
1083 }
1084
1085 /*
1086  * task holds one reference to the queue, dropped when task exits. each rq
1087  * in-flight on this queue also holds a reference, dropped when rq is freed.
1088  *
1089  * queue lock must be held here.
1090  */
1091 static void cfq_put_queue(struct cfq_queue *cfqq)
1092 {
1093         struct cfq_data *cfqd = cfqq->cfqd;
1094
1095         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1096
1097         if (!atomic_dec_and_test(&cfqq->ref))
1098                 return;
1099
1100         BUG_ON(rb_first(&cfqq->sort_list));
1101         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1102         BUG_ON(cfq_cfqq_on_rr(cfqq));
1103
1104         if (unlikely(cfqd->active_queue == cfqq))
1105                 __cfq_slice_expired(cfqd, cfqq, 0);
1106
1107         /*
1108          * it's on the empty list and still hashed
1109          */
1110         list_del(&cfqq->cfq_list);
1111         hlist_del(&cfqq->cfq_hash);
1112         kmem_cache_free(cfq_pool, cfqq);
1113 }
1114
1115 static struct cfq_queue *
1116 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1117                     const int hashval)
1118 {
1119         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1120         struct hlist_node *entry;
1121         struct cfq_queue *__cfqq;
1122
1123         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1124                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1125
1126                 if (__cfqq->key == key && (__p == prio || !prio))
1127                         return __cfqq;
1128         }
1129
1130         return NULL;
1131 }
1132
1133 static struct cfq_queue *
1134 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1135 {
1136         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1137 }
1138
1139 static void cfq_free_io_context(struct io_context *ioc)
1140 {
1141         struct cfq_io_context *__cic;
1142         struct rb_node *n;
1143         int freed = 0;
1144
1145         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1146                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1147                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1148                 kmem_cache_free(cfq_ioc_pool, __cic);
1149                 freed++;
1150         }
1151
1152         elv_ioc_count_mod(ioc_count, -freed);
1153
1154         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1155                 complete(ioc_gone);
1156 }
1157
1158 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1159 {
1160         if (unlikely(cfqq == cfqd->active_queue))
1161                 __cfq_slice_expired(cfqd, cfqq, 0);
1162
1163         cfq_put_queue(cfqq);
1164 }
1165
1166 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1167                                          struct cfq_io_context *cic)
1168 {
1169         list_del_init(&cic->queue_list);
1170         smp_wmb();
1171         cic->key = NULL;
1172
1173         if (cic->cfqq[ASYNC]) {
1174                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1175                 cic->cfqq[ASYNC] = NULL;
1176         }
1177
1178         if (cic->cfqq[SYNC]) {
1179                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1180                 cic->cfqq[SYNC] = NULL;
1181         }
1182 }
1183
1184
1185 /*
1186  * Called with interrupts disabled
1187  */
1188 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1189 {
1190         struct cfq_data *cfqd = cic->key;
1191
1192         if (cfqd) {
1193                 request_queue_t *q = cfqd->queue;
1194
1195                 spin_lock_irq(q->queue_lock);
1196                 __cfq_exit_single_io_context(cfqd, cic);
1197                 spin_unlock_irq(q->queue_lock);
1198         }
1199 }
1200
1201 static void cfq_exit_io_context(struct io_context *ioc)
1202 {
1203         struct cfq_io_context *__cic;
1204         struct rb_node *n;
1205
1206         /*
1207          * put the reference this task is holding to the various queues
1208          */
1209
1210         n = rb_first(&ioc->cic_root);
1211         while (n != NULL) {
1212                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1213
1214                 cfq_exit_single_io_context(__cic);
1215                 n = rb_next(n);
1216         }
1217 }
1218
1219 static struct cfq_io_context *
1220 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1221 {
1222         struct cfq_io_context *cic;
1223
1224         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1225         if (cic) {
1226                 memset(cic, 0, sizeof(*cic));
