sparc: Convert to new irq function names
[linux-drm-fsl-dcu.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/kmemleak.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <asm/atomic.h>
30 #include <asm/system.h>
31 #include <asm/irq.h>
32 #include <asm/io.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/prom.h>
37 #include <asm/timer.h>
38 #include <asm/smp.h>
39 #include <asm/starfire.h>
40 #include <asm/uaccess.h>
41 #include <asm/cache.h>
42 #include <asm/cpudata.h>
43 #include <asm/auxio.h>
44 #include <asm/head.h>
45 #include <asm/hypervisor.h>
46 #include <asm/cacheflush.h>
47
48 #include "entry.h"
49 #include "cpumap.h"
50 #include "kstack.h"
51
52 #define NUM_IVECS       (IMAP_INR + 1)
53
54 struct ino_bucket *ivector_table;
55 unsigned long ivector_table_pa;
56
57 /* On several sun4u processors, it is illegal to mix bypass and
58  * non-bypass accesses.  Therefore we access all INO buckets
59  * using bypass accesses only.
60  */
61 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62 {
63         unsigned long ret;
64
65         __asm__ __volatile__("ldxa      [%1] %2, %0"
66                              : "=&r" (ret)
67                              : "r" (bucket_pa +
68                                     offsetof(struct ino_bucket,
69                                              __irq_chain_pa)),
70                                "i" (ASI_PHYS_USE_EC));
71
72         return ret;
73 }
74
75 static void bucket_clear_chain_pa(unsigned long bucket_pa)
76 {
77         __asm__ __volatile__("stxa      %%g0, [%0] %1"
78                              : /* no outputs */
79                              : "r" (bucket_pa +
80                                     offsetof(struct ino_bucket,
81                                              __irq_chain_pa)),
82                                "i" (ASI_PHYS_USE_EC));
83 }
84
85 static unsigned int bucket_get_irq(unsigned long bucket_pa)
86 {
87         unsigned int ret;
88
89         __asm__ __volatile__("lduwa     [%1] %2, %0"
90                              : "=&r" (ret)
91                              : "r" (bucket_pa +
92                                     offsetof(struct ino_bucket,
93                                              __irq)),
94                                "i" (ASI_PHYS_USE_EC));
95
96         return ret;
97 }
98
99 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
100 {
101         __asm__ __volatile__("stwa      %0, [%1] %2"
102                              : /* no outputs */
103                              : "r" (irq),
104                                "r" (bucket_pa +
105                                     offsetof(struct ino_bucket,
106                                              __irq)),
107                                "i" (ASI_PHYS_USE_EC));
108 }
109
110 #define irq_work_pa(__cpu)      &(trap_block[(__cpu)].irq_worklist_pa)
111
112 static struct {
113         unsigned int dev_handle;
114         unsigned int dev_ino;
115         unsigned int in_use;
116 } irq_table[NR_IRQS];
117 static DEFINE_SPINLOCK(irq_alloc_lock);
118
119 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
120 {
121         unsigned long flags;
122         unsigned char ent;
123
124         BUILD_BUG_ON(NR_IRQS >= 256);
125
126         spin_lock_irqsave(&irq_alloc_lock, flags);
127
128         for (ent = 1; ent < NR_IRQS; ent++) {
129                 if (!irq_table[ent].in_use)
130                         break;
131         }
132         if (ent >= NR_IRQS) {
133                 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
134                 ent = 0;
135         } else {
136                 irq_table[ent].dev_handle = dev_handle;
137                 irq_table[ent].dev_ino = dev_ino;
138                 irq_table[ent].in_use = 1;
139         }
140
141         spin_unlock_irqrestore(&irq_alloc_lock, flags);
142
143         return ent;
144 }
145
146 #ifdef CONFIG_PCI_MSI
147 void irq_free(unsigned int irq)
148 {
149         unsigned long flags;
150
151         if (irq >= NR_IRQS)
152                 return;
153
154         spin_lock_irqsave(&irq_alloc_lock, flags);
155
156         irq_table[irq].in_use = 0;
157
158         spin_unlock_irqrestore(&irq_alloc_lock, flags);
159 }
160 #endif
161
162 /*
163  * /proc/interrupts printing:
164  */
165
166 int show_interrupts(struct seq_file *p, void *v)
167 {
168         int i = *(loff_t *) v, j;
169         struct irqaction * action;
170         unsigned long flags;
171
172         if (i == 0) {
173                 seq_printf(p, "           ");
174                 for_each_online_cpu(j)
175                         seq_printf(p, "CPU%d       ",j);
176                 seq_putc(p, '\n');
177         }
178
179         if (i < NR_IRQS) {
180                 raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
181                 action = irq_desc[i].action;
182                 if (!action)
183                         goto skip;
184                 seq_printf(p, "%3d: ",i);
185 #ifndef CONFIG_SMP
186                 seq_printf(p, "%10u ", kstat_irqs(i));
187 #else
188                 for_each_online_cpu(j)
