Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59
60 /* Transactional Memory debug */
61 #ifdef TM_DEBUG_SW
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
63 #else
64 #define TM_DEBUG(x...) do { } while(0)
65 #endif
66
67 extern unsigned long _get_SP(void);
68
69 #ifndef CONFIG_SMP
70 struct task_struct *last_task_used_math = NULL;
71 struct task_struct *last_task_used_altivec = NULL;
72 struct task_struct *last_task_used_vsx = NULL;
73 struct task_struct *last_task_used_spe = NULL;
74 #endif
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
78 {
79         /*
80          * If we are saving the current thread's registers, and the
81          * thread is in a transactional state, set the TIF_RESTORE_TM
82          * bit so that we know to restore the registers before
83          * returning to userspace.
84          */
85         if (tsk == current && tsk->thread.regs &&
86             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87             !test_thread_flag(TIF_RESTORE_TM)) {
88                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
89                 set_thread_flag(TIF_RESTORE_TM);
90         }
91
92         giveup_fpu(tsk);
93 }
94
95 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
96 {
97         /*
98          * If we are saving the current thread's registers, and the
99          * thread is in a transactional state, set the TIF_RESTORE_TM
100          * bit so that we know to restore the registers before
101          * returning to userspace.
102          */
103         if (tsk == current && tsk->thread.regs &&
104             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
105             !test_thread_flag(TIF_RESTORE_TM)) {
106                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
107                 set_thread_flag(TIF_RESTORE_TM);
108         }
109
110         giveup_altivec(tsk);
111 }
112
113 #else
114 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
115 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
117
118 #ifdef CONFIG_PPC_FPU
119 /*
120  * Make sure the floating-point register state in the
121  * the thread_struct is up to date for task tsk.
122  */
123 void flush_fp_to_thread(struct task_struct *tsk)
124 {
125         if (tsk->thread.regs) {
126                 /*
127                  * We need to disable preemption here because if we didn't,
128                  * another process could get scheduled after the regs->msr
129                  * test but before we have finished saving the FP registers
130                  * to the thread_struct.  That process could take over the
131                  * FPU, and then when we get scheduled again we would store
132                  * bogus values for the remaining FP registers.
133                  */
134                 preempt_disable();
135                 if (tsk->thread.regs->msr & MSR_FP) {
136 #ifdef CONFIG_SMP
137                         /*
138                          * This should only ever be called for current or
139                          * for a stopped child process.  Since we save away
140                          * the FP register state on context switch on SMP,
141                          * there is something wrong if a stopped child appears
142                          * to still have its FP state in the CPU registers.
143                          */
144                         BUG_ON(tsk != current);
145 #endif
146                         giveup_fpu_maybe_transactional(tsk);
147                 }
148                 preempt_enable();
149         }
150 }
151 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
152 #endif /* CONFIG_PPC_FPU */
153
154 void enable_kernel_fp(void)
155 {
156         WARN_ON(preemptible());
157
158 #ifdef CONFIG_SMP
159         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
160                 giveup_fpu_maybe_transactional(current);
161         else
162                 giveup_fpu(NULL);       /* just enables FP for kernel */
163 #else
164         giveup_fpu_maybe_transactional(last_task_used_math);
165 #endif /* CONFIG_SMP */
166 }
167 EXPORT_SYMBOL(enable_kernel_fp);
168
169 #ifdef CONFIG_ALTIVEC
170 void enable_kernel_altivec(void)
171 {
172         WARN_ON(preemptible());
173
174 #ifdef CONFIG_SMP
175         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
176                 giveup_altivec_maybe_transactional(current);
177         else
178                 giveup_altivec_notask();
179 #else
180         giveup_altivec_maybe_transactional(last_task_used_altivec);
181 #endif /* CONFIG_SMP */
182 }
183 EXPORT_SYMBOL(enable_kernel_altivec);
184
185 /*
186  * Make sure the VMX/Altivec register state in the
187  * the thread_struct is up to date for task tsk.
188  */
189 void flush_altivec_to_thread(struct task_struct *tsk)
190 {
191         if (tsk->thread.regs) {
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_VEC) {
194 #ifdef CONFIG_SMP
195                         BUG_ON(tsk != current);
196 #endif
197                         giveup_altivec_maybe_transactional(tsk);
198                 }
199                 preempt_enable();
200         }
201 }
202 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
203 #endif /* CONFIG_ALTIVEC */
204
205 #ifdef CONFIG_VSX
206 #if 0
207 /* not currently used, but some crazy RAID module might want to later */
208 void enable_kernel_vsx(void)
209 {
210         WARN_ON(preemptible());
211
212 #ifdef CONFIG_SMP
213         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
214                 giveup_vsx(current);
215         else
216                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
217 #else
218         giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
220 }
221 EXPORT_SYMBOL(enable_kernel_vsx);
222 #endif
223
224 void giveup_vsx(struct task_struct *tsk)
225 {
226         giveup_fpu_maybe_transactional(tsk);
227         giveup_altivec_maybe_transactional(tsk);
228         __giveup_vsx(tsk);
229 }
230
231 void flush_vsx_to_thread(struct task_struct *tsk)
232 {
233         if (tsk->thread.regs) {
234                 preempt_disable();
235                 if (tsk->thread.regs->msr & MSR_VSX) {
236 #ifdef CONFIG_SMP
237                         BUG_ON(tsk != current);
238 #endif
239                         giveup_vsx(tsk);
240                 }
241                 preempt_enable();
242         }
243 }
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
246
247 #ifdef CONFIG_SPE
248
249 void enable_kernel_spe(void)
250 {
251         WARN_ON(preemptible());
252
253 #ifdef CONFIG_SMP
254         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255                 giveup_spe(current);
256         else
257                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
258 #else
259         giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
261 }
262 EXPORT_SYMBOL(enable_kernel_spe);
263
264 void flush_spe_to_thread(struct task_struct *tsk)
265 {
266         if (tsk->thread.regs) {
267                 preempt_disable();
268                 if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270                         BUG_ON(tsk != current);
271 #endif
272                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273                         giveup_spe(tsk);
274                 }
275                 preempt_enable();
276         }
277 }
278 #endif /* CONFIG_SPE */
279
280 #ifndef CONFIG_SMP
281 /*
282  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283  * and the current task has some state, discard it.
