fb3e8dfd1ff647263c0ca93a1d2ba6c5fdbd906b
[linux-drm-fsl-dcu.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         ktime_t expires;
306         int running;
307
308         /* Is the hrtimer pending? */
309         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310         if (ktime_compare(now, expires) >= 0) {
311                 /*
312                  * Cancel it while we handle it so there's no chance of
313                  * interference with the timeout handler.
314                  */
315                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316
317                 /* Nothing should be waiting on the timeout */
318                 kvm_mips_callbacks->queue_timer_int(vcpu);
319
320                 /*
321                  * Restart the timer if it was running based on the expiry time
322                  * we read, so that we don't push it back 2 periods.
323                  */
324                 if (running) {
325                         expires = ktime_add_ns(expires,
326                                                vcpu->arch.count_period);
327                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328                                       HRTIMER_MODE_ABS);
329                 }
330         }
331
332         /* Return the biased and scaled guest CP0_Count */
333         return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:       Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:     The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347         struct mips_coproc *cop0 = vcpu->arch.cop0;
348
349         /* If count disabled just read static copy of count */
350         if (kvm_mips_count_disabled(vcpu))
351                 return kvm_read_c0_guest_count(cop0);
352
353         return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:       Virtual CPU.
359  * @count:      Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:     The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373                                        uint32_t *count)
374 {
375         ktime_t now;
376
377         /* stop hrtimer before finding time */
378         hrtimer_cancel(&vcpu->arch.comparecount_timer);
379         now = ktime_get();
380
381         /* find count at this point and handle pending hrtimer */
382         *count = kvm_mips_read_count_running(vcpu, now);
383
384         return now;
385 }
386
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:       Virtual CPU.
390  * @now:        ktime at point of resume.
391  * @count:      CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404                                     ktime_t now, uint32_t count)
405 {
406         struct mips_coproc *cop0 = vcpu->arch.cop0;
407         uint32_t compare;
408         u64 delta;
409         ktime_t expire;
410
411         /* Calculate timeout (wrap 0 to 2^32) */
412         compare = kvm_read_c0_guest_compare(cop0);
413         delta = (u64)(uint32_t)(compare - count - 1) + 1;
414         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415         expire = ktime_add_ns(now, delta);
416
417         /* Update hrtimer to use new timeout */
418         hrtimer_cancel(&vcpu->arch.comparecount_timer);
419         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:       Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437         ktime_t now;
438         uint32_t count;
439
440         /*
441          * freeze_hrtimer takes care of a timer interrupts <= count, and
442          * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443          */
444         now = kvm_mips_freeze_hrtimer(vcpu, &count);
445         kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:       Virtual CPU.
451  * @count:      Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457         struct mips_coproc *cop0 = vcpu->arch.cop0;
458         ktime_t now;
459
460         /* Calculate bias */
461         now = kvm_mips_count_time(vcpu);
462         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463
464         if (kvm_mips_count_disabled(vcpu))
465                 /* The timer's disabled, adjust the static count */
466                 kvm_write_c0_guest_count(cop0, count);
467         else
468                 /* Update timeout */
469                 kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:       Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481         /* 100 MHz */
482         vcpu->arch.count_hz = 100*1000*1000;
483         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484                                           vcpu->arch.count_hz);
485         vcpu->arch.count_dyn_bias = 0;
486
487         /* Starting at 0 */
488         kvm_mips_write_count(vcpu, 0);
489 }
490
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:       Virtual CPU.
494  * @count_hz:   Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:     -EINVAL if @count_hz is out of range.
500  *              0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504         struct mips_coproc *cop0 = vcpu->arch.cop0;
505         int dc;
506         ktime_t now;
507         u32 count;
508
509         /* ensure the frequency is in a sensible range... */
510         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511                 return -EINVAL;
512         /* ... and has actually changed */
513         if (vcpu->arch.count_hz == count_hz)
514                 return 0;
515
516         /* Safely freeze timer so we can keep it continuous */
517         dc = kvm_mips_count_disabled(vcpu);
518         if (dc) {
519                 now = kvm_mips_count_time(vcpu);
520                 count = kvm_read_c0_guest_count(cop0);
521         } else {
522                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
523         }
524
525         /* Update the frequency */
526         vcpu->arch.count_hz = count_hz;
527         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528         vcpu->arch.count_dyn_bias = 0;
529
530         /* Calculate adjusted bias so dynamic count is unchanged */
531         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532
533         /* Update and resume hrtimer */
534         if (!dc)
535                 kvm_mips_resume_hrtimer(vcpu, now, count);
536         return 0;
537 }
538
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:       Virtual CPU.
542  * @compare:    New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548         struct mips_coproc *cop0 = vcpu->arch.cop0;
549
550         /* if unchanged, must just be an ack */
551         if (kvm_read_c0_guest_compare(cop0) == compare)
552                 return;
553
554         /* Update compare */
555         kvm_write_c0_guest_compare(cop0, compare);
556
557         /* Update timeout if count enabled */
558         if (!kvm_mips_count_disabled(vcpu))
559                 kvm_mips_update_hrtimer(vcpu);
560 }
561
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:       Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:     The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576         struct mips_coproc *cop0 = vcpu->arch.cop0;
577         uint32_t count;
578         ktime_t now;
579
580         /* Stop hrtimer */
581         hrtimer_cancel(&vcpu->arch.comparecount_timer);
582
583         /* Set the static count from the dynamic count, handling pending TI */
584         now = ktime_get();
585         count = kvm_mips_read_count_running(vcpu, now);
586         kvm_write_c0_guest_count(cop0, count);
587
588         return now;
589 }
590
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:       Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603         struct mips_coproc *cop0 = vcpu->arch.cop0;
604
605         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607                 kvm_mips_count_disable(vcpu);
608 }
609
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:       Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623         struct mips_coproc *cop0 = vcpu->arch.cop0;
624         uint32_t count;
625
626         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627
628         /*
629          * Set the dynamic count to match the static count.
630          * This starts the hrtimer if count_ctl.DC allows it.
631          * Otherwise it conveniently updates the biases.
632          */
633         count = kvm_read_c0_guest_count(cop0);
634         kvm_mips_write_count(vcpu, count);
635 }
636
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:       Virtual CPU.
640  * @count_ctl:  Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:     -EINVAL if reserved bits are set.
645  *              0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649         struct mips_coproc *cop0 = vcpu->arch.cop0;
650         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651         s64 delta;
652         ktime_t expire, now;
653         uint32_t count, compare;
654
655         /* Only allow defined bits to be changed */
656         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657                 return -EINVAL;
658
659         /* Apply new value */
660         vcpu->arch.count_ctl = count_ctl;
661
662         /* Master CP0_Count disable */
663         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664                 /* Is CP0_Cause.DC already disabling CP0_Count? */
665                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667                                 /* Just record the current time */
668                                 vcpu->arch.count_resume = ktime_get();
669                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670                         /* disable timer and record current time */
671                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672                 } else {
673                         /*
674                          * Calculate timeout relative to static count at resume
675                          * time (wrap 0 to 2^32).