189                         seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
190 #endif
191                 seq_printf(p, " %9s", irq_desc[i].irq_data.chip->name);
192                 seq_printf(p, "  %s", action->name);
193
194                 for (action=action->next; action; action = action->next)
195                         seq_printf(p, ", %s", action->name);
196
197                 seq_putc(p, '\n');
198 skip:
199                 raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
200         } else if (i == NR_IRQS) {
201                 seq_printf(p, "NMI: ");
202                 for_each_online_cpu(j)
203                         seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
204                 seq_printf(p, "     Non-maskable interrupts\n");
205         }
206         return 0;
207 }
208
209 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
210 {
211         unsigned int tid;
212
213         if (this_is_starfire) {
214                 tid = starfire_translate(imap, cpuid);
215                 tid <<= IMAP_TID_SHIFT;
216                 tid &= IMAP_TID_UPA;
217         } else {
218                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
219                         unsigned long ver;
220
221                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
222                         if ((ver >> 32UL) == __JALAPENO_ID ||
223                             (ver >> 32UL) == __SERRANO_ID) {
224                                 tid = cpuid << IMAP_TID_SHIFT;
225                                 tid &= IMAP_TID_JBUS;
226                         } else {
227                                 unsigned int a = cpuid & 0x1f;
228                                 unsigned int n = (cpuid >> 5) & 0x1f;
229
230                                 tid = ((a << IMAP_AID_SHIFT) |
231                                        (n << IMAP_NID_SHIFT));
232                                 tid &= (IMAP_AID_SAFARI |
233                                         IMAP_NID_SAFARI);
234                         }
235                 } else {
236                         tid = cpuid << IMAP_TID_SHIFT;
237                         tid &= IMAP_TID_UPA;
238                 }
239         }
240
241         return tid;
242 }
243
244 struct irq_handler_data {
245         unsigned long   iclr;
246         unsigned long   imap;
247
248         void            (*pre_handler)(unsigned int, void *, void *);
249         void            *arg1;
250         void            *arg2;
251 };
252
253 #ifdef CONFIG_SMP
254 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
255 {
256         cpumask_t mask;
257         int cpuid;
258
259         cpumask_copy(&mask, affinity);
260         if (cpus_equal(mask, cpu_online_map)) {
261                 cpuid = map_to_cpu(irq);
262         } else {
263                 cpumask_t tmp;
264
265                 cpus_and(tmp, cpu_online_map, mask);
266                 cpuid = cpus_empty(tmp) ? map_to_cpu(irq) : first_cpu(tmp);
267         }
268
269         return cpuid;
270 }
271 #else
272 #define irq_choose_cpu(irq, affinity)   \
273         real_hard_smp_processor_id()
274 #endif
275
276 static void sun4u_irq_enable(struct irq_data *data)
277 {
278         struct irq_handler_data *handler_data = data->handler_data;
279
280         if (likely(handler_data)) {
281                 unsigned long cpuid, imap, val;
282                 unsigned int tid;
283
284                 cpuid = irq_choose_cpu(data->irq, data->affinity);
285                 imap = handler_data->imap;
286
287                 tid = sun4u_compute_tid(imap, cpuid);
288
289                 val = upa_readq(imap);
290                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
291                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
292                 val |= tid | IMAP_VALID;
293                 upa_writeq(val, imap);
294                 upa_writeq(ICLR_IDLE, handler_data->iclr);
295         }
296 }
297
298 static int sun4u_set_affinity(struct irq_data *data,
299                                const struct cpumask *mask, bool force)
300 {
301         struct irq_handler_data *handler_data = data->handler_data;
302
303         if (likely(handler_data)) {
304                 unsigned long cpuid, imap, val;
305                 unsigned int tid;
306
307                 cpuid = irq_choose_cpu(data->irq, mask);
308                 imap = handler_data->imap;
309
310                 tid = sun4u_compute_tid(imap, cpuid);
311
312                 val = upa_readq(imap);
313                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
314                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
315                 val |= tid | IMAP_VALID;
316                 upa_writeq(val, imap);
317                 upa_writeq(ICLR_IDLE, handler_data->iclr);
318         }
319
320         return 0;
321 }
322
323 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
324  * handler_irq() will skip the handler call and that will leave the
325  * interrupt in the sent state.  The next ->enable() call will hit the
326  * ICLR register to reset the state machine.