1227                 cic->last_end_request = jiffies;
1228                 INIT_LIST_HEAD(&cic->queue_list);
1229                 cic->dtor = cfq_free_io_context;
1230                 cic->exit = cfq_exit_io_context;
1231                 elv_ioc_count_inc(ioc_count);
1232         }
1233
1234         return cic;
1235 }
1236
1237 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1238 {
1239         struct task_struct *tsk = current;
1240         int ioprio_class;
1241
1242         if (!cfq_cfqq_prio_changed(cfqq))
1243                 return;
1244
1245         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1246         switch (ioprio_class) {
1247                 default:
1248                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1249                 case IOPRIO_CLASS_NONE:
1250                         /*
1251                          * no prio set, place us in the middle of the BE classes
1252                          */
1253                         cfqq->ioprio = task_nice_ioprio(tsk);
1254                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1255                         break;
1256                 case IOPRIO_CLASS_RT:
1257                         cfqq->ioprio = task_ioprio(tsk);
1258                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1259                         break;
1260                 case IOPRIO_CLASS_BE:
1261                         cfqq->ioprio = task_ioprio(tsk);
1262                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1263                         break;
1264                 case IOPRIO_CLASS_IDLE:
1265                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1266                         cfqq->ioprio = 7;
1267                         cfq_clear_cfqq_idle_window(cfqq);
1268                         break;
1269         }
1270
1271         /*
1272          * keep track of original prio settings in case we have to temporarily
1273          * elevate the priority of this queue
1274          */
1275         cfqq->org_ioprio = cfqq->ioprio;
1276         cfqq->org_ioprio_class = cfqq->ioprio_class;
1277
1278         cfq_resort_rr_list(cfqq, 0);
1279         cfq_clear_cfqq_prio_changed(cfqq);
1280 }
1281
1282 static inline void changed_ioprio(struct cfq_io_context *cic)
1283 {
1284         struct cfq_data *cfqd = cic->key;
1285         struct cfq_queue *cfqq;
1286         unsigned long flags;
1287
1288         if (unlikely(!cfqd))
1289                 return;
1290
1291         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1292
1293         cfqq = cic->cfqq[ASYNC];
1294         if (cfqq) {
1295                 struct cfq_queue *new_cfqq;
1296                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1297                                          GFP_ATOMIC);
1298                 if (new_cfqq) {
1299                         cic->cfqq[ASYNC] = new_cfqq;
1300                         cfq_put_queue(cfqq);
1301                 }
1302         }
1303
1304         cfqq = cic->cfqq[SYNC];
1305         if (cfqq)
1306                 cfq_mark_cfqq_prio_changed(cfqq);
1307
1308         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1309 }
1310
1311 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1312 {
1313         struct cfq_io_context *cic;
1314         struct rb_node *n;
1315
1316         ioc->ioprio_changed = 0;
1317
1318         n = rb_first(&ioc->cic_root);
1319         while (n != NULL) {
1320                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1321
1322                 changed_ioprio(cic);
1323                 n = rb_next(n);
1324         }
1325 }
1326
1327 static struct cfq_queue *
1328 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1329               gfp_t gfp_mask)
1330 {
1331         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1332         struct cfq_queue *cfqq, *new_cfqq = NULL;
1333         unsigned short ioprio;
1334
1335 retry:
1336         ioprio = tsk->ioprio;
1337         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1338
1339         if (!cfqq) {
1340                 if (new_cfqq) {
1341                         cfqq = new_cfqq;
1342                         new_cfqq = NULL;
1343                 } else if (gfp_mask & __GFP_WAIT) {
1344                         /*
1345                          * Inform the allocator of the fact that we will
1346                          * just repeat this allocation if it fails, to allow
1347                          * the allocator to do whatever it needs to attempt to
1348                          * free memory.