676                          */
677                         count = kvm_read_c0_guest_count(cop0);
678                         compare = kvm_read_c0_guest_compare(cop0);
679                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
680                         delta = div_u64(delta * NSEC_PER_SEC,
681                                         vcpu->arch.count_hz);
682                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683
684                         /* Handle pending interrupt */
685                         now = ktime_get();
686                         if (ktime_compare(now, expire) >= 0)
687                                 /* Nothing should be waiting on the timeout */
688                                 kvm_mips_callbacks->queue_timer_int(vcpu);
689
690                         /* Resume hrtimer without changing bias */
691                         count = kvm_mips_read_count_running(vcpu, now);
692                         kvm_mips_resume_hrtimer(vcpu, now, count);
693                 }
694         }
695
696         return 0;
697 }
698
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:               Virtual CPU.
702  * @count_resume:       Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:     -EINVAL if out of valid range (0..now).
707  *              0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711         /*
712          * It doesn't make sense for the resume time to be in the future, as it
713          * would be possible for the next interrupt to be more than a full
714          * period in the future.
715          */
716         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717                 return -EINVAL;
718
719         vcpu->arch.count_resume = ns_to_ktime(count_resume);
720         return 0;
721 }
722
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:       Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733         /* Add the Count period to the current expiry time */
734         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735                                vcpu->arch.count_period);
736         return HRTIMER_RESTART;
737 }
738
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741         struct mips_coproc *cop0 = vcpu->arch.cop0;
742         enum emulation_result er = EMULATE_DONE;
743
744         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746                           kvm_read_c0_guest_epc(cop0));
747                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
748                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749
750         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
752                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753         } else {
754                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755                         vcpu->arch.pc);
756                 er = EMULATE_FAIL;
757         }
758
759         return er;
760 }
761
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765                   vcpu->arch.pending_exceptions);
766
767         ++vcpu->stat.wait_exits;
768         trace_kvm_exit(vcpu, WAIT_EXITS);
769         if (!vcpu->arch.pending_exceptions) {
770                 vcpu->arch.wait = 1;
771                 kvm_vcpu_block(vcpu);
772
773                 /*
774                  * We we are runnable, then definitely go off to user space to
775                  * check if any I/O interrupts are pending.
776                  */
777                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780                 }
781         }
782
783         return EMULATE_DONE;
784 }
785
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792         struct mips_coproc *cop0 = vcpu->arch.cop0;
793         uint32_t pc = vcpu->arch.pc;
794
795         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796         return EMULATE_FAIL;
797 }
798
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802         struct mips_coproc *cop0 = vcpu->arch.cop0;
803         int index = kvm_read_c0_guest_index(cop0);
804         struct kvm_mips_tlb *tlb = NULL;
805         uint32_t pc = vcpu->arch.pc;
806
807         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808                 kvm_debug("%s: illegal index: %d\n", __func__, index);
809                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810                           pc, index, kvm_read_c0_guest_entryhi(cop0),
811                           kvm_read_c0_guest_entrylo0(cop0),
812                           kvm_read_c0_guest_entrylo1(cop0),
813                           kvm_read_c0_guest_pagemask(cop0));
814                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815         }
816
817         tlb = &vcpu->arch.guest_tlb[index];
818         /*
819          * Probe the shadow host TLB for the entry being overwritten, if one
820          * matches, invalidate it
821          */
822         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823
824         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828
829         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830                   pc, index, kvm_read_c0_guest_entryhi(cop0),
831                   kvm_read_c0_guest_entrylo0(cop0),
832                   kvm_read_c0_guest_entrylo1(cop0),
833                   kvm_read_c0_guest_pagemask(cop0));
834
835         return EMULATE_DONE;
836 }
837
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841         struct mips_coproc *cop0 = vcpu->arch.cop0;
842         struct kvm_mips_tlb *tlb = NULL;
843         uint32_t pc = vcpu->arch.pc;
844         int index;
845
846         get_random_bytes(&index, sizeof(index));
847         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848
849         tlb = &vcpu->arch.guest_tlb[index];
850
851         /*
852          * Probe the shadow host TLB for the entry being overwritten, if one
853          * matches, invalidate it
854          */
855         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856
857         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861
862         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863                   pc, index, kvm_read_c0_guest_entryhi(cop0),
864                   kvm_read_c0_guest_entrylo0(cop0),
865                   kvm_read_c0_guest_entrylo1(cop0));
866
867         return EMULATE_DONE;
868 }
869
870 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871 {
872         struct mips_coproc *cop0 = vcpu->arch.cop0;
873         long entryhi = kvm_read_c0_guest_entryhi(cop0);
874         uint32_t pc = vcpu->arch.pc;
875         int index = -1;
876
877         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878
879         kvm_write_c0_guest_index(cop0, index);
880
881         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882                   index);
883
884         return EMULATE_DONE;
885 }
886
887 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
888                                            uint32_t cause, struct kvm_run *run,
889                                            struct kvm_vcpu *vcpu)
890 {
891         struct mips_coproc *cop0 = vcpu->arch.cop0;
892         enum emulation_result er = EMULATE_DONE;
893         int32_t rt, rd, copz, sel, co_bit, op;
894         uint32_t pc = vcpu->arch.pc;
895         unsigned long curr_pc;
896
897         /*
898          * Update PC and hold onto current PC in case there is
899          * an error and we want to rollback the PC
900          */
901         curr_pc = vcpu->arch.pc;
902         er = update_pc(vcpu, cause);
903         if (er == EMULATE_FAIL)
904                 return er;
905
906         copz = (inst >> 21) & 0x1f;
907         rt = (inst >> 16) & 0x1f;
908         rd = (inst >> 11) & 0x1f;
909         sel = inst & 0x7;
910         co_bit = (inst >> 25) & 1;
911
912         if (co_bit) {
913                 op = (inst) & 0xff;
914
915                 switch (op) {
916                 case tlbr_op:   /*  Read indexed TLB entry  */
917                         er = kvm_mips_emul_tlbr(vcpu);
918                         break;
919                 case tlbwi_op:  /*  Write indexed  */
920                         er = kvm_mips_emul_tlbwi(vcpu);
921                         break;
922                 case tlbwr_op:  /*  Write random  */
923                         er = kvm_mips_emul_tlbwr(vcpu);
924                         break;
925                 case tlbp_op:   /* TLB Probe */
926                         er = kvm_mips_emul_tlbp(vcpu);
927                         break;
928                 case rfe_op:
929                         kvm_err("!!!COP0_RFE!!!\n");
930                         break;
931                 case eret_op:
932                         er = kvm_mips_emul_eret(vcpu);
933                         goto dont_update_pc;
934                         break;
935                 case wait_op:
936                         er = kvm_mips_emul_wait(vcpu);
937                         break;
938                 }
939         } else {
940                 switch (copz) {
941                 case mfc_op:
942 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
943                         cop0->stat[rd][sel]++;
944 #endif
945                         /* Get reg */
946                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
947                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
948                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
949                                 vcpu->arch.gprs[rt] = 0x0;
950 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
951                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
952 #endif
953                         } else {
