Merge branch 'tunnels'
[linux.git] / arch / powerpc / kernel / align.c
1 /* align.c - handle alignment exceptions for the Power PC.
2  *
3  * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4  * Copyright (c) 1998-1999 TiVo, Inc.
5  *   PowerPC 403GCX modifications.
6  * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7  *   PowerPC 403GCX/405GP modifications.
8  * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9  *   64-bit and Power4 support
10  * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11  *                    <benh@kernel.crashing.org>
12  *   Merge ppc32 and ppc64 implementations
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License
16  * as published by the Free Software Foundation; either version
17  * 2 of the License, or (at your option) any later version.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
28
29 struct aligninfo {
30         unsigned char len;
31         unsigned char flags;
32 };
33
34 #define IS_XFORM(inst)  (((inst) >> 26) == 31)
35 #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
36
37 #define INVALID { 0, 0 }
38
39 /* Bits in the flags field */
40 #define LD      0       /* load */
41 #define ST      1       /* store */
42 #define SE      2       /* sign-extend value, or FP ld/st as word */
43 #define F       4       /* to/from fp regs */
44 #define U       8       /* update index register */
45 #define M       0x10    /* multiple load/store */
46 #define SW      0x20    /* byte swap */
47 #define S       0x40    /* single-precision fp or... */
48 #define SX      0x40    /* ... byte count in XER */
49 #define HARD    0x80    /* string, stwcx. */
50 #define E4      0x40    /* SPE endianness is word */
51 #define E8      0x80    /* SPE endianness is double word */
52 #define SPLT    0x80    /* VSX SPLAT load */
53
54 /* DSISR bits reported for a DCBZ instruction: */
55 #define DCBZ    0x5f    /* 8xx/82xx dcbz faults when cache not enabled */
56
57 /*
58  * The PowerPC stores certain bits of the instruction that caused the
59  * alignment exception in the DSISR register.  This array maps those
60  * bits to information about the operand length and what the
61  * instruction would do.
62  */
63 static struct aligninfo aligninfo[128] = {
64         { 4, LD },              /* 00 0 0000: lwz / lwarx */
65         INVALID,                /* 00 0 0001 */
66         { 4, ST },              /* 00 0 0010: stw */
67         INVALID,                /* 00 0 0011 */
68         { 2, LD },              /* 00 0 0100: lhz */
69         { 2, LD+SE },           /* 00 0 0101: lha */
70         { 2, ST },              /* 00 0 0110: sth */
71         { 4, LD+M },            /* 00 0 0111: lmw */
72         { 4, LD+F+S },          /* 00 0 1000: lfs */
73         { 8, LD+F },            /* 00 0 1001: lfd */
74         { 4, ST+F+S },          /* 00 0 1010: stfs */
75         { 8, ST+F },            /* 00 0 1011: stfd */
76         INVALID,                /* 00 0 1100 */
77         { 8, LD },              /* 00 0 1101: ld/ldu/lwa */
78         INVALID,                /* 00 0 1110 */
79         { 8, ST },              /* 00 0 1111: std/stdu */
80         { 4, LD+U },            /* 00 1 0000: lwzu */
81         INVALID,                /* 00 1 0001 */
82         { 4, ST+U },            /* 00 1 0010: stwu */
83         INVALID,                /* 00 1 0011 */
84         { 2, LD+U },            /* 00 1 0100: lhzu */
85         { 2, LD+SE+U },         /* 00 1 0101: lhau */
86         { 2, ST+U },            /* 00 1 0110: sthu */
87         { 4, ST+M },            /* 00 1 0111: stmw */
88         { 4, LD+F+S+U },        /* 00 1 1000: lfsu */
89         { 8, LD+F+U },          /* 00 1 1001: lfdu */
90         { 4, ST+F+S+U },        /* 00 1 1010: stfsu */
91         { 8, ST+F+U },          /* 00 1 1011: stfdu */
92         { 16, LD+F },           /* 00 1 1100: lfdp */
93         INVALID,                /* 00 1 1101 */
94         { 16, ST+F },           /* 00 1 1110: stfdp */
95         INVALID,                /* 00 1 1111 */
96         { 8, LD },              /* 01 0 0000: ldx */
97         INVALID,                /* 01 0 0001 */
98         { 8, ST },              /* 01 0 0010: stdx */
99         INVALID,                /* 01 0 0011 */
100         INVALID,                /* 01 0 0100 */
101         { 4, LD+SE },           /* 01 0 0101: lwax */
102         INVALID,                /* 01 0 0110 */
103         INVALID,                /* 01 0 0111 */
104         { 4, LD+M+HARD+SX },    /* 01 0 1000: lswx */
105         { 4, LD+M+HARD },       /* 01 0 1001: lswi */
106         { 4, ST+M+HARD+SX },    /* 01 0 1010: stswx */
