hwmon: (acpi_power_meter) Fix acpi_bus_get_device() return value check
[linux-drm-fsl-dcu.git] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
30
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37
38 static inline int external_pid(void)
39 {
40         /* FIXME: Need to look up userspace_pid by cpu */
41         return userspace_pid[0];
42 }
43
44 int pid_to_processor_id(int pid)
45 {
46         int i;
47
48         for (i = 0; i < ncpus; i++) {
49                 if (cpu_tasks[i].pid == pid)
50                         return i;
51         }
52         return -1;
53 }
54
55 void free_stack(unsigned long stack, int order)
56 {
57         free_pages(stack, order);
58 }
59
60 unsigned long alloc_stack(int order, int atomic)
61 {
62         unsigned long page;
63         gfp_t flags = GFP_KERNEL;
64
65         if (atomic)
66                 flags = GFP_ATOMIC;
67         page = __get_free_pages(flags, order);
68
69         return page;
70 }
71
72 static inline void set_current(struct task_struct *task)
73 {
74         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75                 { external_pid(), task });
76 }
77
78 extern void arch_switch_to(struct task_struct *to);
79
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82         to->thread.prev_sched = from;
83         set_current(to);
84
85         do {
86                 current->thread.saved_task = NULL;
87
88                 switch_threads(&from->thread.switch_buf,
89                                &to->thread.switch_buf);
90
91                 arch_switch_to(current);
92
93                 if (current->thread.saved_task)
94                         show_regs(&(current->thread.regs));
95                 to = current->thread.saved_task;
96                 from = current;
97         } while (current->thread.saved_task);
98
99         return current->thread.prev_sched;
100 }
101
102 void interrupt_end(void)
103 {
104         if (need_resched())
105                 schedule();
106         if (test_thread_flag(TIF_SIGPENDING))
107                 do_signal();
108         if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109                 tracehook_notify_resume(&current->thread.regs);
110 }
111
112 void exit_thread(void)
113 {
114 }
115
116 int get_current_pid(void)
117 {
118         return task_pid_nr(current);
119 }
120
121 /*
122  * This is called magically, by its address being stuffed in a jmp_buf
123  * and being longjmp-d to.
124  */
125 void new_thread_handler(void)
126 {
127         int (*fn)(void *), n;
128         void *arg;
129
130         if (current->thread.prev_sched != NULL)
131                 schedule_tail(current->thread.prev_sched);
132         current->thread.prev_sched = NULL;
133
134         fn = current->thread.request.u.thread.proc;
135         arg = current->thread.request.u.thread.arg;
136
137         /*
138          * callback returns only if the kernel thread execs a process
139          */
140         n = fn(arg);
141         userspace(&current->thread.regs.regs);
142 }
143
144 /* Called magically, see new_thread_handler above */
145 void fork_handler(void)
146 {
147         force_flush_all();
148
149         schedule_tail(current->thread.prev_sched);
150
151         /*
152          * XXX: if interrupt_end() calls schedule, this call to
153          * arch_switch_to isn't needed. We could want to apply this to
154          * improve performance. -bb
155          */
156         arch_switch_to(current);
157
158         current->thread.prev_sched = NULL;
159
160         userspace(&current->thread.regs.regs);
161 }
162
163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164                 unsigned long arg, struct task_struct * p)
165 {
166         void (*handler)(void);
167         int kthread = current->flags & PF_KTHREAD;
168         int ret = 0;
169
170         p->thread = (struct thread_struct) INIT_THREAD;
171
172         if (!kthread) {
173                 memcpy(&p->thread.regs.regs, current_pt_regs(),
174                        sizeof(p->thread.regs.regs));
175                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
176                 if (sp != 0)
177                         REGS_SP(p->thread.regs.regs.gp) = sp;
178
179                 handler = fork_handler;
180
181                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
182         } else {
183                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
184                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
185                 p->thread.request.u.thread.arg = (void *)arg;
186                 handler = new_thread_handler;
187         }
188
189         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
190
191         if (!kthread) {
192                 clear_flushed_tls(p);
193
194                 /*
195                  * Set a new TLS for the child thread?
