Merge branch 'cleanup/io-pci' into next/cleanups
[linux-drm-fsl-dcu.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49
50 #define CPOLICY_UNCACHED        0
51 #define CPOLICY_BUFFERED        1
52 #define CPOLICY_WRITETHROUGH    2
53 #define CPOLICY_WRITEBACK       3
54 #define CPOLICY_WRITEALLOC      4
55
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60
61 EXPORT_SYMBOL(pgprot_user);
62 EXPORT_SYMBOL(pgprot_kernel);
63
64 struct cachepolicy {
65         const char      policy[16];
66         unsigned int    cr_mask;
67         pmdval_t        pmd;
68         pteval_t        pte;
69 };
70
71 static struct cachepolicy cache_policies[] __initdata = {
72         {
73                 .policy         = "uncached",
74                 .cr_mask        = CR_W|CR_C,
75                 .pmd            = PMD_SECT_UNCACHED,
76                 .pte            = L_PTE_MT_UNCACHED,
77         }, {
78                 .policy         = "buffered",
79                 .cr_mask        = CR_C,
80                 .pmd            = PMD_SECT_BUFFERED,
81                 .pte            = L_PTE_MT_BUFFERABLE,
82         }, {
83                 .policy         = "writethrough",
84                 .cr_mask        = 0,
85                 .pmd            = PMD_SECT_WT,
86                 .pte            = L_PTE_MT_WRITETHROUGH,
87         }, {
88                 .policy         = "writeback",
89                 .cr_mask        = 0,
90                 .pmd            = PMD_SECT_WB,
91                 .pte            = L_PTE_MT_WRITEBACK,
92         }, {
93                 .policy         = "writealloc",
94                 .cr_mask        = 0,
95                 .pmd            = PMD_SECT_WBWA,
96                 .pte            = L_PTE_MT_WRITEALLOC,
97         }
98 };
99
100 /*
101  * These are useful for identifying cache coherency
102  * problems by allowing the cache or the cache and
103  * writebuffer to be turned off.  (Note: the write
104  * buffer should not be on and the cache off).
105  */
106 static int __init early_cachepolicy(char *p)
107 {
108         int i;
109
110         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
111                 int len = strlen(cache_policies[i].policy);
112
113                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
114                         cachepolicy = i;
115                         cr_alignment &= ~cache_policies[i].cr_mask;
116                         cr_no_alignment &= ~cache_policies[i].cr_mask;
117                         break;
118                 }
119         }
120         if (i == ARRAY_SIZE(cache_policies))
121                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
122         /*
123          * This restriction is partly to do with the way we boot; it is
124          * unpredictable to have memory mapped using two different sets of
125          * memory attributes (shared, type, and cache attribs).  We can not
126          * change these attributes once the initial assembly has setup the
127          * page tables.
128          */
129         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
130                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
131                 cachepolicy = CPOLICY_WRITEBACK;
132         }
133         flush_cache_all();
134         set_cr(cr_alignment);
135         return 0;
136 }
137 early_param("cachepolicy", early_cachepolicy);
138
139 static int __init early_nocache(char *__unused)
140 {
141         char *p = "buffered";
142         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
143         early_cachepolicy(p);
144         return 0;
145 }
146 early_param("nocache", early_nocache);
147
148 static int __init early_nowrite(char *__unused)
149 {
150         char *p = "uncached";
151         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
152         early_cachepolicy(p);
153         return 0;
154 }
155 early_param("nowb", early_nowrite);
156
157 #ifndef CONFIG_ARM_LPAE
158 static int __init early_ecc(char *p)
159 {
160         if (memcmp(p, "on", 2) == 0)
161                 ecc_mask = PMD_PROTECTION;
162         else if (memcmp(p, "off", 3) == 0)
163                 ecc_mask = 0;
164         return 0;
165 }
166 early_param("ecc", early_ecc);
167 #endif
168
169 static int __init noalign_setup(char *__unused)
170 {
171         cr_alignment &= ~CR_A;
172         cr_no_alignment &= ~CR_A;
173         set_cr(cr_alignment);
174         return 1;
175 }
176 __setup("noalign", noalign_setup);
177
178 #ifndef CONFIG_SMP
179 void adjust_cr(unsigned long mask, unsigned long set)
180 {
181         unsigned long flags;
182
183         mask &= ~CR_A;
184
185         set &= mask;
186
187         local_irq_save(flags);
188
189         cr_no_alignment = (cr_no_alignment & ~mask) | set;
190         cr_alignment = (cr_alignment & ~mask) | set;
191
192         set_cr((get_cr() & ~mask) | set);
193
194         local_irq_restore(flags);
195 }
196 #endif
197
198 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
199 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
200
201 static struct mem_type mem_types[] = {
202         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
203                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
204                                   L_PTE_SHARED,
205                 .prot_l1        = PMD_TYPE_TABLE,
206                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