327  *
328  * This scheme is necessary, instead of clearing the Valid bit in the
329  * IMAP register, to handle the case of IMAP registers being shared by
330  * multiple INOs (and thus ICLR registers).  Since we use a different
331  * virtual IRQ for each shared IMAP instance, the generic code thinks
332  * there is only one user so it prematurely calls ->disable() on
333  * free_irq().
334  *
335  * We have to provide an explicit ->disable() method instead of using
336  * NULL to get the default.  The reason is that if the generic code
337  * sees that, it also hooks up a default ->shutdown method which
338  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
339  */
340 static void sun4u_irq_disable(struct irq_data *data)
341 {
342 }
343
344 static void sun4u_irq_eoi(struct irq_data *data)
345 {
346         struct irq_handler_data *handler_data = data->handler_data;
347
348         if (likely(handler_data))
349                 upa_writeq(ICLR_IDLE, handler_data->iclr);
350 }
351
352 static void sun4v_irq_enable(struct irq_data *data)
353 {
354         unsigned int ino = irq_table[data->irq].dev_ino;
355         unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
356         int err;
357
358         err = sun4v_intr_settarget(ino, cpuid);
359         if (err != HV_EOK)
360                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
361                        "err(%d)\n", ino, cpuid, err);
362         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
363         if (err != HV_EOK)
364                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
365                        "err(%d)\n", ino, err);
366         err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
367         if (err != HV_EOK)
368                 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
369                        ino, err);
370 }
371
372 static int sun4v_set_affinity(struct irq_data *data,
373                                const struct cpumask *mask, bool force)
374 {
375         unsigned int ino = irq_table[data->irq].dev_ino;
376         unsigned long cpuid = irq_choose_cpu(data->irq, mask);
377         int err;
378
379         err = sun4v_intr_settarget(ino, cpuid);
380         if (err != HV_EOK)
381                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
382                        "err(%d)\n", ino, cpuid, err);
383
384         return 0;
385 }
386
387 static void sun4v_irq_disable(struct irq_data *data)
388 {
389         unsigned int ino = irq_table[data->irq].dev_ino;
390         int err;
391
392         err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
393         if (err != HV_EOK)
394                 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
395                        "err(%d)\n", ino, err);
396 }
397
398 static void sun4v_irq_eoi(struct irq_data *data)
399 {
400         unsigned int ino = irq_table[data->irq].dev_ino;
401         int err;
402
403         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
404         if (err != HV_EOK)
405                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
406                        "err(%d)\n", ino, err);
407 }
408
409 static void sun4v_virq_enable(struct irq_data *data)
410 {
411         unsigned long cpuid, dev_handle, dev_ino;
412         int err;
413
414         cpuid = irq_choose_cpu(data->irq, data->affinity);
415
416         dev_handle = irq_table[data->irq].dev_handle;
417         dev_ino = irq_table[data->irq].dev_ino;
418
419         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
420         if (err != HV_EOK)
421                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
422                        "err(%d)\n",
423                        dev_handle, dev_ino, cpuid, err);
424         err = sun4v_vintr_set_state(dev_handle, dev_ino,
425                                     HV_INTR_STATE_IDLE);
426         if (err != HV_EOK)
427                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
428                        "HV_INTR_STATE_IDLE): err(%d)\n",
429                        dev_handle, dev_ino, err);
430         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
431                                     HV_INTR_ENABLED);
432         if (err != HV_EOK)
433                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
434                        "HV_INTR_ENABLED): err(%d)\n",
435                        dev_handle, dev_ino, err);
436 }
437
438 static int sun4v_virt_set_affinity(struct irq_data *data,
439                                     const struct cpumask *mask, bool force)
440 {
441         unsigned long cpuid, dev_handle, dev_ino;
442         int err;
443
444         cpuid = irq_choose_cpu(data->irq, mask);
445
446         dev_handle = irq_table[data->irq].dev_handle;
447         dev_ino = irq_table[data->irq].dev_ino;
448
449         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
450         if (err != HV_EOK)
451                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
452                        "err(%d)\n",
453                        dev_handle, dev_ino, cpuid, err);
454
455         return 0;
456 }
457
458 static void sun4v_virq_disable(struct irq_data *data)
459 {
460         unsigned long dev_handle, dev_ino;
461         int err;
462
463         dev_handle = irq_table[data->irq].dev_handle;
464         dev_ino = irq_table[data->irq].dev_ino;