954                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
955
956 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
957                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
958 #endif
959                         }
960
961                         kvm_debug
962                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
963                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
964
965                         break;
966
967                 case dmfc_op:
968                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
969                         break;
970
971                 case mtc_op:
972 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
973                         cop0->stat[rd][sel]++;
974 #endif
975                         if ((rd == MIPS_CP0_TLB_INDEX)
976                             && (vcpu->arch.gprs[rt] >=
977                                 KVM_MIPS_GUEST_TLB_SIZE)) {
978                                 kvm_err("Invalid TLB Index: %ld",
979                                         vcpu->arch.gprs[rt]);
980                                 er = EMULATE_FAIL;
981                                 break;
982                         }
983 #define C0_EBASE_CORE_MASK 0xff
984                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
985                                 /* Preserve CORE number */
986                                 kvm_change_c0_guest_ebase(cop0,
987                                                           ~(C0_EBASE_CORE_MASK),
988                                                           vcpu->arch.gprs[rt]);
989                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
990                                         kvm_read_c0_guest_ebase(cop0));
991                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
992                                 uint32_t nasid =
993                                         vcpu->arch.gprs[rt] & ASID_MASK;
994                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
995                                     ((kvm_read_c0_guest_entryhi(cop0) &
996                                       ASID_MASK) != nasid)) {
997                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
998                                                 kvm_read_c0_guest_entryhi(cop0)
999                                                 & ASID_MASK,
1000                                                 vcpu->arch.gprs[rt]
1001                                                 & ASID_MASK);
1002
1003                                         /* Blow away the shadow host TLBs */
1004                                         kvm_mips_flush_host_tlb(1);
1005                                 }
1006                                 kvm_write_c0_guest_entryhi(cop0,
1007                                                            vcpu->arch.gprs[rt]);
1008                         }
1009                         /* Are we writing to COUNT */
1010                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1011                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1012                                 goto done;
1013                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1014                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1015                                           pc, kvm_read_c0_guest_compare(cop0),
1016                                           vcpu->arch.gprs[rt]);
1017
1018                                 /* If we are writing to COMPARE */
1019                                 /* Clear pending timer interrupt, if any */
1020                                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
1021                                 kvm_mips_write_compare(vcpu,
1022                                                        vcpu->arch.gprs[rt]);
1023                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1024                                 kvm_write_c0_guest_status(cop0,
1025                                                           vcpu->arch.gprs[rt]);
1026                                 /*
1027                                  * Make sure that CU1 and NMI bits are
1028                                  * never set
1029                                  */
1030                                 kvm_clear_c0_guest_status(cop0,
1031                                                           (ST0_CU1 | ST0_NMI));
1032
1033 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1034                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1035 #endif
1036                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1037                                 uint32_t old_cause, new_cause;
1038
1039                                 old_cause = kvm_read_c0_guest_cause(cop0);
1040                                 new_cause = vcpu->arch.gprs[rt];
1041                                 /* Update R/W bits */
1042                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1043                                                           new_cause);
1044                                 /* DC bit enabling/disabling timer? */
1045                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1046                                         if (new_cause & CAUSEF_DC)
1047                                                 kvm_mips_count_disable_cause(vcpu);
1048                                         else
1049                                                 kvm_mips_count_enable_cause(vcpu);
1050                                 }
1051                         } else {
1052                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1053 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1054                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1055 #endif
1056                         }
1057
1058                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1059                                   rd, sel, cop0->reg[rd][sel]);
1060                         break;
1061
1062                 case dmtc_op:
1063                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1064                                 vcpu->arch.pc, rt, rd, sel);
1065                         er = EMULATE_FAIL;
1066                         break;
1067
1068                 case mfmcz_op:
1069 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1070                         cop0->stat[MIPS_CP0_STATUS][0]++;
1071 #endif
1072                         if (rt != 0) {
1073                                 vcpu->arch.gprs[rt] =
1074                                     kvm_read_c0_guest_status(cop0);
1075                         }
1076                         /* EI */
1077                         if (inst & 0x20) {
1078                                 kvm_debug("[%#lx] mfmcz_op: EI\n",
1079                                           vcpu->arch.pc);
1080                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1081                         } else {
1082                                 kvm_debug("[%#lx] mfmcz_op: DI\n",
1083                                           vcpu->arch.pc);
1084                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1085                         }
1086
1087                         break;
1088
1089                 case wrpgpr_op:
1090                         {
1091                                 uint32_t css =
1092                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1093                                 uint32_t pss =
1094                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1095                                 /*
1096                                  * We don't support any shadow register sets, so
1097                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1098                                  */
1099                                 if (css || pss) {
1100                                         er = EMULATE_FAIL;
1101                                         break;
1102                                 }
1103                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1104                                           vcpu->arch.gprs[rt]);
1105                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1106                         }
1107                         break;
1108                 default:
1109                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1110                                 vcpu->arch.pc, copz);
1111                         er = EMULATE_FAIL;
1112                         break;
1113                 }
1114         }
1115
1116 done:
1117         /* Rollback PC only if emulation was unsuccessful */
1118         if (er == EMULATE_FAIL)
1119                 vcpu->arch.pc = curr_pc;
1120
1121 dont_update_pc:
1122         /*
1123          * This is for special instructions whose emulation
1124          * updates the PC, so do not overwrite the PC under
1125          * any circumstances
1126          */
1127
1128         return er;
1129 }
1130
1131 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1132                                              struct kvm_run *run,
1133                                              struct kvm_vcpu *vcpu)
1134 {
1135         enum emulation_result er = EMULATE_DO_MMIO;
1136         int32_t op, base, rt, offset;
1137         uint32_t bytes;
1138         void *data = run->mmio.data;
1139         unsigned long curr_pc;
1140
1141         /*
1142          * Update PC and hold onto current PC in case there is
1143          * an error and we want to rollback the PC
1144          */