284  */
285 void discard_lazy_cpu_state(void)
286 {
287         preempt_disable();
288         if (last_task_used_math == current)
289                 last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291         if (last_task_used_altivec == current)
292                 last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295         if (last_task_used_vsx == current)
296                 last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299         if (last_task_used_spe == current)
300                 last_task_used_spe = NULL;
301 #endif
302         preempt_enable();
303 }
304 #endif /* CONFIG_SMP */
305
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308                   unsigned long error_code, int signal_code, int breakpt)
309 {
310         siginfo_t info;
311
312         current->thread.trap_nr = signal_code;
313         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314                         11, SIGSEGV) == NOTIFY_STOP)
315                 return;
316
317         /* Deliver the signal to userspace */
318         info.si_signo = SIGTRAP;
319         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
320         info.si_code = signal_code;
321         info.si_addr = (void __user *)address;
322         force_sig_info(SIGTRAP, &info, current);
323 }
324 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
325 void do_break (struct pt_regs *regs, unsigned long address,
326                     unsigned long error_code)
327 {
328         siginfo_t info;
329
330         current->thread.trap_nr = TRAP_HWBKPT;
331         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332                         11, SIGSEGV) == NOTIFY_STOP)
333                 return;
334
335         if (debugger_break_match(regs))
336                 return;
337
338         /* Clear the breakpoint */
339         hw_breakpoint_disable();
340
341         /* Deliver the signal to userspace */
342         info.si_signo = SIGTRAP;
343         info.si_errno = 0;
344         info.si_code = TRAP_HWBKPT;
345         info.si_addr = (void __user *)address;
346         force_sig_info(SIGTRAP, &info, current);
347 }
348 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
349
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
351
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 /*
354  * Set the debug registers back to their default "safe" values.
355  */
356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358         thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360         thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362         thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364         thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366         thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
368         /*
369          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370          */
371         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372                         DBCR1_IAC3US | DBCR1_IAC4US;
373         /*
374          * Force Data Address Compare User/Supervisor bits to be User-only
375          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376          */
377         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379         thread->debug.dbcr1 = 0;
380 #endif
381 }
382
383 static void prime_debug_regs(struct debug_reg *debug)
384 {
385         /*
386          * We could have inherited MSR_DE from userspace, since
387          * it doesn't get cleared on exception entry.  Make sure
388          * MSR_DE is clear before we enable any debug events.
389          */
390         mtmsr(mfmsr() & ~MSR_DE);
391
392         mtspr(SPRN_IAC1, debug->iac1);
393         mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395         mtspr(SPRN_IAC3, debug->iac3);
396         mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398         mtspr(SPRN_DAC1, debug->dac1);
399         mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401         mtspr(SPRN_DVC1, debug->dvc1);
402         mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404         mtspr(SPRN_DBCR0, debug->dbcr0);
405         mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407         mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
409 }
410 /*
411  * Unless neither the old or new thread are making use of the
412  * debug registers, set the debug registers from the values
413  * stored in the new thread.
414  */
415 void switch_booke_debug_regs(struct debug_reg *new_debug)
416 {
417         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418                 || (new_debug->dbcr0 & DBCR0_IDM))
419                         prime_debug_regs(new_debug);
420 }
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
424 static void set_debug_reg_defaults(struct thread_struct *thread)
425 {
426         thread->hw_brk.address = 0;
427         thread->hw_brk.type = 0;
428         set_breakpoint(&thread->hw_brk);
429 }
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
432
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435 {
436         mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438         isync();
439 #endif
440         return 0;
441 }
442 #elif defined(CONFIG_PPC_BOOK3S)
443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444 {
445         mtspr(SPRN_DABR, dabr);
446         if (cpu_has_feature(CPU_FTR_DABRX))
447                 mtspr(SPRN_DABRX, dabrx);
448         return 0;
449 }
450 #else
451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452 {
453         return -EINVAL;
454 }
455 #endif
456
457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
458 {
459         unsigned long dabr, dabrx;
460
461         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462         dabrx = ((brk->type >> 3) & 0x7);
463
464         if (ppc_md.set_dabr)
465                 return ppc_md.set_dabr(dabr, dabrx);
466
467         return __set_dabr(dabr, dabrx);
468 }
469
470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
471 {
472         unsigned long dawr, dawrx, mrd;
473
474         dawr = brk->address;
475
476         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477                                    << (63 - 58); //* read/write bits */
478         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479                                    << (63 - 59); //* translate */
480         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481                                    >> 3; //* PRIM bits */
482         /* dawr length is stored in field MDR bits 48:53.  Matches range in
483            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484            0b111111=64DW.
485            brk->len is in bytes.
486            This aligns up to double word size, shifts and does the bias.
487         */
488         mrd = ((brk->len + 7) >> 3) - 1;
489         dawrx |= (mrd & 0x3f) << (63 - 53);
490
491         if (ppc_md.set_dawr)
492                 return ppc_md.set_dawr(dawr, dawrx);
493         mtspr(SPRN_DAWR, dawr);
494         mtspr(SPRN_DAWRX, dawrx);
495         return 0;
496 }
497
498 int set_breakpoint(struct arch_hw_breakpoint *brk)
499 {
500         __get_cpu_var(current_brk) = *brk;
501
502         if (cpu_has_feature(CPU_FTR_DAWR))
503                 return set_dawr(brk);
504
505         return set_dabr(brk);
506 }
507
508 #ifdef CONFIG_PPC64
509 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
510 #endif
511
512 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
513                               struct arch_hw_breakpoint *b)
514 {
515         if (a->address != b->address)
516                 return false;
517         if (a->type != b->type)
518                 return false;
519         if (a->len != b->len)
520                 return false;
521         return true;
522 }
523
524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
525 static void tm_reclaim_thread(struct thread_struct *thr,
526                               struct thread_info *ti, uint8_t cause)
527 {
528         unsigned long msr_diff = 0;
529
530         /*
531          * If FP/VSX registers have been already saved to the
532          * thread_struct, move them to the transact_fp array.