465
466         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
467                                     HV_INTR_DISABLED);
468         if (err != HV_EOK)
469                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
470                        "HV_INTR_DISABLED): err(%d)\n",
471                        dev_handle, dev_ino, err);
472 }
473
474 static void sun4v_virq_eoi(struct irq_data *data)
475 {
476         unsigned long dev_handle, dev_ino;
477         int err;
478
479         dev_handle = irq_table[data->irq].dev_handle;
480         dev_ino = irq_table[data->irq].dev_ino;
481
482         err = sun4v_vintr_set_state(dev_handle, dev_ino,
483                                     HV_INTR_STATE_IDLE);
484         if (err != HV_EOK)
485                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
486                        "HV_INTR_STATE_IDLE): err(%d)\n",
487                        dev_handle, dev_ino, err);
488 }
489
490 static struct irq_chip sun4u_irq = {
491         .name                   = "sun4u",
492         .irq_enable             = sun4u_irq_enable,
493         .irq_disable            = sun4u_irq_disable,
494         .irq_eoi                = sun4u_irq_eoi,
495         .irq_set_affinity       = sun4u_set_affinity,
496         .flags                  = IRQCHIP_EOI_IF_HANDLED,
497 };
498
499 static struct irq_chip sun4v_irq = {
500         .name                   = "sun4v",
501         .irq_enable             = sun4v_irq_enable,
502         .irq_disable            = sun4v_irq_disable,
503         .irq_eoi                = sun4v_irq_eoi,
504         .irq_set_affinity       = sun4v_set_affinity,
505         .flags                  = IRQCHIP_EOI_IF_HANDLED,
506 };
507
508 static struct irq_chip sun4v_virq = {
509         .name                   = "vsun4v",
510         .irq_enable             = sun4v_virq_enable,
511         .irq_disable            = sun4v_virq_disable,
512         .irq_eoi                = sun4v_virq_eoi,
513         .irq_set_affinity       = sun4v_virt_set_affinity,
514         .flags                  = IRQCHIP_EOI_IF_HANDLED,
515 };
516
517 static void pre_flow_handler(struct irq_data *d)
518 {
519         struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
520         unsigned int ino = irq_table[d->irq].dev_ino;
521
522         handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
523 }
524
525 void irq_install_pre_handler(int irq,
526                              void (*func)(unsigned int, void *, void *),
527                              void *arg1, void *arg2)
528 {
529         struct irq_handler_data *handler_data = irq_get_handler_data(irq);
530
531         handler_data->pre_handler = func;
532         handler_data->arg1 = arg1;
533         handler_data->arg2 = arg2;
534
535         __irq_set_preflow_handler(irq, pre_flow_handler);
536 }
537
538 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
539 {
540         struct ino_bucket *bucket;
541         struct irq_handler_data *handler_data;
542         unsigned int irq;
543         int ino;
544
545         BUG_ON(tlb_type == hypervisor);
546
547         ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
548         bucket = &ivector_table[ino];
549         irq = bucket_get_irq(__pa(bucket));
550         if (!irq) {
551                 irq = irq_alloc(0, ino);
552                 bucket_set_irq(__pa(bucket), irq);
553                 irq_set_chip_and_handler_name(irq, &sun4u_irq,
554                                               handle_fasteoi_irq, "IVEC");
555         }
556
557         handler_data = irq_get_handler_data(irq);
558         if (unlikely(handler_data))
559                 goto out;
560
561         handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
562         if (unlikely(!handler_data)) {
563                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
564                 prom_halt();
565         }
566         irq_set_handler_data(irq, handler_data);
567
568         handler_data->imap  = imap;
569         handler_data->iclr  = iclr;
570
571 out:
572         return irq;
573 }
574
575 static unsigned int sun4v_build_common(unsigned long sysino,
576                                        struct irq_chip *chip)
577 {
578         struct ino_bucket *bucket;
579         struct irq_handler_data *handler_data;
580         unsigned int irq;
581
582         BUG_ON(tlb_type != hypervisor);
583
584         bucket = &ivector_table[sysino];
585         irq = bucket_get_irq(__pa(bucket));
586         if (!irq) {
587                 irq = irq_alloc(0, sysino);
588                 bucket_set_irq(__pa(bucket), irq);
589                 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
590                                               "IVEC");
591         }
592
593         handler_data = irq_get_handler_data(irq);
594         if (unlikely(handler_data))
595                 goto out;
596
597         handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
598         if (unlikely(!handler_data)) {
599                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
600                 prom_halt();
601         }
602         irq_set_handler_data(irq, handler_data);
603
604         /* Catch accidental accesses to these things.  IMAP/ICLR handling
605          * is done by hypervisor calls on sun4v platforms, not by direct
606          * register accesses.