1145         curr_pc = vcpu->arch.pc;
1146         er = update_pc(vcpu, cause);
1147         if (er == EMULATE_FAIL)
1148                 return er;
1149
1150         rt = (inst >> 16) & 0x1f;
1151         base = (inst >> 21) & 0x1f;
1152         offset = inst & 0xffff;
1153         op = (inst >> 26) & 0x3f;
1154
1155         switch (op) {
1156         case sb_op:
1157                 bytes = 1;
1158                 if (bytes > sizeof(run->mmio.data)) {
1159                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1160                                run->mmio.len);
1161                 }
1162                 run->mmio.phys_addr =
1163                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1164                                                    host_cp0_badvaddr);
1165                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1166                         er = EMULATE_FAIL;
1167                         break;
1168                 }
1169                 run->mmio.len = bytes;
1170                 run->mmio.is_write = 1;
1171                 vcpu->mmio_needed = 1;
1172                 vcpu->mmio_is_write = 1;
1173                 *(u8 *) data = vcpu->arch.gprs[rt];
1174                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1175                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1176                           *(uint8_t *) data);
1177
1178                 break;
1179
1180         case sw_op:
1181                 bytes = 4;
1182                 if (bytes > sizeof(run->mmio.data)) {
1183                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1184                                run->mmio.len);
1185                 }
1186                 run->mmio.phys_addr =
1187                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1188                                                    host_cp0_badvaddr);
1189                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1190                         er = EMULATE_FAIL;
1191                         break;
1192                 }
1193
1194                 run->mmio.len = bytes;
1195                 run->mmio.is_write = 1;
1196                 vcpu->mmio_needed = 1;
1197                 vcpu->mmio_is_write = 1;
1198                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1199
1200                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1201                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1202                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1203                 break;
1204
1205         case sh_op:
1206                 bytes = 2;
1207                 if (bytes > sizeof(run->mmio.data)) {
1208                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1209                                run->mmio.len);
1210                 }
1211                 run->mmio.phys_addr =
1212                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1213                                                    host_cp0_badvaddr);
1214                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1215                         er = EMULATE_FAIL;
1216                         break;
1217                 }
1218
1219                 run->mmio.len = bytes;
1220                 run->mmio.is_write = 1;
1221                 vcpu->mmio_needed = 1;
1222                 vcpu->mmio_is_write = 1;
1223                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1224
1225                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1226                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1227                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1228                 break;
1229
1230         default:
1231                 kvm_err("Store not yet supported");
1232                 er = EMULATE_FAIL;
1233                 break;
1234         }
1235
1236         /* Rollback PC if emulation was unsuccessful */
1237         if (er == EMULATE_FAIL)
1238                 vcpu->arch.pc = curr_pc;
1239
1240         return er;
1241 }
1242
1243 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1244                                             struct kvm_run *run,
1245                                             struct kvm_vcpu *vcpu)
1246 {
1247         enum emulation_result er = EMULATE_DO_MMIO;
1248         int32_t op, base, rt, offset;
1249         uint32_t bytes;
1250
1251         rt = (inst >> 16) & 0x1f;
1252         base = (inst >> 21) & 0x1f;
1253         offset = inst & 0xffff;
1254         op = (inst >> 26) & 0x3f;
1255
1256         vcpu->arch.pending_load_cause = cause;
1257         vcpu->arch.io_gpr = rt;
1258
1259         switch (op) {
1260         case lw_op:
1261                 bytes = 4;
1262                 if (bytes > sizeof(run->mmio.data)) {
1263                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1264                                run->mmio.len);
1265                         er = EMULATE_FAIL;
1266                         break;
1267                 }
1268                 run->mmio.phys_addr =
1269                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1270                                                    host_cp0_badvaddr);
1271                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1272                         er = EMULATE_FAIL;
1273                         break;
1274                 }
1275
1276                 run->mmio.len = bytes;
1277                 run->mmio.is_write = 0;
1278                 vcpu->mmio_needed = 1;
1279                 vcpu->mmio_is_write = 0;
1280                 break;
1281
1282         case lh_op:
1283         case lhu_op:
1284                 bytes = 2;
1285                 if (bytes > sizeof(run->mmio.data)) {
1286                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1287                                run->mmio.len);
1288                         er = EMULATE_FAIL;
1289                         break;
1290                 }
1291                 run->mmio.phys_addr =
1292                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1293                                                    host_cp0_badvaddr);
1294                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1295                         er = EMULATE_FAIL;
1296                         break;
1297                 }
1298
1299                 run->mmio.len = bytes;
1300                 run->mmio.is_write = 0;
1301                 vcpu->mmio_needed = 1;
1302                 vcpu->mmio_is_write = 0;
1303
1304                 if (op == lh_op)
1305                         vcpu->mmio_needed = 2;
1306                 else
1307                         vcpu->mmio_needed = 1;
1308
1309                 break;
1310
1311         case lbu_op:
1312         case lb_op:
1313                 bytes = 1;
1314                 if (bytes > sizeof(run->mmio.data)) {
1315                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1316                                run->mmio.len);
1317                         er = EMULATE_FAIL;
1318                         break;
1319                 }
1320                 run->mmio.phys_addr =
1321                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1322                                                    host_cp0_badvaddr);
1323                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1324                         er = EMULATE_FAIL;
1325                         break;
1326                 }
1327
1328                 run->mmio.len = bytes;
1329                 run->mmio.is_write = 0;
1330                 vcpu->mmio_is_write = 0;
1331
1332                 if (op == lb_op)
1333                         vcpu->mmio_needed = 2;
1334                 else
1335                         vcpu->mmio_needed = 1;
1336
1337                 break;
1338
1339         default:
1340                 kvm_err("Load not yet supported");
1341                 er = EMULATE_FAIL;
1342                 break;
1343         }
1344
1345         return er;
1346 }
1347
1348 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1349 {
1350         unsigned long offset = (va & ~PAGE_MASK);
1351         struct kvm *kvm = vcpu->kvm;
1352         unsigned long pa;
1353         gfn_t gfn;
1354         pfn_t pfn;
1355
1356         gfn = va >> PAGE_SHIFT;
1357
1358         if (gfn >= kvm->arch.guest_pmap_npages) {
1359                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1360                 kvm_mips_dump_host_tlbs();
1361                 kvm_arch_vcpu_dump_regs(vcpu);
1362                 return -1;
1363         }
1364         pfn = kvm->arch.guest_pmap[gfn];
1365         pa = (pfn << PAGE_SHIFT) | offset;
1366
1367         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1368                   CKSEG0ADDR(pa));
1369
1370         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1371         return 0;
1372 }
1373
1374 #define MIPS_CACHE_OP_INDEX_INV         0x0
1375 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1376 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1377 #define MIPS_CACHE_OP_IMP               0x3
1378 #define MIPS_CACHE_OP_HIT_INV           0x4
1379 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1380 #define MIPS_CACHE_OP_HIT_HB            0x6
1381 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1382
1383 #define MIPS_CACHE_ICACHE               0x0
1384 #define MIPS_CACHE_DCACHE               0x1
1385 #define MIPS_CACHE_SEC                  0x3
1386
1387 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1388                                              uint32_t cause,