107         { 4, ST+M+HARD },       /* 01 0 1011: stswi */
108         INVALID,                /* 01 0 1100 */
109         { 8, LD+U },            /* 01 0 1101: ldu */
110         INVALID,                /* 01 0 1110 */
111         { 8, ST+U },            /* 01 0 1111: stdu */
112         { 8, LD+U },            /* 01 1 0000: ldux */
113         INVALID,                /* 01 1 0001 */
114         { 8, ST+U },            /* 01 1 0010: stdux */
115         INVALID,                /* 01 1 0011 */
116         INVALID,                /* 01 1 0100 */
117         { 4, LD+SE+U },         /* 01 1 0101: lwaux */
118         INVALID,                /* 01 1 0110 */
119         INVALID,                /* 01 1 0111 */
120         INVALID,                /* 01 1 1000 */
121         INVALID,                /* 01 1 1001 */
122         INVALID,                /* 01 1 1010 */
123         INVALID,                /* 01 1 1011 */
124         INVALID,                /* 01 1 1100 */
125         INVALID,                /* 01 1 1101 */
126         INVALID,                /* 01 1 1110 */
127         INVALID,                /* 01 1 1111 */
128         INVALID,                /* 10 0 0000 */
129         INVALID,                /* 10 0 0001 */
130         INVALID,                /* 10 0 0010: stwcx. */
131         INVALID,                /* 10 0 0011 */
132         INVALID,                /* 10 0 0100 */
133         INVALID,                /* 10 0 0101 */
134         INVALID,                /* 10 0 0110 */
135         INVALID,                /* 10 0 0111 */
136         { 4, LD+SW },           /* 10 0 1000: lwbrx */
137         INVALID,                /* 10 0 1001 */
138         { 4, ST+SW },           /* 10 0 1010: stwbrx */
139         INVALID,                /* 10 0 1011 */
140         { 2, LD+SW },           /* 10 0 1100: lhbrx */
141         { 4, LD+SE },           /* 10 0 1101  lwa */
142         { 2, ST+SW },           /* 10 0 1110: sthbrx */
143         INVALID,                /* 10 0 1111 */
144         INVALID,                /* 10 1 0000 */
145         INVALID,                /* 10 1 0001 */
146         INVALID,                /* 10 1 0010 */
147         INVALID,                /* 10 1 0011 */
148         INVALID,                /* 10 1 0100 */
149         INVALID,                /* 10 1 0101 */
150         INVALID,                /* 10 1 0110 */
151         INVALID,                /* 10 1 0111 */
152         INVALID,                /* 10 1 1000 */
153         INVALID,                /* 10 1 1001 */
154         INVALID,                /* 10 1 1010 */
155         INVALID,                /* 10 1 1011 */
156         INVALID,                /* 10 1 1100 */
157         INVALID,                /* 10 1 1101 */
158         INVALID,                /* 10 1 1110 */
159         { 0, ST+HARD },         /* 10 1 1111: dcbz */
160         { 4, LD },              /* 11 0 0000: lwzx */
161         INVALID,                /* 11 0 0001 */
162         { 4, ST },              /* 11 0 0010: stwx */
163         INVALID,                /* 11 0 0011 */
164         { 2, LD },              /* 11 0 0100: lhzx */
165         { 2, LD+SE },           /* 11 0 0101: lhax */
166         { 2, ST },              /* 11 0 0110: sthx */
167         INVALID,                /* 11 0 0111 */
168         { 4, LD+F+S },          /* 11 0 1000: lfsx */
169         { 8, LD+F },            /* 11 0 1001: lfdx */
170         { 4, ST+F+S },          /* 11 0 1010: stfsx */
171         { 8, ST+F },            /* 11 0 1011: stfdx */
172         { 16, LD+F },           /* 11 0 1100: lfdpx */
173         { 4, LD+F+SE },         /* 11 0 1101: lfiwax */
174         { 16, ST+F },           /* 11 0 1110: stfdpx */
175         { 4, ST+F },            /* 11 0 1111: stfiwx */
176         { 4, LD+U },            /* 11 1 0000: lwzux */
177         INVALID,                /* 11 1 0001 */
178         { 4, ST+U },            /* 11 1 0010: stwux */
179         INVALID,                /* 11 1 0011 */
180         { 2, LD+U },            /* 11 1 0100: lhzux */
181         { 2, LD+SE+U },         /* 11 1 0101: lhaux */
182         { 2, ST+U },            /* 11 1 0110: sthux */
183         INVALID,                /* 11 1 0111 */
184         { 4, LD+F+S+U },        /* 11 1 1000: lfsux */
185         { 8, LD+F+U },          /* 11 1 1001: lfdux */
186         { 4, ST+F+S+U },        /* 11 1 1010: stfsux */
187         { 8, ST+F+U },          /* 11 1 1011: stfdux */
188         INVALID,                /* 11 1 1100 */
189         { 4, LD+F },            /* 11 1 1101: lfiwzx */
190         INVALID,                /* 11 1 1110 */
191         INVALID,                /* 11 1 1111 */
192 };
193