207                 .domain         = DOMAIN_IO,
208         },
209         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
210                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
211                 .prot_l1        = PMD_TYPE_TABLE,
212                 .prot_sect      = PROT_SECT_DEVICE,
213                 .domain         = DOMAIN_IO,
214         },
215         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
216                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
217                 .prot_l1        = PMD_TYPE_TABLE,
218                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
219                 .domain         = DOMAIN_IO,
220         },
221         [MT_DEVICE_WC] = {      /* ioremap_wc */
222                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
223                 .prot_l1        = PMD_TYPE_TABLE,
224                 .prot_sect      = PROT_SECT_DEVICE,
225                 .domain         = DOMAIN_IO,
226         },
227         [MT_UNCACHED] = {
228                 .prot_pte       = PROT_PTE_DEVICE,
229                 .prot_l1        = PMD_TYPE_TABLE,
230                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain         = DOMAIN_IO,
232         },
233         [MT_CACHECLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
235                 .domain    = DOMAIN_KERNEL,
236         },
237 #ifndef CONFIG_ARM_LPAE
238         [MT_MINICLEAN] = {
239                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
240                 .domain    = DOMAIN_KERNEL,
241         },
242 #endif
243         [MT_LOW_VECTORS] = {
244                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245                                 L_PTE_RDONLY,
246                 .prot_l1   = PMD_TYPE_TABLE,
247                 .domain    = DOMAIN_USER,
248         },
249         [MT_HIGH_VECTORS] = {
250                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251                                 L_PTE_USER | L_PTE_RDONLY,
252                 .prot_l1   = PMD_TYPE_TABLE,
253                 .domain    = DOMAIN_USER,
254         },
255         [MT_MEMORY] = {
256                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
257                 .prot_l1   = PMD_TYPE_TABLE,
258                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259                 .domain    = DOMAIN_KERNEL,
260         },
261         [MT_ROM] = {
262                 .prot_sect = PMD_TYPE_SECT,
263                 .domain    = DOMAIN_KERNEL,
264         },
265         [MT_MEMORY_NONCACHED] = {
266                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267                                 L_PTE_MT_BUFFERABLE,
268                 .prot_l1   = PMD_TYPE_TABLE,
269                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
270                 .domain    = DOMAIN_KERNEL,
271         },
272         [MT_MEMORY_DTCM] = {
273                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274                                 L_PTE_XN,
275                 .prot_l1   = PMD_TYPE_TABLE,
276                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
277                 .domain    = DOMAIN_KERNEL,
278         },
279         [MT_MEMORY_ITCM] = {
280                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
281                 .prot_l1   = PMD_TYPE_TABLE,
282                 .domain    = DOMAIN_KERNEL,
283         },
284         [MT_MEMORY_SO] = {
285                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286                                 L_PTE_MT_UNCACHED,
287                 .prot_l1   = PMD_TYPE_TABLE,
288                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
289                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
290                 .domain    = DOMAIN_KERNEL,
291         },
292         [MT_MEMORY_DMA_READY] = {
293                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294                 .prot_l1   = PMD_TYPE_TABLE,
295                 .domain    = DOMAIN_KERNEL,
296         },
297 };
298
299 const struct mem_type *get_mem_type(unsigned int type)
300 {
301         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
302 }
303 EXPORT_SYMBOL(get_mem_type);
304
305 /*
306  * Adjust the PMD section entries according to the CPU in use.
307  */
308 static void __init build_mem_type_table(void)
309 {
310         struct cachepolicy *cp;
311         unsigned int cr = get_cr();
312         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
313         int cpu_arch = cpu_architecture();
314         int i;
315
316         if (cpu_arch < CPU_ARCH_ARMv6) {
317 #if defined(CONFIG_CPU_DCACHE_DISABLE)
318                 if (cachepolicy > CPOLICY_BUFFERED)
319                         cachepolicy = CPOLICY_BUFFERED;
320 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
321                 if (cachepolicy > CPOLICY_WRITETHROUGH)
322                         cachepolicy = CPOLICY_WRITETHROUGH;
323 #endif
324         }
325         if (cpu_arch < CPU_ARCH_ARMv5) {
326                 if (cachepolicy >= CPOLICY_WRITEALLOC)
327                         cachepolicy = CPOLICY_WRITEBACK;
328                 ecc_mask = 0;
329         }
330         if (is_smp())
331                 cachepolicy = CPOLICY_WRITEALLOC;
332
333         /*
334          * Strip out features not present on earlier architectures.