1349                          */
1350                         spin_unlock_irq(cfqd->queue->queue_lock);
1351                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1352                         spin_lock_irq(cfqd->queue->queue_lock);
1353                         goto retry;
1354                 } else {
1355                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1356                         if (!cfqq)
1357                                 goto out;
1358                 }
1359
1360                 memset(cfqq, 0, sizeof(*cfqq));
1361
1362                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1363                 INIT_LIST_HEAD(&cfqq->cfq_list);
1364                 INIT_LIST_HEAD(&cfqq->fifo);
1365
1366                 cfqq->key = key;
1367                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1368                 atomic_set(&cfqq->ref, 0);
1369                 cfqq->cfqd = cfqd;
1370
1371                 cfq_mark_cfqq_idle_window(cfqq);
1372                 cfq_mark_cfqq_prio_changed(cfqq);
1373                 cfq_mark_cfqq_queue_new(cfqq);
1374                 cfq_init_prio_data(cfqq);
1375         }
1376
1377         if (new_cfqq)
1378                 kmem_cache_free(cfq_pool, new_cfqq);
1379
1380         atomic_inc(&cfqq->ref);
1381 out:
1382         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1383         return cfqq;
1384 }
1385
1386 static void
1387 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1388 {
1389         WARN_ON(!list_empty(&cic->queue_list));
1390         rb_erase(&cic->rb_node, &ioc->cic_root);
1391         kmem_cache_free(cfq_ioc_pool, cic);
1392         elv_ioc_count_dec(ioc_count);
1393 }
1394
1395 static struct cfq_io_context *
1396 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1397 {
1398         struct rb_node *n;
1399         struct cfq_io_context *cic;
1400         void *k, *key = cfqd;
1401
1402 restart:
1403         n = ioc->cic_root.rb_node;
1404         while (n) {
1405                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1406                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1407                 k = cic->key;
1408                 if (unlikely(!k)) {
1409                         cfq_drop_dead_cic(ioc, cic);
1410                         goto restart;
1411                 }
1412
1413                 if (key < k)
1414                         n = n->rb_left;
1415                 else if (key > k)
1416                         n = n->rb_right;
1417                 else
1418                         return cic;
1419         }
1420
1421         return NULL;
1422 }
1423
1424 static inline void
1425 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1426              struct cfq_io_context *cic)
1427 {
1428         struct rb_node **p;
1429         struct rb_node *parent;
1430         struct cfq_io_context *__cic;
1431         unsigned long flags;
1432         void *k;
1433
1434         cic->ioc = ioc;
1435         cic->key = cfqd;
1436
1437 restart:
1438         parent = NULL;
1439         p = &ioc->cic_root.rb_node;
1440         while (*p) {
1441                 parent = *p;
1442                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1443                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1444                 k = __cic->key;
1445                 if (unlikely(!k)) {
1446                         cfq_drop_dead_cic(ioc, __cic);
1447                         goto restart;
1448                 }
1449
1450                 if (cic->key < k)
1451                         p = &(*p)->rb_left;
1452                 else if (cic->key > k)
1453                         p = &(*p)->rb_right;
1454                 else
1455                         BUG();
1456         }
1457
1458         rb_link_node(&cic->rb_node, parent, p);
1459         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1460
1461         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1462         list_add(&cic->queue_list, &cfqd->cic_list);
1463         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1464 }
1465
1466 /*
1467  * Setup general io context and cfq io context. There can be several cfq
1468  * io contexts per general io context, if this process is doing io to more
1469  * than one device managed by cfq.
1470  */
1471 static struct cfq_io_context *
1472 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1473 {
1474         struct io_context *ioc = NULL;
1475         struct cfq_io_context *cic;
1476
1477         might_sleep_if(gfp_mask & __GFP_WAIT);
1478
1479         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1480         if (!ioc)
1481                 return NULL;
1482
1483         cic = cfq_cic_rb_lookup(cfqd, ioc);
1484         if (cic)
1485                 goto out;
1486
1487         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1488         if (cic == NULL)
1489                 goto err;
1490
1491         cfq_cic_link(cfqd, ioc, cic);
1492 out:
1493         smp_read_barrier_depends();
1494         if (unlikely(ioc->ioprio_changed))
1495                 cfq_ioc_set_ioprio(ioc);
1496
1497         return cic;
1498 err:
1499         put_io_context(ioc);
1500         return NULL;
1501 }
1502
1503 static void
1504 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1505 {
1506         unsigned long elapsed = jiffies - cic->last_end_request;
1507         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1508
1509         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1510         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1511         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1512 }
1513
1514 static void
1515 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1516 {
1517         sector_t sdist;
1518         u64 total;
1519
1520         if (cic->last_request_pos < rq->sector)
1521                 sdist = rq->sector - cic->last_request_pos;
1522         else
1523                 sdist = cic->last_request_pos - rq->sector;
1524
1525         /*
1526          * Don't allow the seek distance to get too large from the
1527          * odd fragment, pagein, etc
1528          */
1529         if (cic->seek_samples <= 60) /* second&third seek */
1530                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1531         else
1532                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1533
1534         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1535         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1536         total = cic->seek_total + (cic->seek_samples/2);
1537         do_div(total, cic->seek_samples);
1538         cic->seek_mean = (sector_t)total;
1539 }
1540
1541 /*
1542  * Disable idle window if the process thinks too long or seeks so much that
1543  * it doesn't matter
1544  */
1545 static void
1546 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547                        struct cfq_io_context *cic)
1548 {
1549         int enable_idle = cfq_cfqq_idle_window(cfqq);
1550
1551         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1552             (cfqd->hw_tag && CIC_SEEKY(cic)))
1553                 enable_idle = 0;
1554         else if (sample_valid(cic->ttime_samples)) {
1555                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1556                         enable_idle = 0;
1557                 else
1558                         enable_idle = 1;
1559         }
1560
1561         if (enable_idle)
1562                 cfq_mark_cfqq_idle_window(cfqq);
1563         else
1564                 cfq_clear_cfqq_idle_window(cfqq);
1565 }
1566
1567
1568 /*
1569  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1570  * no or if we aren't sure, a 1 will cause a preempt.
