b80d893da9ad41f58980b92e1d33ea257bac4259
[linux-drm-fsl-dcu.git] / arch / mips / netlogic / xlp / nlm_hal.c
1 /*
2  * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3  * reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the NetLogic
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
42
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
50
51 /* Main initialization */
52 void nlm_node_init(int node)
53 {
54         struct nlm_soc_info *nodep;
55
56         nodep = nlm_get_node(node);
57         if (node == 0)
58                 nodep->coremask = 1;    /* node 0, boot cpu */
59         nodep->sysbase = nlm_get_sys_regbase(node);
60         nodep->picbase = nlm_get_pic_regbase(node);
61         nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
62         if (cpu_is_xlp9xx())
63                 nodep->socbus = xlp9xx_get_socbus(node);
64         else
65                 nodep->socbus = 0;
66         spin_lock_init(&nodep->piclock);
67 }
68
69 static int xlp9xx_irq_to_irt(int irq)
70 {
71         switch (irq) {
72         case PIC_GPIO_IRQ:
73                 return 12;
74         case PIC_9XX_XHCI_0_IRQ:
75                 return 114;
76         case PIC_9XX_XHCI_1_IRQ:
77                 return 115;
78         case PIC_UART_0_IRQ:
79                 return 133;
80         case PIC_UART_1_IRQ:
81                 return 134;
82         case PIC_SATA_IRQ:
83                 return 143;
84         case PIC_SPI_IRQ:
85                 return 152;
86         case PIC_MMC_IRQ:
87                 return 153;
88         case PIC_PCIE_LINK_LEGACY_IRQ(0):
89         case PIC_PCIE_LINK_LEGACY_IRQ(1):
90         case PIC_PCIE_LINK_LEGACY_IRQ(2):
91         case PIC_PCIE_LINK_LEGACY_IRQ(3):
92                 return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
93         }
94         return -1;
95 }
96
97 static int xlp_irq_to_irt(int irq)
98 {
99         uint64_t pcibase;
100         int devoff, irt;
101
102         devoff = 0;
103         switch (irq) {
104         case PIC_UART_0_IRQ:
105                 devoff = XLP_IO_UART0_OFFSET(0);
106                 break;
107         case PIC_UART_1_IRQ:
108                 devoff = XLP_IO_UART1_OFFSET(0);
109                 break;
110         case PIC_MMC_IRQ:
111                 devoff = XLP_IO_MMC_OFFSET(0);
112                 break;
113         case PIC_I2C_0_IRQ:     /* I2C will be fixed up */
114         case PIC_I2C_1_IRQ:
115         case PIC_I2C_2_IRQ:
116         case PIC_I2C_3_IRQ:
117                 if (cpu_is_xlpii())
118                         devoff = XLP2XX_IO_I2C_OFFSET(0);
119                 else
120                         devoff = XLP_IO_I2C0_OFFSET(0);
121                 break;
122         case PIC_SATA_IRQ:
123                 devoff = XLP_IO_SATA_OFFSET(0);
124                 break;
125         case PIC_GPIO_IRQ:
126                 devoff = XLP_IO_GPIO_OFFSET(0);
127                 break;
128         case PIC_NAND_IRQ:
129                 devoff = XLP_IO_NAND_OFFSET(0);
130                 break;
131         case PIC_SPI_IRQ:
132                 devoff = XLP_IO_SPI_OFFSET(0);
133                 break;
134         default:
135                 if (cpu_is_xlpii()) {
136                         switch (irq) {
137                                 /* XLP2XX has three XHCI USB controller */
138                         case PIC_2XX_XHCI_0_IRQ:
139                                 devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
140                                 break;
141                         case PIC_2XX_XHCI_1_IRQ:
142                                 devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
143                                 break;
144                         case PIC_2XX_XHCI_2_IRQ:
145                                 devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
146                                 break;
147                         }
148                 } else {
149                         switch (irq) {
150                         case PIC_EHCI_0_IRQ:
151                                 devoff = XLP_IO_USB_EHCI0_OFFSET(0);
152                                 break;
153                         case PIC_EHCI_1_IRQ:
154                                 devoff = XLP_IO_USB_EHCI1_OFFSET(0);
155                                 break;
156                         case PIC_OHCI_0_IRQ:
157                                 devoff = XLP_IO_USB_OHCI0_OFFSET(0);
158                                 break;
159                         case PIC_OHCI_1_IRQ:
160                                 devoff = XLP_IO_USB_OHCI1_OFFSET(0);
161                                 break;
162                         case PIC_OHCI_2_IRQ:
163                                 devoff = XLP_IO_USB_OHCI2_OFFSET(0);
164                                 break;
