x86: add missed pgtable_pmd_page_ctor/dtor calls for preallocated pmds
[linux-drm-fsl-dcu.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20         return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25         struct page *pte;
26
27         pte = alloc_pages(__userpte_alloc_gfp, 0);
28         if (pte)
29                 pgtable_page_ctor(pte);
30         return pte;
31 }
32
33 static int __init setup_userpte(char *arg)
34 {
35         if (!arg)
36                 return -EINVAL;
37
38         /*
39          * "userpte=nohigh" disables allocation of user pagetables in
40          * high memory.
41          */
42         if (strcmp(arg, "nohigh") == 0)
43                 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44         else
45                 return -EINVAL;
46         return 0;
47 }
48 early_param("userpte", setup_userpte);
49
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52         pgtable_page_dtor(pte);
53         paravirt_release_pte(page_to_pfn(pte));
54         tlb_remove_page(tlb, pte);
55 }
56
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60         paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61         /*
62          * NOTE! For PAE, any changes to the top page-directory-pointer-table
63          * entries need a full cr3 reload to flush.
64          */
65 #ifdef CONFIG_X86_PAE
66         tlb->need_flush_all = 1;
67 #endif
68         tlb_remove_page(tlb, virt_to_page(pmd));
69 }
70
71 #if PAGETABLE_LEVELS > 3
72 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
73 {
74         paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
75         tlb_remove_page(tlb, virt_to_page(pud));
76 }
77 #endif  /* PAGETABLE_LEVELS > 3 */
78 #endif  /* PAGETABLE_LEVELS > 2 */
79
80 static inline void pgd_list_add(pgd_t *pgd)
81 {
82         struct page *page = virt_to_page(pgd);
83
84         list_add(&page->lru, &pgd_list);
85 }
86
87 static inline void pgd_list_del(pgd_t *pgd)
88 {
89         struct page *page = virt_to_page(pgd);
90
91         list_del(&page->lru);
92 }
93
94 #define UNSHARED_PTRS_PER_PGD                           \
95         (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
96
97
98 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
99 {
100         BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
101         virt_to_page(pgd)->index = (pgoff_t)mm;
102 }
103
104 struct mm_struct *pgd_page_get_mm(struct page *page)
105 {
106         return (struct mm_struct *)page->index;
107 }
108
109 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
110 {
111         /* If the pgd points to a shared pagetable level (either the
112            ptes in non-PAE, or shared PMD in PAE), then just copy the
113            references from swapper_pg_dir. */
114         if (PAGETABLE_LEVELS == 2 ||
115             (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
116             PAGETABLE_LEVELS == 4) {
117                 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
118                                 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
119                                 KERNEL_PGD_PTRS);
120         }
121
122         /* list required to sync kernel mapping updates */
123         if (!SHARED_KERNEL_PMD) {
124                 pgd_set_mm(pgd, mm);
125                 pgd_list_add(pgd);
126         }
127 }
128
129 static void pgd_dtor(pgd_t *pgd)
130 {
131         if (SHARED_KERNEL_PMD)
132                 return;
133
134         spin_lock(&pgd_lock);
135         pgd_list_del(pgd);
136         spin_unlock(&pgd_lock);
137 }
138
139 /*
140  * List of all pgd's needed for non-PAE so it can invalidate entries
141  * in both cached and uncached pgd's; not needed for PAE since the
142  * kernel pmd is shared. If PAE were not to share the pmd a similar
143  * tactic would be needed. This is essentially codepath-based locking
144  * against pageattr.c; it is the unique case in which a valid change
145  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
146  * vmalloc faults work because attached pagetables are never freed.
147  * -- nyc
148  */
149
150 #ifdef CONFIG_X86_PAE
151 /*
152  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
153  * updating the top-level pagetable entries to guarantee the
154  * processor notices the update.  Since this is expensive, and
155  * all 4 top-level entries are used almost immediately in a
156  * new process's life, we just pre-populate them here.
157  *
158  * Also, if we're in a paravirt environment where the kernel pmd is
159  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
160  * and initialize the kernel pmds here.