1571  */
1572 static int
1573 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1574                    struct request *rq)
1575 {
1576         struct cfq_queue *cfqq = cfqd->active_queue;
1577
1578         if (cfq_class_idle(new_cfqq))
1579                 return 0;
1580
1581         if (!cfqq)
1582                 return 0;
1583
1584         if (cfq_class_idle(cfqq))
1585                 return 1;
1586         if (!cfq_cfqq_wait_request(new_cfqq))
1587                 return 0;
1588         /*
1589          * if the new request is sync, but the currently running queue is
1590          * not, let the sync request have priority.
1591          */
1592         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1593                 return 1;
1594         /*
1595          * So both queues are sync. Let the new request get disk time if
1596          * it's a metadata request and the current queue is doing regular IO.
1597          */
1598         if (rq_is_meta(rq) && !cfqq->meta_pending)
1599                 return 1;
1600
1601         return 0;
1602 }
1603
1604 /*
1605  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1606  * let it have half of its nominal slice.
1607  */
1608 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1609 {
1610         cfq_slice_expired(cfqd, 1);
1611
1612         /*
1613          * Put the new queue at the front of the of the current list,
1614          * so we know that it will be selected next.
1615          */
1616         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1617         list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1618
1619         cfqq->slice_end = 0;
1620         cfq_mark_cfqq_slice_new(cfqq);
1621 }
1622
1623 /*
1624  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1625  * something we should do about it
1626  */
1627 static void
1628 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1629                 struct request *rq)
1630 {
1631         struct cfq_io_context *cic = RQ_CIC(rq);
1632
1633         if (rq_is_meta(rq))
1634                 cfqq->meta_pending++;
1635
1636         /*
1637          * check if this request is a better next-serve candidate)) {
1638          */
1639         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1640         BUG_ON(!cfqq->next_rq);
1641
1642         /*
1643          * we never wait for an async request and we don't allow preemption
1644          * of an async request. so just return early
1645          */
1646         if (!rq_is_sync(rq)) {
1647                 /*
1648                  * sync process issued an async request, if it's waiting
1649                  * then expire it and kick rq handling.
1650                  */
1651                 if (cic == cfqd->active_cic &&
1652                     del_timer(&cfqd->idle_slice_timer)) {
1653                         cfq_slice_expired(cfqd, 0);
1654                         blk_start_queueing(cfqd->queue);
1655                 }
1656                 return;
1657         }
1658
1659         cfq_update_io_thinktime(cfqd, cic);
1660         cfq_update_io_seektime(cic, rq);
1661         cfq_update_idle_window(cfqd, cfqq, cic);
1662
1663         cic->last_request_pos = rq->sector + rq->nr_sectors;
1664
1665         if (cfqq == cfqd->active_queue) {
1666                 /*
1667                  * if we are waiting for a request for this queue, let it rip
1668                  * immediately and flag that we must not expire this queue
1669                  * just now
1670                  */
1671                 if (cfq_cfqq_wait_request(cfqq)) {
1672                         cfq_mark_cfqq_must_dispatch(cfqq);
1673                         del_timer(&cfqd->idle_slice_timer);
1674                         blk_start_queueing(cfqd->queue);
1675                 }
1676         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1677                 /*
1678                  * not the active queue - expire current slice if it is
1679                  * idle and has expired it's mean thinktime or this new queue
1680                  * has some old slice time left and is of higher priority
1681                  */
1682                 cfq_preempt_queue(cfqd, cfqq);
1683                 cfq_mark_cfqq_must_dispatch(cfqq);
1684                 blk_start_queueing(cfqd->queue);