165                         case PIC_OHCI_3_IRQ:
166                                 devoff = XLP_IO_USB_OHCI3_OFFSET(0);
167                                 break;
168                         }
169                 }
170         }
171
172         if (devoff != 0) {
173                 uint32_t val;
174
175                 pcibase = nlm_pcicfg_base(devoff);
176                 val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
177                 if (val == 0xffffffff) {
178                         irt = -1;
179                 } else {
180                         irt = val & 0xffff;
181                         /* HW weirdness, I2C IRT entry has to be fixed up */
182                         switch (irq) {
183                         case PIC_I2C_1_IRQ:
184                                 irt = irt + 1; break;
185                         case PIC_I2C_2_IRQ:
186                                 irt = irt + 2; break;
187                         case PIC_I2C_3_IRQ:
188                                 irt = irt + 3; break;
189                         }
190                 }
191         } else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
192                         irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
193                 /* HW bug, PCI IRT entries are bad on early silicon, fix */
194                 irt = PIC_IRT_PCIE_LINK_INDEX(irq -
195                                         PIC_PCIE_LINK_LEGACY_IRQ_BASE);
196         } else {
197                 irt = -1;
198         }
199         return irt;
200 }
201
202 int nlm_irq_to_irt(int irq)
203 {
204         /* return -2 for irqs without 1-1 mapping */
205         if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
206                 return -2;
207         if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
208                 return -2;
209
210         if (cpu_is_xlp9xx())
211                 return xlp9xx_irq_to_irt(irq);
212         else
213                 return xlp_irq_to_irt(irq);
214 }
215
216 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
217 {
218         unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
219         uint64_t num, sysbase, clockbase;
220
221         if (cpu_is_xlp9xx()) {
222                 clockbase = nlm_get_clock_regbase(node);
223                 ctrl_val0 = nlm_read_sys_reg(clockbase,
224                                         SYS_9XX_CPU_PLL_CTRL0(core));
225                 ctrl_val1 = nlm_read_sys_reg(clockbase,
226                                         SYS_9XX_CPU_PLL_CTRL1(core));
227         } else {
228                 sysbase = nlm_get_node(node)->sysbase;
229                 ctrl_val0 = nlm_read_sys_reg(sysbase,
230                                                 SYS_CPU_PLL_CTRL0(core));
231                 ctrl_val1 = nlm_read_sys_reg(sysbase,
232                                                 SYS_CPU_PLL_CTRL1(core));
233         }
234
235         /* Find PLL post divider value */
236         switch ((ctrl_val0 >> 24) & 0x7) {
237         case 1:
238                 pll_post_div = 2;
239                 break;
240         case 3:
241                 pll_post_div = 4;
242                 break;
243         case 7:
244                 pll_post_div = 8;
245                 break;
246         case 6:
247                 pll_post_div = 16;
248                 break;
249         case 0:
250         default:
251                 pll_post_div = 1;
252                 break;
253         }
254
255         num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
256         denom = 3 * pll_post_div;
257         do_div(num, denom);
258
259         return (unsigned int)num;
260 }
261
262 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
263 {
264         unsigned int pll_divf, pll_divr, dfs_div, ext_div;
265         unsigned int rstval, dfsval, denom;
266         uint64_t num, sysbase;
267
268         sysbase = nlm_get_node(node)->sysbase;
269         rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
270         dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
271         pll_divf = ((rstval >> 10) & 0x7f) + 1;
272         pll_divr = ((rstval >> 8)  & 0x3) + 1;
273         ext_div  = ((rstval >> 30) & 0x3) + 1;
274         dfs_div  = ((dfsval >> (core * 4)) & 0xf) + 1;
275
276         num = 800000000ULL * pll_divf;
277         denom = 3 * pll_divr * ext_div * dfs_div;
278         do_div(num, denom);
279
280         return (unsigned int)num;
281 }
282
283 unsigned int nlm_get_core_frequency(int node, int core)
284 {
285         if (cpu_is_xlpii())
286                 return nlm_xlp2_get_core_frequency(node, core);
287         else
288                 return nlm_xlp_get_core_frequency(node, core);
289 }
290
291 /*
292  * Calculate PIC frequency from PLL registers.