533          * We clear the TIF_RESTORE_TM bit since after the reclaim
534          * the thread will no longer be transactional.
535          */
536         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
537                 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
538                 if (msr_diff & MSR_FP)
539                         memcpy(&thr->transact_fp, &thr->fp_state,
540                                sizeof(struct thread_fp_state));
541                 if (msr_diff & MSR_VEC)
542                         memcpy(&thr->transact_vr, &thr->vr_state,
543                                sizeof(struct thread_vr_state));
544                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
545                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
546         }
547
548         tm_reclaim(thr, thr->regs->msr, cause);
549
550         /* Having done the reclaim, we now have the checkpointed
551          * FP/VSX values in the registers.  These might be valid
552          * even if we have previously called enable_kernel_fp() or
553          * flush_fp_to_thread(), so update thr->regs->msr to
554          * indicate their current validity.
555          */
556         thr->regs->msr |= msr_diff;
557 }
558
559 void tm_reclaim_current(uint8_t cause)
560 {
561         tm_enable();
562         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
563 }
564
565 static inline void tm_reclaim_task(struct task_struct *tsk)
566 {
567         /* We have to work out if we're switching from/to a task that's in the
568          * middle of a transaction.
569          *
570          * In switching we need to maintain a 2nd register state as
571          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
572          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573          * (current) FPRs into oldtask->thread.transact_fpr[].
574          *
575          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
576          */
577         struct thread_struct *thr = &tsk->thread;
578
579         if (!thr->regs)
580                 return;
581
582         if (!MSR_TM_ACTIVE(thr->regs->msr))
583                 goto out_and_saveregs;
584
585         /* Stash the original thread MSR, as giveup_fpu et al will
586          * modify it.  We hold onto it to see whether the task used
587          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
588          * tm_orig_msr is already set.
589          */
590         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
591                 thr->tm_orig_msr = thr->regs->msr;
592
593         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594                  "ccr=%lx, msr=%lx, trap=%lx)\n",
595                  tsk->pid, thr->regs->nip,
596                  thr->regs->ccr, thr->regs->msr,
597                  thr->regs->trap);
598
599         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
600
601         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
602                  tsk->pid);
603
604 out_and_saveregs:
605         /* Always save the regs here, even if a transaction's not active.
606          * This context-switches a thread's TM info SPRs.  We do it here to
607          * be consistent with the restore path (in recheckpoint) which
608          * cannot happen later in _switch().
609          */
610         tm_save_sprs(thr);
611 }
612
613 extern void __tm_recheckpoint(struct thread_struct *thread,
614                               unsigned long orig_msr);
615
616 void tm_recheckpoint(struct thread_struct *thread,
617                      unsigned long orig_msr)
618 {
619         unsigned long flags;
620
621         /* We really can't be interrupted here as the TEXASR registers can't
622          * change and later in the trecheckpoint code, we have a userspace R1.
623          * So let's hard disable over this region.
624          */
625         local_irq_save(flags);
626         hard_irq_disable();
627
628         /* The TM SPRs are restored here, so that TEXASR.FS can be set
629          * before the trecheckpoint and no explosion occurs.
630          */
631         tm_restore_sprs(thread);
632
633         __tm_recheckpoint(thread, orig_msr);
634
635         local_irq_restore(flags);
636 }
637
638 static inline void tm_recheckpoint_new_task(struct task_struct *new)
639 {
640         unsigned long msr;
641
642         if (!cpu_has_feature(CPU_FTR_TM))
643                 return;
644
645         /* Recheckpoint the registers of the thread we're about to switch to.
646          *
647          * If the task was using FP, we non-lazily reload both the original and
648          * the speculative FP register states.  This is because the kernel
649          * doesn't see if/when a TM rollback occurs, so if we take an FP
650          * unavoidable later, we are unable to determine which set of FP regs
651          * need to be restored.
652          */
653         if (!new->thread.regs)
654                 return;
655
656         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
657                 tm_restore_sprs(&new->thread);
658                 return;
659         }
660         msr = new->thread.tm_orig_msr;
661         /* Recheckpoint to restore original checkpointed register state. */
662         TM_DEBUG("*** tm_recheckpoint of pid %d "
663                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
664                  new->pid, new->thread.regs->msr, msr);
665
666         /* This loads the checkpointed FP/VEC state, if used */
667         tm_recheckpoint(&new->thread, msr);
668
669         /* This loads the speculative FP/VEC state, if used */
670         if (msr & MSR_FP) {
671                 do_load_up_transact_fpu(&new->thread);
672                 new->thread.regs->msr |=
673                         (MSR_FP | new->thread.fpexc_mode);
674         }
675 #ifdef CONFIG_ALTIVEC
676         if (msr & MSR_VEC) {
677                 do_load_up_transact_altivec(&new->thread);
678                 new->thread.regs->msr |= MSR_VEC;
679         }
680 #endif
681         /* We may as well turn on VSX too since all the state is restored now */
682         if (msr & MSR_VSX)
683                 new->thread.regs->msr |= MSR_VSX;
684
685         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
686                  "(kernel msr 0x%lx)\n",
687                  new->pid, mfmsr());
688 }
689
690 static inline void __switch_to_tm(struct task_struct *prev)
691 {
692         if (cpu_has_feature(CPU_FTR_TM)) {
693                 tm_enable();
694                 tm_reclaim_task(prev);
695         }
696 }
697
698 /*
699  * This is called if we are on the way out to userspace and the
700  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
701  * FP and/or vector state and does so if necessary.
702  * If userspace is inside a transaction (whether active or
703  * suspended) and FP/VMX/VSX instructions have ever been enabled
704  * inside that transaction, then we have to keep them enabled
705  * and keep the FP/VMX/VSX state loaded while ever the transaction
706  * continues.  The reason is that if we didn't, and subsequently
707  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
708  * we don't know whether it's the same transaction, and thus we
709  * don't know which of the checkpointed state and the transactional
710  * state to use.