1685         }
1686 }
1687
1688 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1689 {
1690         struct cfq_data *cfqd = q->elevator->elevator_data;
1691         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1692
1693         cfq_init_prio_data(cfqq);
1694
1695         cfq_add_rq_rb(rq);
1696
1697         list_add_tail(&rq->queuelist, &cfqq->fifo);
1698
1699         cfq_rq_enqueued(cfqd, cfqq, rq);
1700 }
1701
1702 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1703 {
1704         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1705         struct cfq_data *cfqd = cfqq->cfqd;
1706         const int sync = rq_is_sync(rq);
1707         unsigned long now;
1708
1709         now = jiffies;
1710
1711         WARN_ON(!cfqd->rq_in_driver);
1712         WARN_ON(!cfqq->on_dispatch[sync]);
1713         cfqd->rq_in_driver--;
1714         cfqq->on_dispatch[sync]--;
1715         cfqq->service_last = now;
1716
1717         if (!cfq_class_idle(cfqq))
1718                 cfqd->last_end_request = now;
1719
1720         cfq_resort_rr_list(cfqq, 0);
1721
1722         if (sync)
1723                 RQ_CIC(rq)->last_end_request = now;
1724
1725         /*
1726          * If this is the active queue, check if it needs to be expired,
1727          * or if we want to idle in case it has no pending requests.
1728          */
1729         if (cfqd->active_queue == cfqq) {
1730                 if (cfq_cfqq_slice_new(cfqq)) {
1731                         cfq_set_prio_slice(cfqd, cfqq);
1732                         cfq_clear_cfqq_slice_new(cfqq);
1733                 }
1734                 if (cfq_slice_used(cfqq))
1735                         cfq_slice_expired(cfqd, 0);
1736                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1737                         if (!cfq_arm_slice_timer(cfqd, cfqq))
1738                                 cfq_schedule_dispatch(cfqd);
1739                 }
1740         }
1741 }
1742
1743 /*
1744  * we temporarily boost lower priority queues if they are holding fs exclusive
1745  * resources. they are boosted to normal prio (CLASS_BE/4)
1746  */
1747 static void cfq_prio_boost(struct cfq_queue *cfqq)
1748 {
1749         const int ioprio_class = cfqq->ioprio_class;
1750         const int ioprio = cfqq->ioprio;
1751
1752         if (has_fs_excl()) {
1753                 /*
1754                  * boost idle prio on transactions that would lock out other
1755                  * users of the filesystem
1756                  */
1757                 if (cfq_class_idle(cfqq))
1758                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1759                 if (cfqq->ioprio > IOPRIO_NORM)
1760                         cfqq->ioprio = IOPRIO_NORM;
1761         } else {
1762                 /*
1763                  * check if we need to unboost the queue
1764                  */
1765                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1766                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1767                 if (cfqq->ioprio != cfqq->org_ioprio)
1768                         cfqq->ioprio = cfqq->org_ioprio;
1769         }
1770
1771         /*
1772          * refile between round-robin lists if we moved the priority class
1773          */
1774         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
1775                 cfq_resort_rr_list(cfqq, 0);
1776 }
1777
1778 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1779 {
1780         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1781             !cfq_cfqq_must_alloc_slice(cfqq)) {
1782                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1783                 return ELV_MQUEUE_MUST;
1784         }
1785
1786         return ELV_MQUEUE_MAY;
1787 }
1788
1789 static int cfq_may_queue(request_queue_t *q, int rw)
1790 {
1791         struct cfq_data *cfqd = q->elevator->elevator_data;
1792         struct task_struct *tsk = current;
1793         struct cfq_queue *cfqq;
1794         unsigned int key;
1795
1796         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1797
1798         /*
1799          * don't force setup of a queue from here, as a call to may_queue
1800          * does not necessarily imply that a request actually will be queued.