161  */
162 #define PREALLOCATED_PMDS       UNSHARED_PTRS_PER_PGD
163
164 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
165 {
166         paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
167
168         /* Note: almost everything apart from _PAGE_PRESENT is
169            reserved at the pmd (PDPT) level. */
170         set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
171
172         /*
173          * According to Intel App note "TLBs, Paging-Structure Caches,
174          * and Their Invalidation", April 2007, document 317080-001,
175          * section 8.1: in PAE mode we explicitly have to flush the
176          * TLB via cr3 if the top-level pgd is changed...
177          */
178         flush_tlb_mm(mm);
179 }
180 #else  /* !CONFIG_X86_PAE */
181
182 /* No need to prepopulate any pagetable entries in non-PAE modes. */
183 #define PREALLOCATED_PMDS       0
184
185 #endif  /* CONFIG_X86_PAE */
186
187 static void free_pmds(pmd_t *pmds[])
188 {
189         int i;
190
191         for(i = 0; i < PREALLOCATED_PMDS; i++)
192                 if (pmds[i]) {
193                         pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
194                         free_page((unsigned long)pmds[i]);
195                 }
196 }
197
198 static int preallocate_pmds(pmd_t *pmds[])
199 {
200         int i;
201         bool failed = false;
202
203         for(i = 0; i < PREALLOCATED_PMDS; i++) {
204                 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
205                 if (!pmd)
206                         failed = true;
207                 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
208                         free_page((unsigned long)pmds[i]);
209                         pmd = NULL;
210                         failed = true;
211                 }
212                 pmds[i] = pmd;
213         }
214
215         if (failed) {
216                 free_pmds(pmds);
217                 return -ENOMEM;
218         }
219
220         return 0;
221 }
222
223 /*
224  * Mop up any pmd pages which may still be attached to the pgd.
225  * Normally they will be freed by munmap/exit_mmap, but any pmd we
226  * preallocate which never got a corresponding vma will need to be
227  * freed manually.
228  */
229 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
230 {
231         int i;
232
233         for(i = 0; i < PREALLOCATED_PMDS; i++) {
234                 pgd_t pgd = pgdp[i];
235
236                 if (pgd_val(pgd) != 0) {
237                         pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
238
239                         pgdp[i] = native_make_pgd(0);
240
241                         paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
242                         pmd_free(mm, pmd);
243                 }
244         }
245 }
246
247 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
248 {
249         pud_t *pud;
250         int i;
251
252         if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
253                 return;
254
255         pud = pud_offset(pgd, 0);
256
257         for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
258                 pmd_t *pmd = pmds[i];
259
260                 if (i >= KERNEL_PGD_BOUNDARY)
261                         memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
262                                sizeof(pmd_t) * PTRS_PER_PMD);
263
264                 pud_populate(mm, pud, pmd);
265         }
266 }
267
268 pgd_t *pgd_alloc(struct mm_struct *mm)
269 {
270         pgd_t *pgd;
271         pmd_t *pmds[PREALLOCATED_PMDS];
272
273         pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
274
275         if (pgd == NULL)
276                 goto out;
277
278         mm->pgd = pgd;
279
280         if (preallocate_pmds(pmds) != 0)
281                 goto out_free_pgd;
282
283         if (paravirt_pgd_alloc(mm) != 0)
284                 goto out_free_pmds;
285
286         /*
287          * Make sure that pre-populating the pmds is atomic with
288          * respect to anything walking the pgd_list, so that they
289          * never see a partially populated pgd.
290          */
291         spin_lock(&pgd_lock);
292
293         pgd_ctor(mm, pgd);
294         pgd_prepopulate_pmd(mm, pgd, pmds);
295
296         spin_unlock(&pgd_lock);
297
298         return pgd;
299
300 out_free_pmds:
301         free_pmds(pmds);
302 out_free_pgd:
303         free_page((unsigned long)pgd);
304 out:
305         return NULL;
306 }
307
308 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
309 {
310         pgd_mop_up_pmds(mm, pgd);
311         pgd_dtor(pgd);
312         paravirt_pgd_free(mm, pgd);
313         free_page((unsigned long)pgd);
314 }
315
316 /*
317  * Used to set accessed or dirty bits in the page table entries
318  * on other architectures. On x86, the accessed and dirty bits
319  * are tracked by hardware. However, do_wp_page calls this function
320  * to also make the pte writeable at the same time the dirty bit is
321  * set. In that case we do actually need to write the PTE.