607          */
608         handler_data->imap = ~0UL;
609         handler_data->iclr = ~0UL;
610
611 out:
612         return irq;
613 }
614
615 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
616 {
617         unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
618
619         return sun4v_build_common(sysino, &sun4v_irq);
620 }
621
622 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
623 {
624         struct irq_handler_data *handler_data;
625         unsigned long hv_err, cookie;
626         struct ino_bucket *bucket;
627         unsigned int irq;
628
629         bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
630         if (unlikely(!bucket))
631                 return 0;
632
633         /* The only reference we store to the IRQ bucket is
634          * by physical address which kmemleak can't see, tell
635          * it that this object explicitly is not a leak and
636          * should be scanned.
637          */
638         kmemleak_not_leak(bucket);
639
640         __flush_dcache_range((unsigned long) bucket,
641                              ((unsigned long) bucket +
642                               sizeof(struct ino_bucket)));
643
644         irq = irq_alloc(devhandle, devino);
645         bucket_set_irq(__pa(bucket), irq);
646
647         irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
648                                       "IVEC");
649
650         handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
651         if (unlikely(!handler_data))
652                 return 0;
653
654         /* In order to make the LDC channel startup sequence easier,
655          * especially wrt. locking, we do not let request_irq() enable
656          * the interrupt.
657          */
658         irq_set_status_flags(irq, IRQ_NOAUTOEN);
659         irq_set_handler_data(irq, handler_data);
660
661         /* Catch accidental accesses to these things.  IMAP/ICLR handling
662          * is done by hypervisor calls on sun4v platforms, not by direct
663          * register accesses.
664          */
665         handler_data->imap = ~0UL;
666         handler_data->iclr = ~0UL;
667
668         cookie = ~__pa(bucket);
669         hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
670         if (hv_err) {
671                 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
672                             "err=%lu\n", devhandle, devino, hv_err);
673                 prom_halt();
674         }
675
676         return irq;
677 }
678
679 void ack_bad_irq(unsigned int irq)
680 {
681         unsigned int ino = irq_table[irq].dev_ino;
682
683         if (!ino)
684                 ino = 0xdeadbeef;
685
686         printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
687                ino, irq);
688 }
689
690 void *hardirq_stack[NR_CPUS];
691 void *softirq_stack[NR_CPUS];
692
693 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
694 {
695         unsigned long pstate, bucket_pa;
696         struct pt_regs *old_regs;
697         void *orig_sp;
698
699         clear_softint(1 << pil);
700
701         old_regs = set_irq_regs(regs);
702         irq_enter();
703
704         /* Grab an atomic snapshot of the pending IVECs.  */
705         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
706                              "wrpr      %0, %3, %%pstate\n\t"
707                              "ldx       [%2], %1\n\t"
708                              "stx       %%g0, [%2]\n\t"
709                              "wrpr      %0, 0x0, %%pstate\n\t"
710                              : "=&r" (pstate), "=&r" (bucket_pa)
711                              : "r" (irq_work_pa(smp_processor_id())),
712                                "i" (PSTATE_IE)
713                              : "memory");
714
715         orig_sp = set_hardirq_stack();
716
717         while (bucket_pa) {
718                 unsigned long next_pa;
719                 unsigned int irq;
720
721                 next_pa = bucket_get_chain_pa(bucket_pa);
722                 irq = bucket_get_irq(bucket_pa);
723                 bucket_clear_chain_pa(bucket_pa);
724
725                 generic_handle_irq(irq);
726
727                 bucket_pa = next_pa;
728         }
729
730         restore_hardirq_stack(orig_sp);
731
732         irq_exit();
733         set_irq_regs(old_regs);
734 }
735
736 void do_softirq(void)
737 {