194 /*
195  * Create a DSISR value from the instruction
196  */
197 static inline unsigned make_dsisr(unsigned instr)
198 {
199         unsigned dsisr;
200
201
202         /* bits  6:15 --> 22:31 */
203         dsisr = (instr & 0x03ff0000) >> 16;
204
205         if (IS_XFORM(instr)) {
206                 /* bits 29:30 --> 15:16 */
207                 dsisr |= (instr & 0x00000006) << 14;
208                 /* bit     25 -->    17 */
209                 dsisr |= (instr & 0x00000040) << 8;
210                 /* bits 21:24 --> 18:21 */
211                 dsisr |= (instr & 0x00000780) << 3;
212         } else {
213                 /* bit      5 -->    17 */
214                 dsisr |= (instr & 0x04000000) >> 12;
215                 /* bits  1: 4 --> 18:21 */
216                 dsisr |= (instr & 0x78000000) >> 17;
217                 /* bits 30:31 --> 12:13 */
218                 if (IS_DSFORM(instr))
219                         dsisr |= (instr & 0x00000003) << 18;
220         }
221
222         return dsisr;
223 }
224
225 /*
226  * The dcbz (data cache block zero) instruction
227  * gives an alignment fault if used on non-cacheable
228  * memory.  We handle the fault mainly for the
229  * case when we are running with the cache disabled
230  * for debugging.
231  */
232 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
233 {
234         long __user *p;
235         int i, size;
236
237 #ifdef __powerpc64__
238         size = ppc64_caches.dline_size;
239 #else
240         size = L1_CACHE_BYTES;
241 #endif
242         p = (long __user *) (regs->dar & -size);
243         if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
244                 return -EFAULT;
245         for (i = 0; i < size / sizeof(long); ++i)
246                 if (__put_user_inatomic(0, p+i))
247                         return -EFAULT;
248         return 1;
249 }
250
251 /*
252  * Emulate load & store multiple instructions
253  * On 64-bit machines, these instructions only affect/use the
254  * bottom 4 bytes of each register, and the loads clear the
255  * top 4 bytes of the affected register.
256  */
257 #ifdef __BIG_ENDIAN__
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i)         *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i)         *((u8 *)(rp) + (i))
262 #endif
263 #endif
264
265 #ifdef __LITTLE_ENDIAN__
266 #define REG_BYTE(rp, i)         (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
267 #endif
268
269 #define SWIZ_PTR(p)             ((unsigned char __user *)((p) ^ swiz))
270
271 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
272                             unsigned int reg, unsigned int nb,
273                             unsigned int flags, unsigned int instr,
274                             unsigned long swiz)
275 {
276         unsigned long *rptr;
277         unsigned int nb0, i, bswiz;
278         unsigned long p;
279
280         /*
281          * We do not try to emulate 8 bytes multiple as they aren't really
282          * available in our operating environments and we don't try to
283          * emulate multiples operations in kernel land as they should never
284          * be used/generated there at least not on unaligned boundaries
285          */
286         if (unlikely((nb > 4) || !user_mode(regs)))
287                 return 0;
288
289         /* lmw, stmw, lswi/x, stswi/x */
290         nb0 = 0;
291         if (flags & HARD) {
292                 if (flags & SX) {
293                         nb = regs->xer & 127;
294                         if (nb == 0)
295                                 return 1;
296                 } else {
297                         unsigned long pc = regs->nip ^ (swiz & 4);
298
299                         if (__get_user_inatomic(instr,
300                                                 (unsigned int __user *)pc))
301                                 return -EFAULT;
302                         if (swiz == 0 && (flags & SW))
303                                 instr = cpu_to_le32(instr);
304                         nb = (instr >> 11) & 0x1f;
305                         if (nb == 0)
306                                 nb = 32;
307                 }
308                 if (nb + reg * 4 > 128) {
309                         nb0 = nb + reg * 4 - 128;
310                         nb = 128 - reg * 4;
311                 }
312 #ifdef __LITTLE_ENDIAN__
313                 /*
314                  *  String instructions are endian neutral but the code
315                  *  below is not.  Force byte swapping on so that the
316                  *  effects of swizzling are undone in the load/store
317                  *  loops below.