196                  */
197                 if (clone_flags & CLONE_SETTLS)
198                         ret = arch_copy_tls(p);
199         }
200
201         return ret;
202 }
203
204 void initial_thread_cb(void (*proc)(void *), void *arg)
205 {
206         int save_kmalloc_ok = kmalloc_ok;
207
208         kmalloc_ok = 0;
209         initial_thread_cb_skas(proc, arg);
210         kmalloc_ok = save_kmalloc_ok;
211 }
212
213 void arch_cpu_idle(void)
214 {
215         unsigned long long nsecs;
216
217         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
218         nsecs = disable_timer();
219         idle_sleep(nsecs);
220         local_irq_enable();
221 }
222
223 int __cant_sleep(void) {
224         return in_atomic() || irqs_disabled() || in_interrupt();
225         /* Is in_interrupt() really needed? */
226 }
227
228 int user_context(unsigned long sp)
229 {
230         unsigned long stack;
231
232         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
233         return stack != (unsigned long) current_thread_info();
234 }
235
236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
237
238 void do_uml_exitcalls(void)
239 {
240         exitcall_t *call;
241
242         call = &__uml_exitcall_end;
243         while (--call >= &__uml_exitcall_begin)
244                 (*call)();
245 }
246
247 char *uml_strdup(const char *string)
248 {
249         return kstrdup(string, GFP_KERNEL);
250 }
251 EXPORT_SYMBOL(uml_strdup);
252
253 int copy_to_user_proc(void __user *to, void *from, int size)
254 {
255         return copy_to_user(to, from, size);
256 }
257
258 int copy_from_user_proc(void *to, void __user *from, int size)
259 {
260         return copy_from_user(to, from, size);
261 }
262
263 int clear_user_proc(void __user *buf, int size)
264 {
265         return clear_user(buf, size);
266 }
267
268 int strlen_user_proc(char __user *str)
269 {
270         return strlen_user(str);
271 }
272
273 int smp_sigio_handler(void)
274 {
275 #ifdef CONFIG_SMP
276         int cpu = current_thread_info()->cpu;
277         IPI_handler(cpu);
278         if (cpu != 0)
279                 return 1;
280 #endif
281         return 0;
282 }
283
284 int cpu(void)
285 {
286         return current_thread_info()->cpu;
287 }
288
289 static atomic_t using_sysemu = ATOMIC_INIT(0);
290 int sysemu_supported;
291
292 void set_using_sysemu(int value)
293 {
294         if (value > sysemu_supported)
295                 return;
296         atomic_set(&using_sysemu, value);
297 }
298
299 int get_using_sysemu(void)
300 {
301         return atomic_read(&using_sysemu);
302 }
303
304 static int sysemu_proc_show(struct seq_file *m, void *v)
305 {
306         seq_printf(m, "%d\n", get_using_sysemu());
307         return 0;
308 }
309
310 static int sysemu_proc_open(struct inode *inode, struct file *file)
311 {
312         return single_open(file, sysemu_proc_show, NULL);
313 }
314
315 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
316                                  size_t count, loff_t *pos)
317 {
318         char tmp[2];
319
320         if (copy_from_user(tmp, buf, 1))
321                 return -EFAULT;
322
323         if (tmp[0] >= '0' && tmp[0] <= '2')
324                 set_using_sysemu(tmp[0] - '0');
325         /* We use the first char, but pretend to write everything */
326         return count;
327 }
328
329 static const struct file_operations sysemu_proc_fops = {
330         .owner          = THIS_MODULE,
331         .open           = sysemu_proc_open,
332         .read           = seq_read,
333         .llseek         = seq_lseek,
334         .release        = single_release,
335         .write          = sysemu_proc_write,
336 };
337
338 int __init make_proc_sysemu(void)
339 {
340         struct proc_dir_entry *ent;
341         if (!sysemu_supported)
342                 return 0;
343
344         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
345
346         if (ent == NULL)
347         {
348                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
349                 return 0;
350         }
351
352         return 0;
353 }
354
355 late_initcall(make_proc_sysemu);
356
357 int singlestepping(void * t)
358 {
359         struct task_struct *task = t ? t : current;
360
361         if (!(task->ptrace & PT_DTRACE))
362                 return 0;
363
364         if (task->thread.singlestep_syscall)
365                 return 1;
366
367         return 2;
368 }
369
370 /*
371  * Only x86 and x86_64 have an arch_align_stack().
372  * All other arches have "#define arch_align_stack(x) (x)"
373  * in their asm/system.h
374  * As this is included in UML from asm-um/system-generic.h,
375  * we can use it to behave as the subarch does.
376  */
377 #ifndef arch_align_stack
378 unsigned long arch_align_stack(unsigned long sp)
379 {
380         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381                 sp -= get_random_int() % 8192;
382         return sp & ~0xf;
383 }
384 #endif
385
386 unsigned long get_wchan(struct task_struct *p)
387 {
388         unsigned long stack_page, sp, ip;
389         bool seen_sched = 0;
390
391         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
392                 return 0;
393
394         stack_page = (unsigned long) task_stack_page(p);
395         /* Bail if the process has no kernel stack for some reason */
396         if (stack_page == 0)
397                 return 0;
398
399         sp = p->thread.switch_buf->JB_SP;
400         /*
401          * Bail if the stack pointer is below the bottom of the kernel
402          * stack for some reason
403          */
404         if (sp < stack_page)
405                 return 0;
406
407         while (sp < stack_page + THREAD_SIZE) {
408                 ip = *((unsigned long *) sp);
409                 if (in_sched_functions(ip))
410                         /* Ignore everything until we're above the scheduler */
411                         seen_sched = 1;
412                 else if (kernel_text_address(ip) && seen_sched)
413                         return ip;
414
415                 sp += sizeof(unsigned long);
416         }
417
418         return 0;
419 }
420
421 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
422 {
423         int cpu = current_thread_info()->cpu;
424
425         return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
426 }
427