738         unsigned long flags;
739
740         if (in_interrupt())
741                 return;
742
743         local_irq_save(flags);
744
745         if (local_softirq_pending()) {
746                 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
747
748                 sp += THREAD_SIZE - 192 - STACK_BIAS;
749
750                 __asm__ __volatile__("mov %%sp, %0\n\t"
751                                      "mov %1, %%sp"
752                                      : "=&r" (orig_sp)
753                                      : "r" (sp));
754                 __do_softirq();
755                 __asm__ __volatile__("mov %0, %%sp"
756                                      : : "r" (orig_sp));
757         }
758
759         local_irq_restore(flags);
760 }
761
762 #ifdef CONFIG_HOTPLUG_CPU
763 void fixup_irqs(void)
764 {
765         unsigned int irq;
766
767         for (irq = 0; irq < NR_IRQS; irq++) {
768                 struct irq_desc *desc = irq_to_desc(irq);
769                 struct irq_data *data = irq_desc_get_irq_data(desc);
770                 unsigned long flags;
771
772                 raw_spin_lock_irqsave(&desc->lock, flags);
773                 if (desc->action && !irqd_is_per_cpu(data)) {
774                         if (data->chip->irq_set_affinity)
775                                 data->chip->irq_set_affinity(data,
776                                                              data->affinity,
777                                                              false);
778                 }
779                 raw_spin_unlock_irqrestore(&desc->lock, flags);
780         }
781
782         tick_ops->disable_irq();
783 }
784 #endif
785
786 struct sun5_timer {
787         u64     count0;
788         u64     limit0;
789         u64     count1;
790         u64     limit1;
791 };
792
793 static struct sun5_timer *prom_timers;
794 static u64 prom_limit0, prom_limit1;
795
796 static void map_prom_timers(void)
797 {
798         struct device_node *dp;
799         const unsigned int *addr;
800
801         /* PROM timer node hangs out in the top level of device siblings... */
802         dp = of_find_node_by_path("/");
803         dp = dp->child;
804         while (dp) {
805                 if (!strcmp(dp->name, "counter-timer"))
806                         break;
807                 dp = dp->sibling;
808         }
809
810         /* Assume if node is not present, PROM uses different tick mechanism
811          * which we should not care about.
812          */
813         if (!dp) {
814                 prom_timers = (struct sun5_timer *) 0;
815                 return;
816         }
817
818         /* If PROM is really using this, it must be mapped by him. */
819         addr = of_get_property(dp, "address", NULL);
820         if (!addr) {
821                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
822                 prom_timers = (struct sun5_timer *) 0;
823                 return;
824         }
825         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
826 }
827
828 static void kill_prom_timer(void)
829 {
830         if (!prom_timers)
831                 return;
832
833         /* Save them away for later. */
834         prom_limit0 = prom_timers->limit0;
835         prom_limit1 = prom_timers->limit1;
836
837         /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
838          * We turn both off here just to be paranoid.
839          */
840         prom_timers->limit0 = 0;
841         prom_timers->limit1 = 0;
842
843         /* Wheee, eat the interrupt packet too... */
844         __asm__ __volatile__(
845 "       mov     0x40, %%g2\n"
846 "       ldxa    [%%g0] %0, %%g1\n"
847 "       ldxa    [%%g2] %1, %%g1\n"
848 "       stxa    %%g0, [%%g0] %0\n"
849 "       membar  #Sync\n"
850         : /* no outputs */
851         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
852         : "g1", "g2");
853 }
854
855 void notrace init_irqwork_curcpu(void)
856 {
857         int cpu = hard_smp_processor_id();
858
859         trap_block[cpu].irq_worklist_pa = 0UL;
860 }
861
862 /* Please be very careful with register_one_mondo() and
863  * sun4v_register_mondo_queues().
864  *
865  * On SMP this gets invoked from the CPU trampoline before
866  * the cpu has fully taken over the trap table from OBP,
867  * and it's kernel stack + %g6 thread register state is
868  * not fully cooked yet.