335          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
336          * without extended page tables don't have the 'Shared' bit.
337          */
338         if (cpu_arch < CPU_ARCH_ARMv5)
339                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
340                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
341         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
342                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
343                         mem_types[i].prot_sect &= ~PMD_SECT_S;
344
345         /*
346          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347          * "update-able on write" bit on ARM610).  However, Xscale and
348          * Xscale3 require this bit to be cleared.
349          */
350         if (cpu_is_xscale() || cpu_is_xsc3()) {
351                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
352                         mem_types[i].prot_sect &= ~PMD_BIT4;
353                         mem_types[i].prot_l1 &= ~PMD_BIT4;
354                 }
355         } else if (cpu_arch < CPU_ARCH_ARMv6) {
356                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
357                         if (mem_types[i].prot_l1)
358                                 mem_types[i].prot_l1 |= PMD_BIT4;
359                         if (mem_types[i].prot_sect)
360                                 mem_types[i].prot_sect |= PMD_BIT4;
361                 }
362         }
363
364         /*
365          * Mark the device areas according to the CPU/architecture.
366          */
367         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
368                 if (!cpu_is_xsc3()) {
369                         /*
370                          * Mark device regions on ARMv6+ as execute-never
371                          * to prevent speculative instruction fetches.
372                          */
373                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
374                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
375                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
376                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
377                 }
378                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
379                         /*
380                          * For ARMv7 with TEX remapping,
381                          * - shared device is SXCB=1100
382                          * - nonshared device is SXCB=0100
383                          * - write combine device mem is SXCB=0001
384                          * (Uncached Normal memory)
385                          */
386                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
387                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
388                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
389                 } else if (cpu_is_xsc3()) {
390                         /*
391                          * For Xscale3,
392                          * - shared device is TEXCB=00101
393                          * - nonshared device is TEXCB=01000
394                          * - write combine device mem is TEXCB=00100
395                          * (Inner/Outer Uncacheable in xsc3 parlance)
396                          */
397                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
398                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
399                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
400                 } else {
401                         /*
402                          * For ARMv6 and ARMv7 without TEX remapping,
403                          * - shared device is TEXCB=00001
404                          * - nonshared device is TEXCB=01000
405                          * - write combine device mem is TEXCB=00100
406                          * (Uncached Normal in ARMv6 parlance).
407                          */
408                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
410                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
411                 }
412         } else {
413                 /*
414                  * On others, write combining is "Uncached/Buffered"
415                  */
416                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
417         }
418
419         /*
420          * Now deal with the memory-type mappings
421          */
422         cp = &cache_policies[cachepolicy];
423         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
424
425         /*
426          * Enable CPU-specific coherency if supported.
427          * (Only available on XSC3 at the moment.)
428          */
429         if (arch_is_coherent() && cpu_is_xsc3()) {
430                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
433                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
434                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
435         }
436         /*
437          * ARMv6 and above have extended page tables.
438          */
439         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
440 #ifndef CONFIG_ARM_LPAE
441                 /*
442                  * Mark cache clean areas and XIP ROM read only
443                  * from SVC mode and no access from userspace.
444                  */
445                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
448 #endif
449
450                 if (is_smp()) {
451                         /*
452                          * Mark memory with the "shared" attribute
453                          * for SMP systems
454                          */
455                         user_pgprot |= L_PTE_SHARED;
456                         kern_pgprot |= L_PTE_SHARED;
457                         vecs_pgprot |= L_PTE_SHARED;
458                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
459                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
460                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
461                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
462                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
463                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
464                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
465                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
466                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
467                 }
468         }
469
470         /*
471          * Non-cacheable Normal - intended for memory areas that must
472          * not cause dirty cache line writebacks when used
473          */
474         if (cpu_arch >= CPU_ARCH_ARMv6) {
475                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
476                         /* Non-cacheable Normal is XCB = 001 */
477                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
478                                 PMD_SECT_BUFFERED;
479                 } else {
480                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
481                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
482                                 PMD_SECT_TEX(1);
483                 }
484         } else {
485                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
486         }
487
488 #ifdef CONFIG_ARM_LPAE
489         /*
490          * Do not generate access flag faults for the kernel mappings.