1389                                              struct kvm_run *run,
1390                                              struct kvm_vcpu *vcpu)
1391 {
1392         struct mips_coproc *cop0 = vcpu->arch.cop0;
1393         enum emulation_result er = EMULATE_DONE;
1394         int32_t offset, cache, op_inst, op, base;
1395         struct kvm_vcpu_arch *arch = &vcpu->arch;
1396         unsigned long va;
1397         unsigned long curr_pc;
1398
1399         /*
1400          * Update PC and hold onto current PC in case there is
1401          * an error and we want to rollback the PC
1402          */
1403         curr_pc = vcpu->arch.pc;
1404         er = update_pc(vcpu, cause);
1405         if (er == EMULATE_FAIL)
1406                 return er;
1407
1408         base = (inst >> 21) & 0x1f;
1409         op_inst = (inst >> 16) & 0x1f;
1410         offset = inst & 0xffff;
1411         cache = (inst >> 16) & 0x3;
1412         op = (inst >> 18) & 0x7;
1413
1414         va = arch->gprs[base] + offset;
1415
1416         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1417                   cache, op, base, arch->gprs[base], offset);
1418
1419         /*
1420          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1421          * invalidate the caches entirely by stepping through all the
1422          * ways/indexes
1423          */
1424         if (op == MIPS_CACHE_OP_INDEX_INV) {
1425                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1426                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1427                           arch->gprs[base], offset);
1428
1429                 if (cache == MIPS_CACHE_DCACHE)
1430                         r4k_blast_dcache();
1431                 else if (cache == MIPS_CACHE_ICACHE)
1432                         r4k_blast_icache();
1433                 else {
1434                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1435                                 __func__);
1436                         return EMULATE_FAIL;
1437                 }
1438
1439 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1440                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1441 #endif
1442                 goto done;
1443         }
1444
1445         preempt_disable();
1446         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1447                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1448                         kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1449         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1450                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1451                 int index;
1452
1453                 /* If an entry already exists then skip */
1454                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1455                         goto skip_fault;
1456
1457                 /*
1458                  * If address not in the guest TLB, then give the guest a fault,
1459                  * the resulting handler will do the right thing
1460                  */
1461                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1462                                                   (kvm_read_c0_guest_entryhi
1463                                                    (cop0) & ASID_MASK));
1464
1465                 if (index < 0) {
1466                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1467                         vcpu->arch.host_cp0_badvaddr = va;
1468                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1469                                                          vcpu);
1470                         preempt_enable();
1471                         goto dont_update_pc;
1472                 } else {
1473                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1474                         /*
1475                          * Check if the entry is valid, if not then setup a TLB
1476                          * invalid exception to the guest
1477                          */
1478                         if (!TLB_IS_VALID(*tlb, va)) {
1479                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1480                                                                 run, vcpu);
1481                                 preempt_enable();
1482                                 goto dont_update_pc;
1483                         } else {
1484                                 /*
1485                                  * We fault an entry from the guest tlb to the
1486                                  * shadow host TLB
1487                                  */
1488                                 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1489                                                                      NULL,
1490                                                                      NULL);
1491                         }
1492                 }
1493         } else {
1494                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1495                         cache, op, base, arch->gprs[base], offset);
1496                 er = EMULATE_FAIL;
1497                 preempt_enable();
1498                 goto dont_update_pc;
1499
1500         }
1501
1502 skip_fault:
1503         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1504         if (cache == MIPS_CACHE_DCACHE
1505             && (op == MIPS_CACHE_OP_FILL_WB_INV
1506                 || op == MIPS_CACHE_OP_HIT_INV)) {
1507                 flush_dcache_line(va);
1508
1509 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1510                 /*
1511                  * Replace the CACHE instruction, with a SYNCI, not the same,
1512                  * but avoids a trap
1513                  */
1514                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1515 #endif
1516         } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1517                 flush_dcache_line(va);
1518                 flush_icache_line(va);
1519
1520 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1521                 /* Replace the CACHE instruction, with a SYNCI */
1522                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1523 #endif
1524         } else {
1525                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1526                         cache, op, base, arch->gprs[base], offset);
1527                 er = EMULATE_FAIL;
1528                 preempt_enable();
1529                 goto dont_update_pc;
1530         }
1531
1532         preempt_enable();
1533
1534 dont_update_pc:
1535         /* Rollback PC */
1536         vcpu->arch.pc = curr_pc;
1537 done:
1538         return er;
1539 }
1540
1541 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1542                                             struct kvm_run *run,
1543                                             struct kvm_vcpu *vcpu)
1544 {
1545         enum emulation_result er = EMULATE_DONE;
1546         uint32_t inst;
1547
1548         /* Fetch the instruction. */
1549         if (cause & CAUSEF_BD)
1550                 opc += 1;
1551
1552         inst = kvm_get_inst(opc, vcpu);
1553
1554         switch (((union mips_instruction)inst).r_format.opcode) {
1555         case cop0_op:
1556                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1557                 break;
1558         case sb_op:
1559         case sh_op:
1560         case sw_op:
1561                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1562                 break;
1563         case lb_op:
1564         case lbu_op:
1565         case lhu_op:
1566         case lh_op:
1567         case lw_op:
1568                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1569                 break;
1570
1571         case cache_op:
1572                 ++vcpu->stat.cache_exits;
1573                 trace_kvm_exit(vcpu, CACHE_EXITS);
1574                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1575                 break;
1576
1577         default:
1578                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1579                         inst);
1580                 kvm_arch_vcpu_dump_regs(vcpu);
1581                 er = EMULATE_FAIL;
1582                 break;
1583         }
1584
1585         return er;
1586 }
1587
1588 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1589                                                uint32_t *opc,
1590                                                struct kvm_run *run,
1591                                                struct kvm_vcpu *vcpu)
1592 {
1593         struct mips_coproc *cop0 = vcpu->arch.cop0;
1594         struct kvm_vcpu_arch *arch = &vcpu->arch;
1595         enum emulation_result er = EMULATE_DONE;
1596
1597         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1598                 /* save old pc */
1599                 kvm_write_c0_guest_epc(cop0, arch->pc);
1600                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1601
1602                 if (cause & CAUSEF_BD)
1603                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1604                 else
1605                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1606
1607                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1608
1609                 kvm_change_c0_guest_cause(cop0, (0xff),
1610                                           (T_SYSCALL << CAUSEB_EXCCODE));
1611
1612                 /* Set PC to the exception entry point */
1613                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1614
1615         } else {
1616                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1617                 er = EMULATE_FAIL;