869  *
870  * Therefore you cannot make any OBP calls, not even prom_printf,
871  * from these two routines.
872  */
873 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
874 {
875         unsigned long num_entries = (qmask + 1) / 64;
876         unsigned long status;
877
878         status = sun4v_cpu_qconf(type, paddr, num_entries);
879         if (status != HV_EOK) {
880                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
881                             "err %lu\n", type, paddr, num_entries, status);
882                 prom_halt();
883         }
884 }
885
886 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
887 {
888         struct trap_per_cpu *tb = &trap_block[this_cpu];
889
890         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
891                            tb->cpu_mondo_qmask);
892         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
893                            tb->dev_mondo_qmask);
894         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
895                            tb->resum_qmask);
896         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
897                            tb->nonresum_qmask);
898 }
899
900 /* Each queue region must be a power of 2 multiple of 64 bytes in
901  * size.  The base real address must be aligned to the size of the
902  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
903  */
904 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
905 {
906         unsigned long size = PAGE_ALIGN(qmask + 1);
907         unsigned long order = get_order(size);
908         unsigned long p;
909
910         p = __get_free_pages(GFP_KERNEL, order);
911         if (!p) {
912                 prom_printf("SUN4V: Error, cannot allocate queue.\n");
913                 prom_halt();
914         }
915
916         *pa_ptr = __pa(p);
917 }
918
919 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
920 {
921 #ifdef CONFIG_SMP
922         unsigned long page;
923
924         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
925
926         page = get_zeroed_page(GFP_KERNEL);
927         if (!page) {
928                 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
929                 prom_halt();
930         }
931
932         tb->cpu_mondo_block_pa = __pa(page);
933         tb->cpu_list_pa = __pa(page + 64);
934 #endif
935 }
936
937 /* Allocate mondo and error queues for all possible cpus.  */
938 static void __init sun4v_init_mondo_queues(void)
939 {
940         int cpu;
941
942         for_each_possible_cpu(cpu) {
943                 struct trap_per_cpu *tb = &trap_block[cpu];
944
945                 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
946                 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
947                 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
948                 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
949                 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
950                 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
951                                 tb->nonresum_qmask);
952         }
953 }
954
955 static void __init init_send_mondo_info(void)
956 {
957         int cpu;
958
959         for_each_possible_cpu(cpu) {
960                 struct trap_per_cpu *tb = &trap_block[cpu];
961
962                 init_cpu_send_mondo_info(tb);
963         }
964 }
965
966 static struct irqaction timer_irq_action = {
967         .name = "timer",
968 };
969
970 /* Only invoked on boot processor. */
971 void __init init_IRQ(void)
972 {
973         unsigned long size;
974
975         map_prom_timers();
976         kill_prom_timer();
977
978         size = sizeof(struct ino_bucket) * NUM_IVECS;
979         ivector_table = kzalloc(size, GFP_KERNEL);
980         if (!ivector_table) {
981                 prom_printf("Fatal error, cannot allocate ivector_table\n");
982                 prom_halt();
983         }
984         __flush_dcache_range((unsigned long) ivector_table,
985                              ((unsigned long) ivector_table) + size);
986
987         ivector_table_pa = __pa(ivector_table);
988
989         if (tlb_type == hypervisor)
990                 sun4v_init_mondo_queues();
991
992         init_send_mondo_info();
993
994         if (tlb_type == hypervisor) {
995                 /* Load up the boot cpu's entries.  */
996                 sun4v_register_mondo_queues(hard_smp_processor_id());
997         }
998
999         /* We need to clear any IRQ's pending in the soft interrupt
1000          * registers, a spurious one could be left around from the
1001          * PROM timer which we just disabled.
1002          */
1003         clear_softint(get_softint());
1004
1005         /* Now that ivector table is initialized, it is safe
1006          * to receive IRQ vector traps.  We will normally take
1007          * one or two right now, in case some device PROM used
1008          * to boot us wants to speak to us.  We just ignore them.
1009          */
1010         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
1011                              "or        %%g1, %0, %%g1\n\t"
1012                              "wrpr      %%g1, 0x0, %%pstate"
1013                              : /* No outputs */
1014                              : "i" (PSTATE_IE)
1015                              : "g1");
1016
1017         irq_to_desc(0)->action = &timer_irq_action;
1018 }