491          */
492         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
493                 mem_types[i].prot_pte |= PTE_EXT_AF;
494                 if (mem_types[i].prot_sect)
495                         mem_types[i].prot_sect |= PMD_SECT_AF;
496         }
497         kern_pgprot |= PTE_EXT_AF;
498         vecs_pgprot |= PTE_EXT_AF;
499 #endif
500
501         for (i = 0; i < 16; i++) {
502                 unsigned long v = pgprot_val(protection_map[i]);
503                 protection_map[i] = __pgprot(v | user_pgprot);
504         }
505
506         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
507         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
508
509         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
510         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
511                                  L_PTE_DIRTY | kern_pgprot);
512
513         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
514         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
515         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
516         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
517         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
518         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
519         mem_types[MT_ROM].prot_sect |= cp->pmd;
520
521         switch (cp->pmd) {
522         case PMD_SECT_WT:
523                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
524                 break;
525         case PMD_SECT_WB:
526         case PMD_SECT_WBWA:
527                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
528                 break;
529         }
530         printk("Memory policy: ECC %sabled, Data cache %s\n",
531                 ecc_mask ? "en" : "dis", cp->policy);
532
533         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
534                 struct mem_type *t = &mem_types[i];
535                 if (t->prot_l1)
536                         t->prot_l1 |= PMD_DOMAIN(t->domain);
537                 if (t->prot_sect)
538                         t->prot_sect |= PMD_DOMAIN(t->domain);
539         }
540 }
541
542 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
543 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
544                               unsigned long size, pgprot_t vma_prot)
545 {
546         if (!pfn_valid(pfn))
547                 return pgprot_noncached(vma_prot);
548         else if (file->f_flags & O_SYNC)
549                 return pgprot_writecombine(vma_prot);
550         return vma_prot;
551 }
552 EXPORT_SYMBOL(phys_mem_access_prot);
553 #endif
554
555 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
556
557 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
558 {
559         void *ptr = __va(memblock_alloc(sz, align));
560         memset(ptr, 0, sz);
561         return ptr;
562 }
563
564 static void __init *early_alloc(unsigned long sz)
565 {
566         return early_alloc_aligned(sz, sz);
567 }
568
569 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
570 {
571         if (pmd_none(*pmd)) {
572                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
573                 __pmd_populate(pmd, __pa(pte), prot);
574         }
575         BUG_ON(pmd_bad(*pmd));
576         return pte_offset_kernel(pmd, addr);
577 }
578
579 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
580                                   unsigned long end, unsigned long pfn,
581                                   const struct mem_type *type)
582 {
583         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
584         do {
585                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
586                 pfn++;
587         } while (pte++, addr += PAGE_SIZE, addr != end);
588 }
589
590 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
591                                       unsigned long end, phys_addr_t phys,
592                                       const struct mem_type *type)
593 {
594         pmd_t *pmd = pmd_offset(pud, addr);
595
596         /*
597          * Try a section mapping - end, addr and phys must all be aligned
598          * to a section boundary.  Note that PMDs refer to the individual
599          * L1 entries, whereas PGDs refer to a group of L1 entries making
600          * up one logical pointer to an L2 table.
601          */
602         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
603                 pmd_t *p = pmd;
604
605 #ifndef CONFIG_ARM_LPAE
606                 if (addr & SECTION_SIZE)
607                         pmd++;
608 #endif
609
610                 do {
611                         *pmd = __pmd(phys | type->prot_sect);
612                         phys += SECTION_SIZE;
613                 } while (pmd++, addr += SECTION_SIZE, addr != end);
614
615                 flush_pmd_entry(p);
616         } else {
617                 /*
618                  * No need to loop; pte's aren't interested in the
619                  * individual L1 entries.
620                  */
621                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
622         }
623 }
624
625 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
626         unsigned long end, unsigned long phys, const struct mem_type *type)
627 {
628         pud_t *pud = pud_offset(pgd, addr);
629         unsigned long next;
630
631         do {
632                 next = pud_addr_end(addr, end);
633                 alloc_init_section(pud, addr, next, phys, type);
634                 phys += next - addr;
635         } while (pud++, addr = next, addr != end);
636 }
637
638 #ifndef CONFIG_ARM_LPAE
639 static void __init create_36bit_mapping(struct map_desc *md,
640                                         const struct mem_type *type)
641 {
642         unsigned long addr, length, end;
643         phys_addr_t phys;
644         pgd_t *pgd;
645
646         addr = md->virtual;
647         phys = __pfn_to_phys(md->pfn);
648         length = PAGE_ALIGN(md->length);
649
650         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
651                 printk(KERN_ERR "MM: CPU does not support supersection "
652                        "mapping for 0x%08llx at 0x%08lx\n",
653                        (long long)__pfn_to_phys((u64)md->pfn), addr);
654                 return;
655         }
656
657         /* N.B. ARMv6 supersections are only defined to work with domain 0.