318                  */
319                 flags ^= SW;
320 #endif
321         } else {
322                 /* lwm, stmw */
323                 nb = (32 - reg) * 4;
324         }
325
326         if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
327                 return -EFAULT; /* bad address */
328
329         rptr = &regs->gpr[reg];
330         p = (unsigned long) addr;
331         bswiz = (flags & SW)? 3: 0;
332
333         if (!(flags & ST)) {
334                 /*
335                  * This zeroes the top 4 bytes of the affected registers
336                  * in 64-bit mode, and also zeroes out any remaining
337                  * bytes of the last register for lsw*.
338                  */
339                 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
340                 if (nb0 > 0)
341                         memset(&regs->gpr[0], 0,
342                                ((nb0 + 3) / 4) * sizeof(unsigned long));
343
344                 for (i = 0; i < nb; ++i, ++p)
345                         if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
346                                                 SWIZ_PTR(p)))
347                                 return -EFAULT;
348                 if (nb0 > 0) {
349                         rptr = &regs->gpr[0];
350                         addr += nb;
351                         for (i = 0; i < nb0; ++i, ++p)
352                                 if (__get_user_inatomic(REG_BYTE(rptr,
353                                                                  i ^ bswiz),
354                                                         SWIZ_PTR(p)))
355                                         return -EFAULT;
356                 }
357
358         } else {
359                 for (i = 0; i < nb; ++i, ++p)
360                         if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
361                                                 SWIZ_PTR(p)))
362                                 return -EFAULT;
363                 if (nb0 > 0) {
364                         rptr = &regs->gpr[0];
365                         addr += nb;
366                         for (i = 0; i < nb0; ++i, ++p)
367                                 if (__put_user_inatomic(REG_BYTE(rptr,
368                                                                  i ^ bswiz),
369                                                         SWIZ_PTR(p)))
370                                         return -EFAULT;
371                 }
372         }
373         return 1;
374 }
375
376 /*
377  * Emulate floating-point pair loads and stores.
378  * Only POWER6 has these instructions, and it does true little-endian,
379  * so we don't need the address swizzling.
380  */
381 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
382                            unsigned int flags)
383 {
384         char *ptr0 = (char *) &current->thread.TS_FPR(reg);
385         char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
386         int i, ret, sw = 0;
387
388         if (!(flags & F))
389                 return 0;
390         if (reg & 1)
391                 return 0;       /* invalid form: FRS/FRT must be even */
392         if (flags & SW)
393                 sw = 7;
394         ret = 0;
395         for (i = 0; i < 8; ++i) {
396                 if (!(flags & ST)) {
397                         ret |= __get_user(ptr0[i^sw], addr + i);
398                         ret |= __get_user(ptr1[i^sw], addr + i + 8);
399                 } else {
400                         ret |= __put_user(ptr0[i^sw], addr + i);
401                         ret |= __put_user(ptr1[i^sw], addr + i + 8);
402                 }
403         }
404         if (ret)
405                 return -EFAULT;
406         return 1;       /* exception handled and fixed up */
407 }
408
409 #ifdef CONFIG_SPE
410
411 static struct aligninfo spe_aligninfo[32] = {
412         { 8, LD+E8 },           /* 0 00 00: evldd[x] */
413         { 8, LD+E4 },           /* 0 00 01: evldw[x] */
414         { 8, LD },              /* 0 00 10: evldh[x] */
415         INVALID,                /* 0 00 11 */
416         { 2, LD },              /* 0 01 00: evlhhesplat[x] */
417         INVALID,                /* 0 01 01 */
418         { 2, LD },              /* 0 01 10: evlhhousplat[x] */
419         { 2, LD+SE },           /* 0 01 11: evlhhossplat[x] */
420         { 4, LD },              /* 0 10 00: evlwhe[x] */
421         INVALID,                /* 0 10 01 */
422         { 4, LD },              /* 0 10 10: evlwhou[x] */
423         { 4, LD+SE },           /* 0 10 11: evlwhos[x] */
424         { 4, LD+E4 },           /* 0 11 00: evlwwsplat[x] */
425         INVALID,                /* 0 11 01 */
426         { 4, LD },              /* 0 11 10: evlwhsplat[x] */
427         INVALID,                /* 0 11 11 */
428
429         { 8, ST+E8 },           /* 1 00 00: evstdd[x] */
430         { 8, ST+E4 },           /* 1 00 01: evstdw[x] */
431         { 8, ST },              /* 1 00 10: evstdh[x] */
432         INVALID,                /* 1 00 11 */
433         INVALID,                /* 1 01 00 */
434         INVALID,                /* 1 01 01 */
435         INVALID,                /* 1 01 10 */
436         INVALID,                /* 1 01 11 */
437         { 4, ST },              /* 1 10 00: evstwhe[x] */
438         INVALID,                /* 1 10 01 */
439         { 4, ST },              /* 1 10 10: evstwho[x] */
440         INVALID,                /* 1 10 11 */
441         { 4, ST+E4 },           /* 1 11 00: evstwwe[x] */
442         INVALID,                /* 1 11 01 */
443         { 4, ST+E4 },           /* 1 11 10: evstwwo[x] */
444         INVALID,                /* 1 11 11 */
445 };
446
447 #define EVLDD           0x00
448 #define EVLDW           0x01
449 #define EVLDH           0x02
450 #define EVLHHESPLAT     0x04
451 #define EVLHHOUSPLAT    0x06
452 #define EVLHHOSSPLAT    0x07
453 #define EVLWHE          0x08
454 #define EVLWHOU         0x0A
455 #define EVLWHOS         0x0B
456 #define EVLWWSPLAT      0x0C
457 #define EVLWHSPLAT      0x0E
458 #define EVSTDD          0x10
459 #define EVSTDW          0x11
460 #define EVSTDH          0x12
461 #define EVSTWHE         0x18
462 #define EVSTWHO         0x1A
463 #define EVSTWWE         0x1C
464 #define EVSTWWO         0x1E
465
466 /*
467  * Emulate SPE loads and stores.