711  */
712 void restore_tm_state(struct pt_regs *regs)
713 {
714         unsigned long msr_diff;
715
716         clear_thread_flag(TIF_RESTORE_TM);
717         if (!MSR_TM_ACTIVE(regs->msr))
718                 return;
719
720         msr_diff = current->thread.tm_orig_msr & ~regs->msr;
721         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
722         if (msr_diff & MSR_FP) {
723                 fp_enable();
724                 load_fp_state(&current->thread.fp_state);
725                 regs->msr |= current->thread.fpexc_mode;
726         }
727         if (msr_diff & MSR_VEC) {
728                 vec_enable();
729                 load_vr_state(&current->thread.vr_state);
730         }
731         regs->msr |= msr_diff;
732 }
733
734 #else
735 #define tm_recheckpoint_new_task(new)
736 #define __switch_to_tm(prev)
737 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
738
739 struct task_struct *__switch_to(struct task_struct *prev,
740         struct task_struct *new)
741 {
742         struct thread_struct *new_thread, *old_thread;
743         struct task_struct *last;
744 #ifdef CONFIG_PPC_BOOK3S_64
745         struct ppc64_tlb_batch *batch;
746 #endif
747
748         WARN_ON(!irqs_disabled());
749
750         /* Back up the TAR across context switches.
751          * Note that the TAR is not available for use in the kernel.  (To
752          * provide this, the TAR should be backed up/restored on exception
753          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
754          * pt_regs anyway (for debug).)
755          * Save the TAR here before we do treclaim/trecheckpoint as these
756          * will change the TAR.
757          */
758         save_tar(&prev->thread);
759
760         __switch_to_tm(prev);
761
762 #ifdef CONFIG_SMP
763         /* avoid complexity of lazy save/restore of fpu
764          * by just saving it every time we switch out if
765          * this task used the fpu during the last quantum.
766          *
767          * If it tries to use the fpu again, it'll trap and
768          * reload its fp regs.  So we don't have to do a restore
769          * every switch, just a save.
770          *  -- Cort
771          */
772         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
773                 giveup_fpu(prev);
774 #ifdef CONFIG_ALTIVEC
775         /*
776          * If the previous thread used altivec in the last quantum
777          * (thus changing altivec regs) then save them.
778          * We used to check the VRSAVE register but not all apps
779          * set it, so we don't rely on it now (and in fact we need
780          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
781          *
782          * On SMP we always save/restore altivec regs just to avoid the
783          * complexity of changing processors.
784          *  -- Cort
785          */
786         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
787                 giveup_altivec(prev);
788 #endif /* CONFIG_ALTIVEC */
789 #ifdef CONFIG_VSX
790         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
791                 /* VMX and FPU registers are already save here */
792                 __giveup_vsx(prev);
793 #endif /* CONFIG_VSX */
794 #ifdef CONFIG_SPE
795         /*
796          * If the previous thread used spe in the last quantum
797          * (thus changing spe regs) then save them.
798          *
799          * On SMP we always save/restore spe regs just to avoid the
800          * complexity of changing processors.
801          */
802         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
803                 giveup_spe(prev);
804 #endif /* CONFIG_SPE */
805
806 #else  /* CONFIG_SMP */
807 #ifdef CONFIG_ALTIVEC
808         /* Avoid the trap.  On smp this this never happens since
809          * we don't set last_task_used_altivec -- Cort
810          */
811         if (new->thread.regs && last_task_used_altivec == new)
812                 new->thread.regs->msr |= MSR_VEC;
813 #endif /* CONFIG_ALTIVEC */
814 #ifdef CONFIG_VSX
815         if (new->thread.regs && last_task_used_vsx == new)
816                 new->thread.regs->msr |= MSR_VSX;
817 #endif /* CONFIG_VSX */
818 #ifdef CONFIG_SPE
819         /* Avoid the trap.  On smp this this never happens since
820          * we don't set last_task_used_spe
821          */
822         if (new->thread.regs && last_task_used_spe == new)
823                 new->thread.regs->msr |= MSR_SPE;
824 #endif /* CONFIG_SPE */
825
826 #endif /* CONFIG_SMP */
827
828 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
829         switch_booke_debug_regs(&new->thread.debug);
830 #else
831 /*
832  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
833  * schedule DABR
834  */
835 #ifndef CONFIG_HAVE_HW_BREAKPOINT
836         if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
837                 set_breakpoint(&new->thread.hw_brk);
838 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
839 #endif
840
841
842         new_thread = &new->thread;
843         old_thread = &current->thread;
844
845 #ifdef CONFIG_PPC64
846         /*
847          * Collect processor utilization data per process
848          */
849         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
850                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
851                 long unsigned start_tb, current_tb;
852                 start_tb = old_thread->start_tb;
853                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
854                 old_thread->accum_tb += (current_tb - start_tb);
855                 new_thread->start_tb = current_tb;
856         }
857 #endif /* CONFIG_PPC64 */
858
859 #ifdef CONFIG_PPC_BOOK3S_64
860         batch = &__get_cpu_var(ppc64_tlb_batch);
861         if (batch->active) {
862                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
863                 if (batch->index)
864                         __flush_tlb_pending(batch);
865                 batch->active = 0;
866         }
867 #endif /* CONFIG_PPC_BOOK3S_64 */
868
869         /*
870          * We can't take a PMU exception inside _switch() since there is a
871          * window where the kernel stack SLB and the kernel stack are out
872          * of sync. Hard disable here.
873          */
874         hard_irq_disable();
875
876         tm_recheckpoint_new_task(new);
877
878         last = _switch(old_thread, new_thread);
879
880 #ifdef CONFIG_PPC_BOOK3S_64
881         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
882                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
883                 batch = &__get_cpu_var(ppc64_tlb_batch);
884                 batch->active = 1;
885         }
886 #endif /* CONFIG_PPC_BOOK3S_64 */
887
888         return last;
889 }
890
891 static int instructions_to_print = 16;
892
893 static void show_instructions(struct pt_regs *regs)
894 {
895         int i;
896         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
897                         sizeof(int));
898
899         printk("Instruction dump:");
900
901         for (i = 0; i < instructions_to_print; i++) {
902                 int instr;
903
904                 if (!(i % 8))
905                         printk("\n");
906
907 #if !defined(CONFIG_BOOKE)
908                 /* If executing with the IMMU off, adjust pc rather
909                  * than print XXXXXXXX.