658          *      Since domain assignments can in fact be arbitrary, the
659          *      'domain == 0' check below is required to insure that ARMv6
660          *      supersections are only allocated for domain 0 regardless
661          *      of the actual domain assignments in use.
662          */
663         if (type->domain) {
664                 printk(KERN_ERR "MM: invalid domain in supersection "
665                        "mapping for 0x%08llx at 0x%08lx\n",
666                        (long long)__pfn_to_phys((u64)md->pfn), addr);
667                 return;
668         }
669
670         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
671                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
672                        " at 0x%08lx invalid alignment\n",
673                        (long long)__pfn_to_phys((u64)md->pfn), addr);
674                 return;
675         }
676
677         /*
678          * Shift bits [35:32] of address into bits [23:20] of PMD
679          * (See ARMv6 spec).
680          */
681         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
682
683         pgd = pgd_offset_k(addr);
684         end = addr + length;
685         do {
686                 pud_t *pud = pud_offset(pgd, addr);
687                 pmd_t *pmd = pmd_offset(pud, addr);
688                 int i;
689
690                 for (i = 0; i < 16; i++)
691                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
692
693                 addr += SUPERSECTION_SIZE;
694                 phys += SUPERSECTION_SIZE;
695                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
696         } while (addr != end);
697 }
698 #endif  /* !CONFIG_ARM_LPAE */
699
700 /*
701  * Create the page directory entries and any necessary
702  * page tables for the mapping specified by `md'.  We
703  * are able to cope here with varying sizes and address
704  * offsets, and we take full advantage of sections and
705  * supersections.
706  */
707 static void __init create_mapping(struct map_desc *md)
708 {
709         unsigned long addr, length, end;
710         phys_addr_t phys;
711         const struct mem_type *type;
712         pgd_t *pgd;
713
714         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
715                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
716                        " at 0x%08lx in user region\n",
717                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
718                 return;
719         }
720
721         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
722             md->virtual >= PAGE_OFFSET &&
723             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
724                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
725                        " at 0x%08lx out of vmalloc space\n",
726                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
727         }
728
729         type = &mem_types[md->type];
730
731 #ifndef CONFIG_ARM_LPAE
732         /*
733          * Catch 36-bit addresses
734          */
735         if (md->pfn >= 0x100000) {
736                 create_36bit_mapping(md, type);
737                 return;
738         }
739 #endif
740
741         addr = md->virtual & PAGE_MASK;
742         phys = __pfn_to_phys(md->pfn);
743         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
744
745         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
746                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
747                        "be mapped using pages, ignoring.\n",
748                        (long long)__pfn_to_phys(md->pfn), addr);
749                 return;
750         }
751
752         pgd = pgd_offset_k(addr);
753         end = addr + length;
754         do {
755                 unsigned long next = pgd_addr_end(addr, end);
756
757                 alloc_init_pud(pgd, addr, next, phys, type);
758
759                 phys += next - addr;
760                 addr = next;
761         } while (pgd++, addr != end);
762 }
763
764 /*
765  * Create the architecture specific mappings
766  */
767 void __init iotable_init(struct map_desc *io_desc, int nr)
768 {
769         struct map_desc *md;
770         struct vm_struct *vm;
771
772         if (!nr)
773                 return;
774
775         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
776
777         for (md = io_desc; nr; md++, nr--) {
778                 create_mapping(md);
779                 vm->addr = (void *)(md->virtual & PAGE_MASK);
780                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
781                 vm->phys_addr = __pfn_to_phys(md->pfn);
782                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
783                 vm->flags |= VM_ARM_MTYPE(md->type);
784                 vm->caller = iotable_init;
785                 vm_area_add_early(vm++);
786         }
787 }
788
789 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
790                                   void *caller)
791 {
792         struct vm_struct *vm;
793
794         vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
795         vm->addr = (void *)addr;
796         vm->size = size;
797         vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
798         vm->caller = caller;
799         vm_area_add_early(vm);
800 }
801
802 #ifndef CONFIG_ARM_LPAE
803
804 /*
805  * The Linux PMD is made of two consecutive section entries covering 2MB
806  * (see definition in include/asm/pgtable-2level.h).  However a call to
807  * create_mapping() may optimize static mappings by using individual
808  * 1MB section mappings.  This leaves the actual PMD potentially half
809  * initialized if the top or bottom section entry isn't used, leaving it
810  * open to problems if a subsequent ioremap() or vmalloc() tries to use
811  * the virtual space left free by that unused section entry.