468  * Only Book-E has these instructions, and it does true little-endian,
469  * so we don't need the address swizzling.
470  */
471 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
472                        unsigned int instr)
473 {
474         int ret;
475         union {
476                 u64 ll;
477                 u32 w[2];
478                 u16 h[4];
479                 u8 v[8];
480         } data, temp;
481         unsigned char __user *p, *addr;
482         unsigned long *evr = &current->thread.evr[reg];
483         unsigned int nb, flags;
484
485         instr = (instr >> 1) & 0x1f;
486
487         /* DAR has the operand effective address */
488         addr = (unsigned char __user *)regs->dar;
489
490         nb = spe_aligninfo[instr].len;
491         flags = spe_aligninfo[instr].flags;
492
493         /* Verify the address of the operand */
494         if (unlikely(user_mode(regs) &&
495                      !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
496                                 addr, nb)))
497                 return -EFAULT;
498
499         /* userland only */
500         if (unlikely(!user_mode(regs)))
501                 return 0;
502
503         flush_spe_to_thread(current);
504
505         /* If we are loading, get the data from user space, else
506          * get it from register values
507          */
508         if (flags & ST) {
509                 data.ll = 0;
510                 switch (instr) {
511                 case EVSTDD:
512                 case EVSTDW:
513                 case EVSTDH:
514                         data.w[0] = *evr;
515                         data.w[1] = regs->gpr[reg];
516                         break;
517                 case EVSTWHE:
518                         data.h[2] = *evr >> 16;
519                         data.h[3] = regs->gpr[reg] >> 16;
520                         break;
521                 case EVSTWHO:
522                         data.h[2] = *evr & 0xffff;
523                         data.h[3] = regs->gpr[reg] & 0xffff;
524                         break;
525                 case EVSTWWE:
526                         data.w[1] = *evr;
527                         break;
528                 case EVSTWWO:
529                         data.w[1] = regs->gpr[reg];
530                         break;
531                 default:
532                         return -EINVAL;
533                 }
534         } else {
535                 temp.ll = data.ll = 0;
536                 ret = 0;
537                 p = addr;
538
539                 switch (nb) {
540                 case 8:
541                         ret |= __get_user_inatomic(temp.v[0], p++);
542                         ret |= __get_user_inatomic(temp.v[1], p++);
543                         ret |= __get_user_inatomic(temp.v[2], p++);
544                         ret |= __get_user_inatomic(temp.v[3], p++);
545                 case 4:
546                         ret |= __get_user_inatomic(temp.v[4], p++);
547                         ret |= __get_user_inatomic(temp.v[5], p++);
548                 case 2:
549                         ret |= __get_user_inatomic(temp.v[6], p++);
550                         ret |= __get_user_inatomic(temp.v[7], p++);
551                         if (unlikely(ret))
552                                 return -EFAULT;
553                 }
554
555                 switch (instr) {
556                 case EVLDD:
557                 case EVLDW:
558                 case EVLDH:
559                         data.ll = temp.ll;
560                         break;
561                 case EVLHHESPLAT:
562                         data.h[0] = temp.h[3];
563                         data.h[2] = temp.h[3];
564                         break;
565                 case EVLHHOUSPLAT:
566                 case EVLHHOSSPLAT:
567                         data.h[1] = temp.h[3];
568                         data.h[3] = temp.h[3];
569                         break;
570                 case EVLWHE:
571                         data.h[0] = temp.h[2];
572                         data.h[2] = temp.h[3];
573                         break;
574                 case EVLWHOU:
575                 case EVLWHOS:
576                         data.h[1] = temp.h[2];
577                         data.h[3] = temp.h[3];
578                         break;
579                 case EVLWWSPLAT:
580                         data.w[0] = temp.w[1];
581                         data.w[1] = temp.w[1];
582                         break;
583                 case EVLWHSPLAT:
584                         data.h[0] = temp.h[2];