1618         }
1619
1620         return er;
1621 }
1622
1623 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1624                                                   uint32_t *opc,
1625                                                   struct kvm_run *run,
1626                                                   struct kvm_vcpu *vcpu)
1627 {
1628         struct mips_coproc *cop0 = vcpu->arch.cop0;
1629         struct kvm_vcpu_arch *arch = &vcpu->arch;
1630         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1631                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1632
1633         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1634                 /* save old pc */
1635                 kvm_write_c0_guest_epc(cop0, arch->pc);
1636                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1637
1638                 if (cause & CAUSEF_BD)
1639                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1640                 else
1641                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1642
1643                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1644                           arch->pc);
1645
1646                 /* set pc to the exception entry point */
1647                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1648
1649         } else {
1650                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1651                           arch->pc);
1652
1653                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1654         }
1655
1656         kvm_change_c0_guest_cause(cop0, (0xff),
1657                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1658
1659         /* setup badvaddr, context and entryhi registers for the guest */
1660         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1661         /* XXXKYMA: is the context register used by linux??? */
1662         kvm_write_c0_guest_entryhi(cop0, entryhi);
1663         /* Blow away the shadow host TLBs */
1664         kvm_mips_flush_host_tlb(1);
1665
1666         return EMULATE_DONE;
1667 }
1668
1669 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1670                                                  uint32_t *opc,
1671                                                  struct kvm_run *run,
1672                                                  struct kvm_vcpu *vcpu)
1673 {
1674         struct mips_coproc *cop0 = vcpu->arch.cop0;
1675         struct kvm_vcpu_arch *arch = &vcpu->arch;
1676         unsigned long entryhi =
1677                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1678                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1679
1680         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1681                 /* save old pc */
1682                 kvm_write_c0_guest_epc(cop0, arch->pc);
1683                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1684
1685                 if (cause & CAUSEF_BD)
1686                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1687                 else
1688                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1689
1690                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1691                           arch->pc);
1692
1693                 /* set pc to the exception entry point */
1694                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1695
1696         } else {
1697                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1698                           arch->pc);
1699                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1700         }
1701
1702         kvm_change_c0_guest_cause(cop0, (0xff),
1703                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1704
1705         /* setup badvaddr, context and entryhi registers for the guest */
1706         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1707         /* XXXKYMA: is the context register used by linux??? */
1708         kvm_write_c0_guest_entryhi(cop0, entryhi);
1709         /* Blow away the shadow host TLBs */
1710         kvm_mips_flush_host_tlb(1);
1711
1712         return EMULATE_DONE;
1713 }
1714
1715 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1716                                                   uint32_t *opc,
1717                                                   struct kvm_run *run,
1718                                                   struct kvm_vcpu *vcpu)
1719 {
1720         struct mips_coproc *cop0 = vcpu->arch.cop0;
1721         struct kvm_vcpu_arch *arch = &vcpu->arch;
1722         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1723                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1724
1725         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1726                 /* save old pc */
1727                 kvm_write_c0_guest_epc(cop0, arch->pc);
1728                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1729
1730                 if (cause & CAUSEF_BD)
1731                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1732                 else
1733                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1734
1735                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1736                           arch->pc);
1737
1738                 /* Set PC to the exception entry point */
1739                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1740         } else {
1741                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1742                           arch->pc);
1743                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1744         }
1745
1746         kvm_change_c0_guest_cause(cop0, (0xff),
1747                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1748
1749         /* setup badvaddr, context and entryhi registers for the guest */
1750         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1751         /* XXXKYMA: is the context register used by linux??? */
1752         kvm_write_c0_guest_entryhi(cop0, entryhi);
1753         /* Blow away the shadow host TLBs */
1754         kvm_mips_flush_host_tlb(1);
1755
1756         return EMULATE_DONE;
1757 }
1758
1759 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1760                                                  uint32_t *opc,
1761                                                  struct kvm_run *run,
1762                                                  struct kvm_vcpu *vcpu)
1763 {
1764         struct mips_coproc *cop0 = vcpu->arch.cop0;
1765         struct kvm_vcpu_arch *arch = &vcpu->arch;
1766         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1767                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1768
1769         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1770                 /* save old pc */
1771                 kvm_write_c0_guest_epc(cop0, arch->pc);
1772                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1773
1774                 if (cause & CAUSEF_BD)
1775                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1776                 else
1777                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1778
1779                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1780                           arch->pc);
1781
1782                 /* Set PC to the exception entry point */
1783                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1784         } else {
1785                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1786                           arch->pc);
1787                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1788         }
1789
1790         kvm_change_c0_guest_cause(cop0, (0xff),
1791                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1792
1793         /* setup badvaddr, context and entryhi registers for the guest */
1794         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1795         /* XXXKYMA: is the context register used by linux??? */
1796         kvm_write_c0_guest_entryhi(cop0, entryhi);
1797         /* Blow away the shadow host TLBs */
1798         kvm_mips_flush_host_tlb(1);
1799
1800         return EMULATE_DONE;
1801 }
1802
1803 /* TLBMOD: store into address matching TLB with Dirty bit off */
1804 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1805                                              struct kvm_run *run,
1806                                              struct kvm_vcpu *vcpu)
1807 {
1808         enum emulation_result er = EMULATE_DONE;
1809 #ifdef DEBUG
1810         struct mips_coproc *cop0 = vcpu->arch.cop0;
1811         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1812                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1813         int index;
1814
1815         /* If address not in the guest TLB, then we are in trouble */
1816         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1817         if (index < 0) {
1818                 /* XXXKYMA Invalidate and retry */
1819                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1820                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1821                      __func__, entryhi);
1822                 kvm_mips_dump_guest_tlbs(vcpu);
1823                 kvm_mips_dump_host_tlbs();
1824                 return EMULATE_FAIL;
1825         }
1826 #endif
1827
1828         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1829         return er;
1830 }
1831
1832 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1833                                               uint32_t *opc,
1834                                               struct kvm_run *run,