1801          * so just lookup a possibly existing queue, or return 'may queue'
1802          * if that fails
1803          */
1804         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1805         if (cfqq) {
1806                 cfq_init_prio_data(cfqq);
1807                 cfq_prio_boost(cfqq);
1808
1809                 return __cfq_may_queue(cfqq);
1810         }
1811
1812         return ELV_MQUEUE_MAY;
1813 }
1814
1815 /*
1816  * queue lock held here
1817  */
1818 static void cfq_put_request(struct request *rq)
1819 {
1820         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1821
1822         if (cfqq) {
1823                 const int rw = rq_data_dir(rq);
1824
1825                 BUG_ON(!cfqq->allocated[rw]);
1826                 cfqq->allocated[rw]--;
1827
1828                 put_io_context(RQ_CIC(rq)->ioc);
1829
1830                 rq->elevator_private = NULL;
1831                 rq->elevator_private2 = NULL;
1832
1833                 cfq_put_queue(cfqq);
1834         }
1835 }
1836
1837 /*
1838  * Allocate cfq data structures associated with this request.
1839  */
1840 static int
1841 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1842 {
1843         struct cfq_data *cfqd = q->elevator->elevator_data;
1844         struct task_struct *tsk = current;
1845         struct cfq_io_context *cic;
1846         const int rw = rq_data_dir(rq);
1847         const int is_sync = rq_is_sync(rq);
1848         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1849         struct cfq_queue *cfqq;
1850         unsigned long flags;
1851
1852         might_sleep_if(gfp_mask & __GFP_WAIT);
1853
1854         cic = cfq_get_io_context(cfqd, gfp_mask);
1855
1856         spin_lock_irqsave(q->queue_lock, flags);
1857
1858         if (!cic)
1859                 goto queue_fail;
1860
1861         if (!cic->cfqq[is_sync]) {
1862                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1863                 if (!cfqq)
1864                         goto queue_fail;
1865
1866                 cic->cfqq[is_sync] = cfqq;
1867         } else
1868                 cfqq = cic->cfqq[is_sync];
1869
1870         cfqq->allocated[rw]++;
1871         cfq_clear_cfqq_must_alloc(cfqq);
1872         atomic_inc(&cfqq->ref);
1873
1874         spin_unlock_irqrestore(q->queue_lock, flags);
1875
1876         rq->elevator_private = cic;
1877         rq->elevator_private2 = cfqq;
1878         return 0;
1879
1880 queue_fail:
1881         if (cic)
1882                 put_io_context(cic->ioc);
1883
1884         cfq_schedule_dispatch(cfqd);
1885         spin_unlock_irqrestore(q->queue_lock, flags);
1886         return 1;
1887 }
1888
1889 static void cfq_kick_queue(struct work_struct *work)
1890 {
1891         struct cfq_data *cfqd =
1892                 container_of(work, struct cfq_data, unplug_work);
1893         request_queue_t *q = cfqd->queue;
1894         unsigned long flags;
1895
1896         spin_lock_irqsave(q->queue_lock, flags);
1897         blk_start_queueing(q);
1898         spin_unlock_irqrestore(q->queue_lock, flags);
1899 }
1900
1901 /*
1902  * Timer running if the active_queue is currently idling inside its time slice
1903  */
1904 static void cfq_idle_slice_timer(unsigned long data)
1905 {
1906         struct cfq_data *cfqd = (struct cfq_data *) data;
1907         struct cfq_queue *cfqq;
1908         unsigned long flags;
1909
1910         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1911
1912         if ((cfqq = cfqd->active_queue) != NULL) {
1913                 /*
1914                  * expired
1915                  */
1916                 if (cfq_slice_used(cfqq))
1917                         goto expire;
1918
1919                 /*
1920                  * only expire and reinvoke request handler, if there are
1921                  * other queues with pending requests
1922                  */
1923                 if (!cfqd->busy_queues)
1924                         goto out_cont;
1925
1926                 /*
1927                  * not expired and it has a request pending, let it dispatch
1928                  */
1929                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1930                         cfq_mark_cfqq_must_dispatch(cfqq);
1931                         goto out_kick;
1932                 }
1933         }
1934 expire:
1935         cfq_slice_expired(cfqd, 0);
1936 out_kick:
1937         cfq_schedule_dispatch(cfqd);
1938 out_cont:
1939         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1940 }
1941
1942 /*
1943  * Timer running if an idle class queue is waiting for service
1944  */
1945 static void cfq_idle_class_timer(unsigned long data)
1946 {
1947         struct cfq_data *cfqd = (struct cfq_data *) data;
1948         unsigned long flags, end;
1949
1950         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1951
1952         /*
1953          * race with a non-idle queue, reset timer
1954          */
1955         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1956         if (!time_after_eq(jiffies, end))
1957                 mod_timer(&cfqd->idle_class_timer, end);
1958         else
1959                 cfq_schedule_dispatch(cfqd);
1960