585                         data.h[1] = temp.h[2];
586                         data.h[2] = temp.h[3];
587                         data.h[3] = temp.h[3];
588                         break;
589                 default:
590                         return -EINVAL;
591                 }
592         }
593
594         if (flags & SW) {
595                 switch (flags & 0xf0) {
596                 case E8:
597                         data.ll = swab64(data.ll);
598                         break;
599                 case E4:
600                         data.w[0] = swab32(data.w[0]);
601                         data.w[1] = swab32(data.w[1]);
602                         break;
603                 /* Its half word endian */
604                 default:
605                         data.h[0] = swab16(data.h[0]);
606                         data.h[1] = swab16(data.h[1]);
607                         data.h[2] = swab16(data.h[2]);
608                         data.h[3] = swab16(data.h[3]);
609                         break;
610                 }
611         }
612
613         if (flags & SE) {
614                 data.w[0] = (s16)data.h[1];
615                 data.w[1] = (s16)data.h[3];
616         }
617
618         /* Store result to memory or update registers */
619         if (flags & ST) {
620                 ret = 0;
621                 p = addr;
622                 switch (nb) {
623                 case 8:
624                         ret |= __put_user_inatomic(data.v[0], p++);
625                         ret |= __put_user_inatomic(data.v[1], p++);
626                         ret |= __put_user_inatomic(data.v[2], p++);
627                         ret |= __put_user_inatomic(data.v[3], p++);
628                 case 4:
629                         ret |= __put_user_inatomic(data.v[4], p++);
630                         ret |= __put_user_inatomic(data.v[5], p++);
631                 case 2:
632                         ret |= __put_user_inatomic(data.v[6], p++);
633                         ret |= __put_user_inatomic(data.v[7], p++);
634                 }
635                 if (unlikely(ret))
636                         return -EFAULT;
637         } else {
638                 *evr = data.w[0];
639                 regs->gpr[reg] = data.w[1];
640         }
641
642         return 1;
643 }
644 #endif /* CONFIG_SPE */
645
646 #ifdef CONFIG_VSX
647 /*
648  * Emulate VSX instructions...
649  */
650 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
651                        unsigned int areg, struct pt_regs *regs,
652                        unsigned int flags, unsigned int length,
653                        unsigned int elsize)
654 {
655         char *ptr;
656         unsigned long *lptr;
657         int ret = 0;
658         int sw = 0;
659         int i, j;
660
661         /* userland only */
662         if (unlikely(!user_mode(regs)))
663                 return 0;
664
665         flush_vsx_to_thread(current);
666
667         if (reg < 32)
668                 ptr = (char *) &current->thread.fp_state.fpr[reg][0];
669         else
670                 ptr = (char *) &current->thread.vr_state.vr[reg - 32];
671
672         lptr = (unsigned long *) ptr;
673
674 #ifdef __LITTLE_ENDIAN__
675         if (flags & SW) {
676                 elsize = length;
677                 sw = length-1;
678         } else {
679                 /*
680                  * The elements are BE ordered, even in LE mode, so process
681                  * them in reverse order.
682                  */
683                 addr += length - elsize;
684
685                 /* 8 byte memory accesses go in the top 8 bytes of the VR */
686                 if (length == 8)
687                         ptr += 8;
688         }
689 #else
690         if (flags & SW)
691                 sw = elsize-1;
692 #endif
693
694         for (j = 0; j < length; j += elsize) {
695                 for (i = 0; i < elsize; ++i) {
696                         if (flags & ST)
697                                 ret |= __put_user(ptr[i^sw], addr + i);
698                         else
699                                 ret |= __get_user(ptr[i^sw], addr + i);
700                 }
701                 ptr  += elsize;
702 #ifdef __LITTLE_ENDIAN__
703                 addr -= elsize;
704 #else
705                 addr += elsize;
706 #endif
707         }
708
709 #ifdef __BIG_ENDIAN__
710 #define VSX_HI 0
711 #define VSX_LO 1
712 #else
713 #define VSX_HI 1
714 #define VSX_LO 0
715 #endif
716
717         if (!ret) {
718                 if (flags & U)