1835                                               struct kvm_vcpu *vcpu)
1836 {
1837         struct mips_coproc *cop0 = vcpu->arch.cop0;
1838         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1839                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1840         struct kvm_vcpu_arch *arch = &vcpu->arch;
1841
1842         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1843                 /* save old pc */
1844                 kvm_write_c0_guest_epc(cop0, arch->pc);
1845                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1846
1847                 if (cause & CAUSEF_BD)
1848                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1849                 else
1850                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1851
1852                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
1853                           arch->pc);
1854
1855                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1856         } else {
1857                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
1858                           arch->pc);
1859                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1860         }
1861
1862         kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
1863
1864         /* setup badvaddr, context and entryhi registers for the guest */
1865         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1866         /* XXXKYMA: is the context register used by linux??? */
1867         kvm_write_c0_guest_entryhi(cop0, entryhi);
1868         /* Blow away the shadow host TLBs */
1869         kvm_mips_flush_host_tlb(1);
1870
1871         return EMULATE_DONE;
1872 }
1873
1874 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
1875                                                uint32_t *opc,
1876                                                struct kvm_run *run,
1877                                                struct kvm_vcpu *vcpu)
1878 {
1879         struct mips_coproc *cop0 = vcpu->arch.cop0;
1880         struct kvm_vcpu_arch *arch = &vcpu->arch;
1881
1882         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1883                 /* save old pc */
1884                 kvm_write_c0_guest_epc(cop0, arch->pc);
1885                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1886
1887                 if (cause & CAUSEF_BD)
1888                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1889                 else
1890                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1891
1892         }
1893
1894         arch->pc = KVM_GUEST_KSEG0 + 0x180;
1895
1896         kvm_change_c0_guest_cause(cop0, (0xff),
1897                                   (T_COP_UNUSABLE << CAUSEB_EXCCODE));
1898         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
1899
1900         return EMULATE_DONE;
1901 }
1902
1903 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
1904                                               uint32_t *opc,
1905                                               struct kvm_run *run,
1906                                               struct kvm_vcpu *vcpu)
1907 {
1908         struct mips_coproc *cop0 = vcpu->arch.cop0;
1909         struct kvm_vcpu_arch *arch = &vcpu->arch;
1910         enum emulation_result er = EMULATE_DONE;
1911
1912         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1913                 /* save old pc */
1914                 kvm_write_c0_guest_epc(cop0, arch->pc);
1915                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1916
1917                 if (cause & CAUSEF_BD)
1918                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1919                 else
1920                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1921
1922                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
1923
1924                 kvm_change_c0_guest_cause(cop0, (0xff),
1925                                           (T_RES_INST << CAUSEB_EXCCODE));
1926
1927                 /* Set PC to the exception entry point */
1928                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1929
1930         } else {
1931                 kvm_err("Trying to deliver RI when EXL is already set\n");
1932                 er = EMULATE_FAIL;
1933         }
1934
1935         return er;
1936 }
1937
1938 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
1939                                               uint32_t *opc,
1940                                               struct kvm_run *run,
1941                                               struct kvm_vcpu *vcpu)
1942 {
1943         struct mips_coproc *cop0 = vcpu->arch.cop0;
1944         struct kvm_vcpu_arch *arch = &vcpu->arch;
1945         enum emulation_result er = EMULATE_DONE;
1946
1947         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1948                 /* save old pc */
1949                 kvm_write_c0_guest_epc(cop0, arch->pc);
1950                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1951
1952                 if (cause & CAUSEF_BD)
1953                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1954                 else
1955                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1956
1957                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
1958
1959                 kvm_change_c0_guest_cause(cop0, (0xff),
1960                                           (T_BREAK << CAUSEB_EXCCODE));
1961
1962                 /* Set PC to the exception entry point */
1963                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1964
1965         } else {
1966                 kvm_err("Trying to deliver BP when EXL is already set\n");
1967                 er = EMULATE_FAIL;
1968         }
1969
1970         return er;
1971 }
1972
1973 /* ll/sc, rdhwr, sync emulation */
1974
1975 #define OPCODE 0xfc000000
1976 #define BASE   0x03e00000
1977 #define RT     0x001f0000
1978 #define OFFSET 0x0000ffff
1979 #define LL     0xc0000000
1980 #define SC     0xe0000000
1981 #define SPEC0  0x00000000
1982 #define SPEC3  0x7c000000
1983 #define RD     0x0000f800
1984 #define FUNC   0x0000003f
1985 #define SYNC   0x0000000f
1986 #define RDHWR  0x0000003b
1987
1988 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
1989                                          struct kvm_run *run,
1990                                          struct kvm_vcpu *vcpu)
1991 {
1992         struct mips_coproc *cop0 = vcpu->arch.cop0;
1993         struct kvm_vcpu_arch *arch = &vcpu->arch;
1994         enum emulation_result er = EMULATE_DONE;
1995         unsigned long curr_pc;
1996         uint32_t inst;
1997
1998         /*
1999          * Update PC and hold onto current PC in case there is
2000          * an error and we want to rollback the PC
2001          */
2002         curr_pc = vcpu->arch.pc;
2003         er = update_pc(vcpu, cause);
2004         if (er == EMULATE_FAIL)
2005                 return er;
2006
2007         /* Fetch the instruction. */
2008         if (cause & CAUSEF_BD)
2009                 opc += 1;
2010
2011         inst = kvm_get_inst(opc, vcpu);
2012
2013         if (inst == KVM_INVALID_INST) {
2014                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2015                 return EMULATE_FAIL;
2016         }
2017
2018         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2019                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2020                 int rd = (inst & RD) >> 11;
2021                 int rt = (inst & RT) >> 16;
2022                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2023                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2024                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2025                                   rd, opc);
2026                         goto emulate_ri;
2027                 }
2028                 switch (rd) {
2029                 case 0: /* CPU number */
2030                         arch->gprs[rt] = 0;
2031                         break;
2032                 case 1: /* SYNCI length */
2033                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2034                                              current_cpu_data.icache.linesz);
2035                         break;
2036                 case 2: /* Read count register */
2037                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2038                         break;
2039                 case 3: /* Count register resolution */
2040                         switch (current_cpu_data.cputype) {
2041                         case CPU_20KC:
2042                         case CPU_25KF:
2043                                 arch->gprs[rt] = 1;
2044                                 break;
2045                         default:
2046                                 arch->gprs[rt] = 2;
2047                         }
2048                         break;
2049                 case 29:
2050                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2051                         break;
2052
2053                 default:
2054                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2055                         goto emulate_ri;
2056                 }
2057         } else {
2058                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2059                 goto emulate_ri;
2060         }
2061
2062         return EMULATE_DONE;
2063
2064 emulate_ri:
2065         /*
2066          * Rollback PC (if in branch delay slot then the PC already points to
2067          * branch target), and pass the RI exception to the guest OS.