322  */
323 int ptep_set_access_flags(struct vm_area_struct *vma,
324                           unsigned long address, pte_t *ptep,
325                           pte_t entry, int dirty)
326 {
327         int changed = !pte_same(*ptep, entry);
328
329         if (changed && dirty) {
330                 *ptep = entry;
331                 pte_update_defer(vma->vm_mm, address, ptep);
332         }
333
334         return changed;
335 }
336
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 int pmdp_set_access_flags(struct vm_area_struct *vma,
339                           unsigned long address, pmd_t *pmdp,
340                           pmd_t entry, int dirty)
341 {
342         int changed = !pmd_same(*pmdp, entry);
343
344         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
345
346         if (changed && dirty) {
347                 *pmdp = entry;
348                 pmd_update_defer(vma->vm_mm, address, pmdp);
349                 /*
350                  * We had a write-protection fault here and changed the pmd
351                  * to to more permissive. No need to flush the TLB for that,
352                  * #PF is architecturally guaranteed to do that and in the
353                  * worst-case we'll generate a spurious fault.
354                  */
355         }
356
357         return changed;
358 }
359 #endif
360
361 int ptep_test_and_clear_young(struct vm_area_struct *vma,
362                               unsigned long addr, pte_t *ptep)
363 {
364         int ret = 0;
365
366         if (pte_young(*ptep))
367                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
368                                          (unsigned long *) &ptep->pte);
369
370         if (ret)
371                 pte_update(vma->vm_mm, addr, ptep);
372
373         return ret;
374 }
375
376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
377 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
378                               unsigned long addr, pmd_t *pmdp)
379 {
380         int ret = 0;
381
382         if (pmd_young(*pmdp))
383                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
384                                          (unsigned long *)pmdp);
385
386         if (ret)
387                 pmd_update(vma->vm_mm, addr, pmdp);
388
389         return ret;
390 }
391 #endif
392
393 int ptep_clear_flush_young(struct vm_area_struct *vma,
394                            unsigned long address, pte_t *ptep)
395 {
396         int young;
397
398         young = ptep_test_and_clear_young(vma, address, ptep);
399         if (young)
400                 flush_tlb_page(vma, address);
401
402         return young;
403 }
404
405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
406 int pmdp_clear_flush_young(struct vm_area_struct *vma,
407                            unsigned long address, pmd_t *pmdp)
408 {
409         int young;
410
411         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
412
413         young = pmdp_test_and_clear_young(vma, address, pmdp);
414         if (young)
415                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
416
417         return young;
418 }
419
420 void pmdp_splitting_flush(struct vm_area_struct *vma,
421                           unsigned long address, pmd_t *pmdp)
422 {
423         int set;
424         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
425         set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
426                                 (unsigned long *)pmdp);
427         if (set) {
428                 pmd_update(vma->vm_mm, address, pmdp);
429                 /* need tlb flush only to serialize against gup-fast */
430                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
431         }
432 }
433 #endif
434
435 /**
436  * reserve_top_address - reserves a hole in the top of kernel address space
437  * @reserve - size of hole to reserve
438  *
439  * Can be used to relocate the fixmap area and poke a hole in the top
440  * of kernel address space to make room for a hypervisor.
441  */
442 void __init reserve_top_address(unsigned long reserve)
443 {
444 #ifdef CONFIG_X86_32
445         BUG_ON(fixmaps_set > 0);
446         printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
447                (int)-reserve);
448         __FIXADDR_TOP = -reserve - PAGE_SIZE;
449 #endif
450 }
451
452 int fixmaps_set;
453
454 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
455 {
456         unsigned long address = __fix_to_virt(idx);
457
458         if (idx >= __end_of_fixed_addresses) {
459                 BUG();
460                 return;
461         }
462         set_pte_vaddr(address, pte);
463         fixmaps_set++;
464 }
465
466 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
467                        pgprot_t flags)
468 {
469         __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
470 }