719                         regs->gpr[areg] = regs->dar;
720
721                 /* Splat load copies the same data to top and bottom 8 bytes */
722                 if (flags & SPLT)
723                         lptr[VSX_LO] = lptr[VSX_HI];
724                 /* For 8 byte loads, zero the low 8 bytes */
725                 else if (!(flags & ST) && (8 == length))
726                         lptr[VSX_LO] = 0;
727         } else
728                 return -EFAULT;
729
730         return 1;
731 }
732 #endif
733
734 /*
735  * Called on alignment exception. Attempts to fixup
736  *
737  * Return 1 on success
738  * Return 0 if unable to handle the interrupt
739  * Return -EFAULT if data address is bad
740  */
741
742 int fix_alignment(struct pt_regs *regs)
743 {
744         unsigned int instr, nb, flags, instruction = 0;
745         unsigned int reg, areg;
746         unsigned int dsisr;
747         unsigned char __user *addr;
748         unsigned long p, swiz;
749         int ret, i;
750         union data {
751                 u64 ll;
752                 double dd;
753                 unsigned char v[8];
754                 struct {
755 #ifdef __LITTLE_ENDIAN__
756                         int      low32;
757                         unsigned hi32;
758 #else
759                         unsigned hi32;
760                         int      low32;
761 #endif
762                 } x32;
763                 struct {
764 #ifdef __LITTLE_ENDIAN__
765                         short         low16;
766                         unsigned char hi48[6];
767 #else
768                         unsigned char hi48[6];
769                         short         low16;
770 #endif
771                 } x16;
772         } data;
773
774         /*
775          * We require a complete register set, if not, then our assembly
776          * is broken
777          */
778         CHECK_FULL_REGS(regs);
779
780         dsisr = regs->dsisr;
781
782         /* Some processors don't provide us with a DSISR we can use here,
783          * let's make one up from the instruction
784          */
785         if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
786                 unsigned long pc = regs->nip;
787
788                 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
789                         pc ^= 4;
790                 if (unlikely(__get_user_inatomic(instr,
791                                                  (unsigned int __user *)pc)))
792                         return -EFAULT;
793                 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
794                         instr = cpu_to_le32(instr);
795                 dsisr = make_dsisr(instr);
796                 instruction = instr;
797         }
798
799         /* extract the operation and registers from the dsisr */
800         reg = (dsisr >> 5) & 0x1f;      /* source/dest register */
801         areg = dsisr & 0x1f;            /* register to update */
802
803 #ifdef CONFIG_SPE
804         if ((instr >> 26) == 0x4) {
805                 PPC_WARN_ALIGNMENT(spe, regs);
806                 return emulate_spe(regs, reg, instr);
807         }
808 #endif
809
810         instr = (dsisr >> 10) & 0x7f;
811         instr |= (dsisr >> 13) & 0x60;
812
813         /* Lookup the operation in our table */
814         nb = aligninfo[instr].len;
815         flags = aligninfo[instr].flags;
816
817         /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
818         if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
819                 nb = 8;
820                 flags = LD+SW;
821         } else if (IS_XFORM(instruction) &&
822                    ((instruction >> 1) & 0x3ff) == 660) {
823                 nb = 8;
824                 flags = ST+SW;
825         }
826
827         /* Byteswap little endian loads and stores */
828         swiz = 0;
829         if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
830                 flags ^= SW;
831 #ifdef __BIG_ENDIAN__
832                 /*
833                  * So-called "PowerPC little endian" mode works by
834                  * swizzling addresses rather than by actually doing
835                  * any byte-swapping.  To emulate this, we XOR each
836                  * byte address with 7.  We also byte-swap, because
837                  * the processor's address swizzling depends on the
838                  * operand size (it xors the address with 7 for bytes,
839                  * 6 for halfwords, 4 for words, 0 for doublewords) but
840                  * we will xor with 7 and load/store each byte separately.