1961         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1962 }
1963
1964 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1965 {
1966         del_timer_sync(&cfqd->idle_slice_timer);
1967         del_timer_sync(&cfqd->idle_class_timer);
1968         blk_sync_queue(cfqd->queue);
1969 }
1970
1971 static void cfq_exit_queue(elevator_t *e)
1972 {
1973         struct cfq_data *cfqd = e->elevator_data;
1974         request_queue_t *q = cfqd->queue;
1975
1976         cfq_shutdown_timer_wq(cfqd);
1977
1978         spin_lock_irq(q->queue_lock);
1979
1980         if (cfqd->active_queue)
1981                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1982
1983         while (!list_empty(&cfqd->cic_list)) {
1984                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1985                                                         struct cfq_io_context,
1986                                                         queue_list);
1987
1988                 __cfq_exit_single_io_context(cfqd, cic);
1989         }
1990
1991         spin_unlock_irq(q->queue_lock);
1992
1993         cfq_shutdown_timer_wq(cfqd);
1994
1995         kfree(cfqd->cfq_hash);
1996         kfree(cfqd);
1997 }
1998
1999 static void *cfq_init_queue(request_queue_t *q)
2000 {
2001         struct cfq_data *cfqd;
2002         int i;
2003
2004         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2005         if (!cfqd)
2006                 return NULL;
2007
2008         memset(cfqd, 0, sizeof(*cfqd));
2009
2010         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2011                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2012
2013         INIT_LIST_HEAD(&cfqd->busy_rr);
2014         INIT_LIST_HEAD(&cfqd->cur_rr);
2015         INIT_LIST_HEAD(&cfqd->idle_rr);
2016         INIT_LIST_HEAD(&cfqd->cic_list);
2017
2018         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2019         if (!cfqd->cfq_hash)
2020                 goto out_free;
2021
2022         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2023                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2024
2025         cfqd->queue = q;
2026
2027         init_timer(&cfqd->idle_slice_timer);
2028         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2029         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2030
2031         init_timer(&cfqd->idle_class_timer);
2032         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2033         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2034
2035         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2036
2037         cfqd->cfq_quantum = cfq_quantum;
2038         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2039         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2040         cfqd->cfq_back_max = cfq_back_max;
2041         cfqd->cfq_back_penalty = cfq_back_penalty;
2042         cfqd->cfq_slice[0] = cfq_slice_async;
2043         cfqd->cfq_slice[1] = cfq_slice_sync;
2044         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2045         cfqd->cfq_slice_idle = cfq_slice_idle;
2046
2047         return cfqd;
2048 out_free:
2049         kfree(cfqd);
2050         return NULL;
2051 }
2052
2053 static void cfq_slab_kill(void)
2054 {
2055         if (cfq_pool)
2056                 kmem_cache_destroy(cfq_pool);
2057         if (cfq_ioc_pool)
2058                 kmem_cache_destroy(cfq_ioc_pool);
2059 }
2060
2061 static int __init cfq_slab_setup(void)
2062 {
2063         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2064                                         NULL, NULL);
2065         if (!cfq_pool)
2066                 goto fail;
2067
2068         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2069                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2070         if (!cfq_ioc_pool)
2071                 goto fail;
2072
2073         return 0;
2074 fail:
2075         cfq_slab_kill();
2076         return -ENOMEM;
2077 }
2078
2079 /*
2080  * sysfs parts below -->
2081  */
2082
2083 static ssize_t
2084 cfq_var_show(unsigned int var, char *page)
2085 {
2086         return sprintf(page, "%d\n", var);
2087 }
2088
2089 static ssize_t
2090 cfq_var_store(unsigned int *var, const char *page, size_t count)
2091 {
2092         char *p = (char *) page;
2093
2094         *var = simple_strtoul(p, &p, 10);
2095         return count;
2096 }
2097
2098 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2099 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2100 {                                                                       \
2101         struct cfq_data *cfqd = e->elevator_data;                       \
2102         unsigned int __data = __VAR;                                    \
2103         if (__CONV)                                                     \
2104                 __data = jiffies_to_msecs(__data);                      \
2105         return cfq_var_show(__data, (page));                            \
2106 }