910                  */
911                 if (!(regs->msr & MSR_IR))
912                         pc = (unsigned long)phys_to_virt(pc);
913 #endif
914
915                 /* We use __get_user here *only* to avoid an OOPS on a
916                  * bad address because the pc *should* only be a
917                  * kernel address.
918                  */
919                 if (!__kernel_text_address(pc) ||
920                      __get_user(instr, (unsigned int __user *)pc)) {
921                         printk(KERN_CONT "XXXXXXXX ");
922                 } else {
923                         if (regs->nip == pc)
924                                 printk(KERN_CONT "<%08x> ", instr);
925                         else
926                                 printk(KERN_CONT "%08x ", instr);
927                 }
928
929                 pc += sizeof(int);
930         }
931
932         printk("\n");
933 }
934
935 static struct regbit {
936         unsigned long bit;
937         const char *name;
938 } msr_bits[] = {
939 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
940         {MSR_SF,        "SF"},
941         {MSR_HV,        "HV"},
942 #endif
943         {MSR_VEC,       "VEC"},
944         {MSR_VSX,       "VSX"},
945 #ifdef CONFIG_BOOKE
946         {MSR_CE,        "CE"},
947 #endif
948         {MSR_EE,        "EE"},
949         {MSR_PR,        "PR"},
950         {MSR_FP,        "FP"},
951         {MSR_ME,        "ME"},
952 #ifdef CONFIG_BOOKE
953         {MSR_DE,        "DE"},
954 #else
955         {MSR_SE,        "SE"},
956         {MSR_BE,        "BE"},
957 #endif
958         {MSR_IR,        "IR"},
959         {MSR_DR,        "DR"},
960         {MSR_PMM,       "PMM"},
961 #ifndef CONFIG_BOOKE
962         {MSR_RI,        "RI"},
963         {MSR_LE,        "LE"},
964 #endif
965         {0,             NULL}
966 };
967
968 static void printbits(unsigned long val, struct regbit *bits)
969 {
970         const char *sep = "";
971
972         printk("<");
973         for (; bits->bit; ++bits)
974                 if (val & bits->bit) {
975                         printk("%s%s", sep, bits->name);
976                         sep = ",";
977                 }
978         printk(">");
979 }
980
981 #ifdef CONFIG_PPC64
982 #define REG             "%016lx"
983 #define REGS_PER_LINE   4
984 #define LAST_VOLATILE   13
985 #else
986 #define REG             "%08lx"
987 #define REGS_PER_LINE   8
988 #define LAST_VOLATILE   12
989 #endif
990
991 void show_regs(struct pt_regs * regs)
992 {
993         int i, trap;
994
995         show_regs_print_info(KERN_DEFAULT);
996
997         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
998                regs->nip, regs->link, regs->ctr);
999         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1000                regs, regs->trap, print_tainted(), init_utsname()->release);
1001         printk("MSR: "REG" ", regs->msr);
1002         printbits(regs->msr, msr_bits);
1003         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1004         trap = TRAP(regs);
1005         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1006                 printk("CFAR: "REG" ", regs->orig_gpr3);
1007         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1008 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1009                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1010 #else
1011                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1012 #endif
1013 #ifdef CONFIG_PPC64
1014         printk("SOFTE: %ld ", regs->softe);
1015 #endif
1016 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1017         if (MSR_TM_ACTIVE(regs->msr))
1018                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1019 #endif
1020
1021         for (i = 0;  i < 32;  i++) {
1022                 if ((i % REGS_PER_LINE) == 0)
1023                         printk("\nGPR%02d: ", i);
1024                 printk(REG " ", regs->gpr[i]);
1025                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1026                         break;
1027         }
1028         printk("\n");
1029 #ifdef CONFIG_KALLSYMS
1030         /*
1031          * Lookup NIP late so we have the best change of getting the
1032          * above info out without failing
1033          */
1034         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1035         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1036 #endif
1037         show_stack(current, (unsigned long *) regs->gpr[1]);
1038         if (!user_mode(regs))
1039                 show_instructions(regs);
1040 }
1041
1042 void exit_thread(void)
1043 {
1044         discard_lazy_cpu_state();
1045 }
1046
1047 void flush_thread(void)
1048 {
1049         discard_lazy_cpu_state();
1050
1051 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1052         flush_ptrace_hw_breakpoint(current);
1053 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1054         set_debug_reg_defaults(&current->thread);
1055 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1056 }
1057
1058 void
1059 release_thread(struct task_struct *t)
1060 {
1061 }
1062
1063 /*
1064  * this gets called so that we can store coprocessor state into memory and
1065  * copy the current task into the new thread.
1066  */
1067 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1068 {
1069         flush_fp_to_thread(src);
1070         flush_altivec_to_thread(src);
1071         flush_vsx_to_thread(src);
1072         flush_spe_to_thread(src);
1073         /*
1074          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1075          * flush but it removes the checkpointed state from the current CPU and
1076          * transitions the CPU out of TM mode.  Hence we need to call
1077          * tm_recheckpoint_new_task() (on the same task) to restore the
1078          * checkpointed state back and the TM mode.
1079          */
1080         __switch_to_tm(src);
1081         tm_recheckpoint_new_task(src);
1082
1083         *dst = *src;
1084
1085         clear_task_ebb(dst);
1086
1087         return 0;
1088 }
1089
1090 /*
1091  * Copy a thread..