293  * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
294  *              ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
295  */
296 static unsigned int nlm_xlp2_get_pic_frequency(int node)
297 {
298         u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
299         u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
300         u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
301
302         sysbase = nlm_get_node(node)->sysbase;
303         clockbase = nlm_get_clock_regbase(node);
304         cpu_xlp9xx = cpu_is_xlp9xx();
305
306         /* Find ref_clk_base */
307         if (cpu_xlp9xx)
308                 ref_clk_select = (nlm_read_sys_reg(sysbase,
309                                 SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
310         else
311                 ref_clk_select = (nlm_read_sys_reg(sysbase,
312                                         SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
313         switch (ref_clk_select) {
314         case 0:
315                 ref_clk = 200000000ULL;
316                 ref_div = 3;
317                 break;
318         case 1:
319                 ref_clk = 100000000ULL;
320                 ref_div = 1;
321                 break;
322         case 2:
323                 ref_clk = 125000000ULL;
324                 ref_div = 1;
325                 break;
326         case 3:
327                 ref_clk = 400000000ULL;
328                 ref_div = 3;
329                 break;
330         }
331
332         /* Find the clock source PLL device for PIC */
333         if (cpu_xlp9xx) {
334                 reg_select = nlm_read_sys_reg(clockbase,
335                                 SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
336                 switch (reg_select) {
337                 case 0:
338                         ctrl_val0 = nlm_read_sys_reg(clockbase,
339                                         SYS_9XX_PLL_CTRL0);
340                         ctrl_val2 = nlm_read_sys_reg(clockbase,
341                                         SYS_9XX_PLL_CTRL2);
342                         break;
343                 case 1:
344                         ctrl_val0 = nlm_read_sys_reg(clockbase,
345                                         SYS_9XX_PLL_CTRL0_DEVX(0));
346                         ctrl_val2 = nlm_read_sys_reg(clockbase,
347                                         SYS_9XX_PLL_CTRL2_DEVX(0));
348                         break;
349                 case 2:
350                         ctrl_val0 = nlm_read_sys_reg(clockbase,
351                                         SYS_9XX_PLL_CTRL0_DEVX(1));
352                         ctrl_val2 = nlm_read_sys_reg(clockbase,
353                                         SYS_9XX_PLL_CTRL2_DEVX(1));
354                         break;
355                 case 3:
356                         ctrl_val0 = nlm_read_sys_reg(clockbase,
357                                         SYS_9XX_PLL_CTRL0_DEVX(2));
358                         ctrl_val2 = nlm_read_sys_reg(clockbase,
359                                         SYS_9XX_PLL_CTRL2_DEVX(2));
360                         break;
361                 }
362         } else {
363                 reg_select = (nlm_read_sys_reg(sysbase,
364                                         SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
365                 switch (reg_select) {
366                 case 0:
367                         ctrl_val0 = nlm_read_sys_reg(sysbase,
368                                         SYS_PLL_CTRL0);
369                         ctrl_val2 = nlm_read_sys_reg(sysbase,
370                                         SYS_PLL_CTRL2);
371                         break;
372                 case 1:
373                         ctrl_val0 = nlm_read_sys_reg(sysbase,
374                                         SYS_PLL_CTRL0_DEVX(0));
375                         ctrl_val2 = nlm_read_sys_reg(sysbase,
376                                         SYS_PLL_CTRL2_DEVX(0));
377                         break;
378                 case 2:
379                         ctrl_val0 = nlm_read_sys_reg(sysbase,
380                                         SYS_PLL_CTRL0_DEVX(1));
381                         ctrl_val2 = nlm_read_sys_reg(sysbase,