812  *
813  * Let's avoid the issue by inserting dummy vm entries covering the unused
814  * PMD halves once the static mappings are in place.
815  */
816
817 static void __init pmd_empty_section_gap(unsigned long addr)
818 {
819         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
820 }
821
822 static void __init fill_pmd_gaps(void)
823 {
824         struct vm_struct *vm;
825         unsigned long addr, next = 0;
826         pmd_t *pmd;
827
828         /* we're still single threaded hence no lock needed here */
829         for (vm = vmlist; vm; vm = vm->next) {
830                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
831                         continue;
832                 addr = (unsigned long)vm->addr;
833                 if (addr < next)
834                         continue;
835
836                 /*
837                  * Check if this vm starts on an odd section boundary.
838                  * If so and the first section entry for this PMD is free
839                  * then we block the corresponding virtual address.
840                  */
841                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
842                         pmd = pmd_off_k(addr);
843                         if (pmd_none(*pmd))
844                                 pmd_empty_section_gap(addr & PMD_MASK);
845                 }
846
847                 /*
848                  * Then check if this vm ends on an odd section boundary.
849                  * If so and the second section entry for this PMD is empty
850                  * then we block the corresponding virtual address.
851                  */
852                 addr += vm->size;
853                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
854                         pmd = pmd_off_k(addr) + 1;
855                         if (pmd_none(*pmd))
856                                 pmd_empty_section_gap(addr);
857                 }
858
859                 /* no need to look at any vm entry until we hit the next PMD */
860                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
861         }
862 }
863
864 #else
865 #define fill_pmd_gaps() do { } while (0)
866 #endif
867
868 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
869 static void __init pci_reserve_io(void)
870 {
871         struct vm_struct *vm;
872         unsigned long addr;
873
874         /* we're still single threaded hence no lock needed here */
875         for (vm = vmlist; vm; vm = vm->next) {
876                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
877                         continue;
878                 addr = (unsigned long)vm->addr;
879                 addr &= ~(SZ_2M - 1);
880                 if (addr == PCI_IO_VIRT_BASE)
881                         return;
882
883         }
884         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
885 }
886 #else
887 #define pci_reserve_io() do { } while (0)
888 #endif
889
890 static void * __initdata vmalloc_min =
891         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
892
893 /*
894  * vmalloc=size forces the vmalloc area to be exactly 'size'
895  * bytes. This can be used to increase (or decrease) the vmalloc
896  * area - the default is 240m.
897  */
898 static int __init early_vmalloc(char *arg)
899 {
900         unsigned long vmalloc_reserve = memparse(arg, NULL);
901
902         if (vmalloc_reserve < SZ_16M) {
903                 vmalloc_reserve = SZ_16M;
904                 printk(KERN_WARNING
905                         "vmalloc area too small, limiting to %luMB\n",
906                         vmalloc_reserve >> 20);
907         }
908
909         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
910                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
911                 printk(KERN_WARNING
912                         "vmalloc area is too big, limiting to %luMB\n",
913                         vmalloc_reserve >> 20);
914         }
915
916         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
917         return 0;
918 }
919 early_param("vmalloc", early_vmalloc);
920
921 phys_addr_t arm_lowmem_limit __initdata = 0;
922
923 void __init sanity_check_meminfo(void)
924 {
925         int i, j, highmem = 0;
926
927         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
928                 struct membank *bank = &meminfo.bank[j];
929                 *bank = meminfo.bank[i];
930
931                 if (bank->start > ULONG_MAX)
932                         highmem = 1;
933
934 #ifdef CONFIG_HIGHMEM
935                 if (__va(bank->start) >= vmalloc_min ||
936                     __va(bank->start) < (void *)PAGE_OFFSET)
937                         highmem = 1;
938
939                 bank->highmem = highmem;
940
941                 /*
942                  * Split those memory banks which are partially overlapping
943                  * the vmalloc area greatly simplifying things later.