1092  */
1093 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1094
1095 int copy_thread(unsigned long clone_flags, unsigned long usp,
1096                 unsigned long arg, struct task_struct *p)
1097 {
1098         struct pt_regs *childregs, *kregs;
1099         extern void ret_from_fork(void);
1100         extern void ret_from_kernel_thread(void);
1101         void (*f)(void);
1102         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1103
1104         /* Copy registers */
1105         sp -= sizeof(struct pt_regs);
1106         childregs = (struct pt_regs *) sp;
1107         if (unlikely(p->flags & PF_KTHREAD)) {
1108                 struct thread_info *ti = (void *)task_stack_page(p);
1109                 memset(childregs, 0, sizeof(struct pt_regs));
1110                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1111                 childregs->gpr[14] = usp;       /* function */
1112 #ifdef CONFIG_PPC64
1113                 clear_tsk_thread_flag(p, TIF_32BIT);
1114                 childregs->softe = 1;
1115 #endif
1116                 childregs->gpr[15] = arg;
1117                 p->thread.regs = NULL;  /* no user register state */
1118                 ti->flags |= _TIF_RESTOREALL;
1119                 f = ret_from_kernel_thread;
1120         } else {
1121                 struct pt_regs *regs = current_pt_regs();
1122                 CHECK_FULL_REGS(regs);
1123                 *childregs = *regs;
1124                 if (usp)
1125                         childregs->gpr[1] = usp;
1126                 p->thread.regs = childregs;
1127                 childregs->gpr[3] = 0;  /* Result from fork() */
1128                 if (clone_flags & CLONE_SETTLS) {
1129 #ifdef CONFIG_PPC64
1130                         if (!is_32bit_task())
1131                                 childregs->gpr[13] = childregs->gpr[6];
1132                         else
1133 #endif
1134                                 childregs->gpr[2] = childregs->gpr[6];
1135                 }
1136
1137                 f = ret_from_fork;
1138         }
1139         sp -= STACK_FRAME_OVERHEAD;
1140
1141         /*
1142          * The way this works is that at some point in the future
1143          * some task will call _switch to switch to the new task.
1144          * That will pop off the stack frame created below and start
1145          * the new task running at ret_from_fork.  The new task will
1146          * do some house keeping and then return from the fork or clone
1147          * system call, using the stack frame created above.
1148          */
1149         ((unsigned long *)sp)[0] = 0;
1150         sp -= sizeof(struct pt_regs);
1151         kregs = (struct pt_regs *) sp;
1152         sp -= STACK_FRAME_OVERHEAD;
1153         p->thread.ksp = sp;
1154 #ifdef CONFIG_PPC32
1155         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1156                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1157 #endif
1158 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1159         p->thread.ptrace_bps[0] = NULL;
1160 #endif
1161
1162         p->thread.fp_save_area = NULL;
1163 #ifdef CONFIG_ALTIVEC
1164         p->thread.vr_save_area = NULL;
1165 #endif
1166
1167 #ifdef CONFIG_PPC_STD_MMU_64
1168         if (mmu_has_feature(MMU_FTR_SLB)) {
1169                 unsigned long sp_vsid;
1170                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1171
1172                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1173                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1174                                 << SLB_VSID_SHIFT_1T;
1175                 else
1176                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1177                                 << SLB_VSID_SHIFT;
1178                 sp_vsid |= SLB_VSID_KERNEL | llp;
1179                 p->thread.ksp_vsid = sp_vsid;
1180         }
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1182 #ifdef CONFIG_PPC64 
1183         if (cpu_has_feature(CPU_FTR_DSCR)) {
1184                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1185                 p->thread.dscr = current->thread.dscr;
1186         }
1187         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1188                 p->thread.ppr = INIT_PPR;
1189 #endif
1190         /*
1191          * The PPC64 ABI makes use of a TOC to contain function 
1192          * pointers.  The function (ret_from_except) is actually a pointer
1193          * to the TOC entry.  The first entry is a pointer to the actual
1194          * function.
1195          */
1196 #ifdef CONFIG_PPC64
1197         kregs->nip = *((unsigned long *)f);
1198 #else
1199         kregs->nip = (unsigned long)f;
1200 #endif
1201         return 0;
1202 }
1203
1204 /*
1205  * Set up a thread for executing a new program
1206  */
1207 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1208 {
1209 #ifdef CONFIG_PPC64
1210         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1211 #endif
1212
1213         /*
1214          * If we exec out of a kernel thread then thread.regs will not be
1215          * set.  Do it now.
1216          */
1217         if (!current->thread.regs) {
1218                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1219                 current->thread.regs = regs - 1;
1220         }
1221
1222         memset(regs->gpr, 0, sizeof(regs->gpr));
1223         regs->ctr = 0;
1224         regs->link = 0;
1225         regs->xer = 0;
1226         regs->ccr = 0;
1227         regs->gpr[1] = sp;
1228
1229         /*
1230          * We have just cleared all the nonvolatile GPRs, so make
1231          * FULL_REGS(regs) return true.  This is necessary to allow
1232          * ptrace to examine the thread immediately after exec.
1233          */
1234         regs->trap &= ~1UL;
1235
1236 #ifdef CONFIG_PPC32
1237         regs->mq = 0;
1238         regs->nip = start;
1239         regs->msr = MSR_USER;
1240 #else
1241         if (!is_32bit_task()) {
1242                 unsigned long entry;
1243
1244                 if (is_elf2_task()) {
1245                         /* Look ma, no function descriptors! */
1246                         entry = start;
1247
1248                         /*
1249                          * Ulrich says:
1250                          *   The latest iteration of the ABI requires that when
1251                          *   calling a function (at its global entry point),
1252                          *   the caller must ensure r12 holds the entry point
1253                          *   address (so that the function can quickly
1254                          *   establish addressability).
1255                          */
1256                         regs->gpr[12] = start;
1257                         /* Make sure that's restored on entry to userspace. */
1258                         set_thread_flag(TIF_RESTOREALL);
1259                 } else {
1260                         unsigned long toc;
1261
1262                         /* start is a relocated pointer to the function
1263                          * descriptor for the elf _start routine.  The first
1264                          * entry in the function descriptor is the entry
1265                          * address of _start and the second entry is the TOC
1266                          * value we need to use.
1267                          */
1268                         __get_user(entry, (unsigned long __user *)start);
1269                         __get_user(toc, (unsigned long __user *)start+1);
1270
1271                         /* Check whether the e_entry function descriptor entries
1272                          * need to be relocated before we can use them.