382                                         SYS_PLL_CTRL2_DEVX(1));
383                         break;
384                 case 3:
385                         ctrl_val0 = nlm_read_sys_reg(sysbase,
386                                         SYS_PLL_CTRL0_DEVX(2));
387                         ctrl_val2 = nlm_read_sys_reg(sysbase,
388                                         SYS_PLL_CTRL2_DEVX(2));
389                         break;
390                 }
391         }
392
393         vco_post_div = (ctrl_val0 >> 5) & 0x7;
394         pll_post_div = (ctrl_val0 >> 24) & 0x7;
395         mdiv = ctrl_val2 & 0xff;
396         fdiv = (ctrl_val2 >> 8) & 0x1fff;
397
398         /* Find PLL post divider value */
399         switch (pll_post_div) {
400         case 1:
401                 pll_post_div = 2;
402                 break;
403         case 3:
404                 pll_post_div = 4;
405                 break;
406         case 7:
407                 pll_post_div = 8;
408                 break;
409         case 6:
410                 pll_post_div = 16;
411                 break;
412         case 0:
413         default:
414                 pll_post_div = 1;
415                 break;
416         }
417
418         fdiv = fdiv/(1 << 13);
419         pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
420         pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
421
422         if (pll_out_freq_den > 0)
423                 do_div(pll_out_freq_num, pll_out_freq_den);
424
425         /* PIC post divider, which happens after PLL */
426         if (cpu_xlp9xx)
427                 pic_div = nlm_read_sys_reg(clockbase,
428                                 SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
429         else
430                 pic_div = (nlm_read_sys_reg(sysbase,
431                                         SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
432         do_div(pll_out_freq_num, 1 << pic_div);
433
434         return pll_out_freq_num;
435 }
436
437 unsigned int nlm_get_pic_frequency(int node)
438 {
439         if (cpu_is_xlpii())
440                 return nlm_xlp2_get_pic_frequency(node);
441         else
442                 return 133333333;
443 }
444
445 unsigned int nlm_get_cpu_frequency(void)
446 {
447         return nlm_get_core_frequency(0, 0);
448 }
449
450 /*
451  * Fills upto 8 pairs of entries containing the DRAM map of a node
452  * if n < 0, get dram map for all nodes
453  */
454 int xlp_get_dram_map(int n, uint64_t *dram_map)
455 {
456         uint64_t bridgebase, base, lim;
457         uint32_t val;
458         unsigned int barreg, limreg, xlatreg;
459         int i, node, rv;
460
461         /* Look only at mapping on Node 0, we don't handle crazy configs */
462         bridgebase = nlm_get_bridge_regbase(0);
463         rv = 0;
464         for (i = 0; i < 8; i++) {
465                 if (cpu_is_xlp9xx()) {
466                         barreg = BRIDGE_9XX_DRAM_BAR(i);
467                         limreg = BRIDGE_9XX_DRAM_LIMIT(i);
468                         xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
469                 } else {
470                         barreg = BRIDGE_DRAM_BAR(i);
471                         limreg = BRIDGE_DRAM_LIMIT(i);
472                         xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
473                 }
474                 if (n >= 0) {
475                         /* node specified, get node mapping of BAR */
476                         val = nlm_read_bridge_reg(bridgebase, xlatreg);
477                         node = (val >> 1) & 0x3;
478                         if (n != node)
479                                 continue;
480                 }
481                 val = nlm_read_bridge_reg(bridgebase, barreg);
482                 val = (val >>  12) & 0xfffff;
483                 base = (uint64_t) val << 20;
484                 val = nlm_read_bridge_reg(bridgebase, limreg);
485                 val = (val >>  12) & 0xfffff;
486                 if (val == 0)   /* BAR not used */
487                         continue;
488                 lim = ((uint64_t)val + 1) << 20;
489                 dram_map[rv] = base;
490                 dram_map[rv + 1] = lim;
491                 rv += 2;
492         }
493         return rv;
494 }