944                  */
945                 if (!highmem && __va(bank->start) < vmalloc_min &&
946                     bank->size > vmalloc_min - __va(bank->start)) {
947                         if (meminfo.nr_banks >= NR_BANKS) {
948                                 printk(KERN_CRIT "NR_BANKS too low, "
949                                                  "ignoring high memory\n");
950                         } else {
951                                 memmove(bank + 1, bank,
952                                         (meminfo.nr_banks - i) * sizeof(*bank));
953                                 meminfo.nr_banks++;
954                                 i++;
955                                 bank[1].size -= vmalloc_min - __va(bank->start);
956                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
957                                 bank[1].highmem = highmem = 1;
958                                 j++;
959                         }
960                         bank->size = vmalloc_min - __va(bank->start);
961                 }
962 #else
963                 bank->highmem = highmem;
964
965                 /*
966                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
967                  */
968                 if (highmem) {
969                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
970                                "(!CONFIG_HIGHMEM).\n",
971                                (unsigned long long)bank->start,
972                                (unsigned long long)bank->start + bank->size - 1);
973                         continue;
974                 }
975
976                 /*
977                  * Check whether this memory bank would entirely overlap
978                  * the vmalloc area.
979                  */
980                 if (__va(bank->start) >= vmalloc_min ||
981                     __va(bank->start) < (void *)PAGE_OFFSET) {
982                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
983                                "(vmalloc region overlap).\n",
984                                (unsigned long long)bank->start,
985                                (unsigned long long)bank->start + bank->size - 1);
986                         continue;
987                 }
988
989                 /*
990                  * Check whether this memory bank would partially overlap
991                  * the vmalloc area.
992                  */
993                 if (__va(bank->start + bank->size) > vmalloc_min ||
994                     __va(bank->start + bank->size) < __va(bank->start)) {
995                         unsigned long newsize = vmalloc_min - __va(bank->start);
996                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
997                                "to -%.8llx (vmalloc region overlap).\n",
998                                (unsigned long long)bank->start,
999                                (unsigned long long)bank->start + bank->size - 1,
1000                                (unsigned long long)bank->start + newsize - 1);
1001                         bank->size = newsize;
1002                 }
1003 #endif
1004                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1005                         arm_lowmem_limit = bank->start + bank->size;
1006
1007                 j++;
1008         }
1009 #ifdef CONFIG_HIGHMEM
1010         if (highmem) {
1011                 const char *reason = NULL;
1012
1013                 if (cache_is_vipt_aliasing()) {
1014                         /*
1015                          * Interactions between kmap and other mappings
1016                          * make highmem support with aliasing VIPT caches
1017                          * rather difficult.
1018                          */
1019                         reason = "with VIPT aliasing cache";
1020                 }
1021                 if (reason) {
1022                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1023                                 reason);
1024                         while (j > 0 && meminfo.bank[j - 1].highmem)
1025                                 j--;
1026                 }
1027         }
1028 #endif
1029         meminfo.nr_banks = j;
1030         high_memory = __va(arm_lowmem_limit - 1) + 1;
1031         memblock_set_current_limit(arm_lowmem_limit);
1032 }
1033
1034 static inline void prepare_page_table(void)
1035 {
1036         unsigned long addr;
1037         phys_addr_t end;
1038
1039         /*
1040          * Clear out all the mappings below the kernel image.
1041          */
1042         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1043                 pmd_clear(pmd_off_k(addr));
1044
1045 #ifdef CONFIG_XIP_KERNEL
1046         /* The XIP kernel is mapped in the module area -- skip over it */
1047         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1048 #endif
1049         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1050                 pmd_clear(pmd_off_k(addr));
1051
1052         /*
1053          * Find the end of the first block of lowmem.
1054          */
1055         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1056         if (end >= arm_lowmem_limit)
1057                 end = arm_lowmem_limit;
1058
1059         /*
1060          * Clear out all the kernel space mappings, except for the first
1061          * memory bank, up to the vmalloc region.
1062          */
1063         for (addr = __phys_to_virt(end);
1064              addr < VMALLOC_START; addr += PMD_SIZE)
1065                 pmd_clear(pmd_off_k(addr));
1066 }
1067
1068 #ifdef CONFIG_ARM_LPAE
1069 /* the first page is reserved for pgd */
1070 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1071                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1072 #else
1073 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1074 #endif
1075
1076 /*
1077  * Reserve the special regions of memory
1078  */
1079 void __init arm_mm_memblock_reserve(void)
1080 {
1081         /*
1082          * Reserve the page tables.  These are already in use,
1083          * and can only be in node 0.
1084          */
1085         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1086
1087 #ifdef CONFIG_SA1111
1088         /*
1089          * Because of the SA1111 DMA bug, we want to preserve our
1090          * precious DMA-able memory...
1091          */
1092         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1093 #endif
1094 }
1095
1096 /*
1097  * Set up the device mappings.  Since we clear out the page tables for all
1098  * mappings above VMALLOC_START, we will remove any debug device mappings.