1273                          */
1274                         if (load_addr != 0) {
1275                                 entry += load_addr;
1276                                 toc   += load_addr;
1277                         }
1278                         regs->gpr[2] = toc;
1279                 }
1280                 regs->nip = entry;
1281                 regs->msr = MSR_USER64;
1282         } else {
1283                 regs->nip = start;
1284                 regs->gpr[2] = 0;
1285                 regs->msr = MSR_USER32;
1286         }
1287 #endif
1288         discard_lazy_cpu_state();
1289 #ifdef CONFIG_VSX
1290         current->thread.used_vsr = 0;
1291 #endif
1292         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1293         current->thread.fp_save_area = NULL;
1294 #ifdef CONFIG_ALTIVEC
1295         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1296         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1297         current->thread.vr_save_area = NULL;
1298         current->thread.vrsave = 0;
1299         current->thread.used_vr = 0;
1300 #endif /* CONFIG_ALTIVEC */
1301 #ifdef CONFIG_SPE
1302         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1303         current->thread.acc = 0;
1304         current->thread.spefscr = 0;
1305         current->thread.used_spe = 0;
1306 #endif /* CONFIG_SPE */
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308         if (cpu_has_feature(CPU_FTR_TM))
1309                 regs->msr |= MSR_TM;
1310         current->thread.tm_tfhar = 0;
1311         current->thread.tm_texasr = 0;
1312         current->thread.tm_tfiar = 0;
1313 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1314 }
1315
1316 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1318
1319 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1320 {
1321         struct pt_regs *regs = tsk->thread.regs;
1322
1323         /* This is a bit hairy.  If we are an SPE enabled  processor
1324          * (have embedded fp) we store the IEEE exception enable flags in
1325          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1326          * mode (asyn, precise, disabled) for 'Classic' FP. */
1327         if (val & PR_FP_EXC_SW_ENABLE) {
1328 #ifdef CONFIG_SPE
1329                 if (cpu_has_feature(CPU_FTR_SPE)) {
1330                         /*
1331                          * When the sticky exception bits are set
1332                          * directly by userspace, it must call prctl
1333                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334                          * in the existing prctl settings) or
1335                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336                          * the bits being set).  <fenv.h> functions
1337                          * saving and restoring the whole
1338                          * floating-point environment need to do so
1339                          * anyway to restore the prctl settings from
1340                          * the saved environment.
1341                          */
1342                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1343                         tsk->thread.fpexc_mode = val &
1344                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1345                         return 0;
1346                 } else {
1347                         return -EINVAL;
1348                 }
1349 #else
1350                 return -EINVAL;
1351 #endif
1352         }
1353
1354         /* on a CONFIG_SPE this does not hurt us.  The bits that
1355          * __pack_fe01 use do not overlap with bits used for
1356          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1357          * on CONFIG_SPE implementations are reserved so writing to
1358          * them does not change anything */
1359         if (val > PR_FP_EXC_PRECISE)
1360                 return -EINVAL;
1361         tsk->thread.fpexc_mode = __pack_fe01(val);
1362         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1363                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1364                         | tsk->thread.fpexc_mode;
1365         return 0;
1366 }
1367
1368 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1369 {
1370         unsigned int val;
1371
1372         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1373 #ifdef CONFIG_SPE
1374                 if (cpu_has_feature(CPU_FTR_SPE)) {
1375                         /*
1376                          * When the sticky exception bits are set
1377                          * directly by userspace, it must call prctl
1378                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379                          * in the existing prctl settings) or
1380                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381                          * the bits being set).  <fenv.h> functions
1382                          * saving and restoring the whole
1383                          * floating-point environment need to do so
1384                          * anyway to restore the prctl settings from
1385                          * the saved environment.
1386                          */
1387                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1388                         val = tsk->thread.fpexc_mode;
1389                 } else
1390                         return -EINVAL;
1391 #else
1392                 return -EINVAL;
1393 #endif
1394         else
1395                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1396         return put_user(val, (unsigned int __user *) adr);
1397 }
1398
1399 int set_endian(struct task_struct *tsk, unsigned int val)
1400 {
1401         struct pt_regs *regs = tsk->thread.regs;
1402
1403         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1404             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1405                 return -EINVAL;
1406
1407         if (regs == NULL)
1408                 return -EINVAL;
1409
1410         if (val == PR_ENDIAN_BIG)
1411                 regs->msr &= ~MSR_LE;
1412         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1413                 regs->msr |= MSR_LE;
1414         else
1415                 return -EINVAL;
1416
1417         return 0;
1418 }
1419
1420 int get_endian(struct task_struct *tsk, unsigned long adr)
1421 {
1422         struct pt_regs *regs = tsk->thread.regs;
1423         unsigned int val;
1424
1425         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1426             !cpu_has_feature(CPU_FTR_REAL_LE))
1427                 return -EINVAL;
1428
1429         if (regs == NULL)
1430                 return -EINVAL;
1431
1432         if (regs->msr & MSR_LE) {
1433                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1434                         val = PR_ENDIAN_LITTLE;
1435                 else
1436                         val = PR_ENDIAN_PPC_LITTLE;
1437         } else
1438                 val = PR_ENDIAN_BIG;
1439
1440         return put_user(val, (unsigned int __user *)adr);
1441 }
1442
1443 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1444 {
1445         tsk->thread.align_ctl = val;
1446         return 0;
1447 }
1448
1449 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1450 {
1451         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1452 }
1453
1454 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1455                                   unsigned long nbytes)
1456 {
1457         unsigned long stack_page;
1458         unsigned long cpu = task_cpu(p);
1459
1460         /*
1461          * Avoid crashing if the stack has overflowed and corrupted
1462          * task_cpu(p), which is in the thread_info struct.