841                  */
842                 if (cpu_has_feature(CPU_FTR_PPC_LE))
843                         swiz = 7;
844 #endif
845         }
846
847         /* DAR has the operand effective address */
848         addr = (unsigned char __user *)regs->dar;
849
850 #ifdef CONFIG_VSX
851         if ((instruction & 0xfc00003e) == 0x7c000018) {
852                 unsigned int elsize;
853
854                 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
855                 reg |= (instruction & 0x1) << 5;
856                 /* Simple inline decoder instead of a table */
857                 /* VSX has only 8 and 16 byte memory accesses */
858                 nb = 8;
859                 if (instruction & 0x200)
860                         nb = 16;
861
862                 /* Vector stores in little-endian mode swap individual
863                    elements, so process them separately */
864                 elsize = 4;
865                 if (instruction & 0x80)
866                         elsize = 8;
867
868                 flags = 0;
869                 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
870                         flags |= SW;
871                 if (instruction & 0x100)
872                         flags |= ST;
873                 if (instruction & 0x040)
874                         flags |= U;
875                 /* splat load needs a special decoder */
876                 if ((instruction & 0x400) == 0){
877                         flags |= SPLT;
878                         nb = 8;
879                 }
880                 PPC_WARN_ALIGNMENT(vsx, regs);
881                 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
882         }
883 #endif
884         /* A size of 0 indicates an instruction we don't support, with
885          * the exception of DCBZ which is handled as a special case here
886          */
887         if (instr == DCBZ) {
888                 PPC_WARN_ALIGNMENT(dcbz, regs);
889                 return emulate_dcbz(regs, addr);
890         }
891         if (unlikely(nb == 0))
892                 return 0;
893
894         /* Load/Store Multiple instructions are handled in their own
895          * function
896          */
897         if (flags & M) {
898                 PPC_WARN_ALIGNMENT(multiple, regs);
899                 return emulate_multiple(regs, addr, reg, nb,
900                                         flags, instr, swiz);
901         }
902
903         /* Verify the address of the operand */
904         if (unlikely(user_mode(regs) &&
905                      !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
906                                 addr, nb)))
907                 return -EFAULT;
908
909         /* Force the fprs into the save area so we can reference them */
910         if (flags & F) {
911                 /* userland only */
912                 if (unlikely(!user_mode(regs)))
913                         return 0;
914                 flush_fp_to_thread(current);
915         }
916
917         /* Special case for 16-byte FP loads and stores */
918         if (nb == 16) {
919                 PPC_WARN_ALIGNMENT(fp_pair, regs);
920                 return emulate_fp_pair(addr, reg, flags);
921         }
922
923         PPC_WARN_ALIGNMENT(unaligned, regs);
924
925         /* If we are loading, get the data from user space, else
926          * get it from register values
927          */
928         if (!(flags & ST)) {
929                 unsigned int start = 0;
930
931                 switch (nb) {
932                 case 4:
933                         start = offsetof(union data, x32.low32);
934                         break;
935                 case 2:
936                         start = offsetof(union data, x16.low16);
937                         break;
938                 }
939
940                 data.ll = 0;
941                 ret = 0;
942                 p = (unsigned long)addr;
943
944                 for (i = 0; i < nb; i++)
945                         ret |= __get_user_inatomic(data.v[start + i],
946                                                    SWIZ_PTR(p++));
947
948                 if (unlikely(ret))
949                         return -EFAULT;
950
951         } else if (flags & F) {
952                 data.ll = current->thread.TS_FPR(reg);
953                 if (flags & S) {
954                         /* Single-precision FP store requires conversion... */
955 #ifdef CONFIG_PPC_FPU
956                         preempt_disable();
957                         enable_kernel_fp();
958                         cvt_df(&data.dd, (float *)&data.x32.low32);
959                         preempt_enable();
960 #else
961                         return 0;
962 #endif
963                 }
964         } else
965                 data.ll = regs->gpr[reg];
966
967         if (flags & SW) {
968                 switch (nb) {
969                 case 8:
970                         data.ll = swab64(data.ll);
971                         break;
972                 case 4:
973                         data.x32.low32 = swab32(data.x32.low32);
974                         break;
975                 case 2:
976                         data.x16.low16 = swab16(data.x16.low16);
977                         break;
978                 }
979         }
980
981         /* Perform other misc operations like sign extension
982          * or floating point single precision conversion
983          */
984         switch (flags & ~(U|SW)) {
985         case LD+SE:     /* sign extending integer loads */
986         case LD+F+SE:   /* sign extend for lfiwax */
987                 if ( nb == 2 )
988                         data.ll = data.x16.low16;
989                 else    /* nb must be 4 */
990                         data.ll = data.x32.low32;
991                 break;
992
993         /* Single-precision FP load requires conversion... */
994         case LD+F+S:
995 #ifdef CONFIG_PPC_FPU
996                 preempt_disable();
997                 enable_kernel_fp();
998                 cvt_fd((float *)&data.x32.low32, &data.dd);
999                 preempt_enable();
1000 #else
1001                 return 0;
1002 #endif
1003                 break;
1004         }
1005
1006         /* Store result to memory or update registers */
1007         if (flags & ST) {
1008                 unsigned int start = 0;
1009
1010                 switch (nb) {
1011                 case 4:
1012                         start = offsetof(union data, x32.low32);
1013                         break;
1014                 case 2:
1015                         start = offsetof(union data, x16.low16);
1016                         break;
1017                 }
1018
1019                 ret = 0;
1020                 p = (unsigned long)addr;
1021
1022                 for (i = 0; i < nb; i++)
1023                         ret |= __put_user_inatomic(data.v[start + i],
1024                                                    SWIZ_PTR(p++));
1025
1026                 if (unlikely(ret))
1027                         return -EFAULT;
1028         } else if (flags & F)
1029                 current->thread.TS_FPR(reg) = data.ll;
1030         else
1031                 regs->gpr[reg] = data.ll;
1032
1033         /* Update RA as needed */
1034         if (flags & U)
1035                 regs->gpr[areg] = regs->dar;
1036
1037         return 1;
1038 }