2068          */
2069         vcpu->arch.pc = curr_pc;
2070         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2071 }
2072
2073 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2074                                                   struct kvm_run *run)
2075 {
2076         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2077         enum emulation_result er = EMULATE_DONE;
2078         unsigned long curr_pc;
2079
2080         if (run->mmio.len > sizeof(*gpr)) {
2081                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2082                 er = EMULATE_FAIL;
2083                 goto done;
2084         }
2085
2086         /*
2087          * Update PC and hold onto current PC in case there is
2088          * an error and we want to rollback the PC
2089          */
2090         curr_pc = vcpu->arch.pc;
2091         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2092         if (er == EMULATE_FAIL)
2093                 return er;
2094
2095         switch (run->mmio.len) {
2096         case 4:
2097                 *gpr = *(int32_t *) run->mmio.data;
2098                 break;
2099
2100         case 2:
2101                 if (vcpu->mmio_needed == 2)
2102                         *gpr = *(int16_t *) run->mmio.data;
2103                 else
2104                         *gpr = *(int16_t *) run->mmio.data;
2105
2106                 break;
2107         case 1:
2108                 if (vcpu->mmio_needed == 2)
2109                         *gpr = *(int8_t *) run->mmio.data;
2110                 else
2111                         *gpr = *(u8 *) run->mmio.data;
2112                 break;
2113         }
2114
2115         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2116                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2117                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2118                           vcpu->mmio_needed);
2119
2120 done:
2121         return er;
2122 }
2123
2124 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2125                                                   uint32_t *opc,
2126                                                   struct kvm_run *run,
2127                                                   struct kvm_vcpu *vcpu)
2128 {
2129         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2130         struct mips_coproc *cop0 = vcpu->arch.cop0;
2131         struct kvm_vcpu_arch *arch = &vcpu->arch;
2132         enum emulation_result er = EMULATE_DONE;
2133
2134         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2135                 /* save old pc */
2136                 kvm_write_c0_guest_epc(cop0, arch->pc);
2137                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2138
2139                 if (cause & CAUSEF_BD)
2140                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2141                 else
2142                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2143
2144                 kvm_change_c0_guest_cause(cop0, (0xff),
2145                                           (exccode << CAUSEB_EXCCODE));
2146
2147                 /* Set PC to the exception entry point */
2148                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2149                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2150
2151                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2152                           exccode, kvm_read_c0_guest_epc(cop0),
2153                           kvm_read_c0_guest_badvaddr(cop0));
2154         } else {
2155                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2156                 er = EMULATE_FAIL;
2157         }
2158
2159         return er;
2160 }
2161
2162 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2163                                                uint32_t *opc,
2164                                                struct kvm_run *run,
2165                                                struct kvm_vcpu *vcpu)
2166 {
2167         enum emulation_result er = EMULATE_DONE;
2168         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2169         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2170
2171         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2172
2173         if (usermode) {
2174                 switch (exccode) {
2175                 case T_INT:
2176                 case T_SYSCALL:
2177                 case T_BREAK:
2178                 case T_RES_INST:
2179                         break;
2180
2181                 case T_COP_UNUSABLE:
2182                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2183                                 er = EMULATE_PRIV_FAIL;
2184                         break;
2185
2186                 case T_TLB_MOD:
2187                         break;
2188
2189                 case T_TLB_LD_MISS:
2190                         /*
2191                          * We we are accessing Guest kernel space, then send an
2192                          * address error exception to the guest
2193                          */
2194                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2195                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2196                                           badvaddr);
2197                                 cause &= ~0xff;
2198                                 cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2199                                 er = EMULATE_PRIV_FAIL;
2200                         }
2201                         break;
2202
2203                 case T_TLB_ST_MISS:
2204                         /*
2205                          * We we are accessing Guest kernel space, then send an
2206                          * address error exception to the guest
2207                          */
2208                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2209                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2210                                           badvaddr);
2211                                 cause &= ~0xff;
2212                                 cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2213                                 er = EMULATE_PRIV_FAIL;
2214                         }
2215                         break;
2216
2217                 case T_ADDR_ERR_ST:
2218                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2219                                   badvaddr);
2220                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2221                                 cause &= ~0xff;
2222                                 cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2223                         }
2224                         er = EMULATE_PRIV_FAIL;
2225                         break;
2226                 case T_ADDR_ERR_LD:
2227                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2228                                   badvaddr);
2229                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2230                                 cause &= ~0xff;
2231                                 cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2232                         }
2233                         er = EMULATE_PRIV_FAIL;
2234                         break;
2235                 default:
2236                         er = EMULATE_PRIV_FAIL;
2237                         break;
2238                 }
2239         }
2240
2241         if (er == EMULATE_PRIV_FAIL)
2242                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2243
2244         return er;
2245 }
2246
2247 /*
2248  * User Address (UA) fault, this could happen if
2249  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2250  *     case we pass on the fault to the guest kernel and let it handle it.
2251  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2252  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2253  */
2254 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2255                                               uint32_t *opc,
2256                                               struct kvm_run *run,
2257                                               struct kvm_vcpu *vcpu)
2258 {
2259         enum emulation_result er = EMULATE_DONE;
2260         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2261         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2262         int index;
2263
2264         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2265                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2266
2267         /*
2268          * KVM would not have got the exception if this entry was valid in the
2269          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2270          * send the guest an exception. The guest exc handler should then inject
2271          * an entry into the guest TLB.
2272          */
2273         index = kvm_mips_guest_tlb_lookup(vcpu,
2274                                           (va & VPN2_MASK) |
2275                                           (kvm_read_c0_guest_entryhi
2276                                            (vcpu->arch.cop0) & ASID_MASK));
2277         if (index < 0) {
2278                 if (exccode == T_TLB_LD_MISS) {
2279                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2280                 } else if (exccode == T_TLB_ST_MISS) {
2281                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2282                 } else {
2283                         kvm_err("%s: invalid exc code: %d\n", __func__,
2284                                 exccode);
2285                         er = EMULATE_FAIL;
2286                 }
2287         } else {
2288                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2289
2290                 /*
2291                  * Check if the entry is valid, if not then setup a TLB invalid
2292                  * exception to the guest
2293                  */
2294                 if (!TLB_IS_VALID(*tlb, va)) {
2295                         if (exccode == T_TLB_LD_MISS) {
2296                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2297                                                                 vcpu);
2298                         } else if (exccode == T_TLB_ST_MISS) {
2299                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2300                                                                 vcpu);
2301                         } else {
2302                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2303                                         exccode);
2304                                 er = EMULATE_FAIL;
2305                         }
2306                 } else {
2307                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2308                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2309                         /*
2310                          * OK we have a Guest TLB entry, now inject it into the
2311                          * shadow host TLB
2312                          */
2313                         kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2314                                                              NULL);
2315                 }
2316         }
2317
2318         return er;
2319 }