1099  * This means you have to be careful how you debug this function, or any
1100  * called function.  This means you can't use any function or debugging
1101  * method which may touch any device, otherwise the kernel _will_ crash.
1102  */
1103 static void __init devicemaps_init(struct machine_desc *mdesc)
1104 {
1105         struct map_desc map;
1106         unsigned long addr;
1107         void *vectors;
1108
1109         /*
1110          * Allocate the vector page early.
1111          */
1112         vectors = early_alloc(PAGE_SIZE);
1113
1114         early_trap_init(vectors);
1115
1116         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1117                 pmd_clear(pmd_off_k(addr));
1118
1119         /*
1120          * Map the kernel if it is XIP.
1121          * It is always first in the modulearea.
1122          */
1123 #ifdef CONFIG_XIP_KERNEL
1124         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1125         map.virtual = MODULES_VADDR;
1126         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1127         map.type = MT_ROM;
1128         create_mapping(&map);
1129 #endif
1130
1131         /*
1132          * Map the cache flushing regions.
1133          */
1134 #ifdef FLUSH_BASE
1135         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1136         map.virtual = FLUSH_BASE;
1137         map.length = SZ_1M;
1138         map.type = MT_CACHECLEAN;
1139         create_mapping(&map);
1140 #endif
1141 #ifdef FLUSH_BASE_MINICACHE
1142         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1143         map.virtual = FLUSH_BASE_MINICACHE;
1144         map.length = SZ_1M;
1145         map.type = MT_MINICLEAN;
1146         create_mapping(&map);
1147 #endif
1148
1149         /*
1150          * Create a mapping for the machine vectors at the high-vectors
1151          * location (0xffff0000).  If we aren't using high-vectors, also
1152          * create a mapping at the low-vectors virtual address.
1153          */
1154         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1155         map.virtual = 0xffff0000;
1156         map.length = PAGE_SIZE;
1157         map.type = MT_HIGH_VECTORS;
1158         create_mapping(&map);
1159
1160         if (!vectors_high()) {
1161                 map.virtual = 0;
1162                 map.type = MT_LOW_VECTORS;
1163                 create_mapping(&map);
1164         }
1165
1166         /*
1167          * Ask the machine support to map in the statically mapped devices.
1168          */
1169         if (mdesc->map_io)
1170                 mdesc->map_io();
1171         fill_pmd_gaps();
1172
1173         /* Reserve fixed i/o space in VMALLOC region */
1174         pci_reserve_io();
1175
1176         /*
1177          * Finally flush the caches and tlb to ensure that we're in a
1178          * consistent state wrt the writebuffer.  This also ensures that
1179          * any write-allocated cache lines in the vector page are written
1180          * back.  After this point, we can start to touch devices again.
1181          */
1182         local_flush_tlb_all();
1183         flush_cache_all();
1184 }
1185
1186 static void __init kmap_init(void)
1187 {
1188 #ifdef CONFIG_HIGHMEM
1189         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1190                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1191 #endif
1192 }
1193
1194 static void __init map_lowmem(void)
1195 {
1196         struct memblock_region *reg;
1197
1198         /* Map all the lowmem memory banks. */
1199         for_each_memblock(memory, reg) {
1200                 phys_addr_t start = reg->base;
1201                 phys_addr_t end = start + reg->size;
1202                 struct map_desc map;
1203
1204                 if (end > arm_lowmem_limit)
1205                         end = arm_lowmem_limit;
1206                 if (start >= end)
1207                         break;
1208
1209                 map.pfn = __phys_to_pfn(start);
1210                 map.virtual = __phys_to_virt(start);
1211                 map.length = end - start;
1212                 map.type = MT_MEMORY;
1213
1214                 create_mapping(&map);
1215         }
1216 }
1217
1218 /*
1219  * paging_init() sets up the page tables, initialises the zone memory
1220  * maps, and sets up the zero page, bad page and bad page tables.
1221  */
1222 void __init paging_init(struct machine_desc *mdesc)
1223 {
1224         void *zero_page;
1225
1226         memblock_set_current_limit(arm_lowmem_limit);
1227
1228         build_mem_type_table();
1229         prepare_page_table();
1230         map_lowmem();
1231         dma_contiguous_remap();
1232         devicemaps_init(mdesc);
1233         kmap_init();
1234
1235         top_pmd = pmd_off_k(0xffff0000);
1236
1237         /* allocate the zero page. */
1238         zero_page = early_alloc(PAGE_SIZE);
1239
1240         bootmem_init();
1241
1242         empty_zero_page = virt_to_page(zero_page);
1243         __flush_dcache_page(NULL, empty_zero_page);
1244 }