1463          */
1464         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1465                 stack_page = (unsigned long) hardirq_ctx[cpu];
1466                 if (sp >= stack_page + sizeof(struct thread_struct)
1467                     && sp <= stack_page + THREAD_SIZE - nbytes)
1468                         return 1;
1469
1470                 stack_page = (unsigned long) softirq_ctx[cpu];
1471                 if (sp >= stack_page + sizeof(struct thread_struct)
1472                     && sp <= stack_page + THREAD_SIZE - nbytes)
1473                         return 1;
1474         }
1475         return 0;
1476 }
1477
1478 int validate_sp(unsigned long sp, struct task_struct *p,
1479                        unsigned long nbytes)
1480 {
1481         unsigned long stack_page = (unsigned long)task_stack_page(p);
1482
1483         if (sp >= stack_page + sizeof(struct thread_struct)
1484             && sp <= stack_page + THREAD_SIZE - nbytes)
1485                 return 1;
1486
1487         return valid_irq_stack(sp, p, nbytes);
1488 }
1489
1490 EXPORT_SYMBOL(validate_sp);
1491
1492 unsigned long get_wchan(struct task_struct *p)
1493 {
1494         unsigned long ip, sp;
1495         int count = 0;
1496
1497         if (!p || p == current || p->state == TASK_RUNNING)
1498                 return 0;
1499
1500         sp = p->thread.ksp;
1501         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1502                 return 0;
1503
1504         do {
1505                 sp = *(unsigned long *)sp;
1506                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1507                         return 0;
1508                 if (count > 0) {
1509                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1510                         if (!in_sched_functions(ip))
1511                                 return ip;
1512                 }
1513         } while (count++ < 16);
1514         return 0;
1515 }
1516
1517 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1518
1519 void show_stack(struct task_struct *tsk, unsigned long *stack)
1520 {
1521         unsigned long sp, ip, lr, newsp;
1522         int count = 0;
1523         int firstframe = 1;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525         int curr_frame = current->curr_ret_stack;
1526         extern void return_to_handler(void);
1527         unsigned long rth = (unsigned long)return_to_handler;
1528         unsigned long mrth = -1;
1529 #ifdef CONFIG_PPC64
1530         extern void mod_return_to_handler(void);
1531         rth = *(unsigned long *)rth;
1532         mrth = (unsigned long)mod_return_to_handler;
1533         mrth = *(unsigned long *)mrth;
1534 #endif
1535 #endif
1536
1537         sp = (unsigned long) stack;
1538         if (tsk == NULL)
1539                 tsk = current;
1540         if (sp == 0) {
1541                 if (tsk == current)
1542                         asm("mr %0,1" : "=r" (sp));
1543                 else
1544                         sp = tsk->thread.ksp;
1545         }
1546
1547         lr = 0;
1548         printk("Call Trace:\n");
1549         do {
1550                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1551                         return;
1552
1553                 stack = (unsigned long *) sp;
1554                 newsp = stack[0];
1555                 ip = stack[STACK_FRAME_LR_SAVE];
1556                 if (!firstframe || ip != lr) {
1557                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1560                                 printk(" (%pS)",
1561                                        (void *)current->ret_stack[curr_frame].ret);
1562                                 curr_frame--;
1563                         }
1564 #endif
1565                         if (firstframe)
1566                                 printk(" (unreliable)");
1567                         printk("\n");
1568                 }
1569                 firstframe = 0;
1570
1571                 /*
1572                  * See if this is an exception frame.
1573                  * We look for the "regshere" marker in the current frame.
1574                  */
1575                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1576                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1577                         struct pt_regs *regs = (struct pt_regs *)
1578                                 (sp + STACK_FRAME_OVERHEAD);
1579                         lr = regs->link;
1580                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1581                                regs->trap, (void *)regs->nip, (void *)lr);
1582                         firstframe = 1;
1583                 }
1584
1585                 sp = newsp;
1586         } while (count++ < kstack_depth_to_print);
1587 }
1588
1589 #ifdef CONFIG_PPC64
1590 /* Called with hard IRQs off */
1591 void notrace __ppc64_runlatch_on(void)
1592 {
1593         struct thread_info *ti = current_thread_info();
1594         unsigned long ctrl;
1595
1596         ctrl = mfspr(SPRN_CTRLF);
1597         ctrl |= CTRL_RUNLATCH;
1598         mtspr(SPRN_CTRLT, ctrl);
1599
1600         ti->local_flags |= _TLF_RUNLATCH;
1601 }
1602
1603 /* Called with hard IRQs off */
1604 void notrace __ppc64_runlatch_off(void)
1605 {
1606         struct thread_info *ti = current_thread_info();
1607         unsigned long ctrl;
1608
1609         ti->local_flags &= ~_TLF_RUNLATCH;
1610
1611         ctrl = mfspr(SPRN_CTRLF);
1612         ctrl &= ~CTRL_RUNLATCH;
1613         mtspr(SPRN_CTRLT, ctrl);
1614 }
1615 #endif /* CONFIG_PPC64 */
1616
1617 unsigned long arch_align_stack(unsigned long sp)
1618 {
1619         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1620                 sp -= get_random_int() & ~PAGE_MASK;
1621         return sp & ~0xf;
1622 }
1623
1624 static inline unsigned long brk_rnd(void)
1625 {
1626         unsigned long rnd = 0;
1627
1628         /* 8MB for 32bit, 1GB for 64bit */
1629         if (is_32bit_task())
1630                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1631         else
1632                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1633
1634         return rnd << PAGE_SHIFT;
1635 }
1636
1637 unsigned long arch_randomize_brk(struct mm_struct *mm)
1638 {
1639         unsigned long base = mm->brk;
1640         unsigned long ret;
1641
1642 #ifdef CONFIG_PPC_STD_MMU_64
1643         /*
1644          * If we are using 1TB segments and we are allowed to randomise
1645          * the heap, we can put it above 1TB so it is backed by a 1TB
1646          * segment. Otherwise the heap will be in the bottom 1TB
1647          * which always uses 256MB segments and this may result in a
1648          * performance penalty.
1649          */
1650         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1651                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1652 #endif
1653
1654         ret = PAGE_ALIGN(base + brk_rnd());
1655
1656         if (ret < mm->brk)
1657                 return mm->brk;
1658
1659         return ret;
1660 }
1661
1662 unsigned long randomize_et_dyn(unsigned long base)
1663 {
1664         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1665
1666         if (ret < base)
1667                 return base;
1668
1669         return ret;
1670 }