2107 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2108 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2109 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2110 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2111 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2112 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2113 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2114 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2115 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2116 #undef SHOW_FUNCTION
2117
2118 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2119 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2120 {                                                                       \
2121         struct cfq_data *cfqd = e->elevator_data;                       \
2122         unsigned int __data;                                            \
2123         int ret = cfq_var_store(&__data, (page), count);                \
2124         if (__data < (MIN))                                             \
2125                 __data = (MIN);                                         \
2126         else if (__data > (MAX))                                        \
2127                 __data = (MAX);                                         \
2128         if (__CONV)                                                     \
2129                 *(__PTR) = msecs_to_jiffies(__data);                    \
2130         else                                                            \
2131                 *(__PTR) = __data;                                      \
2132         return ret;                                                     \
2133 }
2134 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2135 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2136 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2137 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2138 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2139 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2140 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2141 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2142 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2143 #undef STORE_FUNCTION
2144
2145 #define CFQ_ATTR(name) \
2146         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2147
2148 static struct elv_fs_entry cfq_attrs[] = {
2149         CFQ_ATTR(quantum),
2150         CFQ_ATTR(fifo_expire_sync),
2151         CFQ_ATTR(fifo_expire_async),
2152         CFQ_ATTR(back_seek_max),
2153         CFQ_ATTR(back_seek_penalty),
2154         CFQ_ATTR(slice_sync),
2155         CFQ_ATTR(slice_async),
2156         CFQ_ATTR(slice_async_rq),
2157         CFQ_ATTR(slice_idle),
2158         __ATTR_NULL
2159 };
2160
2161 static struct elevator_type iosched_cfq = {
2162         .ops = {
2163                 .elevator_merge_fn =            cfq_merge,
2164                 .elevator_merged_fn =           cfq_merged_request,
2165                 .elevator_merge_req_fn =        cfq_merged_requests,
2166                 .elevator_allow_merge_fn =      cfq_allow_merge,
2167                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2168                 .elevator_add_req_fn =          cfq_insert_request,
2169                 .elevator_activate_req_fn =     cfq_activate_request,
2170                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2171                 .elevator_queue_empty_fn =      cfq_queue_empty,
2172                 .elevator_completed_req_fn =    cfq_completed_request,
2173                 .elevator_former_req_fn =       elv_rb_former_request,
2174                 .elevator_latter_req_fn =       elv_rb_latter_request,
2175                 .elevator_set_req_fn =          cfq_set_request,
2176                 .elevator_put_req_fn =          cfq_put_request,
2177                 .elevator_may_queue_fn =        cfq_may_queue,
2178                 .elevator_init_fn =             cfq_init_queue,
2179                 .elevator_exit_fn =             cfq_exit_queue,
2180                 .trim =                         cfq_free_io_context,
2181         },
2182         .elevator_attrs =       cfq_attrs,
2183         .elevator_name =        "cfq",
2184         .elevator_owner =       THIS_MODULE,
2185 };
2186
2187 static int __init cfq_init(void)
2188 {
2189         int ret;
2190
2191         /*
2192          * could be 0 on HZ < 1000 setups
2193          */
2194         if (!cfq_slice_async)
2195                 cfq_slice_async = 1;
2196         if (!cfq_slice_idle)
2197                 cfq_slice_idle = 1;
2198
2199         if (cfq_slab_setup())
2200                 return -ENOMEM;
2201
2202         ret = elv_register(&iosched_cfq);
2203         if (ret)
2204                 cfq_slab_kill();
2205
2206         return ret;
2207 }
2208
2209 static void __exit cfq_exit(void)
2210 {
2211         DECLARE_COMPLETION_ONSTACK(all_gone);
2212         elv_unregister(&iosched_cfq);
2213         ioc_gone = &all_gone;
2214         /* ioc_gone's update must be visible before reading ioc_count */
2215         smp_wmb();
2216         if (elv_ioc_count_read(ioc_count))
2217                 wait_for_completion(ioc_gone);
2218         synchronize_rcu();
2219         cfq_slab_kill();
2220 }
2221
2222 module_init(cfq_init);
2223 module_exit(cfq_exit);
2224
2225 MODULE_AUTHOR("Jens Axboe");
2226 MODULE_LICENSE("GPL");
2227 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");